aboutsummaryrefslogtreecommitdiffstats
path: root/ui/qt/widgets/qcustomplot.cpp
blob: 4e1907237d250c0092b7827666a11417b1a1a7f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
/* qcustomplot.cpp
 *
 * QCustomPlot, an easy to use, modern plotting widget for Qt
 * Copyright (C) 2011-2019 Emanuel Eichhammer
 * Website/Contact: http://www.qcustomplot.com/
 *
 * Emanuel Eichhammer has granted Wireshark permission to use QCustomPlot
 * under the terms of the GNU General Public License version 2.
 *                    Date: 22.12.15 (V1.3.2)
 *                          13.09.19 (V2.0.1)
 *                 Version: 2.0.1
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

#include "qcustomplot.h"


/* including file 'src/vector2d.cpp', size 7340                              */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPVector2D
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPVector2D
  \brief Represents two doubles as a mathematical 2D vector

  This class acts as a replacement for QVector2D with the advantage of double precision instead of
  single, and some convenience methods tailored for the QCustomPlot library.
*/

/* start documentation of inline functions */

/*! \fn void QCPVector2D::setX(double x)

  Sets the x coordinate of this vector to \a x.

  \see setY
*/

/*! \fn void QCPVector2D::setY(double y)

  Sets the y coordinate of this vector to \a y.

  \see setX
*/

/*! \fn double QCPVector2D::length() const

  Returns the length of this vector.

  \see lengthSquared
*/

/*! \fn double QCPVector2D::lengthSquared() const

  Returns the squared length of this vector. In some situations, e.g. when just trying to find the
  shortest vector of a group, this is faster than calculating \ref length, because it avoids
  calculation of a square root.

  \see length
*/

/*! \fn QPoint QCPVector2D::toPoint() const

  Returns a QPoint which has the x and y coordinates of this vector, truncating any floating point
  information.

  \see toPointF
*/

/*! \fn QPointF QCPVector2D::toPointF() const

  Returns a QPointF which has the x and y coordinates of this vector.

  \see toPoint
*/

/*! \fn bool QCPVector2D::isNull() const

  Returns whether this vector is null. A vector is null if \c qIsNull returns true for both x and y
  coordinates, i.e. if both are binary equal to 0.
*/

/*! \fn QCPVector2D QCPVector2D::perpendicular() const

  Returns a vector perpendicular to this vector, with the same length.
*/

/*! \fn double QCPVector2D::dot() const

  Returns the dot/scalar product of this vector with the specified vector \a vec.
*/

/* end documentation of inline functions */

/*!
  Creates a QCPVector2D object and initializes the x and y coordinates to 0.
*/
QCPVector2D::QCPVector2D() :
  mX(0),
  mY(0)
{
}

/*!
  Creates a QCPVector2D object and initializes the \a x and \a y coordinates with the specified
  values.
*/
QCPVector2D::QCPVector2D(double x, double y) :
  mX(x),
  mY(y)
{
}

/*!
  Creates a QCPVector2D object and initializes the x and y coordinates respective coordinates of
  the specified \a point.
*/
QCPVector2D::QCPVector2D(const QPoint &point) :
  mX(point.x()),
  mY(point.y())
{
}

/*!
  Creates a QCPVector2D object and initializes the x and y coordinates respective coordinates of
  the specified \a point.
*/
QCPVector2D::QCPVector2D(const QPointF &point) :
  mX(point.x()),
  mY(point.y())
{
}

/*!
  Normalizes this vector. After this operation, the length of the vector is equal to 1.

  \see normalized, length, lengthSquared
*/
void QCPVector2D::normalize()
{
  double len = length();
  mX /= len;
  mY /= len;
}

/*!
  Returns a normalized version of this vector. The length of the returned vector is equal to 1.

  \see normalize, length, lengthSquared
*/
QCPVector2D QCPVector2D::normalized() const
{
  QCPVector2D result(mX, mY);
  result.normalize();
  return result;
}

/*! \overload

  Returns the squared shortest distance of this vector (interpreted as a point) to the finite line
  segment given by \a start and \a end.

  \see distanceToStraightLine
*/
double QCPVector2D::distanceSquaredToLine(const QCPVector2D &start, const QCPVector2D &end) const
{
  QCPVector2D v(end-start);
  double vLengthSqr = v.lengthSquared();
  if (!qFuzzyIsNull(vLengthSqr))
  {
    double mu = v.dot(*this-start)/vLengthSqr;
    if (mu < 0)
      return (*this-start).lengthSquared();
    else if (mu > 1)
      return (*this-end).lengthSquared();
    else
      return ((start + mu*v)-*this).lengthSquared();
  } else
    return (*this-start).lengthSquared();
}

/*! \overload

  Returns the squared shortest distance of this vector (interpreted as a point) to the finite line
  segment given by \a line.

  \see distanceToStraightLine
*/
double QCPVector2D::distanceSquaredToLine(const QLineF &line) const
{
  return distanceSquaredToLine(QCPVector2D(line.p1()), QCPVector2D(line.p2()));
}

/*!
  Returns the shortest distance of this vector (interpreted as a point) to the infinite straight
  line given by a \a base point and a \a direction vector.

  \see distanceSquaredToLine
*/
double QCPVector2D::distanceToStraightLine(const QCPVector2D &base, const QCPVector2D &direction) const
{
  return qAbs((*this-base).dot(direction.perpendicular()))/direction.length();
}

/*!
  Scales this vector by the given \a factor, i.e. the x and y components are multiplied by \a
  factor.
*/
QCPVector2D &QCPVector2D::operator*=(double factor)
{
  mX *= factor;
  mY *= factor;
  return *this;
}

/*!
  Scales this vector by the given \a divisor, i.e. the x and y components are divided by \a
  divisor.
*/
QCPVector2D &QCPVector2D::operator/=(double divisor)
{
  mX /= divisor;
  mY /= divisor;
  return *this;
}

/*!
  Adds the given \a vector to this vector component-wise.
*/
QCPVector2D &QCPVector2D::operator+=(const QCPVector2D &vector)
{
  mX += vector.mX;
  mY += vector.mY;
  return *this;
}

/*!
  subtracts the given \a vector from this vector component-wise.
*/
QCPVector2D &QCPVector2D::operator-=(const QCPVector2D &vector)
{
  mX -= vector.mX;
  mY -= vector.mY;
  return *this;
}
/* end of 'src/vector2d.cpp' */


/* including file 'src/painter.cpp', size 8670                               */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPPainter
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPPainter
  \brief QPainter subclass used internally

  This QPainter subclass is used to provide some extended functionality e.g. for tweaking position
  consistency between antialiased and non-antialiased painting. Further it provides workarounds
  for QPainter quirks.

  \warning This class intentionally hides non-virtual functions of QPainter, e.g. setPen, save and
  restore. So while it is possible to pass a QCPPainter instance to a function that expects a
  QPainter pointer, some of the workarounds and tweaks will be unavailable to the function (because
  it will call the base class implementations of the functions actually hidden by QCPPainter).
*/

/*!
  Creates a new QCPPainter instance and sets default values
*/
QCPPainter::QCPPainter() :
  QPainter(),
  mModes(pmDefault),
  mIsAntialiasing(false)
{
  // don't setRenderHint(QPainter::NonCosmeticDefautPen) here, because painter isn't active yet and
  // a call to begin() will follow
}

/*!
  Creates a new QCPPainter instance on the specified paint \a device and sets default values. Just
  like the analogous QPainter constructor, begins painting on \a device immediately.

  Like \ref begin, this method sets QPainter::NonCosmeticDefaultPen in Qt versions before Qt5.
*/
QCPPainter::QCPPainter(QPaintDevice *device) :
  QPainter(device),
  mModes(pmDefault),
  mIsAntialiasing(false)
{
#if QT_VERSION < QT_VERSION_CHECK(5, 0, 0) // before Qt5, default pens used to be cosmetic if NonCosmeticDefaultPen flag isn't set. So we set it to get consistency across Qt versions.
  if (isActive())
    setRenderHint(QPainter::NonCosmeticDefaultPen);
#endif
}

/*!
  Sets the pen of the painter and applies certain fixes to it, depending on the mode of this
  QCPPainter.

  \note this function hides the non-virtual base class implementation.
*/
void QCPPainter::setPen(const QPen &pen)
{
  QPainter::setPen(pen);
  if (mModes.testFlag(pmNonCosmetic))
    makeNonCosmetic();
}

/*! \overload

  Sets the pen (by color) of the painter and applies certain fixes to it, depending on the mode of
  this QCPPainter.

  \note this function hides the non-virtual base class implementation.
*/
void QCPPainter::setPen(const QColor &color)
{
  QPainter::setPen(color);
  if (mModes.testFlag(pmNonCosmetic))
    makeNonCosmetic();
}

/*! \overload

  Sets the pen (by style) of the painter and applies certain fixes to it, depending on the mode of
  this QCPPainter.

  \note this function hides the non-virtual base class implementation.
*/
void QCPPainter::setPen(Qt::PenStyle penStyle)
{
  QPainter::setPen(penStyle);
  if (mModes.testFlag(pmNonCosmetic))
    makeNonCosmetic();
}

/*! \overload

  Works around a Qt bug introduced with Qt 4.8 which makes drawing QLineF unpredictable when
  antialiasing is disabled. Thus when antialiasing is disabled, it rounds the \a line to
  integer coordinates and then passes it to the original drawLine.

  \note this function hides the non-virtual base class implementation.
*/
void QCPPainter::drawLine(const QLineF &line)
{
  if (mIsAntialiasing || mModes.testFlag(pmVectorized))
    QPainter::drawLine(line);
  else
    QPainter::drawLine(line.toLine());
}

/*!
  Sets whether painting uses antialiasing or not. Use this method instead of using setRenderHint
  with QPainter::Antialiasing directly, as it allows QCPPainter to regain pixel exactness between
  antialiased and non-antialiased painting (Since Qt < 5.0 uses slightly different coordinate systems for
  AA/Non-AA painting).
*/
void QCPPainter::setAntialiasing(bool enabled)
{
  setRenderHint(QPainter::Antialiasing, enabled);
  if (mIsAntialiasing != enabled)
  {
    mIsAntialiasing = enabled;
    if (!mModes.testFlag(pmVectorized)) // antialiasing half-pixel shift only needed for rasterized outputs
    {
      if (mIsAntialiasing)
        translate(0.5, 0.5);
      else
        translate(-0.5, -0.5);
    }
  }
}

/*!
  Sets the mode of the painter. This controls whether the painter shall adjust its
  fixes/workarounds optimized for certain output devices.
*/
void QCPPainter::setModes(QCPPainter::PainterModes modes)
{
  mModes = modes;
}

/*!
  Sets the QPainter::NonCosmeticDefaultPen in Qt versions before Qt5 after beginning painting on \a
  device. This is necessary to get cosmetic pen consistency across Qt versions, because since Qt5,
  all pens are non-cosmetic by default, and in Qt4 this render hint must be set to get that
  behaviour.

  The Constructor \ref QCPPainter(QPaintDevice *device) which directly starts painting also sets
  the render hint as appropriate.

  \note this function hides the non-virtual base class implementation.
*/
bool QCPPainter::begin(QPaintDevice *device)
{
  bool result = QPainter::begin(device);
#if QT_VERSION < QT_VERSION_CHECK(5, 0, 0) // before Qt5, default pens used to be cosmetic if NonCosmeticDefaultPen flag isn't set. So we set it to get consistency across Qt versions.
  if (result)
    setRenderHint(QPainter::NonCosmeticDefaultPen);
#endif
  return result;
}

/*! \overload

  Sets the mode of the painter. This controls whether the painter shall adjust its
  fixes/workarounds optimized for certain output devices.
*/
void QCPPainter::setMode(QCPPainter::PainterMode mode, bool enabled)
{
  if (!enabled && mModes.testFlag(mode))
    mModes &= ~mode;
  else if (enabled && !mModes.testFlag(mode))
    mModes |= mode;
}

/*!
  Saves the painter (see QPainter::save). Since QCPPainter adds some new internal state to
  QPainter, the save/restore functions are reimplemented to also save/restore those members.

  \note this function hides the non-virtual base class implementation.

  \see restore
*/
void QCPPainter::save()
{
  mAntialiasingStack.push(mIsAntialiasing);
  QPainter::save();
}

/*!
  Restores the painter (see QPainter::restore). Since QCPPainter adds some new internal state to
  QPainter, the save/restore functions are reimplemented to also save/restore those members.

  \note this function hides the non-virtual base class implementation.

  \see save
*/
void QCPPainter::restore()
{
  if (!mAntialiasingStack.isEmpty())
    mIsAntialiasing = mAntialiasingStack.pop();
  else
    qDebug() << Q_FUNC_INFO << "Unbalanced save/restore";
  QPainter::restore();
}

/*!
  Changes the pen width to 1 if it currently is 0. This function is called in the \ref setPen
  overrides when the \ref pmNonCosmetic mode is set.
*/
void QCPPainter::makeNonCosmetic()
{
  if (qFuzzyIsNull(pen().widthF()))
  {
    QPen p = pen();
    p.setWidth(1);
    QPainter::setPen(p);
  }
}
/* end of 'src/painter.cpp' */


/* including file 'src/paintbuffer.cpp', size 18502                          */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAbstractPaintBuffer
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPAbstractPaintBuffer
  \brief The abstract base class for paint buffers, which define the rendering backend

  This abstract base class defines the basic interface that a paint buffer needs to provide in
  order to be usable by QCustomPlot.

  A paint buffer manages both a surface to draw onto, and the matching paint device. The size of
  the surface can be changed via \ref setSize. External classes (\ref QCustomPlot and \ref
  QCPLayer) request a painter via \ref startPainting and then perform the draw calls. Once the
  painting is complete, \ref donePainting is called, so the paint buffer implementation can do
  clean up if necessary. Before rendering a frame, each paint buffer is usually filled with a color
  using \ref clear (usually the color is \c Qt::transparent), to remove the contents of the
  previous frame.

  The simplest paint buffer implementation is \ref QCPPaintBufferPixmap which allows regular
  software rendering via the raster engine. Hardware accelerated rendering via pixel buffers and
  frame buffer objects is provided by \ref QCPPaintBufferGlPbuffer and \ref QCPPaintBufferGlFbo.
  They are used automatically if \ref QCustomPlot::setOpenGl is enabled.
*/

/* start documentation of pure virtual functions */

/*! \fn virtual QCPPainter *QCPAbstractPaintBuffer::startPainting() = 0

  Returns a \ref QCPPainter which is ready to draw to this buffer. The ownership and thus the
  responsibility to delete the painter after the painting operations are complete is given to the
  caller of this method.

  Once you are done using the painter, delete the painter and call \ref donePainting.

  While a painter generated with this method is active, you must not call \ref setSize, \ref
  setDevicePixelRatio or \ref clear.

  This method may return 0, if a painter couldn't be activated on the buffer. This usually
  indicates a problem with the respective painting backend.
*/

/*! \fn virtual void QCPAbstractPaintBuffer::draw(QCPPainter *painter) const = 0

  Draws the contents of this buffer with the provided \a painter. This is the method that is used
  to finally join all paint buffers and draw them onto the screen.
*/

/*! \fn virtual void QCPAbstractPaintBuffer::clear(const QColor &color) = 0

  Fills the entire buffer with the provided \a color. To have an empty transparent buffer, use the
  named color \c Qt::transparent.

  This method must not be called if there is currently a painter (acquired with \ref startPainting)
  active.
*/

/*! \fn virtual void QCPAbstractPaintBuffer::reallocateBuffer() = 0

  Reallocates the internal buffer with the currently configured size (\ref setSize) and device
  pixel ratio, if applicable (\ref setDevicePixelRatio). It is called as soon as any of those
  properties are changed on this paint buffer.

  \note Subclasses of \ref QCPAbstractPaintBuffer must call their reimplementation of this method
  in their constructor, to perform the first allocation (this can not be done by the base class
  because calling pure virtual methods in base class constructors is not possible).
*/

/* end documentation of pure virtual functions */
/* start documentation of inline functions */

/*! \fn virtual void QCPAbstractPaintBuffer::donePainting()

  If you have acquired a \ref QCPPainter to paint onto this paint buffer via \ref startPainting,
  call this method as soon as you are done with the painting operations and have deleted the
  painter.

  paint buffer subclasses may use this method to perform any type of cleanup that is necessary. The
  default implementation does nothing.
*/

/* end documentation of inline functions */

/*!
  Creates a paint buffer and initializes it with the provided \a size and \a devicePixelRatio.

  Subclasses must call their \ref reallocateBuffer implementation in their respective constructors.
*/
QCPAbstractPaintBuffer::QCPAbstractPaintBuffer(const QSize &size, double devicePixelRatio) :
  mSize(size),
  mDevicePixelRatio(devicePixelRatio),
  mInvalidated(true)
{
}

QCPAbstractPaintBuffer::~QCPAbstractPaintBuffer()
{
}

/*!
  Sets the paint buffer size.

  The buffer is reallocated (by calling \ref reallocateBuffer), so any painters that were obtained
  by \ref startPainting are invalidated and must not be used after calling this method.

  If \a size is already the current buffer size, this method does nothing.
*/
void QCPAbstractPaintBuffer::setSize(const QSize &size)
{
  if (mSize != size)
  {
    mSize = size;
    reallocateBuffer();
  }
}

/*!
  Sets the invalidated flag to \a invalidated.

  This mechanism is used internally in conjunction with isolated replotting of \ref QCPLayer
  instances (in \ref QCPLayer::lmBuffered mode). If \ref QCPLayer::replot is called on a buffered
  layer, i.e. an isolated repaint of only that layer (and its dedicated paint buffer) is requested,
  QCustomPlot will decide depending on the invalidated flags of other paint buffers whether it also
  replots them, instead of only the layer on which the replot was called.

  The invalidated flag is set to true when \ref QCPLayer association has changed, i.e. if layers
  were added or removed from this buffer, or if they were reordered. It is set to false as soon as
  all associated \ref QCPLayer instances are drawn onto the buffer.

  Under normal circumstances, it is not necessary to manually call this method.
*/
void QCPAbstractPaintBuffer::setInvalidated(bool invalidated)
{
  mInvalidated = invalidated;
}

/*!
  Sets the the device pixel ratio to \a ratio. This is useful to render on high-DPI output devices.
  The ratio is automatically set to the device pixel ratio used by the parent QCustomPlot instance.

  The buffer is reallocated (by calling \ref reallocateBuffer), so any painters that were obtained
  by \ref startPainting are invalidated and must not be used after calling this method.

  \note This method is only available for Qt versions 5.4 and higher.
*/
void QCPAbstractPaintBuffer::setDevicePixelRatio(double ratio)
{
  if (!qFuzzyCompare(ratio, mDevicePixelRatio))
  {
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
    mDevicePixelRatio = ratio;
    reallocateBuffer();
#else
    qDebug() << Q_FUNC_INFO << "Device pixel ratios not supported for Qt versions before 5.4";
    mDevicePixelRatio = 1.0;
#endif
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPPaintBufferPixmap
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPPaintBufferPixmap
  \brief A paint buffer based on QPixmap, using software raster rendering

  This paint buffer is the default and fall-back paint buffer which uses software rendering and
  QPixmap as internal buffer. It is used if \ref QCustomPlot::setOpenGl is false.
*/

/*!
  Creates a pixmap paint buffer instancen with the specified \a size and \a devicePixelRatio, if
  applicable.
*/
QCPPaintBufferPixmap::QCPPaintBufferPixmap(const QSize &size, double devicePixelRatio) :
  QCPAbstractPaintBuffer(size, devicePixelRatio)
{
  QCPPaintBufferPixmap::reallocateBuffer();
}

QCPPaintBufferPixmap::~QCPPaintBufferPixmap()
{
}

/* inherits documentation from base class */
QCPPainter *QCPPaintBufferPixmap::startPainting()
{
  QCPPainter *result = new QCPPainter(&mBuffer);
  result->setRenderHint(QPainter::HighQualityAntialiasing);
  return result;
}

/* inherits documentation from base class */
void QCPPaintBufferPixmap::draw(QCPPainter *painter) const
{
  if (painter && painter->isActive())
    painter->drawPixmap(0, 0, mBuffer);
  else
    qDebug() << Q_FUNC_INFO << "invalid or inactive painter passed";
}

/* inherits documentation from base class */
void QCPPaintBufferPixmap::clear(const QColor &color)
{
  mBuffer.fill(color);
}

/* inherits documentation from base class */
void QCPPaintBufferPixmap::reallocateBuffer()
{
  setInvalidated();
  if (!qFuzzyCompare(1.0, mDevicePixelRatio))
  {
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
    mBuffer = QPixmap(mSize*mDevicePixelRatio);
    mBuffer.setDevicePixelRatio(mDevicePixelRatio);
#else
    qDebug() << Q_FUNC_INFO << "Device pixel ratios not supported for Qt versions before 5.4";
    mDevicePixelRatio = 1.0;
    mBuffer = QPixmap(mSize);
#endif
  } else
  {
    mBuffer = QPixmap(mSize);
  }
}


#ifdef QCP_OPENGL_PBUFFER
////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPPaintBufferGlPbuffer
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPPaintBufferGlPbuffer
  \brief A paint buffer based on OpenGL pixel buffers, using hardware accelerated rendering

  This paint buffer is one of the OpenGL paint buffers which facilitate hardware accelerated plot
  rendering. It is based on OpenGL pixel buffers (pbuffer) and is used in Qt versions before 5.0.
  (See \ref QCPPaintBufferGlFbo used in newer Qt versions.)

  The OpenGL paint buffers are used if \ref QCustomPlot::setOpenGl is set to true, and if they are
  supported by the system.
*/

/*!
  Creates a \ref QCPPaintBufferGlPbuffer instance with the specified \a size and \a
  devicePixelRatio, if applicable.

  The parameter \a multisamples defines how many samples are used per pixel. Higher values thus
  result in higher quality antialiasing. If the specified \a multisamples value exceeds the
  capability of the graphics hardware, the highest supported multisampling is used.
*/
QCPPaintBufferGlPbuffer::QCPPaintBufferGlPbuffer(const QSize &size, double devicePixelRatio, int multisamples) :
  QCPAbstractPaintBuffer(size, devicePixelRatio),
  mGlPBuffer(0),
  mMultisamples(qMax(0, multisamples))
{
  QCPPaintBufferGlPbuffer::reallocateBuffer();
}

QCPPaintBufferGlPbuffer::~QCPPaintBufferGlPbuffer()
{
  if (mGlPBuffer)
    delete mGlPBuffer;
}

/* inherits documentation from base class */
QCPPainter *QCPPaintBufferGlPbuffer::startPainting()
{
  if (!mGlPBuffer->isValid())
  {
    qDebug() << Q_FUNC_INFO << "OpenGL frame buffer object doesn't exist, reallocateBuffer was not called?";
    return 0;
  }

  QCPPainter *result = new QCPPainter(mGlPBuffer);
  result->setRenderHint(QPainter::HighQualityAntialiasing);
  return result;
}

/* inherits documentation from base class */
void QCPPaintBufferGlPbuffer::draw(QCPPainter *painter) const
{
  if (!painter || !painter->isActive())
  {
    qDebug() << Q_FUNC_INFO << "invalid or inactive painter passed";
    return;
  }
  if (!mGlPBuffer->isValid())
  {
    qDebug() << Q_FUNC_INFO << "OpenGL pbuffer isn't valid, reallocateBuffer was not called?";
    return;
  }
  painter->drawImage(0, 0, mGlPBuffer->toImage());
}

/* inherits documentation from base class */
void QCPPaintBufferGlPbuffer::clear(const QColor &color)
{
  if (mGlPBuffer->isValid())
  {
    mGlPBuffer->makeCurrent();
    glClearColor(color.redF(), color.greenF(), color.blueF(), color.alphaF());
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    mGlPBuffer->doneCurrent();
  } else
    qDebug() << Q_FUNC_INFO << "OpenGL pbuffer invalid or context not current";
}

/* inherits documentation from base class */
void QCPPaintBufferGlPbuffer::reallocateBuffer()
{
  if (mGlPBuffer)
    delete mGlPBuffer;

  QGLFormat format;
  format.setAlpha(true);
  format.setSamples(mMultisamples);
  mGlPBuffer = new QGLPixelBuffer(mSize, format);
}
#endif // QCP_OPENGL_PBUFFER


#ifdef QCP_OPENGL_FBO
////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPPaintBufferGlFbo
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPPaintBufferGlFbo
  \brief A paint buffer based on OpenGL frame buffers objects, using hardware accelerated rendering

  This paint buffer is one of the OpenGL paint buffers which facilitate hardware accelerated plot
  rendering. It is based on OpenGL frame buffer objects (fbo) and is used in Qt versions 5.0 and
  higher. (See \ref QCPPaintBufferGlPbuffer used in older Qt versions.)

  The OpenGL paint buffers are used if \ref QCustomPlot::setOpenGl is set to true, and if they are
  supported by the system.
*/

/*!
  Creates a \ref QCPPaintBufferGlFbo instance with the specified \a size and \a devicePixelRatio,
  if applicable.

  All frame buffer objects shall share one OpenGL context and paint device, which need to be set up
  externally and passed via \a glContext and \a glPaintDevice. The set-up is done in \ref
  QCustomPlot::setupOpenGl and the context and paint device are managed by the parent QCustomPlot
  instance.
*/
QCPPaintBufferGlFbo::QCPPaintBufferGlFbo(const QSize &size, double devicePixelRatio, QWeakPointer<QOpenGLContext> glContext, QWeakPointer<QOpenGLPaintDevice> glPaintDevice) :
  QCPAbstractPaintBuffer(size, devicePixelRatio),
  mGlContext(glContext),
  mGlPaintDevice(glPaintDevice),
  mGlFrameBuffer(0)
{
  QCPPaintBufferGlFbo::reallocateBuffer();
}

QCPPaintBufferGlFbo::~QCPPaintBufferGlFbo()
{
  if (mGlFrameBuffer)
    delete mGlFrameBuffer;
}

/* inherits documentation from base class */
QCPPainter *QCPPaintBufferGlFbo::startPainting()
{
  if (mGlPaintDevice.isNull())
  {
    qDebug() << Q_FUNC_INFO << "OpenGL paint device doesn't exist";
    return 0;
  }
  if (!mGlFrameBuffer)
  {
    qDebug() << Q_FUNC_INFO << "OpenGL frame buffer object doesn't exist, reallocateBuffer was not called?";
    return 0;
  }

  if (QOpenGLContext::currentContext() != mGlContext.data())
    mGlContext.data()->makeCurrent(mGlContext.data()->surface());
  mGlFrameBuffer->bind();
  QCPPainter *result = new QCPPainter(mGlPaintDevice.data());
  result->setRenderHint(QPainter::HighQualityAntialiasing);
  return result;
}

/* inherits documentation from base class */
void QCPPaintBufferGlFbo::donePainting()
{
  if (mGlFrameBuffer && mGlFrameBuffer->isBound())
    mGlFrameBuffer->release();
  else
    qDebug() << Q_FUNC_INFO << "Either OpenGL frame buffer not valid or was not bound";
}

/* inherits documentation from base class */
void QCPPaintBufferGlFbo::draw(QCPPainter *painter) const
{
  if (!painter || !painter->isActive())
  {
    qDebug() << Q_FUNC_INFO << "invalid or inactive painter passed";
    return;
  }
  if (!mGlFrameBuffer)
  {
    qDebug() << Q_FUNC_INFO << "OpenGL frame buffer object doesn't exist, reallocateBuffer was not called?";
    return;
  }
  painter->drawImage(0, 0, mGlFrameBuffer->toImage());
}

/* inherits documentation from base class */
void QCPPaintBufferGlFbo::clear(const QColor &color)
{
  if (mGlContext.isNull())
  {
    qDebug() << Q_FUNC_INFO << "OpenGL context doesn't exist";
    return;
  }
  if (!mGlFrameBuffer)
  {
    qDebug() << Q_FUNC_INFO << "OpenGL frame buffer object doesn't exist, reallocateBuffer was not called?";
    return;
  }

  if (QOpenGLContext::currentContext() != mGlContext.data())
    mGlContext.data()->makeCurrent(mGlContext.data()->surface());
  mGlFrameBuffer->bind();
  glClearColor(color.redF(), color.greenF(), color.blueF(), color.alphaF());
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  mGlFrameBuffer->release();
}

/* inherits documentation from base class */
void QCPPaintBufferGlFbo::reallocateBuffer()
{
  // release and delete possibly existing framebuffer:
  if (mGlFrameBuffer)
  {
    if (mGlFrameBuffer->isBound())
      mGlFrameBuffer->release();
    delete mGlFrameBuffer;
    mGlFrameBuffer = 0;
  }

  if (mGlContext.isNull())
  {
    qDebug() << Q_FUNC_INFO << "OpenGL context doesn't exist";
    return;
  }
  if (mGlPaintDevice.isNull())
  {
    qDebug() << Q_FUNC_INFO << "OpenGL paint device doesn't exist";
    return;
  }

  // create new fbo with appropriate size:
  mGlContext.data()->makeCurrent(mGlContext.data()->surface());
  QOpenGLFramebufferObjectFormat frameBufferFormat;
  frameBufferFormat.setSamples(mGlContext.data()->format().samples());
  frameBufferFormat.setAttachment(QOpenGLFramebufferObject::CombinedDepthStencil);
  mGlFrameBuffer = new QOpenGLFramebufferObject(mSize*mDevicePixelRatio, frameBufferFormat);
  if (mGlPaintDevice.data()->size() != mSize*mDevicePixelRatio)
    mGlPaintDevice.data()->setSize(mSize*mDevicePixelRatio);
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
  mGlPaintDevice.data()->setDevicePixelRatio(mDevicePixelRatio);
#endif
}
#endif // QCP_OPENGL_FBO
/* end of 'src/paintbuffer.cpp' */


/* including file 'src/layer.cpp', size 37304                                */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPLayer
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPLayer
  \brief A layer that may contain objects, to control the rendering order

  The Layering system of QCustomPlot is the mechanism to control the rendering order of the
  elements inside the plot.

  It is based on the two classes QCPLayer and QCPLayerable. QCustomPlot holds an ordered list of
  one or more instances of QCPLayer (see QCustomPlot::addLayer, QCustomPlot::layer,
  QCustomPlot::moveLayer, etc.). When replotting, QCustomPlot goes through the list of layers
  bottom to top and successively draws the layerables of the layers into the paint buffer(s).

  A QCPLayer contains an ordered list of QCPLayerable instances. QCPLayerable is an abstract base
  class from which almost all visible objects derive, like axes, grids, graphs, items, etc.

  \section qcplayer-defaultlayers Default layers

  Initially, QCustomPlot has six layers: "background", "grid", "main", "axes", "legend" and
  "overlay" (in that order). On top is the "overlay" layer, which only contains the QCustomPlot's
  selection rect (\ref QCustomPlot::selectionRect). The next two layers "axes" and "legend" contain
  the default axes and legend, so they will be drawn above plottables. In the middle, there is the
  "main" layer. It is initially empty and set as the current layer (see
  QCustomPlot::setCurrentLayer). This means, all new plottables, items etc. are created on this
  layer by default. Then comes the "grid" layer which contains the QCPGrid instances (which belong
  tightly to QCPAxis, see \ref QCPAxis::grid). The Axis rect background shall be drawn behind
  everything else, thus the default QCPAxisRect instance is placed on the "background" layer. Of
  course, the layer affiliation of the individual objects can be changed as required (\ref
  QCPLayerable::setLayer).

  \section qcplayer-ordering Controlling the rendering order via layers

  Controlling the ordering of layerables in the plot is easy: Create a new layer in the position
  you want the layerable to be in, e.g. above "main", with \ref QCustomPlot::addLayer. Then set the
  current layer with \ref QCustomPlot::setCurrentLayer to that new layer and finally create the
  objects normally. They will be placed on the new layer automatically, due to the current layer
  setting. Alternatively you could have also ignored the current layer setting and just moved the
  objects with \ref QCPLayerable::setLayer to the desired layer after creating them.

  It is also possible to move whole layers. For example, If you want the grid to be shown in front
  of all plottables/items on the "main" layer, just move it above "main" with
  QCustomPlot::moveLayer.

  The rendering order within one layer is simply by order of creation or insertion. The item
  created last (or added last to the layer), is drawn on top of all other objects on that layer.

  When a layer is deleted, the objects on it are not deleted with it, but fall on the layer below
  the deleted layer, see QCustomPlot::removeLayer.

  \section qcplayer-buffering Replotting only a specific layer

  If the layer mode (\ref setMode) is set to \ref lmBuffered, you can replot only this specific
  layer by calling \ref replot. In certain situations this can provide better replot performance,
  compared with a full replot of all layers. Upon creation of a new layer, the layer mode is
  initialized to \ref lmLogical. The only layer that is set to \ref lmBuffered in a new \ref
  QCustomPlot instance is the "overlay" layer, containing the selection rect.
*/

/* start documentation of inline functions */

/*! \fn QList<QCPLayerable*> QCPLayer::children() const

  Returns a list of all layerables on this layer. The order corresponds to the rendering order:
  layerables with higher indices are drawn above layerables with lower indices.
*/

/*! \fn int QCPLayer::index() const

  Returns the index this layer has in the QCustomPlot. The index is the integer number by which this layer can be
  accessed via \ref QCustomPlot::layer.

  Layers with higher indices will be drawn above layers with lower indices.
*/

/* end documentation of inline functions */

/*!
  Creates a new QCPLayer instance.

  Normally you shouldn't directly instantiate layers, use \ref QCustomPlot::addLayer instead.

  \warning It is not checked that \a layerName is actually a unique layer name in \a parentPlot.
  This check is only performed by \ref QCustomPlot::addLayer.
*/
QCPLayer::QCPLayer(QCustomPlot *parentPlot, const QString &layerName) :
  QObject(parentPlot),
  mParentPlot(parentPlot),
  mName(layerName),
  mIndex(-1), // will be set to a proper value by the QCustomPlot layer creation function
  mVisible(true),
  mMode(lmLogical)
{
  // Note: no need to make sure layerName is unique, because layer
  // management is done with QCustomPlot functions.
}

QCPLayer::~QCPLayer()
{
  // If child layerables are still on this layer, detach them, so they don't try to reach back to this
  // then invalid layer once they get deleted/moved themselves. This only happens when layers are deleted
  // directly, like in the QCustomPlot destructor. (The regular layer removal procedure for the user is to
  // call QCustomPlot::removeLayer, which moves all layerables off this layer before deleting it.)

  while (!mChildren.isEmpty())
    mChildren.last()->setLayer(0); // removes itself from mChildren via removeChild()

  if (mParentPlot->currentLayer() == this)
    qDebug() << Q_FUNC_INFO << "The parent plot's mCurrentLayer will be a dangling pointer. Should have been set to a valid layer or 0 beforehand.";
}

/*!
  Sets whether this layer is visible or not. If \a visible is set to false, all layerables on this
  layer will be invisible.

  This function doesn't change the visibility property of the layerables (\ref
  QCPLayerable::setVisible), but the \ref QCPLayerable::realVisibility of each layerable takes the
  visibility of the parent layer into account.
*/
void QCPLayer::setVisible(bool visible)
{
  mVisible = visible;
}

/*!
  Sets the rendering mode of this layer.

  If \a mode is set to \ref lmBuffered for a layer, it will be given a dedicated paint buffer by
  the parent QCustomPlot instance. This means it may be replotted individually by calling \ref
  QCPLayer::replot, without needing to replot all other layers.

  Layers which are set to \ref lmLogical (the default) are used only to define the rendering order
  and can't be replotted individually.

  Note that each layer which is set to \ref lmBuffered requires additional paint buffers for the
  layers below, above and for the layer itself. This increases the memory consumption and
  (slightly) decreases the repainting speed because multiple paint buffers need to be joined. So
  you should carefully choose which layers benefit from having their own paint buffer. A typical
  example would be a layer which contains certain layerables (e.g. items) that need to be changed
  and thus replotted regularly, while all other layerables on other layers stay static. By default,
  only the topmost layer called "overlay" is in mode \ref lmBuffered, and contains the selection
  rect.

  \see replot
*/
void QCPLayer::setMode(QCPLayer::LayerMode mode)
{
  if (mMode != mode)
  {
    mMode = mode;
    if (!mPaintBuffer.isNull())
      mPaintBuffer.data()->setInvalidated();
  }
}

/*! \internal

  Draws the contents of this layer with the provided \a painter.

  \see replot, drawToPaintBuffer
*/
void QCPLayer::draw(QCPPainter *painter)
{
  foreach (QCPLayerable *child, mChildren)
  {
    if (child->realVisibility())
    {
      painter->save();
      painter->setClipRect(child->clipRect().translated(0, -1));
      child->applyDefaultAntialiasingHint(painter);
      child->draw(painter);
      painter->restore();
    }
  }
}

/*! \internal

  Draws the contents of this layer into the paint buffer which is associated with this layer. The
  association is established by the parent QCustomPlot, which manages all paint buffers (see \ref
  QCustomPlot::setupPaintBuffers).

  \see draw
*/
void QCPLayer::drawToPaintBuffer()
{
  if (!mPaintBuffer.isNull())
  {
    if (QCPPainter *painter = mPaintBuffer.data()->startPainting())
    {
      if (painter->isActive())
        draw(painter);
      else
        qDebug() << Q_FUNC_INFO << "paint buffer returned inactive painter";
      delete painter;
      mPaintBuffer.data()->donePainting();
    } else
      qDebug() << Q_FUNC_INFO << "paint buffer returned zero painter";
  } else
    qDebug() << Q_FUNC_INFO << "no valid paint buffer associated with this layer";
}

/*!
  If the layer mode (\ref setMode) is set to \ref lmBuffered, this method allows replotting only
  the layerables on this specific layer, without the need to replot all other layers (as a call to
  \ref QCustomPlot::replot would do).

  If the layer mode is \ref lmLogical however, this method simply calls \ref QCustomPlot::replot on
  the parent QCustomPlot instance.

  QCustomPlot also makes sure to replot all layers instead of only this one, if the layer ordering
  has changed since the last full replot and the other paint buffers were thus invalidated.

  \see draw
*/
void QCPLayer::replot()
{
  if (mMode == lmBuffered && !mParentPlot->hasInvalidatedPaintBuffers())
  {
    if (!mPaintBuffer.isNull())
    {
      mPaintBuffer.data()->clear(Qt::transparent);
      drawToPaintBuffer();
      mPaintBuffer.data()->setInvalidated(false);
      mParentPlot->update();
    } else
      qDebug() << Q_FUNC_INFO << "no valid paint buffer associated with this layer";
  } else if (mMode == lmLogical)
    mParentPlot->replot();
}

/*! \internal

  Adds the \a layerable to the list of this layer. If \a prepend is set to true, the layerable will
  be prepended to the list, i.e. be drawn beneath the other layerables already in the list.

  This function does not change the \a mLayer member of \a layerable to this layer. (Use
  QCPLayerable::setLayer to change the layer of an object, not this function.)

  \see removeChild
*/
void QCPLayer::addChild(QCPLayerable *layerable, bool prepend)
{
  if (!mChildren.contains(layerable))
  {
    if (prepend)
      mChildren.prepend(layerable);
    else
      mChildren.append(layerable);
    if (!mPaintBuffer.isNull())
      mPaintBuffer.data()->setInvalidated();
  } else
    qDebug() << Q_FUNC_INFO << "layerable is already child of this layer" << reinterpret_cast<quintptr>(layerable);
}

/*! \internal

  Removes the \a layerable from the list of this layer.

  This function does not change the \a mLayer member of \a layerable. (Use QCPLayerable::setLayer
  to change the layer of an object, not this function.)

  \see addChild
*/
void QCPLayer::removeChild(QCPLayerable *layerable)
{
  if (mChildren.removeOne(layerable))
  {
    if (!mPaintBuffer.isNull())
      mPaintBuffer.data()->setInvalidated();
  } else
    qDebug() << Q_FUNC_INFO << "layerable is not child of this layer" << reinterpret_cast<quintptr>(layerable);
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPLayerable
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPLayerable
  \brief Base class for all drawable objects

  This is the abstract base class most visible objects derive from, e.g. plottables, axes, grid
  etc.

  Every layerable is on a layer (QCPLayer) which allows controlling the rendering order by stacking
  the layers accordingly.

  For details about the layering mechanism, see the QCPLayer documentation.
*/

/* start documentation of inline functions */

/*! \fn QCPLayerable *QCPLayerable::parentLayerable() const

  Returns the parent layerable of this layerable. The parent layerable is used to provide
  visibility hierarchies in conjunction with the method \ref realVisibility. This way, layerables
  only get drawn if their parent layerables are visible, too.

  Note that a parent layerable is not necessarily also the QObject parent for memory management.
  Further, a layerable doesn't always have a parent layerable, so this function may return 0.

  A parent layerable is set implicitly when placed inside layout elements and doesn't need to be
  set manually by the user.
*/

/* end documentation of inline functions */
/* start documentation of pure virtual functions */

/*! \fn virtual void QCPLayerable::applyDefaultAntialiasingHint(QCPPainter *painter) const = 0
  \internal

  This function applies the default antialiasing setting to the specified \a painter, using the
  function \ref applyAntialiasingHint. It is the antialiasing state the painter is put in, when
  \ref draw is called on the layerable. If the layerable has multiple entities whose antialiasing
  setting may be specified individually, this function should set the antialiasing state of the
  most prominent entity. In this case however, the \ref draw function usually calls the specialized
  versions of this function before drawing each entity, effectively overriding the setting of the
  default antialiasing hint.

  <b>First example:</b> QCPGraph has multiple entities that have an antialiasing setting: The graph
  line, fills and scatters. Those can be configured via QCPGraph::setAntialiased,
  QCPGraph::setAntialiasedFill and QCPGraph::setAntialiasedScatters. Consequently, there isn't only
  the QCPGraph::applyDefaultAntialiasingHint function (which corresponds to the graph line's
  antialiasing), but specialized ones like QCPGraph::applyFillAntialiasingHint and
  QCPGraph::applyScattersAntialiasingHint. So before drawing one of those entities, QCPGraph::draw
  calls the respective specialized applyAntialiasingHint function.

  <b>Second example:</b> QCPItemLine consists only of a line so there is only one antialiasing
  setting which can be controlled with QCPItemLine::setAntialiased. (This function is inherited by
  all layerables. The specialized functions, as seen on QCPGraph, must be added explicitly to the
  respective layerable subclass.) Consequently it only has the normal
  QCPItemLine::applyDefaultAntialiasingHint. The \ref QCPItemLine::draw function doesn't need to
  care about setting any antialiasing states, because the default antialiasing hint is already set
  on the painter when the \ref draw function is called, and that's the state it wants to draw the
  line with.
*/

/*! \fn virtual void QCPLayerable::draw(QCPPainter *painter) const = 0
  \internal

  This function draws the layerable with the specified \a painter. It is only called by
  QCustomPlot, if the layerable is visible (\ref setVisible).

  Before this function is called, the painter's antialiasing state is set via \ref
  applyDefaultAntialiasingHint, see the documentation there. Further, the clipping rectangle was
  set to \ref clipRect.
*/

/* end documentation of pure virtual functions */
/* start documentation of signals */

/*! \fn void QCPLayerable::layerChanged(QCPLayer *newLayer);

  This signal is emitted when the layer of this layerable changes, i.e. this layerable is moved to
  a different layer.

  \see setLayer
*/

/* end documentation of signals */

/*!
  Creates a new QCPLayerable instance.

  Since QCPLayerable is an abstract base class, it can't be instantiated directly. Use one of the
  derived classes.

  If \a plot is provided, it automatically places itself on the layer named \a targetLayer. If \a
  targetLayer is an empty string, it places itself on the current layer of the plot (see \ref
  QCustomPlot::setCurrentLayer).

  It is possible to provide 0 as \a plot. In that case, you should assign a parent plot at a later
  time with \ref initializeParentPlot.

  The layerable's parent layerable is set to \a parentLayerable, if provided. Direct layerable
  parents are mainly used to control visibility in a hierarchy of layerables. This means a
  layerable is only drawn, if all its ancestor layerables are also visible. Note that \a
  parentLayerable does not become the QObject-parent (for memory management) of this layerable, \a
  plot does. It is not uncommon to set the QObject-parent to something else in the constructors of
  QCPLayerable subclasses, to guarantee a working destruction hierarchy.
*/
QCPLayerable::QCPLayerable(QCustomPlot *plot, QString targetLayer, QCPLayerable *parentLayerable) :
  QObject(plot),
  mVisible(true),
  mParentPlot(plot),
  mParentLayerable(parentLayerable),
  mLayer(0),
  mAntialiased(true)
{
  if (mParentPlot)
  {
    if (targetLayer.isEmpty())
      setLayer(mParentPlot->currentLayer());
    else if (!setLayer(targetLayer))
      qDebug() << Q_FUNC_INFO << "setting QCPlayerable initial layer to" << targetLayer << "failed.";
  }
}

QCPLayerable::~QCPLayerable()
{
  if (mLayer)
  {
    mLayer->removeChild(this);
    mLayer = 0;
  }
}

/*!
  Sets the visibility of this layerable object. If an object is not visible, it will not be drawn
  on the QCustomPlot surface, and user interaction with it (e.g. click and selection) is not
  possible.
*/
void QCPLayerable::setVisible(bool on)
{
  mVisible = on;
}

/*!
  Sets the \a layer of this layerable object. The object will be placed on top of the other objects
  already on \a layer.

  If \a layer is 0, this layerable will not be on any layer and thus not appear in the plot (or
  interact/receive events).

  Returns true if the layer of this layerable was successfully changed to \a layer.
*/
bool QCPLayerable::setLayer(QCPLayer *layer)
{
  return moveToLayer(layer, false);
}

/*! \overload
  Sets the layer of this layerable object by name

  Returns true on success, i.e. if \a layerName is a valid layer name.
*/
bool QCPLayerable::setLayer(const QString &layerName)
{
  if (!mParentPlot)
  {
    qDebug() << Q_FUNC_INFO << "no parent QCustomPlot set";
    return false;
  }
  if (QCPLayer *layer = mParentPlot->layer(layerName))
  {
    return setLayer(layer);
  } else
  {
    qDebug() << Q_FUNC_INFO << "there is no layer with name" << layerName;
    return false;
  }
}

/*!
  Sets whether this object will be drawn antialiased or not.

  Note that antialiasing settings may be overridden by QCustomPlot::setAntialiasedElements and
  QCustomPlot::setNotAntialiasedElements.
*/
void QCPLayerable::setAntialiased(bool enabled)
{
  mAntialiased = enabled;
}

/*!
  Returns whether this layerable is visible, taking the visibility of the layerable parent and the
  visibility of this layerable's layer into account. This is the method that is consulted to decide
  whether a layerable shall be drawn or not.

  If this layerable has a direct layerable parent (usually set via hierarchies implemented in
  subclasses, like in the case of \ref QCPLayoutElement), this function returns true only if this
  layerable has its visibility set to true and the parent layerable's \ref realVisibility returns
  true.
*/
bool QCPLayerable::realVisibility() const
{
  return mVisible && (!mLayer || mLayer->visible()) && (!mParentLayerable || mParentLayerable.data()->realVisibility());
}

/*!
  This function is used to decide whether a click hits a layerable object or not.

  \a pos is a point in pixel coordinates on the QCustomPlot surface. This function returns the
  shortest pixel distance of this point to the object. If the object is either invisible or the
  distance couldn't be determined, -1.0 is returned. Further, if \a onlySelectable is true and the
  object is not selectable, -1.0 is returned, too.

  If the object is represented not by single lines but by an area like a \ref QCPItemText or the
  bars of a \ref QCPBars plottable, a click inside the area should also be considered a hit. In
  these cases this function thus returns a constant value greater zero but still below the parent
  plot's selection tolerance. (typically the selectionTolerance multiplied by 0.99).

  Providing a constant value for area objects allows selecting line objects even when they are
  obscured by such area objects, by clicking close to the lines (i.e. closer than
  0.99*selectionTolerance).

  The actual setting of the selection state is not done by this function. This is handled by the
  parent QCustomPlot when the mouseReleaseEvent occurs, and the finally selected object is notified
  via the \ref selectEvent/\ref deselectEvent methods.

  \a details is an optional output parameter. Every layerable subclass may place any information
  in \a details. This information will be passed to \ref selectEvent when the parent QCustomPlot
  decides on the basis of this selectTest call, that the object was successfully selected. The
  subsequent call to \ref selectEvent will carry the \a details. This is useful for multi-part
  objects (like QCPAxis). This way, a possibly complex calculation to decide which part was clicked
  is only done once in \ref selectTest. The result (i.e. the actually clicked part) can then be
  placed in \a details. So in the subsequent \ref selectEvent, the decision which part was
  selected doesn't have to be done a second time for a single selection operation.

  In the case of 1D Plottables (\ref QCPAbstractPlottable1D, like \ref QCPGraph or \ref QCPBars) \a
  details will be set to a \ref QCPDataSelection, describing the closest data point to \a pos.

  You may pass 0 as \a details to indicate that you are not interested in those selection details.

  \see selectEvent, deselectEvent, mousePressEvent, wheelEvent, QCustomPlot::setInteractions,
  QCPAbstractPlottable1D::selectTestRect
*/
double QCPLayerable::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(pos)
  Q_UNUSED(onlySelectable)
  Q_UNUSED(details)
  return -1.0;
}

/*! \internal

  Sets the parent plot of this layerable. Use this function once to set the parent plot if you have
  passed 0 in the constructor. It can not be used to move a layerable from one QCustomPlot to
  another one.

  Note that, unlike when passing a non-null parent plot in the constructor, this function does not
  make \a parentPlot the QObject-parent of this layerable. If you want this, call
  QObject::setParent(\a parentPlot) in addition to this function.

  Further, you will probably want to set a layer (\ref setLayer) after calling this function, to
  make the layerable appear on the QCustomPlot.

  The parent plot change will be propagated to subclasses via a call to \ref parentPlotInitialized
  so they can react accordingly (e.g. also initialize the parent plot of child layerables, like
  QCPLayout does).
*/
void QCPLayerable::initializeParentPlot(QCustomPlot *parentPlot)
{
  if (mParentPlot)
  {
    qDebug() << Q_FUNC_INFO << "called with mParentPlot already initialized";
    return;
  }

  if (!parentPlot)
    qDebug() << Q_FUNC_INFO << "called with parentPlot zero";

  mParentPlot = parentPlot;
  parentPlotInitialized(mParentPlot);
}

/*! \internal

  Sets the parent layerable of this layerable to \a parentLayerable. Note that \a parentLayerable does not
  become the QObject-parent (for memory management) of this layerable.

  The parent layerable has influence on the return value of the \ref realVisibility method. Only
  layerables with a fully visible parent tree will return true for \ref realVisibility, and thus be
  drawn.

  \see realVisibility
*/
void QCPLayerable::setParentLayerable(QCPLayerable *parentLayerable)
{
  mParentLayerable = parentLayerable;
}

/*! \internal

  Moves this layerable object to \a layer. If \a prepend is true, this object will be prepended to
  the new layer's list, i.e. it will be drawn below the objects already on the layer. If it is
  false, the object will be appended.

  Returns true on success, i.e. if \a layer is a valid layer.
*/
bool QCPLayerable::moveToLayer(QCPLayer *layer, bool prepend)
{
  if (layer && !mParentPlot)
  {
    qDebug() << Q_FUNC_INFO << "no parent QCustomPlot set";
    return false;
  }
  if (layer && layer->parentPlot() != mParentPlot)
  {
    qDebug() << Q_FUNC_INFO << "layer" << layer->name() << "is not in same QCustomPlot as this layerable";
    return false;
  }

  QCPLayer *oldLayer = mLayer;
  if (mLayer)
    mLayer->removeChild(this);
  mLayer = layer;
  if (mLayer)
    mLayer->addChild(this, prepend);
  if (mLayer != oldLayer)
    emit layerChanged(mLayer);
  return true;
}

/*! \internal

  Sets the QCPainter::setAntialiasing state on the provided \a painter, depending on the \a
  localAntialiased value as well as the overrides \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements. Which override enum this function takes into account is
  controlled via \a overrideElement.
*/
void QCPLayerable::applyAntialiasingHint(QCPPainter *painter, bool localAntialiased, QCP::AntialiasedElement overrideElement) const
{
  if (mParentPlot && mParentPlot->notAntialiasedElements().testFlag(overrideElement))
    painter->setAntialiasing(false);
  else if (mParentPlot && mParentPlot->antialiasedElements().testFlag(overrideElement))
    painter->setAntialiasing(true);
  else
    painter->setAntialiasing(localAntialiased);
}

/*! \internal

  This function is called by \ref initializeParentPlot, to allow subclasses to react on the setting
  of a parent plot. This is the case when 0 was passed as parent plot in the constructor, and the
  parent plot is set at a later time.

  For example, QCPLayoutElement/QCPLayout hierarchies may be created independently of any
  QCustomPlot at first. When they are then added to a layout inside the QCustomPlot, the top level
  element of the hierarchy gets its parent plot initialized with \ref initializeParentPlot. To
  propagate the parent plot to all the children of the hierarchy, the top level element then uses
  this function to pass the parent plot on to its child elements.

  The default implementation does nothing.

  \see initializeParentPlot
*/
void QCPLayerable::parentPlotInitialized(QCustomPlot *parentPlot)
{
   Q_UNUSED(parentPlot)
}

/*! \internal

  Returns the selection category this layerable shall belong to. The selection category is used in
  conjunction with \ref QCustomPlot::setInteractions to control which objects are selectable and
  which aren't.

  Subclasses that don't fit any of the normal \ref QCP::Interaction values can use \ref
  QCP::iSelectOther. This is what the default implementation returns.

  \see QCustomPlot::setInteractions
*/
QCP::Interaction QCPLayerable::selectionCategory() const
{
  return QCP::iSelectOther;
}

/*! \internal

  Returns the clipping rectangle of this layerable object. By default, this is the viewport of the
  parent QCustomPlot. Specific subclasses may reimplement this function to provide different
  clipping rects.

  The returned clipping rect is set on the painter before the draw function of the respective
  object is called.
*/
QRect QCPLayerable::clipRect() const
{
  if (mParentPlot)
    return mParentPlot->viewport();
  else
    return QRect();
}

/*! \internal

  This event is called when the layerable shall be selected, as a consequence of a click by the
  user. Subclasses should react to it by setting their selection state appropriately. The default
  implementation does nothing.

  \a event is the mouse event that caused the selection. \a additive indicates, whether the user
  was holding the multi-select-modifier while performing the selection (see \ref
  QCustomPlot::setMultiSelectModifier). if \a additive is true, the selection state must be toggled
  (i.e. become selected when unselected and unselected when selected).

  Every selectEvent is preceded by a call to \ref selectTest, which has returned positively (i.e.
  returned a value greater than 0 and less than the selection tolerance of the parent QCustomPlot).
  The \a details data you output from \ref selectTest is fed back via \a details here. You may
  use it to transport any kind of information from the selectTest to the possibly subsequent
  selectEvent. Usually \a details is used to transfer which part was clicked, if it is a layerable
  that has multiple individually selectable parts (like QCPAxis). This way selectEvent doesn't need
  to do the calculation again to find out which part was actually clicked.

  \a selectionStateChanged is an output parameter. If the pointer is non-null, this function must
  set the value either to true or false, depending on whether the selection state of this layerable
  was actually changed. For layerables that only are selectable as a whole and not in parts, this
  is simple: if \a additive is true, \a selectionStateChanged must also be set to true, because the
  selection toggles. If \a additive is false, \a selectionStateChanged is only set to true, if the
  layerable was previously unselected and now is switched to the selected state.

  \see selectTest, deselectEvent
*/
void QCPLayerable::selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged)
{
  Q_UNUSED(event)
  Q_UNUSED(additive)
  Q_UNUSED(details)
  Q_UNUSED(selectionStateChanged)
}

/*! \internal

  This event is called when the layerable shall be deselected, either as consequence of a user
  interaction or a call to \ref QCustomPlot::deselectAll. Subclasses should react to it by
  unsetting their selection appropriately.

  just as in \ref selectEvent, the output parameter \a selectionStateChanged (if non-null), must
  return true or false when the selection state of this layerable has changed or not changed,
  respectively.

  \see selectTest, selectEvent
*/
void QCPLayerable::deselectEvent(bool *selectionStateChanged)
{
  Q_UNUSED(selectionStateChanged)
}

/*!
  This event gets called when the user presses a mouse button while the cursor is over the
  layerable. Whether a cursor is over the layerable is decided by a preceding call to \ref
  selectTest.

  The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
  event->pos(). The parameter \a details contains layerable-specific details about the hit, which
  were generated in the previous call to \ref selectTest. For example, One-dimensional plottables
  like \ref QCPGraph or \ref QCPBars convey the clicked data point in the \a details parameter, as
  \ref QCPDataSelection packed as QVariant. Multi-part objects convey the specific \c
  SelectablePart that was hit (e.g. \ref QCPAxis::SelectablePart in the case of axes).

  QCustomPlot uses an event propagation system that works the same as Qt's system. If your
  layerable doesn't reimplement the \ref mousePressEvent or explicitly calls \c event->ignore() in
  its reimplementation, the event will be propagated to the next layerable in the stacking order.

  Once a layerable has accepted the \ref mousePressEvent, it is considered the mouse grabber and
  will receive all following calls to \ref mouseMoveEvent or \ref mouseReleaseEvent for this mouse
  interaction (a "mouse interaction" in this context ends with the release).

  The default implementation does nothing except explicitly ignoring the event with \c
  event->ignore().

  \see mouseMoveEvent, mouseReleaseEvent, mouseDoubleClickEvent, wheelEvent
*/
void QCPLayerable::mousePressEvent(QMouseEvent *event, const QVariant &details)
{
  Q_UNUSED(details)
  event->ignore();
}

/*!
  This event gets called when the user moves the mouse while holding a mouse button, after this
  layerable has become the mouse grabber by accepting the preceding \ref mousePressEvent.

  The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
  event->pos(). The parameter \a startPos indicates the position where the initial \ref
  mousePressEvent occured, that started the mouse interaction.

  The default implementation does nothing.

  \see mousePressEvent, mouseReleaseEvent, mouseDoubleClickEvent, wheelEvent
*/
void QCPLayerable::mouseMoveEvent(QMouseEvent *event, const QPointF &startPos)
{
  Q_UNUSED(startPos)
  event->ignore();
}

/*!
  This event gets called when the user releases the mouse button, after this layerable has become
  the mouse grabber by accepting the preceding \ref mousePressEvent.

  The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
  event->pos(). The parameter \a startPos indicates the position where the initial \ref
  mousePressEvent occured, that started the mouse interaction.

  The default implementation does nothing.

  \see mousePressEvent, mouseMoveEvent, mouseDoubleClickEvent, wheelEvent
*/
void QCPLayerable::mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos)
{
  Q_UNUSED(startPos)
  event->ignore();
}

/*!
  This event gets called when the user presses the mouse button a second time in a double-click,
  while the cursor is over the layerable. Whether a cursor is over the layerable is decided by a
  preceding call to \ref selectTest.

  The \ref mouseDoubleClickEvent is called instead of the second \ref mousePressEvent. So in the
  case of a double-click, the event succession is
  <i>pressEvent &ndash; releaseEvent &ndash; doubleClickEvent &ndash; releaseEvent</i>.

  The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
  event->pos(). The parameter \a details contains layerable-specific details about the hit, which
  were generated in the previous call to \ref selectTest. For example, One-dimensional plottables
  like \ref QCPGraph or \ref QCPBars convey the clicked data point in the \a details parameter, as
  \ref QCPDataSelection packed as QVariant. Multi-part objects convey the specific \c
  SelectablePart that was hit (e.g. \ref QCPAxis::SelectablePart in the case of axes).

  Similarly to \ref mousePressEvent, once a layerable has accepted the \ref mouseDoubleClickEvent,
  it is considered the mouse grabber and will receive all following calls to \ref mouseMoveEvent
  and \ref mouseReleaseEvent for this mouse interaction (a "mouse interaction" in this context ends
  with the release).

  The default implementation does nothing except explicitly ignoring the event with \c
  event->ignore().

  \see mousePressEvent, mouseMoveEvent, mouseReleaseEvent, wheelEvent
*/
void QCPLayerable::mouseDoubleClickEvent(QMouseEvent *event, const QVariant &details)
{
  Q_UNUSED(details)
  event->ignore();
}

/*!
  This event gets called when the user turns the mouse scroll wheel while the cursor is over the
  layerable. Whether a cursor is over the layerable is decided by a preceding call to \ref
  selectTest.

  The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
  event->pos().

  The \c event->delta() indicates how far the mouse wheel was turned, which is usually +/- 120 for
  single rotation steps. However, if the mouse wheel is turned rapidly, multiple steps may
  accumulate to one event, making \c event->delta() larger. On the other hand, if the wheel has
  very smooth steps or none at all, the delta may be smaller.

  The default implementation does nothing.

  \see mousePressEvent, mouseMoveEvent, mouseReleaseEvent, mouseDoubleClickEvent
*/
void QCPLayerable::wheelEvent(QWheelEvent *event)
{
  event->ignore();
}
/* end of 'src/layer.cpp' */


/* including file 'src/axis/range.cpp', size 12221                           */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPRange
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPRange
  \brief Represents the range an axis is encompassing.

  contains a \a lower and \a upper double value and provides convenience input, output and
  modification functions.

  \see QCPAxis::setRange
*/

/* start of documentation of inline functions */

/*! \fn double QCPRange::size() const

  Returns the size of the range, i.e. \a upper-\a lower
*/

/*! \fn double QCPRange::center() const

  Returns the center of the range, i.e. (\a upper+\a lower)*0.5
*/

/*! \fn void QCPRange::normalize()

  Makes sure \a lower is numerically smaller than \a upper. If this is not the case, the values are
  swapped.
*/

/*! \fn bool QCPRange::contains(double value) const

  Returns true when \a value lies within or exactly on the borders of the range.
*/

/*! \fn QCPRange &QCPRange::operator+=(const double& value)

  Adds \a value to both boundaries of the range.
*/

/*! \fn QCPRange &QCPRange::operator-=(const double& value)

  Subtracts \a value from both boundaries of the range.
*/

/*! \fn QCPRange &QCPRange::operator*=(const double& value)

  Multiplies both boundaries of the range by \a value.
*/

/*! \fn QCPRange &QCPRange::operator/=(const double& value)

  Divides both boundaries of the range by \a value.
*/

/* end of documentation of inline functions */

/*!
  Minimum range size (\a upper - \a lower) the range changing functions will accept. Smaller
  intervals would cause errors due to the 11-bit exponent of double precision numbers,
  corresponding to a minimum magnitude of roughly 1e-308.

  \warning Do not use this constant to indicate "arbitrarily small" values in plotting logic (as
  values that will appear in the plot)! It is intended only as a bound to compare against, e.g. to
  prevent axis ranges from obtaining underflowing ranges.

  \see validRange, maxRange
*/
const double QCPRange::minRange = 1e-280;

/*!
  Maximum values (negative and positive) the range will accept in range-changing functions.
  Larger absolute values would cause errors due to the 11-bit exponent of double precision numbers,
  corresponding to a maximum magnitude of roughly 1e308.

  \warning Do not use this constant to indicate "arbitrarily large" values in plotting logic (as
  values that will appear in the plot)! It is intended only as a bound to compare against, e.g. to
  prevent axis ranges from obtaining overflowing ranges.

  \see validRange, minRange
*/
const double QCPRange::maxRange = 1e250;

/*!
  Constructs a range with \a lower and \a upper set to zero.
*/
QCPRange::QCPRange() :
  lower(0),
  upper(0)
{
}

/*! \overload

  Constructs a range with the specified \a lower and \a upper values.

  The resulting range will be normalized (see \ref normalize), so if \a lower is not numerically
  smaller than \a upper, they will be swapped.
*/
QCPRange::QCPRange(double lower, double upper) :
  lower(lower),
  upper(upper)
{
  normalize();
}

/*! \overload

  Expands this range such that \a otherRange is contained in the new range. It is assumed that both
  this range and \a otherRange are normalized (see \ref normalize).

  If this range contains NaN as lower or upper bound, it will be replaced by the respective bound
  of \a otherRange.

  If \a otherRange is already inside the current range, this function does nothing.

  \see expanded
*/
void QCPRange::expand(const QCPRange &otherRange)
{
  if (lower > otherRange.lower || qIsNaN(lower))
    lower = otherRange.lower;
  if (upper < otherRange.upper || qIsNaN(upper))
    upper = otherRange.upper;
}

/*! \overload

  Expands this range such that \a includeCoord is contained in the new range. It is assumed that
  this range is normalized (see \ref normalize).

  If this range contains NaN as lower or upper bound, the respective bound will be set to \a
  includeCoord.

  If \a includeCoord is already inside the current range, this function does nothing.

  \see expand
*/
void QCPRange::expand(double includeCoord)
{
  if (lower > includeCoord || qIsNaN(lower))
    lower = includeCoord;
  if (upper < includeCoord || qIsNaN(upper))
    upper = includeCoord;
}


/*! \overload

  Returns an expanded range that contains this and \a otherRange. It is assumed that both this
  range and \a otherRange are normalized (see \ref normalize).

  If this range contains NaN as lower or upper bound, the returned range's bound will be taken from
  \a otherRange.

  \see expand
*/
QCPRange QCPRange::expanded(const QCPRange &otherRange) const
{
  QCPRange result = *this;
  result.expand(otherRange);
  return result;
}

/*! \overload

  Returns an expanded range that includes the specified \a includeCoord. It is assumed that this
  range is normalized (see \ref normalize).

  If this range contains NaN as lower or upper bound, the returned range's bound will be set to \a
  includeCoord.

  \see expand
*/
QCPRange QCPRange::expanded(double includeCoord) const
{
  QCPRange result = *this;
  result.expand(includeCoord);
  return result;
}

/*!
  Returns this range, possibly modified to not exceed the bounds provided as \a lowerBound and \a
  upperBound. If possible, the size of the current range is preserved in the process.

  If the range shall only be bounded at the lower side, you can set \a upperBound to \ref
  QCPRange::maxRange. If it shall only be bounded at the upper side, set \a lowerBound to -\ref
  QCPRange::maxRange.
*/
QCPRange QCPRange::bounded(double lowerBound, double upperBound) const
{
  if (lowerBound > upperBound)
    qSwap(lowerBound, upperBound);

  QCPRange result(lower, upper);
  if (result.lower < lowerBound)
  {
    result.lower = lowerBound;
    result.upper = lowerBound + size();
    if (result.upper > upperBound || qFuzzyCompare(size(), upperBound-lowerBound))
      result.upper = upperBound;
  } else if (result.upper > upperBound)
  {
    result.upper = upperBound;
    result.lower = upperBound - size();
    if (result.lower < lowerBound || qFuzzyCompare(size(), upperBound-lowerBound))
      result.lower = lowerBound;
  }

  return result;
}

/*!
  Returns a sanitized version of the range. Sanitized means for logarithmic scales, that
  the range won't span the positive and negative sign domain, i.e. contain zero. Further
  \a lower will always be numerically smaller (or equal) to \a upper.

  If the original range does span positive and negative sign domains or contains zero,
  the returned range will try to approximate the original range as good as possible.
  If the positive interval of the original range is wider than the negative interval, the
  returned range will only contain the positive interval, with lower bound set to \a rangeFac or
  \a rangeFac *\a upper, whichever is closer to zero. Same procedure is used if the negative interval
  is wider than the positive interval, this time by changing the \a upper bound.
*/
QCPRange QCPRange::sanitizedForLogScale() const
{
  double rangeFac = 1e-3;
  QCPRange sanitizedRange(lower, upper);
  sanitizedRange.normalize();
  // can't have range spanning negative and positive values in log plot, so change range to fix it
  //if (qFuzzyCompare(sanitizedRange.lower+1, 1) && !qFuzzyCompare(sanitizedRange.upper+1, 1))
  if (sanitizedRange.lower == 0.0 && sanitizedRange.upper != 0.0)
  {
    // case lower is 0
    if (rangeFac < sanitizedRange.upper*rangeFac)
      sanitizedRange.lower = rangeFac;
    else
      sanitizedRange.lower = sanitizedRange.upper*rangeFac;
  } //else if (!qFuzzyCompare(lower+1, 1) && qFuzzyCompare(upper+1, 1))
  else if (sanitizedRange.lower != 0.0 && sanitizedRange.upper == 0.0)
  {
    // case upper is 0
    if (-rangeFac > sanitizedRange.lower*rangeFac)
      sanitizedRange.upper = -rangeFac;
    else
      sanitizedRange.upper = sanitizedRange.lower*rangeFac;
  } else if (sanitizedRange.lower < 0 && sanitizedRange.upper > 0)
  {
    // find out whether negative or positive interval is wider to decide which sign domain will be chosen
    if (-sanitizedRange.lower > sanitizedRange.upper)
    {
      // negative is wider, do same as in case upper is 0
      if (-rangeFac > sanitizedRange.lower*rangeFac)
        sanitizedRange.upper = -rangeFac;
      else
        sanitizedRange.upper = sanitizedRange.lower*rangeFac;
    } else
    {
      // positive is wider, do same as in case lower is 0
      if (rangeFac < sanitizedRange.upper*rangeFac)
        sanitizedRange.lower = rangeFac;
      else
        sanitizedRange.lower = sanitizedRange.upper*rangeFac;
    }
  }
  // due to normalization, case lower>0 && upper<0 should never occur, because that implies upper<lower
  return sanitizedRange;
}

/*!
  Returns a sanitized version of the range. Sanitized means for linear scales, that
  \a lower will always be numerically smaller (or equal) to \a upper.
*/
QCPRange QCPRange::sanitizedForLinScale() const
{
  QCPRange sanitizedRange(lower, upper);
  sanitizedRange.normalize();
  return sanitizedRange;
}

/*!
  Checks, whether the specified range is within valid bounds, which are defined
  as QCPRange::maxRange and QCPRange::minRange.
  A valid range means:
  \li range bounds within -maxRange and maxRange
  \li range size above minRange
  \li range size below maxRange
*/
bool QCPRange::validRange(double lower, double upper)
{
  return (lower > -maxRange &&
          upper < maxRange &&
          qAbs(lower-upper) > minRange &&
          qAbs(lower-upper) < maxRange &&
          !(lower > 0 && qIsInf(upper/lower)) &&
          !(upper < 0 && qIsInf(lower/upper)));
}

/*!
  \overload
  Checks, whether the specified range is within valid bounds, which are defined
  as QCPRange::maxRange and QCPRange::minRange.
  A valid range means:
  \li range bounds within -maxRange and maxRange
  \li range size above minRange
  \li range size below maxRange
*/
bool QCPRange::validRange(const QCPRange &range)
{
  return (range.lower > -maxRange &&
          range.upper < maxRange &&
          qAbs(range.lower-range.upper) > minRange &&
          qAbs(range.lower-range.upper) < maxRange &&
          !(range.lower > 0 && qIsInf(range.upper/range.lower)) &&
          !(range.upper < 0 && qIsInf(range.lower/range.upper)));
}
/* end of 'src/axis/range.cpp' */


/* including file 'src/selection.cpp', size 21941                            */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPDataRange
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPDataRange
  \brief Describes a data range given by begin and end index

  QCPDataRange holds two integers describing the begin (\ref setBegin) and end (\ref setEnd) index
  of a contiguous set of data points. The end index points to the data point just after the last
  data point that's part of the data range, similarly to the nomenclature used in standard
  iterators.

  Data Ranges are not bound to a certain plottable, thus they can be freely exchanged, created and
  modified. If a non-contiguous data set shall be described, the class \ref QCPDataSelection is
  used, which holds and manages multiple instances of \ref QCPDataRange. In most situations, \ref
  QCPDataSelection is thus used.

  Both \ref QCPDataRange and \ref QCPDataSelection offer convenience methods to work with them,
  e.g. \ref bounded, \ref expanded, \ref intersects, \ref intersection, \ref adjusted, \ref
  contains. Further, addition and subtraction operators (defined in \ref QCPDataSelection) can be
  used to join/subtract data ranges and data selections (or mixtures), to retrieve a corresponding
  \ref QCPDataSelection.

  %QCustomPlot's \ref dataselection "data selection mechanism" is based on \ref QCPDataSelection and
  QCPDataRange.

  \note Do not confuse \ref QCPDataRange with \ref QCPRange. A \ref QCPRange describes an interval
  in floating point plot coordinates, e.g. the current axis range.
*/

/* start documentation of inline functions */

/*! \fn int QCPDataRange::size() const

  Returns the number of data points described by this data range. This is equal to the end index
  minus the begin index.

  \see length
*/

/*! \fn int QCPDataRange::length() const

  Returns the number of data points described by this data range. Equivalent to \ref size.
*/

/*! \fn void QCPDataRange::setBegin(int begin)

  Sets the begin of this data range. The \a begin index points to the first data point that is part
  of the data range.

  No checks or corrections are made to ensure the resulting range is valid (\ref isValid).

  \see setEnd
*/

/*! \fn void QCPDataRange::setEnd(int end)

  Sets the end of this data range. The \a end index points to the data point just after the last
  data point that is part of the data range.

  No checks or corrections are made to ensure the resulting range is valid (\ref isValid).

  \see setBegin
*/

/*! \fn bool QCPDataRange::isValid() const

  Returns whether this range is valid. A valid range has a begin index greater or equal to 0, and
  an end index greater or equal to the begin index.

  \note Invalid ranges should be avoided and are never the result of any of QCustomPlot's methods
  (unless they are themselves fed with invalid ranges). Do not pass invalid ranges to QCustomPlot's
  methods. The invalid range is not inherently prevented in QCPDataRange, to allow temporary
  invalid begin/end values while manipulating the range. An invalid range is not necessarily empty
  (\ref isEmpty), since its \ref length can be negative and thus non-zero.
*/

/*! \fn bool QCPDataRange::isEmpty() const

  Returns whether this range is empty, i.e. whether its begin index equals its end index.

  \see size, length
*/

/*! \fn QCPDataRange QCPDataRange::adjusted(int changeBegin, int changeEnd) const

  Returns a data range where \a changeBegin and \a changeEnd were added to the begin and end
  indices, respectively.
*/

/* end documentation of inline functions */

/*!
  Creates an empty QCPDataRange, with begin and end set to 0.
*/
QCPDataRange::QCPDataRange() :
  mBegin(0),
  mEnd(0)
{
}

/*!
  Creates a QCPDataRange, initialized with the specified \a begin and \a end.

  No checks or corrections are made to ensure the resulting range is valid (\ref isValid).
*/
QCPDataRange::QCPDataRange(int begin, int end) :
  mBegin(begin),
  mEnd(end)
{
}

/*!
  Returns a data range that matches this data range, except that parts exceeding \a other are
  excluded.

  This method is very similar to \ref intersection, with one distinction: If this range and the \a
  other range share no intersection, the returned data range will be empty with begin and end set
  to the respective boundary side of \a other, at which this range is residing. (\ref intersection
  would just return a range with begin and end set to 0.)
*/
QCPDataRange QCPDataRange::bounded(const QCPDataRange &other) const
{
  QCPDataRange result(intersection(other));
  if (result.isEmpty()) // no intersection, preserve respective bounding side of otherRange as both begin and end of return value
  {
    if (mEnd <= other.mBegin)
      result = QCPDataRange(other.mBegin, other.mBegin);
    else
      result = QCPDataRange(other.mEnd, other.mEnd);
  }
  return result;
}

/*!
  Returns a data range that contains both this data range as well as \a other.
*/
QCPDataRange QCPDataRange::expanded(const QCPDataRange &other) const
{
  return QCPDataRange(qMin(mBegin, other.mBegin), qMax(mEnd, other.mEnd));
}

/*!
  Returns the data range which is contained in both this data range and \a other.

  This method is very similar to \ref bounded, with one distinction: If this range and the \a other
  range share no intersection, the returned data range will be empty with begin and end set to 0.
  (\ref bounded would return a range with begin and end set to one of the boundaries of \a other,
  depending on which side this range is on.)

  \see QCPDataSelection::intersection
*/
QCPDataRange QCPDataRange::intersection(const QCPDataRange &other) const
{
  QCPDataRange result(qMax(mBegin, other.mBegin), qMin(mEnd, other.mEnd));
  if (result.isValid())
    return result;
  else
    return QCPDataRange();
}

/*!
  Returns whether this data range and \a other share common data points.

  \see intersection, contains
*/
bool QCPDataRange::intersects(const QCPDataRange &other) const
{
   return !( (mBegin > other.mBegin && mBegin >= other.mEnd) ||
             (mEnd <= other.mBegin && mEnd < other.mEnd) );
}

/*!
  Returns whether all data points of \a other are also contained inside this data range.

  \see intersects
*/
bool QCPDataRange::contains(const QCPDataRange &other) const
{
  return mBegin <= other.mBegin && mEnd >= other.mEnd;
}



////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPDataSelection
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPDataSelection
  \brief Describes a data set by holding multiple QCPDataRange instances

  QCPDataSelection manages multiple instances of QCPDataRange in order to represent any (possibly
  disjoint) set of data selection.

  The data selection can be modified with addition and subtraction operators which take
  QCPDataSelection and QCPDataRange instances, as well as methods such as \ref addDataRange and
  \ref clear. Read access is provided by \ref dataRange, \ref dataRanges, \ref dataRangeCount, etc.

  The method \ref simplify is used to join directly adjacent or even overlapping QCPDataRange
  instances. QCPDataSelection automatically simplifies when using the addition/subtraction
  operators. The only case when \ref simplify is left to the user, is when calling \ref
  addDataRange, with the parameter \a simplify explicitly set to false. This is useful if many data
  ranges will be added to the selection successively and the overhead for simplifying after each
  iteration shall be avoided. In this case, you should make sure to call \ref simplify after
  completing the operation.

  Use \ref enforceType to bring the data selection into a state complying with the constraints for
  selections defined in \ref QCP::SelectionType.

  %QCustomPlot's \ref dataselection "data selection mechanism" is based on QCPDataSelection and
  QCPDataRange.

  \section qcpdataselection-iterating Iterating over a data selection

  As an example, the following code snippet calculates the average value of a graph's data
  \ref QCPAbstractPlottable::selection "selection":

  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpdataselection-iterating-1

*/

/* start documentation of inline functions */

/*! \fn int QCPDataSelection::dataRangeCount() const

  Returns the number of ranges that make up the data selection. The ranges can be accessed by \ref
  dataRange via their index.

  \see dataRange, dataPointCount
*/

/*! \fn QList<QCPDataRange> QCPDataSelection::dataRanges() const

  Returns all data ranges that make up the data selection. If the data selection is simplified (the
  usual state of the selection, see \ref simplify), the ranges are sorted by ascending data point
  index.

  \see dataRange
*/

/*! \fn bool QCPDataSelection::isEmpty() const

  Returns true if there are no data ranges, and thus no data points, in this QCPDataSelection
  instance.

  \see dataRangeCount
*/

/* end documentation of inline functions */

/*!
  Creates an empty QCPDataSelection.
*/
QCPDataSelection::QCPDataSelection()
{
}

/*!
  Creates a QCPDataSelection containing the provided \a range.
*/
QCPDataSelection::QCPDataSelection(const QCPDataRange &range)
{
  mDataRanges.append(range);
}

/*!
  Returns true if this selection is identical (contains the same data ranges with the same begin
  and end indices) to \a other.

  Note that both data selections must be in simplified state (the usual state of the selection, see
  \ref simplify) for this operator to return correct results.
*/
bool QCPDataSelection::operator==(const QCPDataSelection &other) const
{
  if (mDataRanges.size() != other.mDataRanges.size())
    return false;
  for (int i=0; i<mDataRanges.size(); ++i)
  {
    if (mDataRanges.at(i) != other.mDataRanges.at(i))
      return false;
  }
  return true;
}

/*!
  Adds the data selection of \a other to this data selection, and then simplifies this data
  selection (see \ref simplify).
*/
QCPDataSelection &QCPDataSelection::operator+=(const QCPDataSelection &other)
{
  mDataRanges << other.mDataRanges;
  simplify();
  return *this;
}

/*!
  Adds the data range \a other to this data selection, and then simplifies this data selection (see
  \ref simplify).
*/
QCPDataSelection &QCPDataSelection::operator+=(const QCPDataRange &other)
{
  addDataRange(other);
  return *this;
}

/*!
  Removes all data point indices that are described by \a other from this data selection.
*/
QCPDataSelection &QCPDataSelection::operator-=(const QCPDataSelection &other)
{
  for (int i=0; i<other.dataRangeCount(); ++i)
    *this -= other.dataRange(i);

  return *this;
}

/*!
  Removes all data point indices that are described by \a other from this data selection.
*/
QCPDataSelection &QCPDataSelection::operator-=(const QCPDataRange &other)
{
  if (other.isEmpty() || isEmpty())
    return *this;

  simplify();
  int i=0;
  while (i < mDataRanges.size())
  {
    const int thisBegin = mDataRanges.at(i).begin();
    const int thisEnd = mDataRanges.at(i).end();
    if (thisBegin >= other.end())
      break; // since data ranges are sorted after the simplify() call, no ranges which contain other will come after this

    if (thisEnd > other.begin()) // ranges which don't fulfill this are entirely before other and can be ignored
    {
      if (thisBegin >= other.begin()) // range leading segment is encompassed
      {
        if (thisEnd <= other.end()) // range fully encompassed, remove completely
        {
          mDataRanges.removeAt(i);
          continue;
        } else // only leading segment is encompassed, trim accordingly
          mDataRanges[i].setBegin(other.end());
      } else // leading segment is not encompassed
      {
        if (thisEnd <= other.end()) // only trailing segment is encompassed, trim accordingly
        {
          mDataRanges[i].setEnd(other.begin());
        } else // other lies inside this range, so split range
        {
          mDataRanges[i].setEnd(other.begin());
          mDataRanges.insert(i+1, QCPDataRange(other.end(), thisEnd));
          break; // since data ranges are sorted (and don't overlap) after simplify() call, we're done here
        }
      }
    }
    ++i;
  }

  return *this;
}

/*!
  Returns the total number of data points contained in all data ranges that make up this data
  selection.
*/
int QCPDataSelection::dataPointCount() const
{
  int result = 0;
  for (int i=0; i<mDataRanges.size(); ++i)
    result += mDataRanges.at(i).length();
  return result;
}

/*!
  Returns the data range with the specified \a index.

  If the data selection is simplified (the usual state of the selection, see \ref simplify), the
  ranges are sorted by ascending data point index.

  \see dataRangeCount
*/
QCPDataRange QCPDataSelection::dataRange(int index) const
{
  if (index >= 0 && index < mDataRanges.size())
  {
    return mDataRanges.at(index);
  } else
  {
    qDebug() << Q_FUNC_INFO << "index out of range:" << index;
    return QCPDataRange();
  }
}

/*!
  Returns a \ref QCPDataRange which spans the entire data selection, including possible
  intermediate segments which are not part of the original data selection.
*/
QCPDataRange QCPDataSelection::span() const
{
  if (isEmpty())
    return QCPDataRange();
  else
    return QCPDataRange(mDataRanges.first().begin(), mDataRanges.last().end());
}

/*!
  Adds the given \a dataRange to this data selection. This is equivalent to the += operator but
  allows disabling immediate simplification by setting \a simplify to false. This can improve
  performance if adding a very large amount of data ranges successively. In this case, make sure to
  call \ref simplify manually, after the operation.
*/
void QCPDataSelection::addDataRange(const QCPDataRange &dataRange, bool simplify)
{
  mDataRanges.append(dataRange);
  if (simplify)
    this->simplify();
}

/*!
  Removes all data ranges. The data selection then contains no data points.

  \ref isEmpty
*/
void QCPDataSelection::clear()
{
  mDataRanges.clear();
}

/*!
  Sorts all data ranges by range begin index in ascending order, and then joins directly adjacent
  or overlapping ranges. This can reduce the number of individual data ranges in the selection, and
  prevents possible double-counting when iterating over the data points held by the data ranges.

  This method is automatically called when using the addition/subtraction operators. The only case
  when \ref simplify is left to the user, is when calling \ref addDataRange, with the parameter \a
  simplify explicitly set to false.
*/
void QCPDataSelection::simplify()
{
  // remove any empty ranges:
  for (int i=mDataRanges.size()-1; i>=0; --i)
  {
    if (mDataRanges.at(i).isEmpty())
      mDataRanges.removeAt(i);
  }
  if (mDataRanges.isEmpty())
    return;

  // sort ranges by starting value, ascending:
  std::sort(mDataRanges.begin(), mDataRanges.end(), lessThanDataRangeBegin);

  // join overlapping/contiguous ranges:
  int i = 1;
  while (i < mDataRanges.size())
  {
    if (mDataRanges.at(i-1).end() >= mDataRanges.at(i).begin()) // range i overlaps/joins with i-1, so expand range i-1 appropriately and remove range i from list
    {
      mDataRanges[i-1].setEnd(qMax(mDataRanges.at(i-1).end(), mDataRanges.at(i).end()));
      mDataRanges.removeAt(i);
    } else
      ++i;
  }
}

/*!
  Makes sure this data selection conforms to the specified \a type selection type. Before the type
  is enforced, \ref simplify is called.

  Depending on \a type, enforcing means adding new data points that were previously not part of the
  selection, or removing data points from the selection. If the current selection already conforms
  to \a type, the data selection is not changed.

  \see QCP::SelectionType
*/
void QCPDataSelection::enforceType(QCP::SelectionType type)
{
  simplify();
  switch (type)
  {
    case QCP::stNone:
    {
      mDataRanges.clear();
      break;
    }
    case QCP::stWhole:
    {
      // whole selection isn't defined by data range, so don't change anything (is handled in plottable methods)
      break;
    }
    case QCP::stSingleData:
    {
      // reduce all data ranges to the single first data point:
      if (!mDataRanges.isEmpty())
      {
        if (mDataRanges.size() > 1)
          mDataRanges = QList<QCPDataRange>() << mDataRanges.first();
        if (mDataRanges.first().length() > 1)
          mDataRanges.first().setEnd(mDataRanges.first().begin()+1);
      }
      break;
    }
    case QCP::stDataRange:
    {
      if (!isEmpty())
        mDataRanges = QList<QCPDataRange>() << span();
      break;
    }
    case QCP::stMultipleDataRanges:
    {
      // this is the selection type that allows all concievable combinations of ranges, so do nothing
      break;
    }
  }
}

/*!
  Returns true if the data selection \a other is contained entirely in this data selection, i.e.
  all data point indices that are in \a other are also in this data selection.

  \see QCPDataRange::contains
*/
bool QCPDataSelection::contains(const QCPDataSelection &other) const
{
  if (other.isEmpty()) return false;

  int otherIndex = 0;
  int thisIndex = 0;
  while (thisIndex < mDataRanges.size() && otherIndex < other.mDataRanges.size())
  {
    if (mDataRanges.at(thisIndex).contains(other.mDataRanges.at(otherIndex)))
      ++otherIndex;
    else
      ++thisIndex;
  }
  return thisIndex < mDataRanges.size(); // if thisIndex ran all the way to the end to find a containing range for the current otherIndex, other is not contained in this
}

/*!
  Returns a data selection containing the points which are both in this data selection and in the
  data range \a other.

  A common use case is to limit an unknown data selection to the valid range of a data container,
  using \ref QCPDataContainer::dataRange as \a other. One can then safely iterate over the returned
  data selection without exceeding the data container's bounds.
*/
QCPDataSelection QCPDataSelection::intersection(const QCPDataRange &other) const
{
  QCPDataSelection result;
  for (int i=0; i<mDataRanges.size(); ++i)
    result.addDataRange(mDataRanges.at(i).intersection(other), false);
  result.simplify();
  return result;
}

/*!
  Returns a data selection containing the points which are both in this data selection and in the
  data selection \a other.
*/
QCPDataSelection QCPDataSelection::intersection(const QCPDataSelection &other) const
{
  QCPDataSelection result;
  for (int i=0; i<other.dataRangeCount(); ++i)
    result += intersection(other.dataRange(i));
  result.simplify();
  return result;
}

/*!
  Returns a data selection which is the exact inverse of this data selection, with \a outerRange
  defining the base range on which to invert. If \a outerRange is smaller than the \ref span of
  this data selection, it is expanded accordingly.

  For example, this method can be used to retrieve all unselected segments by setting \a outerRange
  to the full data range of the plottable, and calling this method on a data selection holding the
  selected segments.
*/
QCPDataSelection QCPDataSelection::inverse(const QCPDataRange &outerRange) const
{
  if (isEmpty())
    return QCPDataSelection(outerRange);
  QCPDataRange fullRange = outerRange.expanded(span());

  QCPDataSelection result;
  // first unselected segment:
  if (mDataRanges.first().begin() != fullRange.begin())
    result.addDataRange(QCPDataRange(fullRange.begin(), mDataRanges.first().begin()), false);
  // intermediate unselected segments:
  for (int i=1; i<mDataRanges.size(); ++i)
    result.addDataRange(QCPDataRange(mDataRanges.at(i-1).end(), mDataRanges.at(i).begin()), false);
  // last unselected segment:
  if (mDataRanges.last().end() != fullRange.end())
    result.addDataRange(QCPDataRange(mDataRanges.last().end(), fullRange.end()), false);
  result.simplify();
  return result;
}
/* end of 'src/selection.cpp' */


/* including file 'src/selectionrect.cpp', size 9224                         */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPSelectionRect
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPSelectionRect
  \brief Provides rect/rubber-band data selection and range zoom interaction

  QCPSelectionRect is used by QCustomPlot when the \ref QCustomPlot::setSelectionRectMode is not
  \ref QCP::srmNone. When the user drags the mouse across the plot, the current selection rect
  instance (\ref QCustomPlot::setSelectionRect) is forwarded these events and makes sure an
  according rect shape is drawn. At the begin, during, and after completion of the interaction, it
  emits the corresponding signals \ref started, \ref changed, \ref canceled, and \ref accepted.

  The QCustomPlot instance connects own slots to the current selection rect instance, in order to
  react to an accepted selection rect interaction accordingly.

  \ref isActive can be used to check whether the selection rect is currently active. An ongoing
  selection interaction can be cancelled programmatically via calling \ref cancel at any time.

  The appearance of the selection rect can be controlled via \ref setPen and \ref setBrush.

  If you wish to provide custom behaviour, e.g. a different visual representation of the selection
  rect (\ref QCPSelectionRect::draw), you can subclass QCPSelectionRect and pass an instance of
  your subclass to \ref QCustomPlot::setSelectionRect.
*/

/* start of documentation of inline functions */

/*! \fn bool QCPSelectionRect::isActive() const

  Returns true if there is currently a selection going on, i.e. the user has started dragging a
  selection rect, but hasn't released the mouse button yet.

  \see cancel
*/

/* end of documentation of inline functions */
/* start documentation of signals */

/*! \fn void QCPSelectionRect::started(QMouseEvent *event);

  This signal is emitted when a selection rect interaction was initiated, i.e. the user just
  started dragging the selection rect with the mouse.
*/

/*! \fn void QCPSelectionRect::changed(const QRect &rect, QMouseEvent *event);

  This signal is emitted while the selection rect interaction is ongoing and the \a rect has
  changed its size due to the user moving the mouse.

  Note that \a rect may have a negative width or height, if the selection is being dragged to the
  upper or left side of the selection rect origin.
*/

/*! \fn void QCPSelectionRect::canceled(const QRect &rect, QInputEvent *event);

  This signal is emitted when the selection interaction was cancelled. Note that \a event is 0 if
  the selection interaction was cancelled programmatically, by a call to \ref cancel.

  The user may cancel the selection interaction by pressing the escape key. In this case, \a event
  holds the respective input event.

  Note that \a rect may have a negative width or height, if the selection is being dragged to the
  upper or left side of the selection rect origin.
*/

/*! \fn void QCPSelectionRect::accepted(const QRect &rect, QMouseEvent *event);

  This signal is emitted when the selection interaction was completed by the user releasing the
  mouse button.

  Note that \a rect may have a negative width or height, if the selection is being dragged to the
  upper or left side of the selection rect origin.
*/

/* end documentation of signals */

/*!
  Creates a new QCPSelectionRect instance. To make QCustomPlot use the selection rect instance,
  pass it to \ref QCustomPlot::setSelectionRect. \a parentPlot should be set to the same
  QCustomPlot widget.
*/
QCPSelectionRect::QCPSelectionRect(QCustomPlot *parentPlot) :
  QCPLayerable(parentPlot),
  mPen(QBrush(Qt::gray), 0, Qt::DashLine),
  mBrush(Qt::NoBrush),
  mActive(false)
{
}

QCPSelectionRect::~QCPSelectionRect()
{
  cancel();
}

/*!
  A convenience function which returns the coordinate range of the provided \a axis, that this
  selection rect currently encompasses.
*/
QCPRange QCPSelectionRect::range(const QCPAxis *axis) const
{
  if (axis)
  {
    if (axis->orientation() == Qt::Horizontal)
      return QCPRange(axis->pixelToCoord(mRect.left()), axis->pixelToCoord(mRect.left()+mRect.width()));
    else
      return QCPRange(axis->pixelToCoord(mRect.top()+mRect.height()), axis->pixelToCoord(mRect.top()));
  } else
  {
    qDebug() << Q_FUNC_INFO << "called with axis zero";
    return QCPRange();
  }
}

/*!
  Sets the pen that will be used to draw the selection rect outline.

  \see setBrush
*/
void QCPSelectionRect::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the brush that will be used to fill the selection rect. By default the selection rect is not
  filled, i.e. \a brush is <tt>Qt::NoBrush</tt>.

  \see setPen
*/
void QCPSelectionRect::setBrush(const QBrush &brush)
{
  mBrush = brush;
}

/*!
  If there is currently a selection interaction going on (\ref isActive), the interaction is
  canceled. The selection rect will emit the \ref canceled signal.
*/
void QCPSelectionRect::cancel()
{
  if (mActive)
  {
    mActive = false;
    emit canceled(mRect, 0);
  }
}

/*! \internal

  This method is called by QCustomPlot to indicate that a selection rect interaction was initiated.
  The default implementation sets the selection rect to active, initializes the selection rect
  geometry and emits the \ref started signal.
*/
void QCPSelectionRect::startSelection(QMouseEvent *event)
{
  mActive = true;
  mRect = QRect(event->pos(), event->pos());
  emit started(event);
}

/*! \internal

  This method is called by QCustomPlot to indicate that an ongoing selection rect interaction needs
  to update its geometry. The default implementation updates the rect and emits the \ref changed
  signal.
*/
void QCPSelectionRect::moveSelection(QMouseEvent *event)
{
  mRect.setBottomRight(event->pos());
  emit changed(mRect, event);
  layer()->replot();
}

/*! \internal

  This method is called by QCustomPlot to indicate that an ongoing selection rect interaction has
  finished by the user releasing the mouse button. The default implementation deactivates the
  selection rect and emits the \ref accepted signal.
*/
void QCPSelectionRect::endSelection(QMouseEvent *event)
{
  mRect.setBottomRight(event->pos());
  mActive = false;
  emit accepted(mRect, event);
}

/*! \internal

  This method is called by QCustomPlot when a key has been pressed by the user while the selection
  rect interaction is active. The default implementation allows to \ref cancel the interaction by
  hitting the escape key.
*/
void QCPSelectionRect::keyPressEvent(QKeyEvent *event)
{
  if (event->key() == Qt::Key_Escape && mActive)
  {
    mActive = false;
    emit canceled(mRect, event);
  }
}

/* inherits documentation from base class */
void QCPSelectionRect::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiased, QCP::aeOther);
}

/*! \internal

  If the selection rect is active (\ref isActive), draws the selection rect defined by \a mRect.

  \seebaseclassmethod
*/
void QCPSelectionRect::draw(QCPPainter *painter)
{
  if (mActive)
  {
    painter->setPen(mPen);
    painter->setBrush(mBrush);
    painter->drawRect(mRect);
  }
}
/* end of 'src/selectionrect.cpp' */


/* including file 'src/layout.cpp', size 79139                               */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPMarginGroup
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPMarginGroup
  \brief A margin group allows synchronization of margin sides if working with multiple layout elements.

  QCPMarginGroup allows you to tie a margin side of two or more layout elements together, such that
  they will all have the same size, based on the largest required margin in the group.

  \n
  \image html QCPMarginGroup.png "Demonstration of QCPMarginGroup"
  \n

  In certain situations it is desirable that margins at specific sides are synchronized across
  layout elements. For example, if one QCPAxisRect is below another one in a grid layout, it will
  provide a cleaner look to the user if the left and right margins of the two axis rects are of the
  same size. The left axis of the top axis rect will then be at the same horizontal position as the
  left axis of the lower axis rect, making them appear aligned. The same applies for the right
  axes. This is what QCPMarginGroup makes possible.

  To add/remove a specific side of a layout element to/from a margin group, use the \ref
  QCPLayoutElement::setMarginGroup method. To completely break apart the margin group, either call
  \ref clear, or just delete the margin group.

  \section QCPMarginGroup-example Example

  First create a margin group:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpmargingroup-creation-1
  Then set this group on the layout element sides:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpmargingroup-creation-2
  Here, we've used the first two axis rects of the plot and synchronized their left margins with
  each other and their right margins with each other.
*/

/* start documentation of inline functions */

/*! \fn QList<QCPLayoutElement*> QCPMarginGroup::elements(QCP::MarginSide side) const

  Returns a list of all layout elements that have their margin \a side associated with this margin
  group.
*/

/* end documentation of inline functions */

/*!
  Creates a new QCPMarginGroup instance in \a parentPlot.
*/
QCPMarginGroup::QCPMarginGroup(QCustomPlot *parentPlot) :
  QObject(parentPlot),
  mParentPlot(parentPlot)
{
  mChildren.insert(QCP::msLeft, QList<QCPLayoutElement*>());
  mChildren.insert(QCP::msRight, QList<QCPLayoutElement*>());
  mChildren.insert(QCP::msTop, QList<QCPLayoutElement*>());
  mChildren.insert(QCP::msBottom, QList<QCPLayoutElement*>());
}

QCPMarginGroup::~QCPMarginGroup()
{
  clear();
}

/*!
  Returns whether this margin group is empty. If this function returns true, no layout elements use
  this margin group to synchronize margin sides.
*/
bool QCPMarginGroup::isEmpty() const
{
  QHashIterator<QCP::MarginSide, QList<QCPLayoutElement*> > it(mChildren);
  while (it.hasNext())
  {
    it.next();
    if (!it.value().isEmpty())
      return false;
  }
  return true;
}

/*!
  Clears this margin group. The synchronization of the margin sides that use this margin group is
  lifted and they will use their individual margin sizes again.
*/
void QCPMarginGroup::clear()
{
  // make all children remove themselves from this margin group:
  QHashIterator<QCP::MarginSide, QList<QCPLayoutElement*> > it(mChildren);
  while (it.hasNext())
  {
    it.next();
    const QList<QCPLayoutElement*> elements = it.value();
    for (int i=elements.size()-1; i>=0; --i)
      elements.at(i)->setMarginGroup(it.key(), 0); // removes itself from mChildren via removeChild
  }
}

/*! \internal

  Returns the synchronized common margin for \a side. This is the margin value that will be used by
  the layout element on the respective side, if it is part of this margin group.

  The common margin is calculated by requesting the automatic margin (\ref
  QCPLayoutElement::calculateAutoMargin) of each element associated with \a side in this margin
  group, and choosing the largest returned value. (QCPLayoutElement::minimumMargins is taken into
  account, too.)
*/
int QCPMarginGroup::commonMargin(QCP::MarginSide side) const
{
  // query all automatic margins of the layout elements in this margin group side and find maximum:
  int result = 0;
  const QList<QCPLayoutElement*> elements = mChildren.value(side);
  for (int i=0; i<elements.size(); ++i)
  {
    if (!elements.at(i)->autoMargins().testFlag(side))
      continue;
    int m = qMax(elements.at(i)->calculateAutoMargin(side), QCP::getMarginValue(elements.at(i)->minimumMargins(), side));
    if (m > result)
      result = m;
  }
  return result;
}

/*! \internal

  Adds \a element to the internal list of child elements, for the margin \a side.

  This function does not modify the margin group property of \a element.
*/
void QCPMarginGroup::addChild(QCP::MarginSide side, QCPLayoutElement *element)
{
  if (!mChildren[side].contains(element))
    mChildren[side].append(element);
  else
    qDebug() << Q_FUNC_INFO << "element is already child of this margin group side" << reinterpret_cast<quintptr>(element);
}

/*! \internal

  Removes \a element from the internal list of child elements, for the margin \a side.

  This function does not modify the margin group property of \a element.
*/
void QCPMarginGroup::removeChild(QCP::MarginSide side, QCPLayoutElement *element)
{
  if (!mChildren[side].removeOne(element))
    qDebug() << Q_FUNC_INFO << "element is not child of this margin group side" << reinterpret_cast<quintptr>(element);
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPLayoutElement
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPLayoutElement
  \brief The abstract base class for all objects that form \ref thelayoutsystem "the layout system".

  This is an abstract base class. As such, it can't be instantiated directly, rather use one of its subclasses.

  A Layout element is a rectangular object which can be placed in layouts. It has an outer rect
  (QCPLayoutElement::outerRect) and an inner rect (\ref QCPLayoutElement::rect). The difference
  between outer and inner rect is called its margin. The margin can either be set to automatic or
  manual (\ref setAutoMargins) on a per-side basis. If a side is set to manual, that margin can be
  set explicitly with \ref setMargins and will stay fixed at that value. If it's set to automatic,
  the layout element subclass will control the value itself (via \ref calculateAutoMargin).

  Layout elements can be placed in layouts (base class QCPLayout) like QCPLayoutGrid. The top level
  layout is reachable via \ref QCustomPlot::plotLayout, and is a \ref QCPLayoutGrid. Since \ref
  QCPLayout itself derives from \ref QCPLayoutElement, layouts can be nested.

  Thus in QCustomPlot one can divide layout elements into two categories: The ones that are
  invisible by themselves, because they don't draw anything. Their only purpose is to manage the
  position and size of other layout elements. This category of layout elements usually use
  QCPLayout as base class. Then there is the category of layout elements which actually draw
  something. For example, QCPAxisRect, QCPLegend and QCPTextElement are of this category. This does
  not necessarily mean that the latter category can't have child layout elements. QCPLegend for
  instance, actually derives from QCPLayoutGrid and the individual legend items are child layout
  elements in the grid layout.
*/

/* start documentation of inline functions */

/*! \fn QCPLayout *QCPLayoutElement::layout() const

  Returns the parent layout of this layout element.
*/

/*! \fn QRect QCPLayoutElement::rect() const

  Returns the inner rect of this layout element. The inner rect is the outer rect (\ref outerRect, \ref
  setOuterRect) shrinked by the margins (\ref setMargins, \ref setAutoMargins).

  In some cases, the area between outer and inner rect is left blank. In other cases the margin
  area is used to display peripheral graphics while the main content is in the inner rect. This is
  where automatic margin calculation becomes interesting because it allows the layout element to
  adapt the margins to the peripheral graphics it wants to draw. For example, \ref QCPAxisRect
  draws the axis labels and tick labels in the margin area, thus needs to adjust the margins (if
  \ref setAutoMargins is enabled) according to the space required by the labels of the axes.

  \see outerRect
*/

/*! \fn QRect QCPLayoutElement::outerRect() const

  Returns the outer rect of this layout element. The outer rect is the inner rect expanded by the
  margins (\ref setMargins, \ref setAutoMargins). The outer rect is used (and set via \ref
  setOuterRect) by the parent \ref QCPLayout to control the size of this layout element.

  \see rect
*/

/* end documentation of inline functions */

/*!
  Creates an instance of QCPLayoutElement and sets default values.
*/
QCPLayoutElement::QCPLayoutElement(QCustomPlot *parentPlot) :
  QCPLayerable(parentPlot), // parenthood is changed as soon as layout element gets inserted into a layout (except for top level layout)
  mParentLayout(0),
  mMinimumSize(),
  mMaximumSize(QWIDGETSIZE_MAX, QWIDGETSIZE_MAX),
  mSizeConstraintRect(scrInnerRect),
  mRect(0, 0, 0, 0),
  mOuterRect(0, 0, 0, 0),
  mMargins(0, 0, 0, 0),
  mMinimumMargins(0, 0, 0, 0),
  mAutoMargins(QCP::msAll)
{
}

QCPLayoutElement::~QCPLayoutElement()
{
  setMarginGroup(QCP::msAll, 0); // unregister at margin groups, if there are any
  // unregister at layout:
  if (qobject_cast<QCPLayout*>(mParentLayout)) // the qobject_cast is just a safeguard in case the layout forgets to call clear() in its dtor and this dtor is called by QObject dtor
    mParentLayout->take(this);
}

/*!
  Sets the outer rect of this layout element. If the layout element is inside a layout, the layout
  sets the position and size of this layout element using this function.

  Calling this function externally has no effect, since the layout will overwrite any changes to
  the outer rect upon the next replot.

  The layout element will adapt its inner \ref rect by applying the margins inward to the outer rect.

  \see rect
*/
void QCPLayoutElement::setOuterRect(const QRect &rect)
{
  if (mOuterRect != rect)
  {
    mOuterRect = rect;
    mRect = mOuterRect.adjusted(mMargins.left(), mMargins.top(), -mMargins.right(), -mMargins.bottom());
  }
}

/*!
  Sets the margins of this layout element. If \ref setAutoMargins is disabled for some or all
  sides, this function is used to manually set the margin on those sides. Sides that are still set
  to be handled automatically are ignored and may have any value in \a margins.

  The margin is the distance between the outer rect (controlled by the parent layout via \ref
  setOuterRect) and the inner \ref rect (which usually contains the main content of this layout
  element).

  \see setAutoMargins
*/
void QCPLayoutElement::setMargins(const QMargins &margins)
{
  if (mMargins != margins)
  {
    mMargins = margins;
    mRect = mOuterRect.adjusted(mMargins.left(), mMargins.top(), -mMargins.right(), -mMargins.bottom());
  }
}

/*!
  If \ref setAutoMargins is enabled on some or all margins, this function is used to provide
  minimum values for those margins.

  The minimum values are not enforced on margin sides that were set to be under manual control via
  \ref setAutoMargins.

  \see setAutoMargins
*/
void QCPLayoutElement::setMinimumMargins(const QMargins &margins)
{
  if (mMinimumMargins != margins)
  {
    mMinimumMargins = margins;
  }
}

/*!
  Sets on which sides the margin shall be calculated automatically. If a side is calculated
  automatically, a minimum margin value may be provided with \ref setMinimumMargins. If a side is
  set to be controlled manually, the value may be specified with \ref setMargins.

  Margin sides that are under automatic control may participate in a \ref QCPMarginGroup (see \ref
  setMarginGroup), to synchronize (align) it with other layout elements in the plot.

  \see setMinimumMargins, setMargins, QCP::MarginSide
*/
void QCPLayoutElement::setAutoMargins(QCP::MarginSides sides)
{
  mAutoMargins = sides;
}

/*!
  Sets the minimum size of this layout element. A parent layout tries to respect the \a size here
  by changing row/column sizes in the layout accordingly.

  If the parent layout size is not sufficient to satisfy all minimum size constraints of its child
  layout elements, the layout may set a size that is actually smaller than \a size. QCustomPlot
  propagates the layout's size constraints to the outside by setting its own minimum QWidget size
  accordingly, so violations of \a size should be exceptions.

  Whether this constraint applies to the inner or the outer rect can be specified with \ref
  setSizeConstraintRect (see \ref rect and \ref outerRect).
*/
void QCPLayoutElement::setMinimumSize(const QSize &size)
{
  if (mMinimumSize != size)
  {
    mMinimumSize = size;
    if (mParentLayout)
      mParentLayout->sizeConstraintsChanged();
  }
}

/*! \overload

  Sets the minimum size of this layout element.

  Whether this constraint applies to the inner or the outer rect can be specified with \ref
  setSizeConstraintRect (see \ref rect and \ref outerRect).
*/
void QCPLayoutElement::setMinimumSize(int width, int height)
{
  setMinimumSize(QSize(width, height));
}

/*!
  Sets the maximum size of this layout element. A parent layout tries to respect the \a size here
  by changing row/column sizes in the layout accordingly.

  Whether this constraint applies to the inner or the outer rect can be specified with \ref
  setSizeConstraintRect (see \ref rect and \ref outerRect).
*/
void QCPLayoutElement::setMaximumSize(const QSize &size)
{
  if (mMaximumSize != size)
  {
    mMaximumSize = size;
    if (mParentLayout)
      mParentLayout->sizeConstraintsChanged();
  }
}

/*! \overload

  Sets the maximum size of this layout element.

  Whether this constraint applies to the inner or the outer rect can be specified with \ref
  setSizeConstraintRect (see \ref rect and \ref outerRect).
*/
void QCPLayoutElement::setMaximumSize(int width, int height)
{
  setMaximumSize(QSize(width, height));
}

/*!
  Sets to which rect of a layout element the size constraints apply. Size constraints can be set
  via \ref setMinimumSize and \ref setMaximumSize.

  The outer rect (\ref outerRect) includes the margins (e.g. in the case of a QCPAxisRect the axis
  labels), whereas the inner rect (\ref rect) does not.

  \see setMinimumSize, setMaximumSize
*/
void QCPLayoutElement::setSizeConstraintRect(SizeConstraintRect constraintRect)
{
  if (mSizeConstraintRect != constraintRect)
  {
    mSizeConstraintRect = constraintRect;
    if (mParentLayout)
      mParentLayout->sizeConstraintsChanged();
  }
}

/*!
  Sets the margin \a group of the specified margin \a sides.

  Margin groups allow synchronizing specified margins across layout elements, see the documentation
  of \ref QCPMarginGroup.

  To unset the margin group of \a sides, set \a group to 0.

  Note that margin groups only work for margin sides that are set to automatic (\ref
  setAutoMargins).

  \see QCP::MarginSide
*/
void QCPLayoutElement::setMarginGroup(QCP::MarginSides sides, QCPMarginGroup *group)
{
  QVector<QCP::MarginSide> sideVector;
  if (sides.testFlag(QCP::msLeft)) sideVector.append(QCP::msLeft);
  if (sides.testFlag(QCP::msRight)) sideVector.append(QCP::msRight);
  if (sides.testFlag(QCP::msTop)) sideVector.append(QCP::msTop);
  if (sides.testFlag(QCP::msBottom)) sideVector.append(QCP::msBottom);

  for (int i=0; i<sideVector.size(); ++i)
  {
    QCP::MarginSide side = sideVector.at(i);
    if (marginGroup(side) != group)
    {
      QCPMarginGroup *oldGroup = marginGroup(side);
      if (oldGroup) // unregister at old group
        oldGroup->removeChild(side, this);

      if (!group) // if setting to 0, remove hash entry. Else set hash entry to new group and register there
      {
        mMarginGroups.remove(side);
      } else // setting to a new group
      {
        mMarginGroups[side] = group;
        group->addChild(side, this);
      }
    }
  }
}

/*!
  Updates the layout element and sub-elements. This function is automatically called before every
  replot by the parent layout element. It is called multiple times, once for every \ref
  UpdatePhase. The phases are run through in the order of the enum values. For details about what
  happens at the different phases, see the documentation of \ref UpdatePhase.

  Layout elements that have child elements should call the \ref update method of their child
  elements, and pass the current \a phase unchanged.

  The default implementation executes the automatic margin mechanism in the \ref upMargins phase.
  Subclasses should make sure to call the base class implementation.
*/
void QCPLayoutElement::update(UpdatePhase phase)
{
  if (phase == upMargins)
  {
    if (mAutoMargins != QCP::msNone)
    {
      // set the margins of this layout element according to automatic margin calculation, either directly or via a margin group:
      QMargins newMargins = mMargins;
      QList<QCP::MarginSide> allMarginSides = QList<QCP::MarginSide>() << QCP::msLeft << QCP::msRight << QCP::msTop << QCP::msBottom;
      foreach (QCP::MarginSide side, allMarginSides)
      {
        if (mAutoMargins.testFlag(side)) // this side's margin shall be calculated automatically
        {
          if (mMarginGroups.contains(side))
            QCP::setMarginValue(newMargins, side, mMarginGroups[side]->commonMargin(side)); // this side is part of a margin group, so get the margin value from that group
          else
            QCP::setMarginValue(newMargins, side, calculateAutoMargin(side)); // this side is not part of a group, so calculate the value directly
          // apply minimum margin restrictions:
          if (QCP::getMarginValue(newMargins, side) < QCP::getMarginValue(mMinimumMargins, side))
            QCP::setMarginValue(newMargins, side, QCP::getMarginValue(mMinimumMargins, side));
        }
      }
      setMargins(newMargins);
    }
  }
}

/*!
  Returns the suggested minimum size this layout element (the \ref outerRect) may be compressed to,
  if no manual minimum size is set.

  if a minimum size (\ref setMinimumSize) was not set manually, parent layouts use the returned size
  (usually indirectly through \ref QCPLayout::getFinalMinimumOuterSize) to determine the minimum
  allowed size of this layout element.

  A manual minimum size is considered set if it is non-zero.

  The default implementation simply returns the sum of the horizontal margins for the width and the
  sum of the vertical margins for the height. Reimplementations may use their detailed knowledge
  about the layout element's content to provide size hints.
*/
QSize QCPLayoutElement::minimumOuterSizeHint() const
{
  return QSize(mMargins.left()+mMargins.right(), mMargins.top()+mMargins.bottom());
}

/*!
  Returns the suggested maximum size this layout element (the \ref outerRect) may be expanded to,
  if no manual maximum size is set.

  if a maximum size (\ref setMaximumSize) was not set manually, parent layouts use the returned
  size (usually indirectly through \ref QCPLayout::getFinalMaximumOuterSize) to determine the
  maximum allowed size of this layout element.

  A manual maximum size is considered set if it is smaller than Qt's \c QWIDGETSIZE_MAX.

  The default implementation simply returns \c QWIDGETSIZE_MAX for both width and height, implying
  no suggested maximum size. Reimplementations may use their detailed knowledge about the layout
  element's content to provide size hints.
*/
QSize QCPLayoutElement::maximumOuterSizeHint() const
{
  return QSize(QWIDGETSIZE_MAX, QWIDGETSIZE_MAX);
}

/*!
  Returns a list of all child elements in this layout element. If \a recursive is true, all
  sub-child elements are included in the list, too.

  \warning There may be entries with value 0 in the returned list. (For example, QCPLayoutGrid may have
  empty cells which yield 0 at the respective index.)
*/
QList<QCPLayoutElement*> QCPLayoutElement::elements(bool recursive) const
{
  Q_UNUSED(recursive)
  return QList<QCPLayoutElement*>();
}

/*!
  Layout elements are sensitive to events inside their outer rect. If \a pos is within the outer
  rect, this method returns a value corresponding to 0.99 times the parent plot's selection
  tolerance. However, layout elements are not selectable by default. So if \a onlySelectable is
  true, -1.0 is returned.

  See \ref QCPLayerable::selectTest for a general explanation of this virtual method.

  QCPLayoutElement subclasses may reimplement this method to provide more specific selection test
  behaviour.
*/
double QCPLayoutElement::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)

  if (onlySelectable)
    return -1;

  if (QRectF(mOuterRect).contains(pos))
  {
    if (mParentPlot)
      return mParentPlot->selectionTolerance()*0.99;
    else
    {
      qDebug() << Q_FUNC_INFO << "parent plot not defined";
      return -1;
    }
  } else
    return -1;
}

/*! \internal

  propagates the parent plot initialization to all child elements, by calling \ref
  QCPLayerable::initializeParentPlot on them.
*/
void QCPLayoutElement::parentPlotInitialized(QCustomPlot *parentPlot)
{
  foreach (QCPLayoutElement* el, elements(false))
  {
    if (!el->parentPlot())
      el->initializeParentPlot(parentPlot);
  }
}

/*! \internal

  Returns the margin size for this \a side. It is used if automatic margins is enabled for this \a
  side (see \ref setAutoMargins). If a minimum margin was set with \ref setMinimumMargins, the
  returned value will not be smaller than the specified minimum margin.

  The default implementation just returns the respective manual margin (\ref setMargins) or the
  minimum margin, whichever is larger.
*/
int QCPLayoutElement::calculateAutoMargin(QCP::MarginSide side)
{
  return qMax(QCP::getMarginValue(mMargins, side), QCP::getMarginValue(mMinimumMargins, side));
}

/*! \internal

  This virtual method is called when this layout element was moved to a different QCPLayout, or
  when this layout element has changed its logical position (e.g. row and/or column) within the
  same QCPLayout. Subclasses may use this to react accordingly.

  Since this method is called after the completion of the move, you can access the new parent
  layout via \ref layout().

  The default implementation does nothing.
*/
void QCPLayoutElement::layoutChanged()
{
}

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPLayout
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPLayout
  \brief The abstract base class for layouts

  This is an abstract base class for layout elements whose main purpose is to define the position
  and size of other child layout elements. In most cases, layouts don't draw anything themselves
  (but there are exceptions to this, e.g. QCPLegend).

  QCPLayout derives from QCPLayoutElement, and thus can itself be nested in other layouts.

  QCPLayout introduces a common interface for accessing and manipulating the child elements. Those
  functions are most notably \ref elementCount, \ref elementAt, \ref takeAt, \ref take, \ref
  simplify, \ref removeAt, \ref remove and \ref clear. Individual subclasses may add more functions
  to this interface which are more specialized to the form of the layout. For example, \ref
  QCPLayoutGrid adds functions that take row and column indices to access cells of the layout grid
  more conveniently.

  Since this is an abstract base class, you can't instantiate it directly. Rather use one of its
  subclasses like QCPLayoutGrid or QCPLayoutInset.

  For a general introduction to the layout system, see the dedicated documentation page \ref
  thelayoutsystem "The Layout System".
*/

/* start documentation of pure virtual functions */

/*! \fn virtual int QCPLayout::elementCount() const = 0

  Returns the number of elements/cells in the layout.

  \see elements, elementAt
*/

/*! \fn virtual QCPLayoutElement* QCPLayout::elementAt(int index) const = 0

  Returns the element in the cell with the given \a index. If \a index is invalid, returns 0.

  Note that even if \a index is valid, the respective cell may be empty in some layouts (e.g.
  QCPLayoutGrid), so this function may return 0 in those cases. You may use this function to check
  whether a cell is empty or not.

  \see elements, elementCount, takeAt
*/

/*! \fn virtual QCPLayoutElement* QCPLayout::takeAt(int index) = 0

  Removes the element with the given \a index from the layout and returns it.

  If the \a index is invalid or the cell with that index is empty, returns 0.

  Note that some layouts don't remove the respective cell right away but leave an empty cell after
  successful removal of the layout element. To collapse empty cells, use \ref simplify.

  \see elementAt, take
*/

/*! \fn virtual bool QCPLayout::take(QCPLayoutElement* element) = 0

  Removes the specified \a element from the layout and returns true on success.

  If the \a element isn't in this layout, returns false.

  Note that some layouts don't remove the respective cell right away but leave an empty cell after
  successful removal of the layout element. To collapse empty cells, use \ref simplify.

  \see takeAt
*/

/* end documentation of pure virtual functions */

/*!
  Creates an instance of QCPLayout and sets default values. Note that since QCPLayout
  is an abstract base class, it can't be instantiated directly.
*/
QCPLayout::QCPLayout()
{
}

/*!
  If \a phase is \ref upLayout, calls \ref updateLayout, which subclasses may reimplement to
  reposition and resize their cells.

  Finally, the call is propagated down to all child \ref QCPLayoutElement "QCPLayoutElements".

  For details about this method and the update phases, see the documentation of \ref
  QCPLayoutElement::update.
*/
void QCPLayout::update(UpdatePhase phase)
{
  QCPLayoutElement::update(phase);

  // set child element rects according to layout:
  if (phase == upLayout)
    updateLayout();

  // propagate update call to child elements:
  const int elCount = elementCount();
  for (int i=0; i<elCount; ++i)
  {
    if (QCPLayoutElement *el = elementAt(i))
      el->update(phase);
  }
}

/* inherits documentation from base class */
QList<QCPLayoutElement*> QCPLayout::elements(bool recursive) const
{
  const int c = elementCount();
  QList<QCPLayoutElement*> result;
#if QT_VERSION >= QT_VERSION_CHECK(4, 7, 0)
  result.reserve(c);
#endif
  for (int i=0; i<c; ++i)
    result.append(elementAt(i));
  if (recursive)
  {
    for (int i=0; i<c; ++i)
    {
      if (result.at(i))
        result << result.at(i)->elements(recursive);
    }
  }
  return result;
}

/*!
  Simplifies the layout by collapsing empty cells. The exact behavior depends on subclasses, the
  default implementation does nothing.

  Not all layouts need simplification. For example, QCPLayoutInset doesn't use explicit
  simplification while QCPLayoutGrid does.
*/
void QCPLayout::simplify()
{
}

/*!
  Removes and deletes the element at the provided \a index. Returns true on success. If \a index is
  invalid or points to an empty cell, returns false.

  This function internally uses \ref takeAt to remove the element from the layout and then deletes
  the returned element. Note that some layouts don't remove the respective cell right away but leave an
  empty cell after successful removal of the layout element. To collapse empty cells, use \ref
  simplify.

  \see remove, takeAt
*/
bool QCPLayout::removeAt(int index)
{
  if (QCPLayoutElement *el = takeAt(index))
  {
    delete el;
    return true;
  } else
    return false;
}

/*!
  Removes and deletes the provided \a element. Returns true on success. If \a element is not in the
  layout, returns false.

  This function internally uses \ref takeAt to remove the element from the layout and then deletes
  the element. Note that some layouts don't remove the respective cell right away but leave an
  empty cell after successful removal of the layout element. To collapse empty cells, use \ref
  simplify.

  \see removeAt, take
*/
bool QCPLayout::remove(QCPLayoutElement *element)
{
  if (take(element))
  {
    delete element;
    return true;
  } else
    return false;
}

/*!
  Removes and deletes all layout elements in this layout. Finally calls \ref simplify to make sure
  all empty cells are collapsed.

  \see remove, removeAt
*/
void QCPLayout::clear()
{
  for (int i=elementCount()-1; i>=0; --i)
  {
    if (elementAt(i))
      removeAt(i);
  }
  simplify();
}

/*!
  Subclasses call this method to report changed (minimum/maximum) size constraints.

  If the parent of this layout is again a QCPLayout, forwards the call to the parent's \ref
  sizeConstraintsChanged. If the parent is a QWidget (i.e. is the \ref QCustomPlot::plotLayout of
  QCustomPlot), calls QWidget::updateGeometry, so if the QCustomPlot widget is inside a Qt QLayout,
  it may update itself and resize cells accordingly.
*/
void QCPLayout::sizeConstraintsChanged() const
{
  if (QWidget *w = qobject_cast<QWidget*>(parent()))
    w->updateGeometry();
  else if (QCPLayout *l = qobject_cast<QCPLayout*>(parent()))
    l->sizeConstraintsChanged();
}

/*! \internal

  Subclasses reimplement this method to update the position and sizes of the child elements/cells
  via calling their \ref QCPLayoutElement::setOuterRect. The default implementation does nothing.

  The geometry used as a reference is the inner \ref rect of this layout. Child elements should stay
  within that rect.

  \ref getSectionSizes may help with the reimplementation of this function.

  \see update
*/
void QCPLayout::updateLayout()
{
}


/*! \internal

  Associates \a el with this layout. This is done by setting the \ref QCPLayoutElement::layout, the
  \ref QCPLayerable::parentLayerable and the QObject parent to this layout.

  Further, if \a el didn't previously have a parent plot, calls \ref
  QCPLayerable::initializeParentPlot on \a el to set the paret plot.

  This method is used by subclass specific methods that add elements to the layout. Note that this
  method only changes properties in \a el. The removal from the old layout and the insertion into
  the new layout must be done additionally.
*/
void QCPLayout::adoptElement(QCPLayoutElement *el)
{
  if (el)
  {
    el->mParentLayout = this;
    el->setParentLayerable(this);
    el->setParent(this);
    if (!el->parentPlot())
      el->initializeParentPlot(mParentPlot);
    el->layoutChanged();
  } else
    qDebug() << Q_FUNC_INFO << "Null element passed";
}

/*! \internal

  Disassociates \a el from this layout. This is done by setting the \ref QCPLayoutElement::layout
  and the \ref QCPLayerable::parentLayerable to zero. The QObject parent is set to the parent
  QCustomPlot.

  This method is used by subclass specific methods that remove elements from the layout (e.g. \ref
  take or \ref takeAt). Note that this method only changes properties in \a el. The removal from
  the old layout must be done additionally.
*/
void QCPLayout::releaseElement(QCPLayoutElement *el)
{
  if (el)
  {
    el->mParentLayout = 0;
    el->setParentLayerable(0);
    el->setParent(mParentPlot);
    // Note: Don't initializeParentPlot(0) here, because layout element will stay in same parent plot
  } else
    qDebug() << Q_FUNC_INFO << "Null element passed";
}

/*! \internal

  This is a helper function for the implementation of \ref updateLayout in subclasses.

  It calculates the sizes of one-dimensional sections with provided constraints on maximum section
  sizes, minimum section sizes, relative stretch factors and the final total size of all sections.

  The QVector entries refer to the sections. Thus all QVectors must have the same size.

  \a maxSizes gives the maximum allowed size of each section. If there shall be no maximum size
  imposed, set all vector values to Qt's QWIDGETSIZE_MAX.

  \a minSizes gives the minimum allowed size of each section. If there shall be no minimum size
  imposed, set all vector values to zero. If the \a minSizes entries add up to a value greater than
  \a totalSize, sections will be scaled smaller than the proposed minimum sizes. (In other words,
  not exceeding the allowed total size is taken to be more important than not going below minimum
  section sizes.)

  \a stretchFactors give the relative proportions of the sections to each other. If all sections
  shall be scaled equally, set all values equal. If the first section shall be double the size of
  each individual other section, set the first number of \a stretchFactors to double the value of
  the other individual values (e.g. {2, 1, 1, 1}).

  \a totalSize is the value that the final section sizes will add up to. Due to rounding, the
  actual sum may differ slightly. If you want the section sizes to sum up to exactly that value,
  you could distribute the remaining difference on the sections.

  The return value is a QVector containing the section sizes.
*/
QVector<int> QCPLayout::getSectionSizes(QVector<int> maxSizes, QVector<int> minSizes, QVector<double> stretchFactors, int totalSize) const
{
  if (maxSizes.size() != minSizes.size() || minSizes.size() != stretchFactors.size())
  {
    qDebug() << Q_FUNC_INFO << "Passed vector sizes aren't equal:" << maxSizes << minSizes << stretchFactors;
    return QVector<int>();
  }
  if (stretchFactors.isEmpty())
    return QVector<int>();
  int sectionCount = stretchFactors.size();
  QVector<double> sectionSizes(sectionCount);
  // if provided total size is forced smaller than total minimum size, ignore minimum sizes (squeeze sections):
  int minSizeSum = 0;
  for (int i=0; i<sectionCount; ++i)
    minSizeSum += minSizes.at(i);
  if (totalSize < minSizeSum)
  {
    // new stretch factors are minimum sizes and minimum sizes are set to zero:
    for (int i=0; i<sectionCount; ++i)
    {
      stretchFactors[i] = minSizes.at(i);
      minSizes[i] = 0;
    }
  }

  QList<int> minimumLockedSections;
  QList<int> unfinishedSections;
  for (int i=0; i<sectionCount; ++i)
    unfinishedSections.append(i);
  double freeSize = totalSize;

  int outerIterations = 0;
  while (!unfinishedSections.isEmpty() && outerIterations < sectionCount*2) // the iteration check ist just a failsafe in case something really strange happens
  {
    ++outerIterations;
    int innerIterations = 0;
    while (!unfinishedSections.isEmpty() && innerIterations < sectionCount*2) // the iteration check ist just a failsafe in case something really strange happens
    {
      ++innerIterations;
      // find section that hits its maximum next:
      int nextId = -1;
      double nextMax = 1e12;
      for (int i=0; i<unfinishedSections.size(); ++i)
      {
        int secId = unfinishedSections.at(i);
        double hitsMaxAt = (maxSizes.at(secId)-sectionSizes.at(secId))/stretchFactors.at(secId);
        if (hitsMaxAt < nextMax)
        {
          nextMax = hitsMaxAt;
          nextId = secId;
        }
      }
      // check if that maximum is actually within the bounds of the total size (i.e. can we stretch all remaining sections so far that the found section
      // actually hits its maximum, without exceeding the total size when we add up all sections)
      double stretchFactorSum = 0;
      for (int i=0; i<unfinishedSections.size(); ++i)
        stretchFactorSum += stretchFactors.at(unfinishedSections.at(i));
      double nextMaxLimit = freeSize/stretchFactorSum;
      if (nextMax < nextMaxLimit) // next maximum is actually hit, move forward to that point and fix the size of that section
      {
        for (int i=0; i<unfinishedSections.size(); ++i)
        {
          sectionSizes[unfinishedSections.at(i)] += nextMax*stretchFactors.at(unfinishedSections.at(i)); // increment all sections
          freeSize -= nextMax*stretchFactors.at(unfinishedSections.at(i));
        }
        unfinishedSections.removeOne(nextId); // exclude the section that is now at maximum from further changes
      } else // next maximum isn't hit, just distribute rest of free space on remaining sections
      {
        for (int i=0; i<unfinishedSections.size(); ++i)
          sectionSizes[unfinishedSections.at(i)] += nextMaxLimit*stretchFactors.at(unfinishedSections.at(i)); // increment all sections
        unfinishedSections.clear();
      }
    }
    if (innerIterations == sectionCount*2)
      qDebug() << Q_FUNC_INFO << "Exceeded maximum expected inner iteration count, layouting aborted. Input was:" << maxSizes << minSizes << stretchFactors << totalSize;

    // now check whether the resulting section sizes violate minimum restrictions:
    bool foundMinimumViolation = false;
    for (int i=0; i<sectionSizes.size(); ++i)
    {
      if (minimumLockedSections.contains(i))
        continue;
      if (sectionSizes.at(i) < minSizes.at(i)) // section violates minimum
      {
        sectionSizes[i] = minSizes.at(i); // set it to minimum
        foundMinimumViolation = true; // make sure we repeat the whole optimization process
        minimumLockedSections.append(i);
      }
    }
    if (foundMinimumViolation)
    {
      freeSize = totalSize;
      for (int i=0; i<sectionCount; ++i)
      {
        if (!minimumLockedSections.contains(i)) // only put sections that haven't hit their minimum back into the pool
          unfinishedSections.append(i);
        else
          freeSize -= sectionSizes.at(i); // remove size of minimum locked sections from available space in next round
      }
      // reset all section sizes to zero that are in unfinished sections (all others have been set to their minimum):
      for (int i=0; i<unfinishedSections.size(); ++i)
        sectionSizes[unfinishedSections.at(i)] = 0;
    }
  }
  if (outerIterations == sectionCount*2)
    qDebug() << Q_FUNC_INFO << "Exceeded maximum expected outer iteration count, layouting aborted. Input was:" << maxSizes << minSizes << stretchFactors << totalSize;

  QVector<int> result(sectionCount);
  for (int i=0; i<sectionCount; ++i)
    result[i] = qRound(sectionSizes.at(i));
  return result;
}

/*! \internal

  This is a helper function for the implementation of subclasses.

  It returns the minimum size that should finally be used for the outer rect of the passed layout
  element \a el.

  It takes into account whether a manual minimum size is set (\ref
  QCPLayoutElement::setMinimumSize), which size constraint is set (\ref
  QCPLayoutElement::setSizeConstraintRect), as well as the minimum size hint, if no manual minimum
  size was set (\ref QCPLayoutElement::minimumOuterSizeHint).
*/
QSize QCPLayout::getFinalMinimumOuterSize(const QCPLayoutElement *el)
{
  QSize minOuterHint = el->minimumOuterSizeHint();
  QSize minOuter = el->minimumSize(); // depending on sizeConstraitRect this might be with respect to inner rect, so possibly add margins in next four lines (preserving unset minimum of 0)
  if (minOuter.width() > 0 && el->sizeConstraintRect() == QCPLayoutElement::scrInnerRect)
    minOuter.rwidth() += el->margins().left() + el->margins().right();
  if (minOuter.height() > 0 && el->sizeConstraintRect() == QCPLayoutElement::scrInnerRect)
    minOuter.rheight() += el->margins().top() + el->margins().bottom();

  return QSize(minOuter.width() > 0 ? minOuter.width() : minOuterHint.width(),
               minOuter.height() > 0 ? minOuter.height() : minOuterHint.height());;
}

/*! \internal

  This is a helper function for the implementation of subclasses.

  It returns the maximum size that should finally be used for the outer rect of the passed layout
  element \a el.

  It takes into account whether a manual maximum size is set (\ref
  QCPLayoutElement::setMaximumSize), which size constraint is set (\ref
  QCPLayoutElement::setSizeConstraintRect), as well as the maximum size hint, if no manual maximum
  size was set (\ref QCPLayoutElement::maximumOuterSizeHint).
*/
QSize QCPLayout::getFinalMaximumOuterSize(const QCPLayoutElement *el)
{
  QSize maxOuterHint = el->maximumOuterSizeHint();
  QSize maxOuter = el->maximumSize(); // depending on sizeConstraitRect this might be with respect to inner rect, so possibly add margins in next four lines (preserving unset maximum of QWIDGETSIZE_MAX)
  if (maxOuter.width() < QWIDGETSIZE_MAX && el->sizeConstraintRect() == QCPLayoutElement::scrInnerRect)
    maxOuter.rwidth() += el->margins().left() + el->margins().right();
  if (maxOuter.height() < QWIDGETSIZE_MAX && el->sizeConstraintRect() == QCPLayoutElement::scrInnerRect)
    maxOuter.rheight() += el->margins().top() + el->margins().bottom();

  return QSize(maxOuter.width() < QWIDGETSIZE_MAX ? maxOuter.width() : maxOuterHint.width(),
               maxOuter.height() < QWIDGETSIZE_MAX ? maxOuter.height() : maxOuterHint.height());
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPLayoutGrid
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPLayoutGrid
  \brief A layout that arranges child elements in a grid

  Elements are laid out in a grid with configurable stretch factors (\ref setColumnStretchFactor,
  \ref setRowStretchFactor) and spacing (\ref setColumnSpacing, \ref setRowSpacing).

  Elements can be added to cells via \ref addElement. The grid is expanded if the specified row or
  column doesn't exist yet. Whether a cell contains a valid layout element can be checked with \ref
  hasElement, that element can be retrieved with \ref element. If rows and columns that only have
  empty cells shall be removed, call \ref simplify. Removal of elements is either done by just
  adding the element to a different layout or by using the QCPLayout interface \ref take or \ref
  remove.

  If you use \ref addElement(QCPLayoutElement*) without explicit parameters for \a row and \a
  column, the grid layout will choose the position according to the current \ref setFillOrder and
  the wrapping (\ref setWrap).

  Row and column insertion can be performed with \ref insertRow and \ref insertColumn.
*/

/* start documentation of inline functions */

/*! \fn int QCPLayoutGrid::rowCount() const

  Returns the number of rows in the layout.

  \see columnCount
*/

/*! \fn int QCPLayoutGrid::columnCount() const

  Returns the number of columns in the layout.

  \see rowCount
*/

/* end documentation of inline functions */

/*!
  Creates an instance of QCPLayoutGrid and sets default values.
*/
QCPLayoutGrid::QCPLayoutGrid() :
  mColumnSpacing(5),
  mRowSpacing(5),
  mWrap(0),
  mFillOrder(foColumnsFirst)
{
}

QCPLayoutGrid::~QCPLayoutGrid()
{
  // clear all child layout elements. This is important because only the specific layouts know how
  // to handle removing elements (clear calls virtual removeAt method to do that).
  clear();
}

/*!
  Returns the element in the cell in \a row and \a column.

  Returns 0 if either the row/column is invalid or if the cell is empty. In those cases, a qDebug
  message is printed. To check whether a cell exists and isn't empty, use \ref hasElement.

  \see addElement, hasElement
*/
QCPLayoutElement *QCPLayoutGrid::element(int row, int column) const
{
  if (row >= 0 && row < mElements.size())
  {
    if (column >= 0 && column < mElements.first().size())
    {
      if (QCPLayoutElement *result = mElements.at(row).at(column))
        return result;
      else
        qDebug() << Q_FUNC_INFO << "Requested cell is empty. Row:" << row << "Column:" << column;
    } else
      qDebug() << Q_FUNC_INFO << "Invalid column. Row:" << row << "Column:" << column;
  } else
    qDebug() << Q_FUNC_INFO << "Invalid row. Row:" << row << "Column:" << column;
  return 0;
}


/*! \overload

  Adds the \a element to cell with \a row and \a column. If \a element is already in a layout, it
  is first removed from there. If \a row or \a column don't exist yet, the layout is expanded
  accordingly.

  Returns true if the element was added successfully, i.e. if the cell at \a row and \a column
  didn't already have an element.

  Use the overload of this method without explicit row/column index to place the element according
  to the configured fill order and wrapping settings.

  \see element, hasElement, take, remove
*/
bool QCPLayoutGrid::addElement(int row, int column, QCPLayoutElement *element)
{
  if (!hasElement(row, column))
  {
    if (element && element->layout()) // remove from old layout first
      element->layout()->take(element);
    expandTo(row+1, column+1);
    mElements[row][column] = element;
    if (element)
      adoptElement(element);
    return true;
  } else
    qDebug() << Q_FUNC_INFO << "There is already an element in the specified row/column:" << row << column;
  return false;
}

/*! \overload

  Adds the \a element to the next empty cell according to the current fill order (\ref
  setFillOrder) and wrapping (\ref setWrap). If \a element is already in a layout, it is first
  removed from there. If necessary, the layout is expanded to hold the new element.

  Returns true if the element was added successfully.

  \see setFillOrder, setWrap, element, hasElement, take, remove
*/
bool QCPLayoutGrid::addElement(QCPLayoutElement *element)
{
  int rowIndex = 0;
  int colIndex = 0;
  if (mFillOrder == foColumnsFirst)
  {
    while (hasElement(rowIndex, colIndex))
    {
      ++colIndex;
      if (colIndex >= mWrap && mWrap > 0)
      {
        colIndex = 0;
        ++rowIndex;
      }
    }
  } else
  {
    while (hasElement(rowIndex, colIndex))
    {
      ++rowIndex;
      if (rowIndex >= mWrap && mWrap > 0)
      {
        rowIndex = 0;
        ++colIndex;
      }
    }
  }
  return addElement(rowIndex, colIndex, element);
}

/*!
  Returns whether the cell at \a row and \a column exists and contains a valid element, i.e. isn't
  empty.

  \see element
*/
bool QCPLayoutGrid::hasElement(int row, int column)
{
  if (row >= 0 && row < rowCount() && column >= 0 && column < columnCount())
    return mElements.at(row).at(column);
  else
    return false;
}

/*!
  Sets the stretch \a factor of \a column.

  Stretch factors control the relative sizes of rows and columns. Cells will not be resized beyond
  their minimum and maximum widths/heights, regardless of the stretch factor. (see \ref
  QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize, \ref
  QCPLayoutElement::setSizeConstraintRect.)

  The default stretch factor of newly created rows/columns is 1.

  \see setColumnStretchFactors, setRowStretchFactor
*/
void QCPLayoutGrid::setColumnStretchFactor(int column, double factor)
{
  if (column >= 0 && column < columnCount())
  {
    if (factor > 0)
      mColumnStretchFactors[column] = factor;
    else
      qDebug() << Q_FUNC_INFO << "Invalid stretch factor, must be positive:" << factor;
  } else
    qDebug() << Q_FUNC_INFO << "Invalid column:" << column;
}

/*!
  Sets the stretch \a factors of all columns. \a factors must have the size \ref columnCount.

  Stretch factors control the relative sizes of rows and columns. Cells will not be resized beyond
  their minimum and maximum widths/heights, regardless of the stretch factor. (see \ref
  QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize, \ref
  QCPLayoutElement::setSizeConstraintRect.)

  The default stretch factor of newly created rows/columns is 1.

  \see setColumnStretchFactor, setRowStretchFactors
*/
void QCPLayoutGrid::setColumnStretchFactors(const QList<double> &factors)
{
  if (factors.size() == mColumnStretchFactors.size())
  {
    mColumnStretchFactors = factors;
    for (int i=0; i<mColumnStretchFactors.size(); ++i)
    {
      if (mColumnStretchFactors.at(i) <= 0)
      {
        qDebug() << Q_FUNC_INFO << "Invalid stretch factor, must be positive:" << mColumnStretchFactors.at(i);
        mColumnStretchFactors[i] = 1;
      }
    }
  } else
    qDebug() << Q_FUNC_INFO << "Column count not equal to passed stretch factor count:" << factors;
}

/*!
  Sets the stretch \a factor of \a row.

  Stretch factors control the relative sizes of rows and columns. Cells will not be resized beyond
  their minimum and maximum widths/heights, regardless of the stretch factor. (see \ref
  QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize, \ref
  QCPLayoutElement::setSizeConstraintRect.)

  The default stretch factor of newly created rows/columns is 1.

  \see setColumnStretchFactors, setRowStretchFactor
*/
void QCPLayoutGrid::setRowStretchFactor(int row, double factor)
{
  if (row >= 0 && row < rowCount())
  {
    if (factor > 0)
      mRowStretchFactors[row] = factor;
    else
      qDebug() << Q_FUNC_INFO << "Invalid stretch factor, must be positive:" << factor;
  } else
    qDebug() << Q_FUNC_INFO << "Invalid row:" << row;
}

/*!
  Sets the stretch \a factors of all rows. \a factors must have the size \ref rowCount.

  Stretch factors control the relative sizes of rows and columns. Cells will not be resized beyond
  their minimum and maximum widths/heights, regardless of the stretch factor. (see \ref
  QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize, \ref
  QCPLayoutElement::setSizeConstraintRect.)

  The default stretch factor of newly created rows/columns is 1.

  \see setRowStretchFactor, setColumnStretchFactors
*/
void QCPLayoutGrid::setRowStretchFactors(const QList<double> &factors)
{
  if (factors.size() == mRowStretchFactors.size())
  {
    mRowStretchFactors = factors;
    for (int i=0; i<mRowStretchFactors.size(); ++i)
    {
      if (mRowStretchFactors.at(i) <= 0)
      {
        qDebug() << Q_FUNC_INFO << "Invalid stretch factor, must be positive:" << mRowStretchFactors.at(i);
        mRowStretchFactors[i] = 1;
      }
    }
  } else
    qDebug() << Q_FUNC_INFO << "Row count not equal to passed stretch factor count:" << factors;
}

/*!
  Sets the gap that is left blank between columns to \a pixels.

  \see setRowSpacing
*/
void QCPLayoutGrid::setColumnSpacing(int pixels)
{
  mColumnSpacing = pixels;
}

/*!
  Sets the gap that is left blank between rows to \a pixels.

  \see setColumnSpacing
*/
void QCPLayoutGrid::setRowSpacing(int pixels)
{
  mRowSpacing = pixels;
}

/*!
  Sets the maximum number of columns or rows that are used, before new elements added with \ref
  addElement(QCPLayoutElement*) will start to fill the next row or column, respectively. It depends
  on \ref setFillOrder, whether rows or columns are wrapped.

  If \a count is set to zero, no wrapping will ever occur.

  If you wish to re-wrap the elements currently in the layout, call \ref setFillOrder with \a
  rearrange set to true (the actual fill order doesn't need to be changed for the rearranging to be
  done).

  Note that the method \ref addElement(int row, int column, QCPLayoutElement *element) with
  explicitly stated row and column is not subject to wrapping and can place elements even beyond
  the specified wrapping point.

  \see setFillOrder
*/
void QCPLayoutGrid::setWrap(int count)
{
  mWrap = qMax(0, count);
}

/*!
  Sets the filling order and wrapping behaviour that is used when adding new elements with the
  method \ref addElement(QCPLayoutElement*).

  The specified \a order defines whether rows or columns are filled first. Using \ref setWrap, you
  can control at which row/column count wrapping into the next column/row will occur. If you set it
  to zero, no wrapping will ever occur. Changing the fill order also changes the meaning of the
  linear index used e.g. in \ref elementAt and \ref takeAt. The default fill order for \ref
  QCPLayoutGrid is \ref foColumnsFirst.

  If you want to have all current elements arranged in the new order, set \a rearrange to true. The
  elements will be rearranged in a way that tries to preserve their linear index. However, empty
  cells are skipped during build-up of the new cell order, which shifts the succeeding element's
  index. The rearranging is performed even if the specified \a order is already the current fill
  order. Thus this method can be used to re-wrap the current elements.

  If \a rearrange is false, the current element arrangement is not changed, which means the
  linear indexes change (because the linear index is dependent on the fill order).

  Note that the method \ref addElement(int row, int column, QCPLayoutElement *element) with
  explicitly stated row and column is not subject to wrapping and can place elements even beyond
  the specified wrapping point.

  \see setWrap, addElement(QCPLayoutElement*)
*/
void QCPLayoutGrid::setFillOrder(FillOrder order, bool rearrange)
{
  // if rearranging, take all elements via linear index of old fill order:
  const int elCount = elementCount();
  QVector<QCPLayoutElement*> tempElements;
  if (rearrange)
  {
    tempElements.reserve(elCount);
    for (int i=0; i<elCount; ++i)
    {
      if (elementAt(i))
        tempElements.append(takeAt(i));
    }
    simplify();
  }
  // change fill order as requested:
  mFillOrder = order;
  // if rearranging, re-insert via linear index according to new fill order:
  if (rearrange)
  {
    for (int i=0; i<tempElements.size(); ++i)
      addElement(tempElements.at(i));
  }
}

/*!
  Expands the layout to have \a newRowCount rows and \a newColumnCount columns. So the last valid
  row index will be \a newRowCount-1, the last valid column index will be \a newColumnCount-1.

  If the current column/row count is already larger or equal to \a newColumnCount/\a newRowCount,
  this function does nothing in that dimension.

  Newly created cells are empty, new rows and columns have the stretch factor 1.

  Note that upon a call to \ref addElement, the layout is expanded automatically to contain the
  specified row and column, using this function.

  \see simplify
*/
void QCPLayoutGrid::expandTo(int newRowCount, int newColumnCount)
{
  // add rows as necessary:
  while (rowCount() < newRowCount)
  {
    mElements.append(QList<QCPLayoutElement*>());
    mRowStretchFactors.append(1);
  }
  // go through rows and expand columns as necessary:
  int newColCount = qMax(columnCount(), newColumnCount);
  for (int i=0; i<rowCount(); ++i)
  {
    while (mElements.at(i).size() < newColCount)
      mElements[i].append(0);
  }
  while (mColumnStretchFactors.size() < newColCount)
    mColumnStretchFactors.append(1);
}

/*!
  Inserts a new row with empty cells at the row index \a newIndex. Valid values for \a newIndex
  range from 0 (inserts a row at the top) to \a rowCount (appends a row at the bottom).

  \see insertColumn
*/
void QCPLayoutGrid::insertRow(int newIndex)
{
  if (mElements.isEmpty() || mElements.first().isEmpty()) // if grid is completely empty, add first cell
  {
    expandTo(1, 1);
    return;
  }

  if (newIndex < 0)
    newIndex = 0;
  if (newIndex > rowCount())
    newIndex = rowCount();

  mRowStretchFactors.insert(newIndex, 1);
  QList<QCPLayoutElement*> newRow;
  for (int col=0; col<columnCount(); ++col)
    newRow.append((QCPLayoutElement*)0);
  mElements.insert(newIndex, newRow);
}

/*!
  Inserts a new column with empty cells at the column index \a newIndex. Valid values for \a
  newIndex range from 0 (inserts a column at the left) to \a columnCount (appends a column at the
  right).

  \see insertRow
*/
void QCPLayoutGrid::insertColumn(int newIndex)
{
  if (mElements.isEmpty() || mElements.first().isEmpty()) // if grid is completely empty, add first cell
  {
    expandTo(1, 1);
    return;
  }

  if (newIndex < 0)
    newIndex = 0;
  if (newIndex > columnCount())
    newIndex = columnCount();

  mColumnStretchFactors.insert(newIndex, 1);
  for (int row=0; row<rowCount(); ++row)
    mElements[row].insert(newIndex, (QCPLayoutElement*)0);
}

/*!
  Converts the given \a row and \a column to the linear index used by some methods of \ref
  QCPLayoutGrid and \ref QCPLayout.

  The way the cells are indexed depends on \ref setFillOrder. If it is \ref foRowsFirst, the
  indices increase left to right and then top to bottom. If it is \ref foColumnsFirst, the indices
  increase top to bottom and then left to right.

  For the returned index to be valid, \a row and \a column must be valid indices themselves, i.e.
  greater or equal to zero and smaller than the current \ref rowCount/\ref columnCount.

  \see indexToRowCol
*/
int QCPLayoutGrid::rowColToIndex(int row, int column) const
{
  if (row >= 0 && row < rowCount())
  {
    if (column >= 0 && column < columnCount())
    {
      switch (mFillOrder)
      {
        case foRowsFirst: return column*rowCount() + row;
        case foColumnsFirst: return row*columnCount() + column;
      }
    } else
      qDebug() << Q_FUNC_INFO << "row index out of bounds:" << row;
  } else
    qDebug() << Q_FUNC_INFO << "column index out of bounds:" << column;
  return 0;
}

/*!
  Converts the linear index to row and column indices and writes the result to \a row and \a
  column.

  The way the cells are indexed depends on \ref setFillOrder. If it is \ref foRowsFirst, the
  indices increase left to right and then top to bottom. If it is \ref foColumnsFirst, the indices
  increase top to bottom and then left to right.

  If there are no cells (i.e. column or row count is zero), sets \a row and \a column to -1.

  For the retrieved \a row and \a column to be valid, the passed \a index must be valid itself,
  i.e. greater or equal to zero and smaller than the current \ref elementCount.

  \see rowColToIndex
*/
void QCPLayoutGrid::indexToRowCol(int index, int &row, int &column) const
{
  row = -1;
  column = -1;
  const int nCols = columnCount();
  const int nRows = rowCount();
  if (nCols == 0 || nRows == 0)
    return;
  if (index < 0 || index >= elementCount())
  {
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
    return;
  }

  switch (mFillOrder)
  {
    case foRowsFirst:
    {
      column = index / nRows;
      row = index % nRows;
      break;
    }
    case foColumnsFirst:
    {
      row = index / nCols;
      column = index % nCols;
      break;
    }
  }
}

/* inherits documentation from base class */
void QCPLayoutGrid::updateLayout()
{
  QVector<int> minColWidths, minRowHeights, maxColWidths, maxRowHeights;
  getMinimumRowColSizes(&minColWidths, &minRowHeights);
  getMaximumRowColSizes(&maxColWidths, &maxRowHeights);

  int totalRowSpacing = (rowCount()-1) * mRowSpacing;
  int totalColSpacing = (columnCount()-1) * mColumnSpacing;
  QVector<int> colWidths = getSectionSizes(maxColWidths, minColWidths, mColumnStretchFactors.toVector(), mRect.width()-totalColSpacing);
  QVector<int> rowHeights = getSectionSizes(maxRowHeights, minRowHeights, mRowStretchFactors.toVector(), mRect.height()-totalRowSpacing);

  // go through cells and set rects accordingly:
  int yOffset = mRect.top();
  for (int row=0; row<rowCount(); ++row)
  {
    if (row > 0)
      yOffset += rowHeights.at(row-1)+mRowSpacing;
    int xOffset = mRect.left();
    for (int col=0; col<columnCount(); ++col)
    {
      if (col > 0)
        xOffset += colWidths.at(col-1)+mColumnSpacing;
      if (mElements.at(row).at(col))
        mElements.at(row).at(col)->setOuterRect(QRect(xOffset, yOffset, colWidths.at(col), rowHeights.at(row)));
    }
  }
}

/*!
  \seebaseclassmethod

  Note that the association of the linear \a index to the row/column based cells depends on the
  current setting of \ref setFillOrder.

  \see rowColToIndex
*/
QCPLayoutElement *QCPLayoutGrid::elementAt(int index) const
{
  if (index >= 0 && index < elementCount())
  {
    int row, col;
    indexToRowCol(index, row, col);
    return mElements.at(row).at(col);
  } else
    return 0;
}

/*!
  \seebaseclassmethod

  Note that the association of the linear \a index to the row/column based cells depends on the
  current setting of \ref setFillOrder.

  \see rowColToIndex
*/
QCPLayoutElement *QCPLayoutGrid::takeAt(int index)
{
  if (QCPLayoutElement *el = elementAt(index))
  {
    releaseElement(el);
    int row, col;
    indexToRowCol(index, row, col);
    mElements[row][col] = 0;
    return el;
  } else
  {
    qDebug() << Q_FUNC_INFO << "Attempt to take invalid index:" << index;
    return 0;
  }
}

/* inherits documentation from base class */
bool QCPLayoutGrid::take(QCPLayoutElement *element)
{
  if (element)
  {
    for (int i=0; i<elementCount(); ++i)
    {
      if (elementAt(i) == element)
      {
        takeAt(i);
        return true;
      }
    }
    qDebug() << Q_FUNC_INFO << "Element not in this layout, couldn't take";
  } else
    qDebug() << Q_FUNC_INFO << "Can't take null element";
  return false;
}

/* inherits documentation from base class */
QList<QCPLayoutElement*> QCPLayoutGrid::elements(bool recursive) const
{
  QList<QCPLayoutElement*> result;
  const int elCount = elementCount();
#if QT_VERSION >= QT_VERSION_CHECK(4, 7, 0)
  result.reserve(elCount);
#endif
  for (int i=0; i<elCount; ++i)
    result.append(elementAt(i));
  if (recursive)
  {
    for (int i=0; i<elCount; ++i)
    {
      if (result.at(i))
        result << result.at(i)->elements(recursive);
    }
  }
  return result;
}

/*!
  Simplifies the layout by collapsing rows and columns which only contain empty cells.
*/
void QCPLayoutGrid::simplify()
{
  // remove rows with only empty cells:
  for (int row=rowCount()-1; row>=0; --row)
  {
    bool hasElements = false;
    for (int col=0; col<columnCount(); ++col)
    {
      if (mElements.at(row).at(col))
      {
        hasElements = true;
        break;
      }
    }
    if (!hasElements)
    {
      mRowStretchFactors.removeAt(row);
      mElements.removeAt(row);
      if (mElements.isEmpty()) // removed last element, also remove stretch factor (wouldn't happen below because also columnCount changed to 0 now)
        mColumnStretchFactors.clear();
    }
  }

  // remove columns with only empty cells:
  for (int col=columnCount()-1; col>=0; --col)
  {
    bool hasElements = false;
    for (int row=0; row<rowCount(); ++row)
    {
      if (mElements.at(row).at(col))
      {
        hasElements = true;
        break;
      }
    }
    if (!hasElements)
    {
      mColumnStretchFactors.removeAt(col);
      for (int row=0; row<rowCount(); ++row)
        mElements[row].removeAt(col);
    }
  }
}

/* inherits documentation from base class */
QSize QCPLayoutGrid::minimumOuterSizeHint() const
{
  QVector<int> minColWidths, minRowHeights;
  getMinimumRowColSizes(&minColWidths, &minRowHeights);
  QSize result(0, 0);
  for (int i=0; i<minColWidths.size(); ++i)
    result.rwidth() += minColWidths.at(i);
  for (int i=0; i<minRowHeights.size(); ++i)
    result.rheight() += minRowHeights.at(i);
  result.rwidth() += qMax(0, columnCount()-1) * mColumnSpacing;
  result.rheight() += qMax(0, rowCount()-1) * mRowSpacing;
  result.rwidth() += mMargins.left()+mMargins.right();
  result.rheight() += mMargins.top()+mMargins.bottom();
  return result;
}

/* inherits documentation from base class */
QSize QCPLayoutGrid::maximumOuterSizeHint() const
{
  QVector<int> maxColWidths, maxRowHeights;
  getMaximumRowColSizes(&maxColWidths, &maxRowHeights);

  QSize result(0, 0);
  for (int i=0; i<maxColWidths.size(); ++i)
    result.setWidth(qMin(result.width()+maxColWidths.at(i), QWIDGETSIZE_MAX));
  for (int i=0; i<maxRowHeights.size(); ++i)
    result.setHeight(qMin(result.height()+maxRowHeights.at(i), QWIDGETSIZE_MAX));
  result.rwidth() += qMax(0, columnCount()-1) * mColumnSpacing;
  result.rheight() += qMax(0, rowCount()-1) * mRowSpacing;
  result.rwidth() += mMargins.left()+mMargins.right();
  result.rheight() += mMargins.top()+mMargins.bottom();
  if (result.height() > QWIDGETSIZE_MAX)
    result.setHeight(QWIDGETSIZE_MAX);
  if (result.width() > QWIDGETSIZE_MAX)
    result.setWidth(QWIDGETSIZE_MAX);
  return result;
}

/*! \internal

  Places the minimum column widths and row heights into \a minColWidths and \a minRowHeights
  respectively.

  The minimum height of a row is the largest minimum height of any element's outer rect in that
  row. The minimum width of a column is the largest minimum width of any element's outer rect in
  that column.

  This is a helper function for \ref updateLayout.

  \see getMaximumRowColSizes
*/
void QCPLayoutGrid::getMinimumRowColSizes(QVector<int> *minColWidths, QVector<int> *minRowHeights) const
{
  *minColWidths = QVector<int>(columnCount(), 0);
  *minRowHeights = QVector<int>(rowCount(), 0);
  for (int row=0; row<rowCount(); ++row)
  {
    for (int col=0; col<columnCount(); ++col)
    {
      if (QCPLayoutElement *el = mElements.at(row).at(col))
      {
        QSize minSize = getFinalMinimumOuterSize(el);
        if (minColWidths->at(col) < minSize.width())
          (*minColWidths)[col] = minSize.width();
        if (minRowHeights->at(row) < minSize.height())
          (*minRowHeights)[row] = minSize.height();
      }
    }
  }
}

/*! \internal

  Places the maximum column widths and row heights into \a maxColWidths and \a maxRowHeights
  respectively.

  The maximum height of a row is the smallest maximum height of any element's outer rect in that
  row. The maximum width of a column is the smallest maximum width of any element's outer rect in
  that column.

  This is a helper function for \ref updateLayout.

  \see getMinimumRowColSizes
*/
void QCPLayoutGrid::getMaximumRowColSizes(QVector<int> *maxColWidths, QVector<int> *maxRowHeights) const
{
  *maxColWidths = QVector<int>(columnCount(), QWIDGETSIZE_MAX);
  *maxRowHeights = QVector<int>(rowCount(), QWIDGETSIZE_MAX);
  for (int row=0; row<rowCount(); ++row)
  {
    for (int col=0; col<columnCount(); ++col)
    {
      if (QCPLayoutElement *el = mElements.at(row).at(col))
      {
        QSize maxSize = getFinalMaximumOuterSize(el);
        if (maxColWidths->at(col) > maxSize.width())
          (*maxColWidths)[col] = maxSize.width();
        if (maxRowHeights->at(row) > maxSize.height())
          (*maxRowHeights)[row] = maxSize.height();
      }
    }
  }
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPLayoutInset
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPLayoutInset
  \brief A layout that places child elements aligned to the border or arbitrarily positioned

  Elements are placed either aligned to the border or at arbitrary position in the area of the
  layout. Which placement applies is controlled with the \ref InsetPlacement (\ref
  setInsetPlacement).

  Elements are added via \ref addElement(QCPLayoutElement *element, Qt::Alignment alignment) or
  addElement(QCPLayoutElement *element, const QRectF &rect). If the first method is used, the inset
  placement will default to \ref ipBorderAligned and the element will be aligned according to the
  \a alignment parameter. The second method defaults to \ref ipFree and allows placing elements at
  arbitrary position and size, defined by \a rect.

  The alignment or rect can be set via \ref setInsetAlignment or \ref setInsetRect, respectively.

  This is the layout that every QCPAxisRect has as \ref QCPAxisRect::insetLayout.
*/

/* start documentation of inline functions */

/*! \fn virtual void QCPLayoutInset::simplify()

  The QCPInsetLayout does not need simplification since it can never have empty cells due to its
  linear index structure. This method does nothing.
*/

/* end documentation of inline functions */

/*!
  Creates an instance of QCPLayoutInset and sets default values.
*/
QCPLayoutInset::QCPLayoutInset()
{
}

QCPLayoutInset::~QCPLayoutInset()
{
  // clear all child layout elements. This is important because only the specific layouts know how
  // to handle removing elements (clear calls virtual removeAt method to do that).
  clear();
}

/*!
  Returns the placement type of the element with the specified \a index.
*/
QCPLayoutInset::InsetPlacement QCPLayoutInset::insetPlacement(int index) const
{
  if (elementAt(index))
    return mInsetPlacement.at(index);
  else
  {
    qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
    return ipFree;
  }
}

/*!
  Returns the alignment of the element with the specified \a index. The alignment only has a
  meaning, if the inset placement (\ref setInsetPlacement) is \ref ipBorderAligned.
*/
Qt::Alignment QCPLayoutInset::insetAlignment(int index) const
{
  if (elementAt(index))
    return mInsetAlignment.at(index);
  else
  {
    qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
    return 0;
  }
}

/*!
  Returns the rect of the element with the specified \a index. The rect only has a
  meaning, if the inset placement (\ref setInsetPlacement) is \ref ipFree.
*/
QRectF QCPLayoutInset::insetRect(int index) const
{
  if (elementAt(index))
    return mInsetRect.at(index);
  else
  {
    qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
    return QRectF();
  }
}

/*!
  Sets the inset placement type of the element with the specified \a index to \a placement.

  \see InsetPlacement
*/
void QCPLayoutInset::setInsetPlacement(int index, QCPLayoutInset::InsetPlacement placement)
{
  if (elementAt(index))
    mInsetPlacement[index] = placement;
  else
    qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
}

/*!
  If the inset placement (\ref setInsetPlacement) is \ref ipBorderAligned, this function
  is used to set the alignment of the element with the specified \a index to \a alignment.

  \a alignment is an or combination of the following alignment flags: Qt::AlignLeft,
  Qt::AlignHCenter, Qt::AlighRight, Qt::AlignTop, Qt::AlignVCenter, Qt::AlignBottom. Any other
  alignment flags will be ignored.
*/
void QCPLayoutInset::setInsetAlignment(int index, Qt::Alignment alignment)
{
  if (elementAt(index))
    mInsetAlignment[index] = alignment;
  else
    qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
}

/*!
  If the inset placement (\ref setInsetPlacement) is \ref ipFree, this function is used to set the
  position and size of the element with the specified \a index to \a rect.

  \a rect is given in fractions of the whole inset layout rect. So an inset with rect (0, 0, 1, 1)
  will span the entire layout. An inset with rect (0.6, 0.1, 0.35, 0.35) will be in the top right
  corner of the layout, with 35% width and height of the parent layout.

  Note that the minimum and maximum sizes of the embedded element (\ref
  QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize) are enforced.
*/
void QCPLayoutInset::setInsetRect(int index, const QRectF &rect)
{
  if (elementAt(index))
    mInsetRect[index] = rect;
  else
    qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
}

/* inherits documentation from base class */
void QCPLayoutInset::updateLayout()
{
  for (int i=0; i<mElements.size(); ++i)
  {
    QCPLayoutElement *el = mElements.at(i);
    QRect insetRect;
    QSize finalMinSize = getFinalMinimumOuterSize(el);
    QSize finalMaxSize = getFinalMaximumOuterSize(el);
    if (mInsetPlacement.at(i) == ipFree)
    {
      insetRect = QRect(rect().x()+rect().width()*mInsetRect.at(i).x(),
                        rect().y()+rect().height()*mInsetRect.at(i).y(),
                        rect().width()*mInsetRect.at(i).width(),
                        rect().height()*mInsetRect.at(i).height());
      if (insetRect.size().width() < finalMinSize.width())
        insetRect.setWidth(finalMinSize.width());
      if (insetRect.size().height() < finalMinSize.height())
        insetRect.setHeight(finalMinSize.height());
      if (insetRect.size().width() > finalMaxSize.width())
        insetRect.setWidth(finalMaxSize.width());
      if (insetRect.size().height() > finalMaxSize.height())
        insetRect.setHeight(finalMaxSize.height());
    } else if (mInsetPlacement.at(i) == ipBorderAligned)
    {
      insetRect.setSize(finalMinSize);
      Qt::Alignment al = mInsetAlignment.at(i);
      if (al.testFlag(Qt::AlignLeft)) insetRect.moveLeft(rect().x());
      else if (al.testFlag(Qt::AlignRight)) insetRect.moveRight(rect().x()+rect().width());
      else insetRect.moveLeft(rect().x()+rect().width()*0.5-finalMinSize.width()*0.5); // default to Qt::AlignHCenter
      if (al.testFlag(Qt::AlignTop)) insetRect.moveTop(rect().y());
      else if (al.testFlag(Qt::AlignBottom)) insetRect.moveBottom(rect().y()+rect().height());
      else insetRect.moveTop(rect().y()+rect().height()*0.5-finalMinSize.height()*0.5); // default to Qt::AlignVCenter
    }
    mElements.at(i)->setOuterRect(insetRect);
  }
}

/* inherits documentation from base class */
int QCPLayoutInset::elementCount() const
{
  return mElements.size();
}

/* inherits documentation from base class */
QCPLayoutElement *QCPLayoutInset::elementAt(int index) const
{
  if (index >= 0 && index < mElements.size())
    return mElements.at(index);
  else
    return 0;
}

/* inherits documentation from base class */
QCPLayoutElement *QCPLayoutInset::takeAt(int index)
{
  if (QCPLayoutElement *el = elementAt(index))
  {
    releaseElement(el);
    mElements.removeAt(index);
    mInsetPlacement.removeAt(index);
    mInsetAlignment.removeAt(index);
    mInsetRect.removeAt(index);
    return el;
  } else
  {
    qDebug() << Q_FUNC_INFO << "Attempt to take invalid index:" << index;
    return 0;
  }
}

/* inherits documentation from base class */
bool QCPLayoutInset::take(QCPLayoutElement *element)
{
  if (element)
  {
    for (int i=0; i<elementCount(); ++i)
    {
      if (elementAt(i) == element)
      {
        takeAt(i);
        return true;
      }
    }
    qDebug() << Q_FUNC_INFO << "Element not in this layout, couldn't take";
  } else
    qDebug() << Q_FUNC_INFO << "Can't take null element";
  return false;
}

/*!
  The inset layout is sensitive to events only at areas where its (visible) child elements are
  sensitive. If the selectTest method of any of the child elements returns a positive number for \a
  pos, this method returns a value corresponding to 0.99 times the parent plot's selection
  tolerance. The inset layout is not selectable itself by default. So if \a onlySelectable is true,
  -1.0 is returned.

  See \ref QCPLayerable::selectTest for a general explanation of this virtual method.
*/
double QCPLayoutInset::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable)
    return -1;

  for (int i=0; i<mElements.size(); ++i)
  {
    // inset layout shall only return positive selectTest, if actually an inset object is at pos
    // else it would block the entire underlying QCPAxisRect with its surface.
    if (mElements.at(i)->realVisibility() && mElements.at(i)->selectTest(pos, onlySelectable) >= 0)
      return mParentPlot->selectionTolerance()*0.99;
  }
  return -1;
}

/*!
  Adds the specified \a element to the layout as an inset aligned at the border (\ref
  setInsetAlignment is initialized with \ref ipBorderAligned). The alignment is set to \a
  alignment.

  \a alignment is an or combination of the following alignment flags: Qt::AlignLeft,
  Qt::AlignHCenter, Qt::AlighRight, Qt::AlignTop, Qt::AlignVCenter, Qt::AlignBottom. Any other
  alignment flags will be ignored.

  \see addElement(QCPLayoutElement *element, const QRectF &rect)
*/
void QCPLayoutInset::addElement(QCPLayoutElement *element, Qt::Alignment alignment)
{
  if (element)
  {
    if (element->layout()) // remove from old layout first
      element->layout()->take(element);
    mElements.append(element);
    mInsetPlacement.append(ipBorderAligned);
    mInsetAlignment.append(alignment);
    mInsetRect.append(QRectF(0.6, 0.6, 0.4, 0.4));
    adoptElement(element);
  } else
    qDebug() << Q_FUNC_INFO << "Can't add null element";
}

/*!
  Adds the specified \a element to the layout as an inset with free positioning/sizing (\ref
  setInsetAlignment is initialized with \ref ipFree). The position and size is set to \a
  rect.

  \a rect is given in fractions of the whole inset layout rect. So an inset with rect (0, 0, 1, 1)
  will span the entire layout. An inset with rect (0.6, 0.1, 0.35, 0.35) will be in the top right
  corner of the layout, with 35% width and height of the parent layout.

  \see addElement(QCPLayoutElement *element, Qt::Alignment alignment)
*/
void QCPLayoutInset::addElement(QCPLayoutElement *element, const QRectF &rect)
{
  if (element)
  {
    if (element->layout()) // remove from old layout first
      element->layout()->take(element);
    mElements.append(element);
    mInsetPlacement.append(ipFree);
    mInsetAlignment.append(Qt::AlignRight|Qt::AlignTop);
    mInsetRect.append(rect);
    adoptElement(element);
  } else
    qDebug() << Q_FUNC_INFO << "Can't add null element";
}
/* end of 'src/layout.cpp' */


/* including file 'src/lineending.cpp', size 11536                           */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPLineEnding
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPLineEnding
  \brief Handles the different ending decorations for line-like items

  \image html QCPLineEnding.png "The various ending styles currently supported"

  For every ending a line-like item has, an instance of this class exists. For example, QCPItemLine
  has two endings which can be set with QCPItemLine::setHead and QCPItemLine::setTail.

  The styles themselves are defined via the enum QCPLineEnding::EndingStyle. Most decorations can
  be modified regarding width and length, see \ref setWidth and \ref setLength. The direction of
  the ending decoration (e.g. direction an arrow is pointing) is controlled by the line-like item.
  For example, when both endings of a QCPItemLine are set to be arrows, they will point to opposite
  directions, e.g. "outward". This can be changed by \ref setInverted, which would make the
  respective arrow point inward.

  Note that due to the overloaded QCPLineEnding constructor, you may directly specify a
  QCPLineEnding::EndingStyle where actually a QCPLineEnding is expected, e.g.
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcplineending-sethead
*/

/*!
  Creates a QCPLineEnding instance with default values (style \ref esNone).
*/
QCPLineEnding::QCPLineEnding() :
  mStyle(esNone),
  mWidth(8),
  mLength(10),
  mInverted(false)
{
}

/*!
  Creates a QCPLineEnding instance with the specified values.
*/
QCPLineEnding::QCPLineEnding(QCPLineEnding::EndingStyle style, double width, double length, bool inverted) :
  mStyle(style),
  mWidth(width),
  mLength(length),
  mInverted(inverted)
{
}

/*!
  Sets the style of the ending decoration.
*/
void QCPLineEnding::setStyle(QCPLineEnding::EndingStyle style)
{
  mStyle = style;
}

/*!
  Sets the width of the ending decoration, if the style supports it. On arrows, for example, the
  width defines the size perpendicular to the arrow's pointing direction.

  \see setLength
*/
void QCPLineEnding::setWidth(double width)
{
  mWidth = width;
}

/*!
  Sets the length of the ending decoration, if the style supports it. On arrows, for example, the
  length defines the size in pointing direction.

  \see setWidth
*/
void QCPLineEnding::setLength(double length)
{
  mLength = length;
}

/*!
  Sets whether the ending decoration shall be inverted. For example, an arrow decoration will point
  inward when \a inverted is set to true.

  Note that also the \a width direction is inverted. For symmetrical ending styles like arrows or
  discs, this doesn't make a difference. However, asymmetric styles like \ref esHalfBar are
  affected by it, which can be used to control to which side the half bar points to.
*/
void QCPLineEnding::setInverted(bool inverted)
{
  mInverted = inverted;
}

/*! \internal

  Returns the maximum pixel radius the ending decoration might cover, starting from the position
  the decoration is drawn at (typically a line ending/\ref QCPItemPosition of an item).

  This is relevant for clipping. Only omit painting of the decoration when the position where the
  decoration is supposed to be drawn is farther away from the clipping rect than the returned
  distance.
*/
double QCPLineEnding::boundingDistance() const
{
  switch (mStyle)
  {
    case esNone:
      return 0;

    case esFlatArrow:
    case esSpikeArrow:
    case esLineArrow:
    case esSkewedBar:
      return qSqrt(mWidth*mWidth+mLength*mLength); // items that have width and length

    case esDisc:
    case esSquare:
    case esDiamond:
    case esBar:
    case esHalfBar:
      return mWidth*1.42; // items that only have a width -> width*sqrt(2)

  }
  return 0;
}

/*!
  Starting from the origin of this line ending (which is style specific), returns the length
  covered by the line ending symbol, in backward direction.

  For example, the \ref esSpikeArrow has a shorter real length than a \ref esFlatArrow, even if
  both have the same \ref setLength value, because the spike arrow has an inward curved back, which
  reduces the length along its center axis (the drawing origin for arrows is at the tip).

  This function is used for precise, style specific placement of line endings, for example in
  QCPAxes.
*/
double QCPLineEnding::realLength() const
{
  switch (mStyle)
  {
    case esNone:
    case esLineArrow:
    case esSkewedBar:
    case esBar:
    case esHalfBar:
      return 0;

    case esFlatArrow:
      return mLength;

    case esDisc:
    case esSquare:
    case esDiamond:
      return mWidth*0.5;

    case esSpikeArrow:
      return mLength*0.8;
  }
  return 0;
}

/*! \internal

  Draws the line ending with the specified \a painter at the position \a pos. The direction of the
  line ending is controlled with \a dir.
*/
void QCPLineEnding::draw(QCPPainter *painter, const QCPVector2D &pos, const QCPVector2D &dir) const
{
  if (mStyle == esNone)
    return;

  QCPVector2D lengthVec = dir.normalized() * mLength*(mInverted ? -1 : 1);
  if (lengthVec.isNull())
    lengthVec = QCPVector2D(1, 0);
  QCPVector2D widthVec = dir.normalized().perpendicular() * mWidth*0.5*(mInverted ? -1 : 1);

  QPen penBackup = painter->pen();
  QBrush brushBackup = painter->brush();
  QPen miterPen = penBackup;
  miterPen.setJoinStyle(Qt::MiterJoin); // to make arrow heads spikey
  QBrush brush(painter->pen().color(), Qt::SolidPattern);
  switch (mStyle)
  {
    case esNone: break;
    case esFlatArrow:
    {
      QPointF points[3] = {pos.toPointF(),
                           (pos-lengthVec+widthVec).toPointF(),
                           (pos-lengthVec-widthVec).toPointF()
                          };
      painter->setPen(miterPen);
      painter->setBrush(brush);
      painter->drawConvexPolygon(points, 3);
      painter->setBrush(brushBackup);
      painter->setPen(penBackup);
      break;
    }
    case esSpikeArrow:
    {
      QPointF points[4] = {pos.toPointF(),
                           (pos-lengthVec+widthVec).toPointF(),
                           (pos-lengthVec*0.8).toPointF(),
                           (pos-lengthVec-widthVec).toPointF()
                          };
      painter->setPen(miterPen);
      painter->setBrush(brush);
      painter->drawConvexPolygon(points, 4);
      painter->setBrush(brushBackup);
      painter->setPen(penBackup);
      break;
    }
    case esLineArrow:
    {
      QPointF points[3] = {(pos-lengthVec+widthVec).toPointF(),
                           pos.toPointF(),
                           (pos-lengthVec-widthVec).toPointF()
                          };
      painter->setPen(miterPen);
      painter->drawPolyline(points, 3);
      painter->setPen(penBackup);
      break;
    }
    case esDisc:
    {
      painter->setBrush(brush);
      painter->drawEllipse(pos.toPointF(),  mWidth*0.5, mWidth*0.5);
      painter->setBrush(brushBackup);
      break;
    }
    case esSquare:
    {
      QCPVector2D widthVecPerp = widthVec.perpendicular();
      QPointF points[4] = {(pos-widthVecPerp+widthVec).toPointF(),
                           (pos-widthVecPerp-widthVec).toPointF(),
                           (pos+widthVecPerp-widthVec).toPointF(),
                           (pos+widthVecPerp+widthVec).toPointF()
                          };
      painter->setPen(miterPen);
      painter->setBrush(brush);
      painter->drawConvexPolygon(points, 4);
      painter->setBrush(brushBackup);
      painter->setPen(penBackup);
      break;
    }
    case esDiamond:
    {
      QCPVector2D widthVecPerp = widthVec.perpendicular();
      QPointF points[4] = {(pos-widthVecPerp).toPointF(),
                           (pos-widthVec).toPointF(),
                           (pos+widthVecPerp).toPointF(),
                           (pos+widthVec).toPointF()
                          };
      painter->setPen(miterPen);
      painter->setBrush(brush);
      painter->drawConvexPolygon(points, 4);
      painter->setBrush(brushBackup);
      painter->setPen(penBackup);
      break;
    }
    case esBar:
    {
      painter->drawLine((pos+widthVec).toPointF(), (pos-widthVec).toPointF());
      break;
    }
    case esHalfBar:
    {
      painter->drawLine((pos+widthVec).toPointF(), pos.toPointF());
      break;
    }
    case esSkewedBar:
    {
      if (qFuzzyIsNull(painter->pen().widthF()) && !painter->modes().testFlag(QCPPainter::pmNonCosmetic))
      {
        // if drawing with cosmetic pen (perfectly thin stroke, happens only in vector exports), draw bar exactly on tip of line
        painter->drawLine((pos+widthVec+lengthVec*0.2*(mInverted?-1:1)).toPointF(),
                          (pos-widthVec-lengthVec*0.2*(mInverted?-1:1)).toPointF());
      } else
      {
        // if drawing with thick (non-cosmetic) pen, shift bar a little in line direction to prevent line from sticking through bar slightly
        painter->drawLine((pos+widthVec+lengthVec*0.2*(mInverted?-1:1)+dir.normalized()*qMax(1.0f, (float)painter->pen().widthF())*0.5f).toPointF(),
                          (pos-widthVec-lengthVec*0.2*(mInverted?-1:1)+dir.normalized()*qMax(1.0f, (float)painter->pen().widthF())*0.5f).toPointF());
      }
      break;
    }
  }
}

/*! \internal
  \overload

  Draws the line ending. The direction is controlled with the \a angle parameter in radians.
*/
void QCPLineEnding::draw(QCPPainter *painter, const QCPVector2D &pos, double angle) const
{
  draw(painter, pos, QCPVector2D(qCos(angle), qSin(angle)));
}
/* end of 'src/lineending.cpp' */


/* including file 'src/axis/axisticker.cpp', size 18664                      */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxisTicker
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPAxisTicker
  \brief The base class tick generator used by QCPAxis to create tick positions and tick labels

  Each QCPAxis has an internal QCPAxisTicker (or a subclass) in order to generate tick positions
  and tick labels for the current axis range. The ticker of an axis can be set via \ref
  QCPAxis::setTicker. Since that method takes a <tt>QSharedPointer<QCPAxisTicker></tt>, multiple
  axes can share the same ticker instance.

  This base class generates normal tick coordinates and numeric labels for linear axes. It picks a
  reasonable tick step (the separation between ticks) which results in readable tick labels. The
  number of ticks that should be approximately generated can be set via \ref setTickCount.
  Depending on the current tick step strategy (\ref setTickStepStrategy), the algorithm either
  sacrifices readability to better match the specified tick count (\ref
  QCPAxisTicker::tssMeetTickCount) or relaxes the tick count in favor of better tick steps (\ref
  QCPAxisTicker::tssReadability), which is the default.

  The following more specialized axis ticker subclasses are available, see details in the
  respective class documentation:

  <center>
  <table>
  <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerFixed</td><td>\image html axisticker-fixed.png</td></tr>
  <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerLog</td><td>\image html axisticker-log.png</td></tr>
  <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerPi</td><td>\image html axisticker-pi.png</td></tr>
  <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerText</td><td>\image html axisticker-text.png</td></tr>
  <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerDateTime</td><td>\image html axisticker-datetime.png</td></tr>
  <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerTime</td><td>\image html axisticker-time.png
    \image html axisticker-time2.png</td></tr>
  </table>
  </center>

  \section axisticker-subclassing Creating own axis tickers

  Creating own axis tickers can be achieved very easily by sublassing QCPAxisTicker and
  reimplementing some or all of the available virtual methods.

  In the simplest case you might wish to just generate different tick steps than the other tickers,
  so you only reimplement the method \ref getTickStep. If you additionally want control over the
  string that will be shown as tick label, reimplement \ref getTickLabel.

  If you wish to have complete control, you can generate the tick vectors and tick label vectors
  yourself by reimplementing \ref createTickVector and \ref createLabelVector. The default
  implementations use the previously mentioned virtual methods \ref getTickStep and \ref
  getTickLabel, but your reimplementations don't necessarily need to do so. For example in the case
  of unequal tick steps, the method \ref getTickStep loses its usefulness and can be ignored.

  The sub tick count between major ticks can be controlled with \ref getSubTickCount. Full sub tick
  placement control is obtained by reimplementing \ref createSubTickVector.

  See the documentation of all these virtual methods in QCPAxisTicker for detailed information
  about the parameters and expected return values.
*/

/*!
  Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
  managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
*/
QCPAxisTicker::QCPAxisTicker() :
  mTickStepStrategy(tssReadability),
  mTickCount(5),
  mTickOrigin(0)
{
}

QCPAxisTicker::~QCPAxisTicker()
{

}

/*!
  Sets which strategy the axis ticker follows when choosing the size of the tick step. For the
  available strategies, see \ref TickStepStrategy.
*/
void QCPAxisTicker::setTickStepStrategy(QCPAxisTicker::TickStepStrategy strategy)
{
  mTickStepStrategy = strategy;
}

/*!
  Sets how many ticks this ticker shall aim to generate across the axis range. Note that \a count
  is not guaranteed to be matched exactly, as generating readable tick intervals may conflict with
  the requested number of ticks.

  Whether the readability has priority over meeting the requested \a count can be specified with
  \ref setTickStepStrategy.
*/
void QCPAxisTicker::setTickCount(int count)
{
  if (count > 0)
    mTickCount = count;
  else
    qDebug() << Q_FUNC_INFO << "tick count must be greater than zero:" << count;
}

/*!
  Sets the mathematical coordinate (or "offset") of the zeroth tick. This tick coordinate is just a
  concept and doesn't need to be inside the currently visible axis range.

  By default \a origin is zero, which for example yields ticks {-5, 0, 5, 10, 15,...} when the tick
  step is five. If \a origin is now set to 1 instead, the correspondingly generated ticks would be
  {-4, 1, 6, 11, 16,...}.
*/
void QCPAxisTicker::setTickOrigin(double origin)
{
  mTickOrigin = origin;
}

/*!
  This is the method called by QCPAxis in order to actually generate tick coordinates (\a ticks),
  tick label strings (\a tickLabels) and sub tick coordinates (\a subTicks).

  The ticks are generated for the specified \a range. The generated labels typically follow the
  specified \a locale, \a formatChar and number \a precision, however this might be different (or
  even irrelevant) for certain QCPAxisTicker subclasses.

  The output parameter \a ticks is filled with the generated tick positions in axis coordinates.
  The output parameters \a subTicks and \a tickLabels are optional (set them to 0 if not needed)
  and are respectively filled with sub tick coordinates, and tick label strings belonging to \a
  ticks by index.
*/
void QCPAxisTicker::generate(const QCPRange &range, const QLocale &locale, QChar formatChar, int precision, QVector<double> &ticks, QVector<double> *subTicks, QVector<QString> *tickLabels)
{
  // generate (major) ticks:
  double tickStep = getTickStep(range);
  ticks = createTickVector(tickStep, range);
  trimTicks(range, ticks, true); // trim ticks to visible range plus one outer tick on each side (incase a subclass createTickVector creates more)

  // generate sub ticks between major ticks:
  if (subTicks)
  {
    if (ticks.size() > 0)
    {
      *subTicks = createSubTickVector(getSubTickCount(tickStep), ticks);
      trimTicks(range, *subTicks, false);
    } else
      *subTicks = QVector<double>();
  }

  // finally trim also outliers (no further clipping happens in axis drawing):
  trimTicks(range, ticks, false);
  // generate labels for visible ticks if requested:
  if (tickLabels)
    *tickLabels = createLabelVector(ticks, locale, formatChar, precision);
}

/*! \internal

  Takes the entire currently visible axis range and returns a sensible tick step in
  order to provide readable tick labels as well as a reasonable number of tick counts (see \ref
  setTickCount, \ref setTickStepStrategy).

  If a QCPAxisTicker subclass only wants a different tick step behaviour than the default
  implementation, it should reimplement this method. See \ref cleanMantissa for a possible helper
  function.
*/
double QCPAxisTicker::getTickStep(const QCPRange &range)
{
  double exactStep = range.size()/(double)(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
  return cleanMantissa(exactStep);
}

/*! \internal

  Takes the \a tickStep, i.e. the distance between two consecutive ticks, and returns
  an appropriate number of sub ticks for that specific tick step.

  Note that a returned sub tick count of e.g. 4 will split each tick interval into 5 sections.
*/
int QCPAxisTicker::getSubTickCount(double tickStep)
{
  int result = 1; // default to 1, if no proper value can be found

  // separate integer and fractional part of mantissa:
  double epsilon = 0.01;
  double intPartf;
  int intPart;
  double fracPart = modf(getMantissa(tickStep), &intPartf);
  intPart = intPartf;

  // handle cases with (almost) integer mantissa:
  if (fracPart < epsilon || 1.0-fracPart < epsilon)
  {
    if (1.0-fracPart < epsilon)
      ++intPart;
    switch (intPart)
    {
      case 1: result = 4; break; // 1.0 -> 0.2 substep
      case 2: result = 3; break; // 2.0 -> 0.5 substep
      case 3: result = 2; break; // 3.0 -> 1.0 substep
      case 4: result = 3; break; // 4.0 -> 1.0 substep
      case 5: result = 4; break; // 5.0 -> 1.0 substep
      case 6: result = 2; break; // 6.0 -> 2.0 substep
      case 7: result = 6; break; // 7.0 -> 1.0 substep
      case 8: result = 3; break; // 8.0 -> 2.0 substep
      case 9: result = 2; break; // 9.0 -> 3.0 substep
    }
  } else
  {
    // handle cases with significantly fractional mantissa:
    if (qAbs(fracPart-0.5) < epsilon) // *.5 mantissa
    {
      switch (intPart)
      {
        case 1: result = 2; break; // 1.5 -> 0.5 substep
        case 2: result = 4; break; // 2.5 -> 0.5 substep
        case 3: result = 4; break; // 3.5 -> 0.7 substep
        case 4: result = 2; break; // 4.5 -> 1.5 substep
        case 5: result = 4; break; // 5.5 -> 1.1 substep (won't occur with default getTickStep from here on)
        case 6: result = 4; break; // 6.5 -> 1.3 substep
        case 7: result = 2; break; // 7.5 -> 2.5 substep
        case 8: result = 4; break; // 8.5 -> 1.7 substep
        case 9: result = 4; break; // 9.5 -> 1.9 substep
      }
    }
    // if mantissa fraction isn't 0.0 or 0.5, don't bother finding good sub tick marks, leave default
  }

  return result;
}

/*! \internal

  This method returns the tick label string as it should be printed under the \a tick coordinate.
  If a textual number is returned, it should respect the provided \a locale, \a formatChar and \a
  precision.

  If the returned value contains exponentials of the form "2e5" and beautifully typeset powers is
  enabled in the QCPAxis number format (\ref QCPAxis::setNumberFormat), the exponential part will
  be formatted accordingly using multiplication symbol and superscript during rendering of the
  label automatically.
*/
QString QCPAxisTicker::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
{
  return locale.toString(tick, formatChar.toLatin1(), precision);
}

/*! \internal

  Returns a vector containing all coordinates of sub ticks that should be drawn. It generates \a
  subTickCount sub ticks between each tick pair given in \a ticks.

  If a QCPAxisTicker subclass needs maximal control over the generated sub ticks, it should
  reimplement this method. Depending on the purpose of the subclass it doesn't necessarily need to
  base its result on \a subTickCount or \a ticks.
*/
QVector<double> QCPAxisTicker::createSubTickVector(int subTickCount, const QVector<double> &ticks)
{
  QVector<double> result;
  if (subTickCount <= 0 || ticks.size() < 2)
    return result;

  result.reserve((ticks.size()-1)*subTickCount);
  for (int i=1; i<ticks.size(); ++i)
  {
    double subTickStep = (ticks.at(i)-ticks.at(i-1))/(double)(subTickCount+1);
    for (int k=1; k<=subTickCount; ++k)
      result.append(ticks.at(i-1) + k*subTickStep);
  }
  return result;
}

/*! \internal

  Returns a vector containing all coordinates of ticks that should be drawn. The default
  implementation generates ticks with a spacing of \a tickStep (mathematically starting at the tick
  step origin, see \ref setTickOrigin) distributed over the passed \a range.

  In order for the axis ticker to generate proper sub ticks, it is necessary that the first and
  last tick coordinates returned by this method are just below/above the provided \a range.
  Otherwise the outer intervals won't contain any sub ticks.

  If a QCPAxisTicker subclass needs maximal control over the generated ticks, it should reimplement
  this method. Depending on the purpose of the subclass it doesn't necessarily need to base its
  result on \a tickStep, e.g. when the ticks are spaced unequally like in the case of
  QCPAxisTickerLog.
*/
QVector<double> QCPAxisTicker::createTickVector(double tickStep, const QCPRange &range)
{
  QVector<double> result;
  // Generate tick positions according to tickStep:
  qint64 firstStep = floor((range.lower-mTickOrigin)/tickStep); // do not use qFloor here, or we'll lose 64 bit precision
  qint64 lastStep = ceil((range.upper-mTickOrigin)/tickStep); // do not use qCeil here, or we'll lose 64 bit precision
  int tickcount = int(lastStep-firstStep+1);
  if (tickcount < 0) tickcount = 0;
  result.resize(tickcount);
  for (int i=0; i<tickcount; ++i)
    result[i] = mTickOrigin + (firstStep+i)*tickStep;
  return result;
}

/*! \internal

  Returns a vector containing all tick label strings corresponding to the tick coordinates provided
  in \a ticks. The default implementation calls \ref getTickLabel to generate the respective
  strings.

  It is possible but uncommon for QCPAxisTicker subclasses to reimplement this method, as
  reimplementing \ref getTickLabel often achieves the intended result easier.
*/
QVector<QString> QCPAxisTicker::createLabelVector(const QVector<double> &ticks, const QLocale &locale, QChar formatChar, int precision)
{
  QVector<QString> result;
  result.reserve(ticks.size());
  for (int i=0; i<ticks.size(); ++i)
    result.append(getTickLabel(ticks.at(i), locale, formatChar, precision));
  return result;
}

/*! \internal

  Removes tick coordinates from \a ticks which lie outside the specified \a range. If \a
  keepOneOutlier is true, it preserves one tick just outside the range on both sides, if present.

  The passed \a ticks must be sorted in ascending order.
*/
void QCPAxisTicker::trimTicks(const QCPRange &range, QVector<double> &ticks, bool keepOneOutlier) const
{
  bool lowFound = false;
  bool highFound = false;
  int lowIndex = 0;
  int highIndex = -1;

  for (int i=0; i < ticks.size(); ++i)
  {
    if (ticks.at(i) >= range.lower)
    {
      lowFound = true;
      lowIndex = i;
      break;
    }
  }
  for (int i=ticks.size()-1; i >= 0; --i)
  {
    if (ticks.at(i) <= range.upper)
    {
      highFound = true;
      highIndex = i;
      break;
    }
  }

  if (highFound && lowFound)
  {
    int trimFront = qMax(0, lowIndex-(keepOneOutlier ? 1 : 0));
    int trimBack = qMax(0, ticks.size()-(keepOneOutlier ? 2 : 1)-highIndex);
    if (trimFront > 0 || trimBack > 0)
      ticks = ticks.mid(trimFront, ticks.size()-trimFront-trimBack);
  } else // all ticks are either all below or all above the range
    ticks.clear();
}

/*! \internal

  Returns the coordinate contained in \a candidates which is closest to the provided \a target.

  This method assumes \a candidates is not empty and sorted in ascending order.
*/
double QCPAxisTicker::pickClosest(double target, const QVector<double> &candidates) const
{
  if (candidates.size() == 1)
    return candidates.first();
  QVector<double>::const_iterator it = std::lower_bound(candidates.constBegin(), candidates.constEnd(), target);
  if (it == candidates.constEnd())
    return *(it-1);
  else if (it == candidates.constBegin())
    return *it;
  else
    return target-*(it-1) < *it-target ? *(it-1) : *it;
}

/*! \internal

  Returns the decimal mantissa of \a input. Optionally, if \a magnitude is not set to zero, it also
  returns the magnitude of \a input as a power of 10.

  For example, an input of 142.6 will return a mantissa of 1.426 and a magnitude of 100.
*/
double QCPAxisTicker::getMantissa(double input, double *magnitude) const
{
  const double mag = qPow(10.0, qFloor(qLn(input)/qLn(10.0)));
  if (magnitude) *magnitude = mag;
  return input/mag;
}

/*! \internal

  Returns a number that is close to \a input but has a clean, easier human readable mantissa. How
  strongly the mantissa is altered, and thus how strong the result deviates from the original \a
  input, depends on the current tick step strategy (see \ref setTickStepStrategy).
*/
double QCPAxisTicker::cleanMantissa(double input) const
{
  double magnitude;
  const double mantissa = getMantissa(input, &magnitude);
  switch (mTickStepStrategy)
  {
    case tssReadability:
    {
      return pickClosest(mantissa, QVector<double>() << 1.0 << 2.0 << 2.5 << 5.0 << 10.0)*magnitude;
    }
    case tssMeetTickCount:
    {
      // this gives effectively a mantissa of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 8.0, 10.0
      if (mantissa <= 5.0)
        return (int)(mantissa*2)/2.0*magnitude; // round digit after decimal point to 0.5
      else
        return (int)(mantissa/2.0)*2.0*magnitude; // round to first digit in multiples of 2
    }
  }
  return input;
}
/* end of 'src/axis/axisticker.cpp' */


/* including file 'src/axis/axistickerdatetime.cpp', size 14443              */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxisTickerDateTime
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPAxisTickerDateTime
  \brief Specialized axis ticker for calendar dates and times as axis ticks

  \image html axisticker-datetime.png

  This QCPAxisTicker subclass generates ticks that correspond to real calendar dates and times. The
  plot axis coordinate is interpreted as Unix Time, so seconds since Epoch (January 1, 1970, 00:00
  UTC). This is also used for example by QDateTime in the <tt>toTime_t()/setTime_t()</tt> methods
  with a precision of one second. Since Qt 4.7, millisecond accuracy can be obtained from QDateTime
  by using <tt>QDateTime::fromMSecsSinceEpoch()/1000.0</tt>. The static methods \ref dateTimeToKey
  and \ref keyToDateTime conveniently perform this conversion achieving a precision of one
  millisecond on all Qt versions.

  The format of the date/time display in the tick labels is controlled with \ref setDateTimeFormat.
  If a different time spec (time zone) shall be used, see \ref setDateTimeSpec.

  This ticker produces unequal tick spacing in order to provide intuitive date and time-of-day
  ticks. For example, if the axis range spans a few years such that there is one tick per year,
  ticks will be positioned on 1. January of every year. This is intuitive but, due to leap years,
  will result in slightly unequal tick intervals (visually unnoticeable). The same can be seen in
  the image above: even though the number of days varies month by month, this ticker generates
  ticks on the same day of each month.

  If you would like to change the date/time that is used as a (mathematical) starting date for the
  ticks, use the \ref setTickOrigin(const QDateTime &origin) method overload, which takes a
  QDateTime. If you pass 15. July, 9:45 to this method, the yearly ticks will end up on 15. July at
  9:45 of every year.

  The ticker can be created and assigned to an axis like this:
  \snippet documentation/doc-image-generator/mainwindow.cpp axistickerdatetime-creation

  \note If you rather wish to display relative times in terms of days, hours, minutes, seconds and
  milliseconds, and are not interested in the intricacies of real calendar dates with months and
  (leap) years, have a look at QCPAxisTickerTime instead.
*/

/*!
  Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
  managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
*/
QCPAxisTickerDateTime::QCPAxisTickerDateTime() :
  mDateTimeFormat(QLatin1String("hh:mm:ss\ndd.MM.yy")),
  mDateTimeSpec(Qt::LocalTime),
  mDateStrategy(dsNone)
{
  setTickCount(4);
}

/*!
  Sets the format in which dates and times are displayed as tick labels. For details about the \a
  format string, see the documentation of QDateTime::toString().

  Newlines can be inserted with "\n".

  \see setDateTimeSpec
*/
void QCPAxisTickerDateTime::setDateTimeFormat(const QString &format)
{
  mDateTimeFormat = format;
}

/*!
  Sets the time spec that is used for creating the tick labels from corresponding dates/times.

  The default value of QDateTime objects (and also QCPAxisTickerDateTime) is
  <tt>Qt::LocalTime</tt>. However, if the date time values passed to QCustomPlot (e.g. in the form
  of axis ranges or keys of a plottable) are given in the UTC spec, set \a spec to <tt>Qt::UTC</tt>
  to get the correct axis labels.

  \see setDateTimeFormat
*/
void QCPAxisTickerDateTime::setDateTimeSpec(Qt::TimeSpec spec)
{
  mDateTimeSpec = spec;
}

/*!
  Sets the tick origin (see \ref QCPAxisTicker::setTickOrigin) in seconds since Epoch (1. Jan 1970,
  00:00 UTC). For the date time ticker it might be more intuitive to use the overload which
  directly takes a QDateTime, see \ref setTickOrigin(const QDateTime &origin).

  This is useful to define the month/day/time recurring at greater tick interval steps. For
  example, If you pass 15. July, 9:45 to this method and the tick interval happens to be one tick
  per year, the ticks will end up on 15. July at 9:45 of every year.
*/
void QCPAxisTickerDateTime::setTickOrigin(double origin)
{
  QCPAxisTicker::setTickOrigin(origin);
}

/*!
  Sets the tick origin (see \ref QCPAxisTicker::setTickOrigin) as a QDateTime \a origin.

  This is useful to define the month/day/time recurring at greater tick interval steps. For
  example, If you pass 15. July, 9:45 to this method and the tick interval happens to be one tick
  per year, the ticks will end up on 15. July at 9:45 of every year.
*/
void QCPAxisTickerDateTime::setTickOrigin(const QDateTime &origin)
{
  setTickOrigin(dateTimeToKey(origin));
}

/*! \internal

  Returns a sensible tick step with intervals appropriate for a date-time-display, such as weekly,
  monthly, bi-monthly, etc.

  Note that this tick step isn't used exactly when generating the tick vector in \ref
  createTickVector, but only as a guiding value requiring some correction for each individual tick
  interval. Otherwise this would lead to unintuitive date displays, e.g. jumping between first day
  in the month to the last day in the previous month from tick to tick, due to the non-uniform
  length of months. The same problem arises with leap years.

  \seebaseclassmethod
*/
double QCPAxisTickerDateTime::getTickStep(const QCPRange &range)
{
  double result = range.size()/(double)(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers

  mDateStrategy = dsNone;
  if (result < 1) // ideal tick step is below 1 second -> use normal clean mantissa algorithm in units of seconds
  {
    result = cleanMantissa(result);
  } else if (result < 86400*30.4375*12) // below a year
  {
    result = pickClosest(result, QVector<double>()
                             << 1 << 2.5 << 5 << 10 << 15 << 30 << 60 << 2.5*60 << 5*60 << 10*60 << 15*60 << 30*60 << 60*60 // second, minute, hour range
                             << 3600*2 << 3600*3 << 3600*6 << 3600*12 << 3600*24 // hour to day range
                             << 86400*2 << 86400*5 << 86400*7 << 86400*14 << 86400*30.4375 << 86400*30.4375*2 << 86400*30.4375*3 << 86400*30.4375*6 << 86400*30.4375*12); // day, week, month range (avg. days per month includes leap years)
    if (result > 86400*30.4375-1) // month tick intervals or larger
      mDateStrategy = dsUniformDayInMonth;
    else if (result > 3600*24-1) // day tick intervals or larger
      mDateStrategy = dsUniformTimeInDay;
  } else // more than a year, go back to normal clean mantissa algorithm but in units of years
  {
    const double secondsPerYear = 86400*30.4375*12; // average including leap years
    result = cleanMantissa(result/secondsPerYear)*secondsPerYear;
    mDateStrategy = dsUniformDayInMonth;
  }
  return result;
}

/*! \internal

  Returns a sensible sub tick count with intervals appropriate for a date-time-display, such as weekly,
  monthly, bi-monthly, etc.

  \seebaseclassmethod
*/
int QCPAxisTickerDateTime::getSubTickCount(double tickStep)
{
  int result = QCPAxisTicker::getSubTickCount(tickStep);
  switch (qRound(tickStep)) // hand chosen subticks for specific minute/hour/day/week/month range (as specified in getTickStep)
  {
    case 5*60: result = 4; break;
    case 10*60: result = 1; break;
    case 15*60: result = 2; break;
    case 30*60: result = 1; break;
    case 60*60: result = 3; break;
    case 3600*2: result = 3; break;
    case 3600*3: result = 2; break;
    case 3600*6: result = 1; break;
    case 3600*12: result = 3; break;
    case 3600*24: result = 3; break;
    case 86400*2: result = 1; break;
    case 86400*5: result = 4; break;
    case 86400*7: result = 6; break;
    case 86400*14: result = 1; break;
    case (int)(86400*30.4375+0.5): result = 3; break;
    case (int)(86400*30.4375*2+0.5): result = 1; break;
    case (int)(86400*30.4375*3+0.5): result = 2; break;
    case (int)(86400*30.4375*6+0.5): result = 5; break;
    case (int)(86400*30.4375*12+0.5): result = 3; break;
  }
  return result;
}

/*! \internal

  Generates a date/time tick label for tick coordinate \a tick, based on the currently set format
  (\ref setDateTimeFormat) and time spec (\ref setDateTimeSpec).

  \seebaseclassmethod
*/
QString QCPAxisTickerDateTime::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
{
  Q_UNUSED(precision)
  Q_UNUSED(formatChar)
  return locale.toString(keyToDateTime(tick).toTimeSpec(mDateTimeSpec), mDateTimeFormat);
}

/*! \internal

  Uses the passed \a tickStep as a guiding value and applies corrections in order to obtain
  non-uniform tick intervals but intuitive tick labels, e.g. falling on the same day of each month.

  \seebaseclassmethod
*/
QVector<double> QCPAxisTickerDateTime::createTickVector(double tickStep, const QCPRange &range)
{
  QVector<double> result = QCPAxisTicker::createTickVector(tickStep, range);
  if (!result.isEmpty())
  {
    if (mDateStrategy == dsUniformTimeInDay)
    {
      QDateTime uniformDateTime = keyToDateTime(mTickOrigin); // the time of this datetime will be set for all other ticks, if possible
      QDateTime tickDateTime;
      for (int i=0; i<result.size(); ++i)
      {
        tickDateTime = keyToDateTime(result.at(i));
        tickDateTime.setTime(uniformDateTime.time());
        result[i] = dateTimeToKey(tickDateTime);
      }
    } else if (mDateStrategy == dsUniformDayInMonth)
    {
      QDateTime uniformDateTime = keyToDateTime(mTickOrigin); // this day (in month) and time will be set for all other ticks, if possible
      QDateTime tickDateTime;
      for (int i=0; i<result.size(); ++i)
      {
        tickDateTime = keyToDateTime(result.at(i));
        tickDateTime.setTime(uniformDateTime.time());
        int thisUniformDay = uniformDateTime.date().day() <= tickDateTime.date().daysInMonth() ? uniformDateTime.date().day() : tickDateTime.date().daysInMonth(); // don't exceed month (e.g. try to set day 31 in February)
        if (thisUniformDay-tickDateTime.date().day() < -15) // with leap years involved, date month may jump backwards or forwards, and needs to be corrected before setting day
          tickDateTime = tickDateTime.addMonths(1);
        else if (thisUniformDay-tickDateTime.date().day() > 15) // with leap years involved, date month may jump backwards or forwards, and needs to be corrected before setting day
          tickDateTime = tickDateTime.addMonths(-1);
        tickDateTime.setDate(QDate(tickDateTime.date().year(), tickDateTime.date().month(), thisUniformDay));
        result[i] = dateTimeToKey(tickDateTime);
      }
    }
  }
  return result;
}

/*!
  A convenience method which turns \a key (in seconds since Epoch 1. Jan 1970, 00:00 UTC) into a
  QDateTime object. This can be used to turn axis coordinates to actual QDateTimes.

  The accuracy achieved by this method is one millisecond, irrespective of the used Qt version (it
  works around the lack of a QDateTime::fromMSecsSinceEpoch in Qt 4.6)

  \see dateTimeToKey
*/
QDateTime QCPAxisTickerDateTime::keyToDateTime(double key)
{
# if QT_VERSION < QT_VERSION_CHECK(4, 7, 0)
  return QDateTime::fromTime_t(key).addMSecs((key-(qint64)key)*1000);
# else
  return QDateTime::fromMSecsSinceEpoch(key*1000.0);
# endif
}

/*! \overload

  A convenience method which turns a QDateTime object into a double value that corresponds to
  seconds since Epoch (1. Jan 1970, 00:00 UTC). This is the format used as axis coordinates by
  QCPAxisTickerDateTime.

  The accuracy achieved by this method is one millisecond, irrespective of the used Qt version (it
  works around the lack of a QDateTime::toMSecsSinceEpoch in Qt 4.6)

  \see keyToDateTime
*/
double QCPAxisTickerDateTime::dateTimeToKey(const QDateTime dateTime)
{
# if QT_VERSION < QT_VERSION_CHECK(4, 7, 0)
  return dateTime.toTime_t()+dateTime.time().msec()/1000.0;
# else
  return dateTime.toMSecsSinceEpoch()/1000.0;
# endif
}

/*! \overload

  A convenience method which turns a QDate object into a double value that corresponds to
  seconds since Epoch (1. Jan 1970, 00:00 UTC). This is the format used as axis coordinates by
  QCPAxisTickerDateTime.

  \see keyToDateTime
*/
double QCPAxisTickerDateTime::dateTimeToKey(const QDate date)
{
# if QT_VERSION < QT_VERSION_CHECK(4, 7, 0)
  return QDateTime(date).toTime_t();
# else
  return QDateTime(date).toMSecsSinceEpoch()/1000.0;
# endif
}
/* end of 'src/axis/axistickerdatetime.cpp' */


/* including file 'src/axis/axistickertime.cpp', size 11747                  */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxisTickerTime
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPAxisTickerTime
  \brief Specialized axis ticker for time spans in units of milliseconds to days

  \image html axisticker-time.png

  This QCPAxisTicker subclass generates ticks that corresponds to time intervals.

  The format of the time display in the tick labels is controlled with \ref setTimeFormat and \ref
  setFieldWidth. The time coordinate is in the unit of seconds with respect to the time coordinate
  zero. Unlike with QCPAxisTickerDateTime, the ticks don't correspond to a specific calendar date
  and time.

  The time can be displayed in milliseconds, seconds, minutes, hours and days. Depending on the
  largest available unit in the format specified with \ref setTimeFormat, any time spans above will
  be carried in that largest unit. So for example if the format string is "%m:%s" and a tick at
  coordinate value 7815 (being 2 hours, 10 minutes and 15 seconds) is created, the resulting tick
  label will show "130:15" (130 minutes, 15 seconds). If the format string is "%h:%m:%s", the hour
  unit will be used and the label will thus be "02:10:15". Negative times with respect to the axis
  zero will carry a leading minus sign.

  The ticker can be created and assigned to an axis like this:
  \snippet documentation/doc-image-generator/mainwindow.cpp axistickertime-creation

  Here is an example of a time axis providing time information in days, hours and minutes. Due to
  the axis range spanning a few days and the wanted tick count (\ref setTickCount), the ticker
  decided to use tick steps of 12 hours:

  \image html axisticker-time2.png

  The format string for this example is
  \snippet documentation/doc-image-generator/mainwindow.cpp axistickertime-creation-2

  \note If you rather wish to display calendar dates and times, have a look at QCPAxisTickerDateTime
  instead.
*/

/*!
  Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
  managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
*/
QCPAxisTickerTime::QCPAxisTickerTime() :
  mTimeFormat(QLatin1String("%h:%m:%s")),
  mSmallestUnit(tuSeconds),
  mBiggestUnit(tuHours)
{
  setTickCount(4);
  mFieldWidth[tuMilliseconds] = 3;
  mFieldWidth[tuSeconds] = 2;
  mFieldWidth[tuMinutes] = 2;
  mFieldWidth[tuHours] = 2;
  mFieldWidth[tuDays] = 1;

  mFormatPattern[tuMilliseconds] = QLatin1String("%z");
  mFormatPattern[tuSeconds] = QLatin1String("%s");
  mFormatPattern[tuMinutes] = QLatin1String("%m");
  mFormatPattern[tuHours] = QLatin1String("%h");
  mFormatPattern[tuDays] = QLatin1String("%d");
}

/*!
  Sets the format that will be used to display time in the tick labels.

  The available patterns are:
  - %%z for milliseconds
  - %%s for seconds
  - %%m for minutes
  - %%h for hours
  - %%d for days

  The field width (zero padding) can be controlled for each unit with \ref setFieldWidth.

  The largest unit that appears in \a format will carry all the remaining time of a certain tick
  coordinate, even if it overflows the natural limit of the unit. For example, if %%m is the
  largest unit it might become larger than 59 in order to consume larger time values. If on the
  other hand %%h is available, the minutes will wrap around to zero after 59 and the time will
  carry to the hour digit.
*/
void QCPAxisTickerTime::setTimeFormat(const QString &format)
{
  mTimeFormat = format;

  // determine smallest and biggest unit in format, to optimize unit replacement and allow biggest
  // unit to consume remaining time of a tick value and grow beyond its modulo (e.g. min > 59)
  mSmallestUnit = tuMilliseconds;
  mBiggestUnit = tuMilliseconds;
  bool hasSmallest = false;
  for (int i = tuMilliseconds; i <= tuDays; ++i)
  {
    TimeUnit unit = static_cast<TimeUnit>(i);
    if (mTimeFormat.contains(mFormatPattern.value(unit)))
    {
      if (!hasSmallest)
      {
        mSmallestUnit = unit;
        hasSmallest = true;
      }
      mBiggestUnit = unit;
    }
  }
}

/*!
  Sets the field widh of the specified \a unit to be \a width digits, when displayed in the tick
  label. If the number for the specific unit is shorter than \a width, it will be padded with an
  according number of zeros to the left in order to reach the field width.

  \see setTimeFormat
*/
void QCPAxisTickerTime::setFieldWidth(QCPAxisTickerTime::TimeUnit unit, int width)
{
  mFieldWidth[unit] = qMax(width, 1);
}

/*! \internal

  Returns the tick step appropriate for time displays, depending on the provided \a range and the
  smallest available time unit in the current format (\ref setTimeFormat). For example if the unit
  of seconds isn't available in the format, this method will not generate steps (like 2.5 minutes)
  that require sub-minute precision to be displayed correctly.

  \seebaseclassmethod
*/
double QCPAxisTickerTime::getTickStep(const QCPRange &range)
{
  double result = range.size()/(double)(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers

  if (result < 1) // ideal tick step is below 1 second -> use normal clean mantissa algorithm in units of seconds
  {
    if (mSmallestUnit == tuMilliseconds)
      result = qMax(cleanMantissa(result), 0.001); // smallest tick step is 1 millisecond
    else // have no milliseconds available in format, so stick with 1 second tickstep
      result = 1.0;
  } else if (result < 3600*24) // below a day
  {
    // the filling of availableSteps seems a bit contorted but it fills in a sorted fashion and thus saves a post-fill sorting run
    QVector<double> availableSteps;
    // seconds range:
    if (mSmallestUnit <= tuSeconds)
      availableSteps << 1;
    if (mSmallestUnit == tuMilliseconds)
      availableSteps << 2.5; // only allow half second steps if milliseconds are there to display it
    else if (mSmallestUnit == tuSeconds)
      availableSteps << 2;
    if (mSmallestUnit <= tuSeconds)
      availableSteps << 5 << 10 << 15 << 30;
    // minutes range:
    if (mSmallestUnit <= tuMinutes)
      availableSteps << 1*60;
    if (mSmallestUnit <= tuSeconds)
      availableSteps << 2.5*60; // only allow half minute steps if seconds are there to display it
    else if (mSmallestUnit == tuMinutes)
      availableSteps << 2*60;
    if (mSmallestUnit <= tuMinutes)
      availableSteps << 5*60 << 10*60 << 15*60 << 30*60;
    // hours range:
    if (mSmallestUnit <= tuHours)
      availableSteps << 1*3600 << 2*3600 << 3*3600 << 6*3600 << 12*3600 << 24*3600;
    // pick available step that is most appropriate to approximate ideal step:
    result = pickClosest(result, availableSteps);
  } else // more than a day, go back to normal clean mantissa algorithm but in units of days
  {
    const double secondsPerDay = 3600*24;
    result = cleanMantissa(result/secondsPerDay)*secondsPerDay;
  }
  return result;
}

/*! \internal

  Returns the sub tick count appropriate for the provided \a tickStep and time displays.

  \seebaseclassmethod
*/
int QCPAxisTickerTime::getSubTickCount(double tickStep)
{
  int result = QCPAxisTicker::getSubTickCount(tickStep);
  switch (qRound(tickStep)) // hand chosen subticks for specific minute/hour/day range (as specified in getTickStep)
  {
    case 5*60: result = 4; break;
    case 10*60: result = 1; break;
    case 15*60: result = 2; break;
    case 30*60: result = 1; break;
    case 60*60: result = 3; break;
    case 3600*2: result = 3; break;
    case 3600*3: result = 2; break;
    case 3600*6: result = 1; break;
    case 3600*12: result = 3; break;
    case 3600*24: result = 3; break;
  }
  return result;
}

/*! \internal

  Returns the tick label corresponding to the provided \a tick and the configured format and field
  widths (\ref setTimeFormat, \ref setFieldWidth).

  \seebaseclassmethod
*/
QString QCPAxisTickerTime::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
{
  Q_UNUSED(precision)
  Q_UNUSED(formatChar)
  Q_UNUSED(locale)
  bool negative = tick < 0;
  if (negative) tick *= -1;
  double values[tuDays+1]; // contains the msec/sec/min/... value with its respective modulo (e.g. minute 0..59)
  double restValues[tuDays+1]; // contains the msec/sec/min/... value as if it's the largest available unit and thus consumes the remaining time

  restValues[tuMilliseconds] = tick*1000;
  values[tuMilliseconds] = modf(restValues[tuMilliseconds]/1000, &restValues[tuSeconds])*1000;
  values[tuSeconds] = modf(restValues[tuSeconds]/60, &restValues[tuMinutes])*60;
  values[tuMinutes] = modf(restValues[tuMinutes]/60, &restValues[tuHours])*60;
  values[tuHours] = modf(restValues[tuHours]/24, &restValues[tuDays])*24;
  // no need to set values[tuDays] because days are always a rest value (there is no higher unit so it consumes all remaining time)

  QString result = mTimeFormat;
  for (int i = mSmallestUnit; i <= mBiggestUnit; ++i)
  {
    TimeUnit iUnit = static_cast<TimeUnit>(i);
    replaceUnit(result, iUnit, qRound(iUnit == mBiggestUnit ? restValues[iUnit] : values[iUnit]));
  }
  if (negative)
    result.prepend(QLatin1Char('-'));
  return result;
}

/*! \internal

  Replaces all occurrences of the format pattern belonging to \a unit in \a text with the specified
  \a value, using the field width as specified with \ref setFieldWidth for the \a unit.
*/
void QCPAxisTickerTime::replaceUnit(QString &text, QCPAxisTickerTime::TimeUnit unit, int value) const
{
  QString valueStr = QString::number(value);
  while (valueStr.size() < mFieldWidth.value(unit))
    valueStr.prepend(QLatin1Char('0'));

  text.replace(mFormatPattern.value(unit), valueStr);
}
/* end of 'src/axis/axistickertime.cpp' */


/* including file 'src/axis/axistickerfixed.cpp', size 5583                  */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxisTickerFixed
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPAxisTickerFixed
  \brief Specialized axis ticker with a fixed tick step

  \image html axisticker-fixed.png

  This QCPAxisTicker subclass generates ticks with a fixed tick step set with \ref setTickStep. It
  is also possible to allow integer multiples and integer powers of the specified tick step with
  \ref setScaleStrategy.

  A typical application of this ticker is to make an axis only display integers, by setting the
  tick step of the ticker to 1.0 and the scale strategy to \ref ssMultiples.

  Another case is when a certain number has a special meaning and axis ticks should only appear at
  multiples of that value. In this case you might also want to consider \ref QCPAxisTickerPi
  because despite the name it is not limited to only pi symbols/values.

  The ticker can be created and assigned to an axis like this:
  \snippet documentation/doc-image-generator/mainwindow.cpp axistickerfixed-creation
*/

/*!
  Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
  managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
*/
QCPAxisTickerFixed::QCPAxisTickerFixed() :
  mTickStep(1.0),
  mScaleStrategy(ssNone)
{
}

/*!
  Sets the fixed tick interval to \a step.

  The axis ticker will only use this tick step when generating axis ticks. This might cause a very
  high tick density and overlapping labels if the axis range is zoomed out. Using \ref
  setScaleStrategy it is possible to relax the fixed step and also allow multiples or powers of \a
  step. This will enable the ticker to reduce the number of ticks to a reasonable amount (see \ref
  setTickCount).
*/
void QCPAxisTickerFixed::setTickStep(double step)
{
  if (step > 0)
    mTickStep = step;
  else
    qDebug() << Q_FUNC_INFO << "tick step must be greater than zero:" << step;
}

/*!
  Sets whether the specified tick step (\ref setTickStep) is absolutely fixed or whether
  modifications may be applied to it before calculating the finally used tick step, such as
  permitting multiples or powers. See \ref ScaleStrategy for details.

  The default strategy is \ref ssNone, which means the tick step is absolutely fixed.
*/
void QCPAxisTickerFixed::setScaleStrategy(QCPAxisTickerFixed::ScaleStrategy strategy)
{
  mScaleStrategy = strategy;
}

/*! \internal

  Determines the actually used tick step from the specified tick step and scale strategy (\ref
  setTickStep, \ref setScaleStrategy).

  This method either returns the specified tick step exactly, or, if the scale strategy is not \ref
  ssNone, a modification of it to allow varying the number of ticks in the current axis range.

  \seebaseclassmethod
*/
double QCPAxisTickerFixed::getTickStep(const QCPRange &range)
{
  switch (mScaleStrategy)
  {
    case ssNone:
    {
      return mTickStep;
    }
    case ssMultiples:
    {
      double exactStep = range.size()/(double)(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
      if (exactStep < mTickStep)
        return mTickStep;
      else
        return (qint64)(cleanMantissa(exactStep/mTickStep)+0.5)*mTickStep;
    }
    case ssPowers:
    {
      double exactStep = range.size()/(double)(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
      return qPow(mTickStep, (int)(qLn(exactStep)/qLn(mTickStep)+0.5));
    }
  }
  return mTickStep;
}
/* end of 'src/axis/axistickerfixed.cpp' */


/* including file 'src/axis/axistickertext.cpp', size 8661                   */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxisTickerText
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPAxisTickerText
  \brief Specialized axis ticker which allows arbitrary labels at specified coordinates

  \image html axisticker-text.png

  This QCPAxisTicker subclass generates ticks which can be directly specified by the user as
  coordinates and associated strings. They can be passed as a whole with \ref setTicks or one at a
  time with \ref addTick. Alternatively you can directly access the internal storage via \ref ticks
  and modify the tick/label data there.

  This is useful for cases where the axis represents categories rather than numerical values.

  If you are updating the ticks of this ticker regularly and in a dynamic fasion (e.g. dependent on
  the axis range), it is a sign that you should probably create an own ticker by subclassing
  QCPAxisTicker, instead of using this one.

  The ticker can be created and assigned to an axis like this:
  \snippet documentation/doc-image-generator/mainwindow.cpp axistickertext-creation
*/

/* start of documentation of inline functions */

/*! \fn QMap<double, QString> &QCPAxisTickerText::ticks()

  Returns a non-const reference to the internal map which stores the tick coordinates and their
  labels.

  You can access the map directly in order to add, remove or manipulate ticks, as an alternative to
  using the methods provided by QCPAxisTickerText, such as \ref setTicks and \ref addTick.
*/

/* end of documentation of inline functions */

/*!
  Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
  managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
*/
QCPAxisTickerText::QCPAxisTickerText() :
  mSubTickCount(0)
{
}

/*! \overload

  Sets the ticks that shall appear on the axis. The map key of \a ticks corresponds to the axis
  coordinate, and the map value is the string that will appear as tick label.

  An alternative to manipulate ticks is to directly access the internal storage with the \ref ticks
  getter.

  \see addTicks, addTick, clear
*/
void QCPAxisTickerText::setTicks(const QMap<double, QString> &ticks)
{
  mTicks = ticks;
}

/*! \overload

  Sets the ticks that shall appear on the axis. The entries of \a positions correspond to the axis
  coordinates, and the entries of \a labels are the respective strings that will appear as tick
  labels.

  \see addTicks, addTick, clear
*/
void QCPAxisTickerText::setTicks(const QVector<double> &positions, const QVector<QString> &labels)
{
  clear();
  addTicks(positions, labels);
}

/*!
  Sets the number of sub ticks that shall appear between ticks. For QCPAxisTickerText, there is no
  automatic sub tick count calculation. So if sub ticks are needed, they must be configured with this
  method.
*/
void QCPAxisTickerText::setSubTickCount(int subTicks)
{
  if (subTicks >= 0)
    mSubTickCount = subTicks;
  else
    qDebug() << Q_FUNC_INFO << "sub tick count can't be negative:" << subTicks;
}

/*!
  Clears all ticks.

  An alternative to manipulate ticks is to directly access the internal storage with the \ref ticks
  getter.

  \see setTicks, addTicks, addTick
*/
void QCPAxisTickerText::clear()
{
  mTicks.clear();
}

/*!
  Adds a single tick to the axis at the given axis coordinate \a position, with the provided tick \a
  label.

  \see addTicks, setTicks, clear
*/
void QCPAxisTickerText::addTick(double position, const QString &label)
{
  mTicks.insert(position, label);
}

/*! \overload

  Adds the provided \a ticks to the ones already existing. The map key of \a ticks corresponds to
  the axis coordinate, and the map value is the string that will appear as tick label.

  An alternative to manipulate ticks is to directly access the internal storage with the \ref ticks
  getter.

  \see addTick, setTicks, clear
*/
void QCPAxisTickerText::addTicks(const QMap<double, QString> &ticks)
{
  mTicks.unite(ticks);
}

/*! \overload

  Adds the provided ticks to the ones already existing. The entries of \a positions correspond to
  the axis coordinates, and the entries of \a labels are the respective strings that will appear as
  tick labels.

  An alternative to manipulate ticks is to directly access the internal storage with the \ref ticks
  getter.

  \see addTick, setTicks, clear
*/
void QCPAxisTickerText::addTicks(const QVector<double> &positions, const QVector<QString> &labels)
{
  if (positions.size() != labels.size())
    qDebug() << Q_FUNC_INFO << "passed unequal length vectors for positions and labels:" << positions.size() << labels.size();
  int n = qMin(positions.size(), labels.size());
  for (int i=0; i<n; ++i)
    mTicks.insert(positions.at(i), labels.at(i));
}

/*!
  Since the tick coordinates are provided externally, this method implementation does nothing.

  \seebaseclassmethod
*/
double QCPAxisTickerText::getTickStep(const QCPRange &range)
{
  // text axis ticker has manual tick positions, so doesn't need this method
  Q_UNUSED(range)
  return 1.0;
}

/*!
  Returns the sub tick count that was configured with \ref setSubTickCount.

  \seebaseclassmethod
*/
int QCPAxisTickerText::getSubTickCount(double tickStep)
{
  Q_UNUSED(tickStep)
  return mSubTickCount;
}

/*!
  Returns the tick label which corresponds to the key \a tick in the internal tick storage. Since
  the labels are provided externally, \a locale, \a formatChar, and \a precision are ignored.

  \seebaseclassmethod
*/
QString QCPAxisTickerText::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
{
  Q_UNUSED(locale)
  Q_UNUSED(formatChar)
  Q_UNUSED(precision)
  return mTicks.value(tick);
}

/*!
  Returns the externally provided tick coordinates which are in the specified \a range. If
  available, one tick above and below the range is provided in addition, to allow possible sub tick
  calculation. The parameter \a tickStep is ignored.

  \seebaseclassmethod
*/
QVector<double> QCPAxisTickerText::createTickVector(double tickStep, const QCPRange &range)
{
  Q_UNUSED(tickStep)
  QVector<double> result;
  if (mTicks.isEmpty())
    return result;

  QMap<double, QString>::const_iterator start = mTicks.lowerBound(range.lower);
  QMap<double, QString>::const_iterator end = mTicks.upperBound(range.upper);
  // this method should try to give one tick outside of range so proper subticks can be generated:
  if (start != mTicks.constBegin()) --start;
  if (end != mTicks.constEnd()) ++end;
  for (QMap<double, QString>::const_iterator it = start; it != end; ++it)
    result.append(it.key());

  return result;
}
/* end of 'src/axis/axistickertext.cpp' */


/* including file 'src/axis/axistickerpi.cpp', size 11170                    */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxisTickerPi
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPAxisTickerPi
  \brief Specialized axis ticker to display ticks in units of an arbitrary constant, for example pi

  \image html axisticker-pi.png

  This QCPAxisTicker subclass generates ticks that are expressed with respect to a given symbolic
  constant with a numerical value specified with \ref setPiValue and an appearance in the tick
  labels specified with \ref setPiSymbol.

  Ticks may be generated at fractions of the symbolic constant. How these fractions appear in the
  tick label can be configured with \ref setFractionStyle.

  The ticker can be created and assigned to an axis like this:
  \snippet documentation/doc-image-generator/mainwindow.cpp axistickerpi-creation
*/

/*!
  Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
  managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
*/
QCPAxisTickerPi::QCPAxisTickerPi() :
  mPiSymbol(QLatin1String(" ")+QChar(0x03C0)),
  mPiValue(M_PI),
  mPeriodicity(0),
  mFractionStyle(fsUnicodeFractions),
  mPiTickStep(0)
{
  setTickCount(4);
}

/*!
  Sets how the symbol part (which is always a suffix to the number) shall appear in the axis tick
  label.

  If a space shall appear between the number and the symbol, make sure the space is contained in \a
  symbol.
*/
void QCPAxisTickerPi::setPiSymbol(QString symbol)
{
  mPiSymbol = symbol;
}

/*!
  Sets the numerical value that the symbolic constant has.

  This will be used to place the appropriate fractions of the symbol at the respective axis
  coordinates.
*/
void QCPAxisTickerPi::setPiValue(double pi)
{
  mPiValue = pi;
}

/*!
  Sets whether the axis labels shall appear periodicly and if so, at which multiplicity of the
  symbolic constant.

  To disable periodicity, set \a multiplesOfPi to zero.

  For example, an axis that identifies 0 with 2pi would set \a multiplesOfPi to two.
*/
void QCPAxisTickerPi::setPeriodicity(int multiplesOfPi)
{
  mPeriodicity = qAbs(multiplesOfPi);
}

/*!
  Sets how the numerical/fractional part preceding the symbolic constant is displayed in tick
  labels. See \ref FractionStyle for the various options.
*/
void QCPAxisTickerPi::setFractionStyle(QCPAxisTickerPi::FractionStyle style)
{
  mFractionStyle = style;
}

/*! \internal

  Returns the tick step, using the constant's value (\ref setPiValue) as base unit. In consequence
  the numerical/fractional part preceding the symbolic constant is made to have a readable
  mantissa.

  \seebaseclassmethod
*/
double QCPAxisTickerPi::getTickStep(const QCPRange &range)
{
  mPiTickStep = range.size()/mPiValue/(double)(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
  mPiTickStep = cleanMantissa(mPiTickStep);
  return mPiTickStep*mPiValue;
}

/*! \internal

  Returns the sub tick count, using the constant's value (\ref setPiValue) as base unit. In
  consequence the sub ticks divide the numerical/fractional part preceding the symbolic constant
  reasonably, and not the total tick coordinate.

  \seebaseclassmethod
*/
int QCPAxisTickerPi::getSubTickCount(double tickStep)
{
  return QCPAxisTicker::getSubTickCount(tickStep/mPiValue);
}

/*! \internal

  Returns the tick label as a fractional/numerical part and a symbolic string as suffix. The
  formatting of the fraction is done according to the specified \ref setFractionStyle. The appended
  symbol is specified with \ref setPiSymbol.

  \seebaseclassmethod
*/
QString QCPAxisTickerPi::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
{
  double tickInPis = tick/mPiValue;
  if (mPeriodicity > 0)
    tickInPis = fmod(tickInPis, mPeriodicity);

  if (mFractionStyle != fsFloatingPoint && mPiTickStep > 0.09 && mPiTickStep < 50)
  {
    // simply construct fraction from decimal like 1.234 -> 1234/1000 and then simplify fraction, smaller digits are irrelevant due to mPiTickStep conditional above
    int denominator = 1000;
    int numerator = qRound(tickInPis*denominator);
    simplifyFraction(numerator, denominator);
    if (qAbs(numerator) == 1 && denominator == 1)
      return (numerator < 0 ? QLatin1String("-") : QLatin1String("")) + mPiSymbol.trimmed();
    else if (numerator == 0)
      return QLatin1String("0");
    else
      return fractionToString(numerator, denominator) + mPiSymbol;
  } else
  {
    if (qFuzzyIsNull(tickInPis))
      return QLatin1String("0");
    else if (qFuzzyCompare(qAbs(tickInPis), 1.0))
      return (tickInPis < 0 ? QLatin1String("-") : QLatin1String("")) + mPiSymbol.trimmed();
    else
      return QCPAxisTicker::getTickLabel(tickInPis, locale, formatChar, precision) + mPiSymbol;
  }
}

/*! \internal

  Takes the fraction given by \a numerator and \a denominator and modifies the values to make sure
  the fraction is in irreducible form, i.e. numerator and denominator don't share any common
  factors which could be cancelled.
*/
void QCPAxisTickerPi::simplifyFraction(int &numerator, int &denominator) const
{
  if (numerator == 0 || denominator == 0)
    return;

  int num = numerator;
  int denom = denominator;
  while (denom != 0) // euclidean gcd algorithm
  {
    int oldDenom = denom;
    denom = num % denom;
    num = oldDenom;
  }
  // num is now gcd of numerator and denominator
  numerator /= num;
  denominator /= num;
}

/*! \internal

  Takes the fraction given by \a numerator and \a denominator and returns a string representation.
  The result depends on the configured fraction style (\ref setFractionStyle).

  This method is used to format the numerical/fractional part when generating tick labels. It
  simplifies the passed fraction to an irreducible form using \ref simplifyFraction and factors out
  any integer parts of the fraction (e.g. "10/4" becomes "2 1/2").
*/
QString QCPAxisTickerPi::fractionToString(int numerator, int denominator) const
{
  if (denominator == 0)
  {
    qDebug() << Q_FUNC_INFO << "called with zero denominator";
    return QString();
  }
  if (mFractionStyle == fsFloatingPoint) // should never be the case when calling this function
  {
    qDebug() << Q_FUNC_INFO << "shouldn't be called with fraction style fsDecimal";
    return QString::number(numerator/(double)denominator); // failsafe
  }
  int sign = numerator*denominator < 0 ? -1 : 1;
  numerator = qAbs(numerator);
  denominator = qAbs(denominator);

  if (denominator == 1)
  {
    return QString::number(sign*numerator);
  } else
  {
    int integerPart = numerator/denominator;
    int remainder = numerator%denominator;
    if (remainder == 0)
    {
      return QString::number(sign*integerPart);
    } else
    {
      if (mFractionStyle == fsAsciiFractions)
      {
        return QString(QLatin1String("%1%2%3/%4"))
            .arg(sign == -1 ? QLatin1String("-") : QLatin1String(""))
            .arg(integerPart > 0 ? QString::number(integerPart)+QLatin1String(" ") : QLatin1String(""))
            .arg(remainder)
            .arg(denominator);
      } else if (mFractionStyle == fsUnicodeFractions)
      {
        return QString(QLatin1String("%1%2%3"))
            .arg(sign == -1 ? QLatin1String("-") : QLatin1String(""))
            .arg(integerPart > 0 ? QString::number(integerPart) : QLatin1String(""))
            .arg(unicodeFraction(remainder, denominator));
      }
    }
  }
  return QString();
}

/*! \internal

  Returns the unicode string representation of the fraction given by \a numerator and \a
  denominator. This is the representation used in \ref fractionToString when the fraction style
  (\ref setFractionStyle) is \ref fsUnicodeFractions.

  This method doesn't use the single-character common fractions but builds each fraction from a
  superscript unicode number, the unicode fraction character, and a subscript unicode number.
*/
QString QCPAxisTickerPi::unicodeFraction(int numerator, int denominator) const
{
  return unicodeSuperscript(numerator)+QChar(0x2044)+unicodeSubscript(denominator);
}

/*! \internal

  Returns the unicode string representing \a number as superscript. This is used to build
  unicode fractions in \ref unicodeFraction.
*/
QString QCPAxisTickerPi::unicodeSuperscript(int number) const
{
  if (number == 0)
    return QString(QChar(0x2070));

  QString result;
  while (number > 0)
  {
    const int digit = number%10;
    switch (digit)
    {
      case 1: { result.prepend(QChar(0x00B9)); break; }
      case 2: { result.prepend(QChar(0x00B2)); break; }
      case 3: { result.prepend(QChar(0x00B3)); break; }
      default: { result.prepend(QChar(0x2070+digit)); break; }
    }
    number /= 10;
  }
  return result;
}

/*! \internal

  Returns the unicode string representing \a number as subscript. This is used to build unicode
  fractions in \ref unicodeFraction.
*/
QString QCPAxisTickerPi::unicodeSubscript(int number) const
{
  if (number == 0)
    return QString(QChar(0x2080));

  QString result;
  while (number > 0)
  {
    result.prepend(QChar(0x2080+number%10));
    number /= 10;
  }
  return result;
}
/* end of 'src/axis/axistickerpi.cpp' */


/* including file 'src/axis/axistickerlog.cpp', size 7106                    */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxisTickerLog
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPAxisTickerLog
  \brief Specialized axis ticker suited for logarithmic axes

  \image html axisticker-log.png

  This QCPAxisTicker subclass generates ticks with unequal tick intervals suited for logarithmic
  axis scales. The ticks are placed at powers of the specified log base (\ref setLogBase).

  Especially in the case of a log base equal to 10 (the default), it might be desirable to have
  tick labels in the form of powers of ten without mantissa display. To achieve this, set the
  number precision (\ref QCPAxis::setNumberPrecision) to zero and the number format (\ref
  QCPAxis::setNumberFormat) to scientific (exponential) display with beautifully typeset decimal
  powers, so a format string of <tt>"eb"</tt>. This will result in the following axis tick labels:

  \image html axisticker-log-powers.png

  The ticker can be created and assigned to an axis like this:
  \snippet documentation/doc-image-generator/mainwindow.cpp axistickerlog-creation
*/

/*!
  Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
  managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
*/
QCPAxisTickerLog::QCPAxisTickerLog() :
  mLogBase(10.0),
  mSubTickCount(8), // generates 10 intervals
  mLogBaseLnInv(1.0/qLn(mLogBase))
{
}

/*!
  Sets the logarithm base used for tick coordinate generation. The ticks will be placed at integer
  powers of \a base.
*/
void QCPAxisTickerLog::setLogBase(double base)
{
  if (base > 0)
  {
    mLogBase = base;
    mLogBaseLnInv = 1.0/qLn(mLogBase);
  } else
    qDebug() << Q_FUNC_INFO << "log base has to be greater than zero:" << base;
}

/*!
  Sets the number of sub ticks in a tick interval. Within each interval, the sub ticks are spaced
  linearly to provide a better visual guide, so the sub tick density increases toward the higher
  tick.

  Note that \a subTicks is the number of sub ticks (not sub intervals) in one tick interval. So in
  the case of logarithm base 10 an intuitive sub tick spacing would be achieved with eight sub
  ticks (the default). This means e.g. between the ticks 10 and 100 there will be eight ticks,
  namely at 20, 30, 40, 50, 60, 70, 80 and 90.
*/
void QCPAxisTickerLog::setSubTickCount(int subTicks)
{
  if (subTicks >= 0)
    mSubTickCount = subTicks;
  else
    qDebug() << Q_FUNC_INFO << "sub tick count can't be negative:" << subTicks;
}

/*! \internal

  Since logarithmic tick steps are necessarily different for each tick interval, this method does
  nothing in the case of QCPAxisTickerLog

  \seebaseclassmethod
*/
double QCPAxisTickerLog::getTickStep(const QCPRange &range)
{
  // Logarithmic axis ticker has unequal tick spacing, so doesn't need this method
  Q_UNUSED(range)
  return 1.0;
}

/*! \internal

  Returns the sub tick count specified in \ref setSubTickCount. For QCPAxisTickerLog, there is no
  automatic sub tick count calculation necessary.

  \seebaseclassmethod
*/
int QCPAxisTickerLog::getSubTickCount(double tickStep)
{
  Q_UNUSED(tickStep)
  return mSubTickCount;
}

/*! \internal

  Creates ticks with a spacing given by the logarithm base and an increasing integer power in the
  provided \a range. The step in which the power increases tick by tick is chosen in order to keep
  the total number of ticks as close as possible to the tick count (\ref setTickCount). The
  parameter \a tickStep is ignored for QCPAxisTickerLog

  \seebaseclassmethod
*/
QVector<double> QCPAxisTickerLog::createTickVector(double tickStep, const QCPRange &range)
{
  Q_UNUSED(tickStep)
  QVector<double> result;
  if (range.lower > 0 && range.upper > 0) // positive range
  {
    double exactPowerStep =  qLn(range.upper/range.lower)*mLogBaseLnInv/(double)(mTickCount+1e-10);
    double newLogBase = qPow(mLogBase, qMax((int)cleanMantissa(exactPowerStep), 1));
    double currentTick = qPow(newLogBase, qFloor(qLn(range.lower)/qLn(newLogBase)));
    result.append(currentTick);
    while (currentTick < range.upper && currentTick > 0) // currentMag might be zero for ranges ~1e-300, just cancel in that case
    {
      currentTick *= newLogBase;
      result.append(currentTick);
    }
  } else if (range.lower < 0 && range.upper < 0) // negative range
  {
    double exactPowerStep =  qLn(range.lower/range.upper)*mLogBaseLnInv/(double)(mTickCount+1e-10);
    double newLogBase = qPow(mLogBase, qMax((int)cleanMantissa(exactPowerStep), 1));
    double currentTick = -qPow(newLogBase, qCeil(qLn(-range.lower)/qLn(newLogBase)));
    result.append(currentTick);
    while (currentTick < range.upper && currentTick < 0) // currentMag might be zero for ranges ~1e-300, just cancel in that case
    {
      currentTick /= newLogBase;
      result.append(currentTick);
    }
  } else // invalid range for logarithmic scale, because lower and upper have different sign
  {
    qDebug() << Q_FUNC_INFO << "Invalid range for logarithmic plot: " << range.lower << ".." << range.upper;
  }

  return result;
}
/* end of 'src/axis/axistickerlog.cpp' */


/* including file 'src/axis/axis.cpp', size 99515                            */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPGrid
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPGrid
  \brief Responsible for drawing the grid of a QCPAxis.

  This class is tightly bound to QCPAxis. Every axis owns a grid instance and uses it to draw the
  grid lines, sub grid lines and zero-line. You can interact with the grid of an axis via \ref
  QCPAxis::grid. Normally, you don't need to create an instance of QCPGrid yourself.

  The axis and grid drawing was split into two classes to allow them to be placed on different
  layers (both QCPAxis and QCPGrid inherit from QCPLayerable). Thus it is possible to have the grid
  in the background and the axes in the foreground, and any plottables/items in between. This
  described situation is the default setup, see the QCPLayer documentation.
*/

/*!
  Creates a QCPGrid instance and sets default values.

  You shouldn't instantiate grids on their own, since every QCPAxis brings its own QCPGrid.
*/
QCPGrid::QCPGrid(QCPAxis *parentAxis) :
  QCPLayerable(parentAxis->parentPlot(), QString(), parentAxis),
  mParentAxis(parentAxis)
{
  // warning: this is called in QCPAxis constructor, so parentAxis members should not be accessed/called
  setParent(parentAxis);
  setPen(QPen(QColor(200,200,200), 0, Qt::DotLine));
  setSubGridPen(QPen(QColor(220,220,220), 0, Qt::DotLine));
  setZeroLinePen(QPen(QColor(200,200,200), 0, Qt::SolidLine));
  setSubGridVisible(false);
  setAntialiased(false);
  setAntialiasedSubGrid(false);
  setAntialiasedZeroLine(false);
}

/*!
  Sets whether grid lines at sub tick marks are drawn.

  \see setSubGridPen
*/
void QCPGrid::setSubGridVisible(bool visible)
{
  mSubGridVisible = visible;
}

/*!
  Sets whether sub grid lines are drawn antialiased.
*/
void QCPGrid::setAntialiasedSubGrid(bool enabled)
{
  mAntialiasedSubGrid = enabled;
}

/*!
  Sets whether zero lines are drawn antialiased.
*/
void QCPGrid::setAntialiasedZeroLine(bool enabled)
{
  mAntialiasedZeroLine = enabled;
}

/*!
  Sets the pen with which (major) grid lines are drawn.
*/
void QCPGrid::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen with which sub grid lines are drawn.
*/
void QCPGrid::setSubGridPen(const QPen &pen)
{
  mSubGridPen = pen;
}

/*!
  Sets the pen with which zero lines are drawn.

  Zero lines are lines at value coordinate 0 which may be drawn with a different pen than other grid
  lines. To disable zero lines and just draw normal grid lines at zero, set \a pen to Qt::NoPen.
*/
void QCPGrid::setZeroLinePen(const QPen &pen)
{
  mZeroLinePen = pen;
}

/*! \internal

  A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
  before drawing the major grid lines.

  This is the antialiasing state the painter passed to the \ref draw method is in by default.

  This function takes into account the local setting of the antialiasing flag as well as the
  overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements.

  \see setAntialiased
*/
void QCPGrid::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiased, QCP::aeGrid);
}

/*! \internal

  Draws grid lines and sub grid lines at the positions of (sub) ticks of the parent axis, spanning
  over the complete axis rect. Also draws the zero line, if appropriate (\ref setZeroLinePen).
*/
void QCPGrid::draw(QCPPainter *painter)
{
  if (!mParentAxis) { qDebug() << Q_FUNC_INFO << "invalid parent axis"; return; }

  if (mParentAxis->subTicks() && mSubGridVisible)
    drawSubGridLines(painter);
  drawGridLines(painter);
}

/*! \internal

  Draws the main grid lines and possibly a zero line with the specified painter.

  This is a helper function called by \ref draw.
*/
void QCPGrid::drawGridLines(QCPPainter *painter) const
{
  if (!mParentAxis) { qDebug() << Q_FUNC_INFO << "invalid parent axis"; return; }

  const int tickCount = mParentAxis->mTickVector.size();
  double t; // helper variable, result of coordinate-to-pixel transforms
  if (mParentAxis->orientation() == Qt::Horizontal)
  {
    // draw zeroline:
    int zeroLineIndex = -1;
    if (mZeroLinePen.style() != Qt::NoPen && mParentAxis->mRange.lower < 0 && mParentAxis->mRange.upper > 0)
    {
      applyAntialiasingHint(painter, mAntialiasedZeroLine, QCP::aeZeroLine);
      painter->setPen(mZeroLinePen);
      double epsilon = mParentAxis->range().size()*1E-6; // for comparing double to zero
      for (int i=0; i<tickCount; ++i)
      {
        if (qAbs(mParentAxis->mTickVector.at(i)) < epsilon)
        {
          zeroLineIndex = i;
          t = mParentAxis->coordToPixel(mParentAxis->mTickVector.at(i)); // x
          painter->drawLine(QLineF(t, mParentAxis->mAxisRect->bottom(), t, mParentAxis->mAxisRect->top()));
          break;
        }
      }
    }
    // draw grid lines:
    applyDefaultAntialiasingHint(painter);
    painter->setPen(mPen);
    for (int i=0; i<tickCount; ++i)
    {
      if (i == zeroLineIndex) continue; // don't draw a gridline on top of the zeroline
      t = mParentAxis->coordToPixel(mParentAxis->mTickVector.at(i)); // x
      painter->drawLine(QLineF(t, mParentAxis->mAxisRect->bottom(), t, mParentAxis->mAxisRect->top()));
    }
  } else
  {
    // draw zeroline:
    int zeroLineIndex = -1;
    if (mZeroLinePen.style() != Qt::NoPen && mParentAxis->mRange.lower < 0 && mParentAxis->mRange.upper > 0)
    {
      applyAntialiasingHint(painter, mAntialiasedZeroLine, QCP::aeZeroLine);
      painter->setPen(mZeroLinePen);
      double epsilon = mParentAxis->mRange.size()*1E-6; // for comparing double to zero
      for (int i=0; i<tickCount; ++i)
      {
        if (qAbs(mParentAxis->mTickVector.at(i)) < epsilon)
        {
          zeroLineIndex = i;
          t = mParentAxis->coordToPixel(mParentAxis->mTickVector.at(i)); // y
          painter->drawLine(QLineF(mParentAxis->mAxisRect->left(), t, mParentAxis->mAxisRect->right(), t));
          break;
        }
      }
    }
    // draw grid lines:
    applyDefaultAntialiasingHint(painter);
    painter->setPen(mPen);
    for (int i=0; i<tickCount; ++i)
    {
      if (i == zeroLineIndex) continue; // don't draw a gridline on top of the zeroline
      t = mParentAxis->coordToPixel(mParentAxis->mTickVector.at(i)); // y
      painter->drawLine(QLineF(mParentAxis->mAxisRect->left(), t, mParentAxis->mAxisRect->right(), t));
    }
  }
}

/*! \internal

  Draws the sub grid lines with the specified painter.

  This is a helper function called by \ref draw.
*/
void QCPGrid::drawSubGridLines(QCPPainter *painter) const
{
  if (!mParentAxis) { qDebug() << Q_FUNC_INFO << "invalid parent axis"; return; }

  applyAntialiasingHint(painter, mAntialiasedSubGrid, QCP::aeSubGrid);
  double t; // helper variable, result of coordinate-to-pixel transforms
  painter->setPen(mSubGridPen);
  if (mParentAxis->orientation() == Qt::Horizontal)
  {
    for (int i=0; i<mParentAxis->mSubTickVector.size(); ++i)
    {
      t = mParentAxis->coordToPixel(mParentAxis->mSubTickVector.at(i)); // x
      painter->drawLine(QLineF(t, mParentAxis->mAxisRect->bottom(), t, mParentAxis->mAxisRect->top()));
    }
  } else
  {
    for (int i=0; i<mParentAxis->mSubTickVector.size(); ++i)
    {
      t = mParentAxis->coordToPixel(mParentAxis->mSubTickVector.at(i)); // y
      painter->drawLine(QLineF(mParentAxis->mAxisRect->left(), t, mParentAxis->mAxisRect->right(), t));
    }
  }
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxis
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPAxis
  \brief Manages a single axis inside a QCustomPlot.

  Usually doesn't need to be instantiated externally. Access %QCustomPlot's default four axes via
  QCustomPlot::xAxis (bottom), QCustomPlot::yAxis (left), QCustomPlot::xAxis2 (top) and
  QCustomPlot::yAxis2 (right).

  Axes are always part of an axis rect, see QCPAxisRect.
  \image html AxisNamesOverview.png
  <center>Naming convention of axis parts</center>
  \n

  \image html AxisRectSpacingOverview.png
  <center>Overview of the spacings and paddings that define the geometry of an axis. The dashed gray line
  on the left represents the QCustomPlot widget border.</center>

  Each axis holds an instance of QCPAxisTicker which is used to generate the tick coordinates and
  tick labels. You can access the currently installed \ref ticker or set a new one (possibly one of
  the specialized subclasses, or your own subclass) via \ref setTicker. For details, see the
  documentation of QCPAxisTicker.
*/

/* start of documentation of inline functions */

/*! \fn Qt::Orientation QCPAxis::orientation() const

  Returns the orientation of this axis. The axis orientation (horizontal or vertical) is deduced
  from the axis type (left, top, right or bottom).

  \see orientation(AxisType type), pixelOrientation
*/

/*! \fn QCPGrid *QCPAxis::grid() const

  Returns the \ref QCPGrid instance belonging to this axis. Access it to set details about the way the
  grid is displayed.
*/

/*! \fn static Qt::Orientation QCPAxis::orientation(AxisType type)

  Returns the orientation of the specified axis type

  \see orientation(), pixelOrientation
*/

/*! \fn int QCPAxis::pixelOrientation() const

  Returns which direction points towards higher coordinate values/keys, in pixel space.

  This method returns either 1 or -1. If it returns 1, then going in the positive direction along
  the orientation of the axis in pixels corresponds to going from lower to higher axis coordinates.
  On the other hand, if this method returns -1, going to smaller pixel values corresponds to going
  from lower to higher axis coordinates.

  For example, this is useful to easily shift axis coordinates by a certain amount given in pixels,
  without having to care about reversed or vertically aligned axes:

  \code
  double newKey = keyAxis->pixelToCoord(keyAxis->coordToPixel(oldKey)+10*keyAxis->pixelOrientation());
  \endcode

  \a newKey will then contain a key that is ten pixels towards higher keys, starting from \a oldKey.
*/

/*! \fn QSharedPointer<QCPAxisTicker> QCPAxis::ticker() const

  Returns a modifiable shared pointer to the currently installed axis ticker. The axis ticker is
  responsible for generating the tick positions and tick labels of this axis. You can access the
  \ref QCPAxisTicker with this method and modify basic properties such as the approximate tick count
  (\ref QCPAxisTicker::setTickCount).

  You can gain more control over the axis ticks by setting a different \ref QCPAxisTicker subclass, see
  the documentation there. A new axis ticker can be set with \ref setTicker.

  Since the ticker is stored in the axis as a shared pointer, multiple axes may share the same axis
  ticker simply by passing the same shared pointer to multiple axes.

  \see setTicker
*/

/* end of documentation of inline functions */
/* start of documentation of signals */

/*! \fn void QCPAxis::rangeChanged(const QCPRange &newRange)

  This signal is emitted when the range of this axis has changed. You can connect it to the \ref
  setRange slot of another axis to communicate the new range to the other axis, in order for it to
  be synchronized.

  You may also manipulate/correct the range with \ref setRange in a slot connected to this signal.
  This is useful if for example a maximum range span shall not be exceeded, or if the lower/upper
  range shouldn't go beyond certain values (see \ref QCPRange::bounded). For example, the following
  slot would limit the x axis to ranges between 0 and 10:
  \code
  customPlot->xAxis->setRange(newRange.bounded(0, 10))
  \endcode
*/

/*! \fn void QCPAxis::rangeChanged(const QCPRange &newRange, const QCPRange &oldRange)
  \overload

  Additionally to the new range, this signal also provides the previous range held by the axis as
  \a oldRange.
*/

/*! \fn void QCPAxis::scaleTypeChanged(QCPAxis::ScaleType scaleType);

  This signal is emitted when the scale type changes, by calls to \ref setScaleType
*/

/*! \fn void QCPAxis::selectionChanged(QCPAxis::SelectableParts selection)

  This signal is emitted when the selection state of this axis has changed, either by user interaction
  or by a direct call to \ref setSelectedParts.
*/

/*! \fn void QCPAxis::selectableChanged(const QCPAxis::SelectableParts &parts);

  This signal is emitted when the selectability changes, by calls to \ref setSelectableParts
*/

/* end of documentation of signals */

/*!
  Constructs an Axis instance of Type \a type for the axis rect \a parent.

  Usually it isn't necessary to instantiate axes directly, because you can let QCustomPlot create
  them for you with \ref QCPAxisRect::addAxis. If you want to use own QCPAxis-subclasses however,
  create them manually and then inject them also via \ref QCPAxisRect::addAxis.
*/
QCPAxis::QCPAxis(QCPAxisRect *parent, AxisType type) :
  QCPLayerable(parent->parentPlot(), QString(), parent),
  // axis base:
  mAxisType(type),
  mAxisRect(parent),
  mPadding(5),
  mOrientation(orientation(type)),
  mSelectableParts(spAxis | spTickLabels | spAxisLabel),
  mSelectedParts(spNone),
  mBasePen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
  mSelectedBasePen(QPen(Qt::blue, 2)),
  // axis label:
  mLabel(),
  mLabelFont(mParentPlot->font()),
  mSelectedLabelFont(QFont(mLabelFont.family(), mLabelFont.pointSize(), QFont::Bold)),
  mLabelColor(Qt::black),
  mSelectedLabelColor(Qt::blue),
  // tick labels:
  mTickLabels(true),
  mTickLabelFont(mParentPlot->font()),
  mSelectedTickLabelFont(QFont(mTickLabelFont.family(), mTickLabelFont.pointSize(), QFont::Bold)),
  mTickLabelColor(Qt::black),
  mSelectedTickLabelColor(Qt::blue),
  mNumberPrecision(6),
  mNumberFormatChar('g'),
  mNumberBeautifulPowers(true),
  // ticks and subticks:
  mTicks(true),
  mSubTicks(true),
  mTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
  mSelectedTickPen(QPen(Qt::blue, 2)),
  mSubTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
  mSelectedSubTickPen(QPen(Qt::blue, 2)),
  // scale and range:
  mRange(0, 5),
  mRangeReversed(false),
  mScaleType(stLinear),
  // internal members:
  mGrid(new QCPGrid(this)),
  mAxisPainter(new QCPAxisPainterPrivate(parent->parentPlot())),
  mTicker(new QCPAxisTicker),
  mCachedMarginValid(false),
  mCachedMargin(0)
{
  setParent(parent);
  mGrid->setVisible(false);
  setAntialiased(false);
  setLayer(mParentPlot->currentLayer()); // it's actually on that layer already, but we want it in front of the grid, so we place it on there again

  if (type == atTop)
  {
    setTickLabelPadding(3);
    setLabelPadding(6);
  } else if (type == atRight)
  {
    setTickLabelPadding(7);
    setLabelPadding(12);
  } else if (type == atBottom)
  {
    setTickLabelPadding(3);
    setLabelPadding(3);
  } else if (type == atLeft)
  {
    setTickLabelPadding(5);
    setLabelPadding(10);
  }
}

QCPAxis::~QCPAxis()
{
  delete mAxisPainter;
  delete mGrid; // delete grid here instead of via parent ~QObject for better defined deletion order
}

/* No documentation as it is a property getter */
int QCPAxis::tickLabelPadding() const
{
  return mAxisPainter->tickLabelPadding;
}

/* No documentation as it is a property getter */
double QCPAxis::tickLabelRotation() const
{
  return mAxisPainter->tickLabelRotation;
}

/* No documentation as it is a property getter */
QCPAxis::LabelSide QCPAxis::tickLabelSide() const
{
  return mAxisPainter->tickLabelSide;
}

/* No documentation as it is a property getter */
QString QCPAxis::numberFormat() const
{
  QString result;
  result.append(mNumberFormatChar);
  if (mNumberBeautifulPowers)
  {
    result.append(QLatin1Char('b'));
    if (mAxisPainter->numberMultiplyCross)
      result.append(QLatin1Char('c'));
  }
  return result;
}

/* No documentation as it is a property getter */
int QCPAxis::tickLengthIn() const
{
  return mAxisPainter->tickLengthIn;
}

/* No documentation as it is a property getter */
int QCPAxis::tickLengthOut() const
{
  return mAxisPainter->tickLengthOut;
}

/* No documentation as it is a property getter */
int QCPAxis::subTickLengthIn() const
{
  return mAxisPainter->subTickLengthIn;
}

/* No documentation as it is a property getter */
int QCPAxis::subTickLengthOut() const
{
  return mAxisPainter->subTickLengthOut;
}

/* No documentation as it is a property getter */
int QCPAxis::labelPadding() const
{
  return mAxisPainter->labelPadding;
}

/* No documentation as it is a property getter */
int QCPAxis::offset() const
{
  return mAxisPainter->offset;
}

/* No documentation as it is a property getter */
QCPLineEnding QCPAxis::lowerEnding() const
{
  return mAxisPainter->lowerEnding;
}

/* No documentation as it is a property getter */
QCPLineEnding QCPAxis::upperEnding() const
{
  return mAxisPainter->upperEnding;
}

/*!
  Sets whether the axis uses a linear scale or a logarithmic scale.

  Note that this method controls the coordinate transformation. For logarithmic scales, you will
  likely also want to use a logarithmic tick spacing and labeling, which can be achieved by setting
  the axis ticker to an instance of \ref QCPAxisTickerLog :

  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpaxisticker-log-creation

  See the documentation of \ref QCPAxisTickerLog about the details of logarithmic axis tick
  creation.

  \ref setNumberPrecision
*/
void QCPAxis::setScaleType(QCPAxis::ScaleType type)
{
  if (mScaleType != type)
  {
    mScaleType = type;
    if (mScaleType == stLogarithmic)
      setRange(mRange.sanitizedForLogScale());
    mCachedMarginValid = false;
    emit scaleTypeChanged(mScaleType);
  }
}

/*!
  Sets the range of the axis.

  This slot may be connected with the \ref rangeChanged signal of another axis so this axis
  is always synchronized with the other axis range, when it changes.

  To invert the direction of an axis, use \ref setRangeReversed.
*/
void QCPAxis::setRange(const QCPRange &range)
{
  if (range.lower == mRange.lower && range.upper == mRange.upper)
    return;

  if (!QCPRange::validRange(range)) return;
  QCPRange oldRange = mRange;
  if (mScaleType == stLogarithmic)
  {
    mRange = range.sanitizedForLogScale();
  } else
  {
    mRange = range.sanitizedForLinScale();
  }
  emit rangeChanged(mRange);
  emit rangeChanged(mRange, oldRange);
}

/*!
  Sets whether the user can (de-)select the parts in \a selectable by clicking on the QCustomPlot surface.
  (When \ref QCustomPlot::setInteractions contains iSelectAxes.)

  However, even when \a selectable is set to a value not allowing the selection of a specific part,
  it is still possible to set the selection of this part manually, by calling \ref setSelectedParts
  directly.

  \see SelectablePart, setSelectedParts
*/
void QCPAxis::setSelectableParts(const SelectableParts &selectable)
{
  if (mSelectableParts != selectable)
  {
    mSelectableParts = selectable;
    emit selectableChanged(mSelectableParts);
  }
}

/*!
  Sets the selected state of the respective axis parts described by \ref SelectablePart. When a part
  is selected, it uses a different pen/font.

  The entire selection mechanism for axes is handled automatically when \ref
  QCustomPlot::setInteractions contains iSelectAxes. You only need to call this function when you
  wish to change the selection state manually.

  This function can change the selection state of a part, independent of the \ref setSelectableParts setting.

  emits the \ref selectionChanged signal when \a selected is different from the previous selection state.

  \see SelectablePart, setSelectableParts, selectTest, setSelectedBasePen, setSelectedTickPen, setSelectedSubTickPen,
  setSelectedTickLabelFont, setSelectedLabelFont, setSelectedTickLabelColor, setSelectedLabelColor
*/
void QCPAxis::setSelectedParts(const SelectableParts &selected)
{
  if (mSelectedParts != selected)
  {
    mSelectedParts = selected;
    emit selectionChanged(mSelectedParts);
  }
}

/*!
  \overload

  Sets the lower and upper bound of the axis range.

  To invert the direction of an axis, use \ref setRangeReversed.

  There is also a slot to set a range, see \ref setRange(const QCPRange &range).
*/
void QCPAxis::setRange(double lower, double upper)
{
  if (lower == mRange.lower && upper == mRange.upper)
    return;

  if (!QCPRange::validRange(lower, upper)) return;
  QCPRange oldRange = mRange;
  mRange.lower = lower;
  mRange.upper = upper;
  if (mScaleType == stLogarithmic)
  {
    mRange = mRange.sanitizedForLogScale();
  } else
  {
    mRange = mRange.sanitizedForLinScale();
  }
  emit rangeChanged(mRange);
  emit rangeChanged(mRange, oldRange);
}

/*!
  \overload

  Sets the range of the axis.

  The \a position coordinate indicates together with the \a alignment parameter, where the new
  range will be positioned. \a size defines the size of the new axis range. \a alignment may be
  Qt::AlignLeft, Qt::AlignRight or Qt::AlignCenter. This will cause the left border, right border,
  or center of the range to be aligned with \a position. Any other values of \a alignment will
  default to Qt::AlignCenter.
*/
void QCPAxis::setRange(double position, double size, Qt::AlignmentFlag alignment)
{
  if (alignment == Qt::AlignLeft)
    setRange(position, position+size);
  else if (alignment == Qt::AlignRight)
    setRange(position-size, position);
  else // alignment == Qt::AlignCenter
    setRange(position-size/2.0, position+size/2.0);
}

/*!
  Sets the lower bound of the axis range. The upper bound is not changed.
  \see setRange
*/
void QCPAxis::setRangeLower(double lower)
{
  if (mRange.lower == lower)
    return;

  QCPRange oldRange = mRange;
  mRange.lower = lower;
  if (mScaleType == stLogarithmic)
  {
    mRange = mRange.sanitizedForLogScale();
  } else
  {
    mRange = mRange.sanitizedForLinScale();
  }
  emit rangeChanged(mRange);
  emit rangeChanged(mRange, oldRange);
}

/*!
  Sets the upper bound of the axis range. The lower bound is not changed.
  \see setRange
*/
void QCPAxis::setRangeUpper(double upper)
{
  if (mRange.upper == upper)
    return;

  QCPRange oldRange = mRange;
  mRange.upper = upper;
  if (mScaleType == stLogarithmic)
  {
    mRange = mRange.sanitizedForLogScale();
  } else
  {
    mRange = mRange.sanitizedForLinScale();
  }
  emit rangeChanged(mRange);
  emit rangeChanged(mRange, oldRange);
}

/*!
  Sets whether the axis range (direction) is displayed reversed. Normally, the values on horizontal
  axes increase left to right, on vertical axes bottom to top. When \a reversed is set to true, the
  direction of increasing values is inverted.

  Note that the range and data interface stays the same for reversed axes, e.g. the \a lower part
  of the \ref setRange interface will still reference the mathematically smaller number than the \a
  upper part.
*/
void QCPAxis::setRangeReversed(bool reversed)
{
  mRangeReversed = reversed;
}

/*!
  The axis ticker is responsible for generating the tick positions and tick labels. See the
  documentation of QCPAxisTicker for details on how to work with axis tickers.

  You can change the tick positioning/labeling behaviour of this axis by setting a different
  QCPAxisTicker subclass using this method. If you only wish to modify the currently installed axis
  ticker, access it via \ref ticker.

  Since the ticker is stored in the axis as a shared pointer, multiple axes may share the same axis
  ticker simply by passing the same shared pointer to multiple axes.

  \see ticker
*/
void QCPAxis::setTicker(QSharedPointer<QCPAxisTicker> ticker)
{
  if (ticker)
    mTicker = ticker;
  else
    qDebug() << Q_FUNC_INFO << "can not set 0 as axis ticker";
  // no need to invalidate margin cache here because produced tick labels are checked for changes in setupTickVector
}

/*!
  Sets whether tick marks are displayed.

  Note that setting \a show to false does not imply that tick labels are invisible, too. To achieve
  that, see \ref setTickLabels.

  \see setSubTicks
*/
void QCPAxis::setTicks(bool show)
{
  if (mTicks != show)
  {
    mTicks = show;
    mCachedMarginValid = false;
  }
}

/*!
  Sets whether tick labels are displayed. Tick labels are the numbers drawn next to tick marks.
*/
void QCPAxis::setTickLabels(bool show)
{
  if (mTickLabels != show)
  {
    mTickLabels = show;
    mCachedMarginValid = false;
    if (!mTickLabels)
      mTickVectorLabels.clear();
  }
}

/*!
  Sets the distance between the axis base line (including any outward ticks) and the tick labels.
  \see setLabelPadding, setPadding
*/
void QCPAxis::setTickLabelPadding(int padding)
{
  if (mAxisPainter->tickLabelPadding != padding)
  {
    mAxisPainter->tickLabelPadding = padding;
    mCachedMarginValid = false;
  }
}

/*!
  Sets the font of the tick labels.

  \see setTickLabels, setTickLabelColor
*/
void QCPAxis::setTickLabelFont(const QFont &font)
{
  if (font != mTickLabelFont)
  {
    mTickLabelFont = font;
    mCachedMarginValid = false;
  }
}

/*!
  Sets the color of the tick labels.

  \see setTickLabels, setTickLabelFont
*/
void QCPAxis::setTickLabelColor(const QColor &color)
{
  mTickLabelColor = color;
}

/*!
  Sets the rotation of the tick labels. If \a degrees is zero, the labels are drawn normally. Else,
  the tick labels are drawn rotated by \a degrees clockwise. The specified angle is bound to values
  from -90 to 90 degrees.

  If \a degrees is exactly -90, 0 or 90, the tick labels are centered on the tick coordinate. For
  other angles, the label is drawn with an offset such that it seems to point toward or away from
  the tick mark.
*/
void QCPAxis::setTickLabelRotation(double degrees)
{
  if (!qFuzzyIsNull(degrees-mAxisPainter->tickLabelRotation))
  {
    mAxisPainter->tickLabelRotation = qBound(-90.0, degrees, 90.0);
    mCachedMarginValid = false;
  }
}

/*!
  Sets whether the tick labels (numbers) shall appear inside or outside the axis rect.

  The usual and default setting is \ref lsOutside. Very compact plots sometimes require tick labels
  to be inside the axis rect, to save space. If \a side is set to \ref lsInside, the tick labels
  appear on the inside are additionally clipped to the axis rect.
*/
void QCPAxis::setTickLabelSide(LabelSide side)
{
  mAxisPainter->tickLabelSide = side;
  mCachedMarginValid = false;
}

/*!
  Sets the number format for the numbers in tick labels. This \a formatCode is an extended version
  of the format code used e.g. by QString::number() and QLocale::toString(). For reference about
  that, see the "Argument Formats" section in the detailed description of the QString class.

  \a formatCode is a string of one, two or three characters. The first character is identical to
  the normal format code used by Qt. In short, this means: 'e'/'E' scientific format, 'f' fixed
  format, 'g'/'G' scientific or fixed, whichever is shorter.

  The second and third characters are optional and specific to QCustomPlot:\n
  If the first char was 'e' or 'g', numbers are/might be displayed in the scientific format, e.g.
  "5.5e9", which is ugly in a plot. So when the second char of \a formatCode is set to 'b' (for
  "beautiful"), those exponential numbers are formatted in a more natural way, i.e. "5.5
  [multiplication sign] 10 [superscript] 9". By default, the multiplication sign is a centered dot.
  If instead a cross should be shown (as is usual in the USA), the third char of \a formatCode can
  be set to 'c'. The inserted multiplication signs are the UTF-8 characters 215 (0xD7) for the
  cross and 183 (0xB7) for the dot.

  Examples for \a formatCode:
  \li \c g normal format code behaviour. If number is small, fixed format is used, if number is large,
  normal scientific format is used
  \li \c gb If number is small, fixed format is used, if number is large, scientific format is used with
  beautifully typeset decimal powers and a dot as multiplication sign
  \li \c ebc All numbers are in scientific format with beautifully typeset decimal power and a cross as
  multiplication sign
  \li \c fb illegal format code, since fixed format doesn't support (or need) beautifully typeset decimal
  powers. Format code will be reduced to 'f'.
  \li \c hello illegal format code, since first char is not 'e', 'E', 'f', 'g' or 'G'. Current format
  code will not be changed.
*/
void QCPAxis::setNumberFormat(const QString &formatCode)
{
  if (formatCode.isEmpty())
  {
    qDebug() << Q_FUNC_INFO << "Passed formatCode is empty";
    return;
  }
  mCachedMarginValid = false;

  // interpret first char as number format char:
  QString allowedFormatChars(QLatin1String("eEfgG"));
  if (allowedFormatChars.contains(formatCode.at(0)))
  {
    mNumberFormatChar = QLatin1Char(formatCode.at(0).toLatin1());
  } else
  {
    qDebug() << Q_FUNC_INFO << "Invalid number format code (first char not in 'eEfgG'):" << formatCode;
    return;
  }
  if (formatCode.length() < 2)
  {
    mNumberBeautifulPowers = false;
    mAxisPainter->numberMultiplyCross = false;
    return;
  }

  // interpret second char as indicator for beautiful decimal powers:
  if (formatCode.at(1) == QLatin1Char('b') && (mNumberFormatChar == QLatin1Char('e') || mNumberFormatChar == QLatin1Char('g')))
  {
    mNumberBeautifulPowers = true;
  } else
  {
    qDebug() << Q_FUNC_INFO << "Invalid number format code (second char not 'b' or first char neither 'e' nor 'g'):" << formatCode;
    return;
  }
  if (formatCode.length() < 3)
  {
    mAxisPainter->numberMultiplyCross = false;
    return;
  }

  // interpret third char as indicator for dot or cross multiplication symbol:
  if (formatCode.at(2) == QLatin1Char('c'))
  {
    mAxisPainter->numberMultiplyCross = true;
  } else if (formatCode.at(2) == QLatin1Char('d'))
  {
    mAxisPainter->numberMultiplyCross = false;
  } else
  {
    qDebug() << Q_FUNC_INFO << "Invalid number format code (third char neither 'c' nor 'd'):" << formatCode;
    return;
  }
}

/*!
  Sets the precision of the tick label numbers. See QLocale::toString(double i, char f, int prec)
  for details. The effect of precisions are most notably for number Formats starting with 'e', see
  \ref setNumberFormat
*/
void QCPAxis::setNumberPrecision(int precision)
{
  if (mNumberPrecision != precision)
  {
    mNumberPrecision = precision;
    mCachedMarginValid = false;
  }
}

/*!
  Sets the length of the ticks in pixels. \a inside is the length the ticks will reach inside the
  plot and \a outside is the length they will reach outside the plot. If \a outside is greater than
  zero, the tick labels and axis label will increase their distance to the axis accordingly, so
  they won't collide with the ticks.

  \see setSubTickLength, setTickLengthIn, setTickLengthOut
*/
void QCPAxis::setTickLength(int inside, int outside)
{
  setTickLengthIn(inside);
  setTickLengthOut(outside);
}

/*!
  Sets the length of the inward ticks in pixels. \a inside is the length the ticks will reach
  inside the plot.

  \see setTickLengthOut, setTickLength, setSubTickLength
*/
void QCPAxis::setTickLengthIn(int inside)
{
  if (mAxisPainter->tickLengthIn != inside)
  {
    mAxisPainter->tickLengthIn = inside;
  }
}

/*!
  Sets the length of the outward ticks in pixels. \a outside is the length the ticks will reach
  outside the plot. If \a outside is greater than zero, the tick labels and axis label will
  increase their distance to the axis accordingly, so they won't collide with the ticks.

  \see setTickLengthIn, setTickLength, setSubTickLength
*/
void QCPAxis::setTickLengthOut(int outside)
{
  if (mAxisPainter->tickLengthOut != outside)
  {
    mAxisPainter->tickLengthOut = outside;
    mCachedMarginValid = false; // only outside tick length can change margin
  }
}

/*!
  Sets whether sub tick marks are displayed.

  Sub ticks are only potentially visible if (major) ticks are also visible (see \ref setTicks)

  \see setTicks
*/
void QCPAxis::setSubTicks(bool show)
{
  if (mSubTicks != show)
  {
    mSubTicks = show;
    mCachedMarginValid = false;
  }
}

/*!
  Sets the length of the subticks in pixels. \a inside is the length the subticks will reach inside
  the plot and \a outside is the length they will reach outside the plot. If \a outside is greater
  than zero, the tick labels and axis label will increase their distance to the axis accordingly,
  so they won't collide with the ticks.

  \see setTickLength, setSubTickLengthIn, setSubTickLengthOut
*/
void QCPAxis::setSubTickLength(int inside, int outside)
{
  setSubTickLengthIn(inside);
  setSubTickLengthOut(outside);
}

/*!
  Sets the length of the inward subticks in pixels. \a inside is the length the subticks will reach inside
  the plot.

  \see setSubTickLengthOut, setSubTickLength, setTickLength
*/
void QCPAxis::setSubTickLengthIn(int inside)
{
  if (mAxisPainter->subTickLengthIn != inside)
  {
    mAxisPainter->subTickLengthIn = inside;
  }
}

/*!
  Sets the length of the outward subticks in pixels. \a outside is the length the subticks will reach
  outside the plot. If \a outside is greater than zero, the tick labels will increase their
  distance to the axis accordingly, so they won't collide with the ticks.

  \see setSubTickLengthIn, setSubTickLength, setTickLength
*/
void QCPAxis::setSubTickLengthOut(int outside)
{
  if (mAxisPainter->subTickLengthOut != outside)
  {
    mAxisPainter->subTickLengthOut = outside;
    mCachedMarginValid = false; // only outside tick length can change margin
  }
}

/*!
  Sets the pen, the axis base line is drawn with.

  \see setTickPen, setSubTickPen
*/
void QCPAxis::setBasePen(const QPen &pen)
{
  mBasePen = pen;
}

/*!
  Sets the pen, tick marks will be drawn with.

  \see setTickLength, setBasePen
*/
void QCPAxis::setTickPen(const QPen &pen)
{
  mTickPen = pen;
}

/*!
  Sets the pen, subtick marks will be drawn with.

  \see setSubTickCount, setSubTickLength, setBasePen
*/
void QCPAxis::setSubTickPen(const QPen &pen)
{
  mSubTickPen = pen;
}

/*!
  Sets the font of the axis label.

  \see setLabelColor
*/
void QCPAxis::setLabelFont(const QFont &font)
{
  if (mLabelFont != font)
  {
    mLabelFont = font;
    mCachedMarginValid = false;
  }
}

/*!
  Sets the color of the axis label.

  \see setLabelFont
*/
void QCPAxis::setLabelColor(const QColor &color)
{
  mLabelColor = color;
}

/*!
  Sets the text of the axis label that will be shown below/above or next to the axis, depending on
  its orientation. To disable axis labels, pass an empty string as \a str.
*/
void QCPAxis::setLabel(const QString &str)
{
  if (mLabel != str)
  {
    mLabel = str;
    mCachedMarginValid = false;
  }
}

/*!
  Sets the distance between the tick labels and the axis label.

  \see setTickLabelPadding, setPadding
*/
void QCPAxis::setLabelPadding(int padding)
{
  if (mAxisPainter->labelPadding != padding)
  {
    mAxisPainter->labelPadding = padding;
    mCachedMarginValid = false;
  }
}

/*!
  Sets the padding of the axis.

  When \ref QCPAxisRect::setAutoMargins is enabled, the padding is the additional outer most space,
  that is left blank.

  The axis padding has no meaning if \ref QCPAxisRect::setAutoMargins is disabled.

  \see setLabelPadding, setTickLabelPadding
*/
void QCPAxis::setPadding(int padding)
{
  if (mPadding != padding)
  {
    mPadding = padding;
    mCachedMarginValid = false;
  }
}

/*!
  Sets the offset the axis has to its axis rect side.

  If an axis rect side has multiple axes and automatic margin calculation is enabled for that side,
  only the offset of the inner most axis has meaning (even if it is set to be invisible). The
  offset of the other, outer axes is controlled automatically, to place them at appropriate
  positions.
*/
void QCPAxis::setOffset(int offset)
{
  mAxisPainter->offset = offset;
}

/*!
  Sets the font that is used for tick labels when they are selected.

  \see setTickLabelFont, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
*/
void QCPAxis::setSelectedTickLabelFont(const QFont &font)
{
  if (font != mSelectedTickLabelFont)
  {
    mSelectedTickLabelFont = font;
    // don't set mCachedMarginValid to false here because margin calculation is always done with non-selected fonts
  }
}

/*!
  Sets the font that is used for the axis label when it is selected.

  \see setLabelFont, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
*/
void QCPAxis::setSelectedLabelFont(const QFont &font)
{
  mSelectedLabelFont = font;
  // don't set mCachedMarginValid to false here because margin calculation is always done with non-selected fonts
}

/*!
  Sets the color that is used for tick labels when they are selected.

  \see setTickLabelColor, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
*/
void QCPAxis::setSelectedTickLabelColor(const QColor &color)
{
  if (color != mSelectedTickLabelColor)
  {
    mSelectedTickLabelColor = color;
  }
}

/*!
  Sets the color that is used for the axis label when it is selected.

  \see setLabelColor, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
*/
void QCPAxis::setSelectedLabelColor(const QColor &color)
{
  mSelectedLabelColor = color;
}

/*!
  Sets the pen that is used to draw the axis base line when selected.

  \see setBasePen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
*/
void QCPAxis::setSelectedBasePen(const QPen &pen)
{
  mSelectedBasePen = pen;
}

/*!
  Sets the pen that is used to draw the (major) ticks when selected.

  \see setTickPen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
*/
void QCPAxis::setSelectedTickPen(const QPen &pen)
{
  mSelectedTickPen = pen;
}

/*!
  Sets the pen that is used to draw the subticks when selected.

  \see setSubTickPen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
*/
void QCPAxis::setSelectedSubTickPen(const QPen &pen)
{
  mSelectedSubTickPen = pen;
}

/*!
  Sets the style for the lower axis ending. See the documentation of QCPLineEnding for available
  styles.

  For horizontal axes, this method refers to the left ending, for vertical axes the bottom ending.
  Note that this meaning does not change when the axis range is reversed with \ref
  setRangeReversed.

  \see setUpperEnding
*/
void QCPAxis::setLowerEnding(const QCPLineEnding &ending)
{
  mAxisPainter->lowerEnding = ending;
}

/*!
  Sets the style for the upper axis ending. See the documentation of QCPLineEnding for available
  styles.

  For horizontal axes, this method refers to the right ending, for vertical axes the top ending.
  Note that this meaning does not change when the axis range is reversed with \ref
  setRangeReversed.

  \see setLowerEnding
*/
void QCPAxis::setUpperEnding(const QCPLineEnding &ending)
{
  mAxisPainter->upperEnding = ending;
}

/*!
  If the scale type (\ref setScaleType) is \ref stLinear, \a diff is added to the lower and upper
  bounds of the range. The range is simply moved by \a diff.

  If the scale type is \ref stLogarithmic, the range bounds are multiplied by \a diff. This
  corresponds to an apparent "linear" move in logarithmic scaling by a distance of log(diff).
*/
void QCPAxis::moveRange(double diff)
{
  QCPRange oldRange = mRange;
  if (mScaleType == stLinear)
  {
    mRange.lower += diff;
    mRange.upper += diff;
  } else // mScaleType == stLogarithmic
  {
    mRange.lower *= diff;
    mRange.upper *= diff;
  }
  emit rangeChanged(mRange);
  emit rangeChanged(mRange, oldRange);
}

/*!
  Scales the range of this axis by \a factor around the center of the current axis range. For
  example, if \a factor is 2.0, then the axis range will double its size, and the point at the axis
  range center won't have changed its position in the QCustomPlot widget (i.e. coordinates around
  the center will have moved symmetrically closer).

  If you wish to scale around a different coordinate than the current axis range center, use the
  overload \ref scaleRange(double factor, double center).
*/
void QCPAxis::scaleRange(double factor)
{
  scaleRange(factor, range().center());
}

/*! \overload

  Scales the range of this axis by \a factor around the coordinate \a center. For example, if \a
  factor is 2.0, \a center is 1.0, then the axis range will double its size, and the point at
  coordinate 1.0 won't have changed its position in the QCustomPlot widget (i.e. coordinates
  around 1.0 will have moved symmetrically closer to 1.0).

  \see scaleRange(double factor)
*/
void QCPAxis::scaleRange(double factor, double center)
{
  QCPRange oldRange = mRange;
  if (mScaleType == stLinear)
  {
    QCPRange newRange;
    newRange.lower = (mRange.lower-center)*factor + center;
    newRange.upper = (mRange.upper-center)*factor + center;
    if (QCPRange::validRange(newRange))
      mRange = newRange.sanitizedForLinScale();
  } else // mScaleType == stLogarithmic
  {
    if ((mRange.upper < 0 && center < 0) || (mRange.upper > 0 && center > 0)) // make sure center has same sign as range
    {
      QCPRange newRange;
      newRange.lower = qPow(mRange.lower/center, factor)*center;
      newRange.upper = qPow(mRange.upper/center, factor)*center;
      if (QCPRange::validRange(newRange))
        mRange = newRange.sanitizedForLogScale();
    } else
      qDebug() << Q_FUNC_INFO << "Center of scaling operation doesn't lie in same logarithmic sign domain as range:" << center;
  }
  emit rangeChanged(mRange);
  emit rangeChanged(mRange, oldRange);
}

/*!
  Scales the range of this axis to have a certain scale \a ratio to \a otherAxis. The scaling will
  be done around the center of the current axis range.

  For example, if \a ratio is 1, this axis is the \a yAxis and \a otherAxis is \a xAxis, graphs
  plotted with those axes will appear in a 1:1 aspect ratio, independent of the aspect ratio the
  axis rect has.

  This is an operation that changes the range of this axis once, it doesn't fix the scale ratio
  indefinitely. Note that calling this function in the constructor of the QCustomPlot's parent
  won't have the desired effect, since the widget dimensions aren't defined yet, and a resizeEvent
  will follow.
*/
void QCPAxis::setScaleRatio(const QCPAxis *otherAxis, double ratio)
{
  int otherPixelSize, ownPixelSize;

  if (otherAxis->orientation() == Qt::Horizontal)
    otherPixelSize = otherAxis->axisRect()->width();
  else
    otherPixelSize = otherAxis->axisRect()->height();

  if (orientation() == Qt::Horizontal)
    ownPixelSize = axisRect()->width();
  else
    ownPixelSize = axisRect()->height();

  double newRangeSize = ratio*otherAxis->range().size()*ownPixelSize/(double)otherPixelSize;
  setRange(range().center(), newRangeSize, Qt::AlignCenter);
}

/*!
  Changes the axis range such that all plottables associated with this axis are fully visible in
  that dimension.

  \see QCPAbstractPlottable::rescaleAxes, QCustomPlot::rescaleAxes
*/
void QCPAxis::rescale(bool onlyVisiblePlottables)
{
  QList<QCPAbstractPlottable*> p = plottables();
  QCPRange newRange;
  bool haveRange = false;
  for (int i=0; i<p.size(); ++i)
  {
    if (!p.at(i)->realVisibility() && onlyVisiblePlottables)
      continue;
    QCPRange plottableRange;
    bool currentFoundRange;
    QCP::SignDomain signDomain = QCP::sdBoth;
    if (mScaleType == stLogarithmic)
      signDomain = (mRange.upper < 0 ? QCP::sdNegative : QCP::sdPositive);
    if (p.at(i)->keyAxis() == this)
      plottableRange = p.at(i)->getKeyRange(currentFoundRange, signDomain);
    else
      plottableRange = p.at(i)->getValueRange(currentFoundRange, signDomain);
    if (currentFoundRange)
    {
      if (!haveRange)
        newRange = plottableRange;
      else
        newRange.expand(plottableRange);
      haveRange = true;
    }
  }
  if (haveRange)
  {
    if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
    {
      double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
      if (mScaleType == stLinear)
      {
        newRange.lower = center-mRange.size()/2.0;
        newRange.upper = center+mRange.size()/2.0;
      } else // mScaleType == stLogarithmic
      {
        newRange.lower = center/qSqrt(mRange.upper/mRange.lower);
        newRange.upper = center*qSqrt(mRange.upper/mRange.lower);
      }
    }
    setRange(newRange);
  }
}

/*!
  Transforms \a value, in pixel coordinates of the QCustomPlot widget, to axis coordinates.
*/
double QCPAxis::pixelToCoord(double value) const
{
  if (orientation() == Qt::Horizontal)
  {
    if (mScaleType == stLinear)
    {
      if (!mRangeReversed)
        return (value-mAxisRect->left())/(double)mAxisRect->width()*mRange.size()+mRange.lower;
      else
        return -(value-mAxisRect->left())/(double)mAxisRect->width()*mRange.size()+mRange.upper;
    } else // mScaleType == stLogarithmic
    {
      if (!mRangeReversed)
        return qPow(mRange.upper/mRange.lower, (value-mAxisRect->left())/(double)mAxisRect->width())*mRange.lower;
      else
        return qPow(mRange.upper/mRange.lower, (mAxisRect->left()-value)/(double)mAxisRect->width())*mRange.upper;
    }
  } else // orientation() == Qt::Vertical
  {
    if (mScaleType == stLinear)
    {
      if (!mRangeReversed)
        return (mAxisRect->bottom()-value)/(double)mAxisRect->height()*mRange.size()+mRange.lower;
      else
        return -(mAxisRect->bottom()-value)/(double)mAxisRect->height()*mRange.size()+mRange.upper;
    } else // mScaleType == stLogarithmic
    {
      if (!mRangeReversed)
        return qPow(mRange.upper/mRange.lower, (mAxisRect->bottom()-value)/(double)mAxisRect->height())*mRange.lower;
      else
        return qPow(mRange.upper/mRange.lower, (value-mAxisRect->bottom())/(double)mAxisRect->height())*mRange.upper;
    }
  }
}

/*!
  Transforms \a value, in coordinates of the axis, to pixel coordinates of the QCustomPlot widget.
*/
double QCPAxis::coordToPixel(double value) const
{
  if (orientation() == Qt::Horizontal)
  {
    if (mScaleType == stLinear)
    {
      if (!mRangeReversed)
        return (value-mRange.lower)/mRange.size()*mAxisRect->width()+mAxisRect->left();
      else
        return (mRange.upper-value)/mRange.size()*mAxisRect->width()+mAxisRect->left();
    } else // mScaleType == stLogarithmic
    {
      if (value >= 0.0 && mRange.upper < 0.0) // invalid value for logarithmic scale, just draw it outside visible range
        return !mRangeReversed ? mAxisRect->right()+200 : mAxisRect->left()-200;
      else if (value <= 0.0 && mRange.upper >= 0.0) // invalid value for logarithmic scale, just draw it outside visible range
        return !mRangeReversed ? mAxisRect->left()-200 : mAxisRect->right()+200;
      else
      {
        if (!mRangeReversed)
          return qLn(value/mRange.lower)/qLn(mRange.upper/mRange.lower)*mAxisRect->width()+mAxisRect->left();
        else
          return qLn(mRange.upper/value)/qLn(mRange.upper/mRange.lower)*mAxisRect->width()+mAxisRect->left();
      }
    }
  } else // orientation() == Qt::Vertical
  {
    if (mScaleType == stLinear)
    {
      if (!mRangeReversed)
        return mAxisRect->bottom()-(value-mRange.lower)/mRange.size()*mAxisRect->height();
      else
        return mAxisRect->bottom()-(mRange.upper-value)/mRange.size()*mAxisRect->height();
    } else // mScaleType == stLogarithmic
    {
      if (value >= 0.0 && mRange.upper < 0.0) // invalid value for logarithmic scale, just draw it outside visible range
        return !mRangeReversed ? mAxisRect->top()-200 : mAxisRect->bottom()+200;
      else if (value <= 0.0 && mRange.upper >= 0.0) // invalid value for logarithmic scale, just draw it outside visible range
        return !mRangeReversed ? mAxisRect->bottom()+200 : mAxisRect->top()-200;
      else
      {
        if (!mRangeReversed)
          return mAxisRect->bottom()-qLn(value/mRange.lower)/qLn(mRange.upper/mRange.lower)*mAxisRect->height();
        else
          return mAxisRect->bottom()-qLn(mRange.upper/value)/qLn(mRange.upper/mRange.lower)*mAxisRect->height();
      }
    }
  }
}

/*!
  Returns the part of the axis that is hit by \a pos (in pixels). The return value of this function
  is independent of the user-selectable parts defined with \ref setSelectableParts. Further, this
  function does not change the current selection state of the axis.

  If the axis is not visible (\ref setVisible), this function always returns \ref spNone.

  \see setSelectedParts, setSelectableParts, QCustomPlot::setInteractions
*/
QCPAxis::SelectablePart QCPAxis::getPartAt(const QPointF &pos) const
{
  if (!mVisible)
    return spNone;

  if (mAxisPainter->axisSelectionBox().contains(pos.toPoint()))
    return spAxis;
  else if (mAxisPainter->tickLabelsSelectionBox().contains(pos.toPoint()))
    return spTickLabels;
  else if (mAxisPainter->labelSelectionBox().contains(pos.toPoint()))
    return spAxisLabel;
  else
    return spNone;
}

/* inherits documentation from base class */
double QCPAxis::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  if (!mParentPlot) return -1;
  SelectablePart part = getPartAt(pos);
  if ((onlySelectable && !mSelectableParts.testFlag(part)) || part == spNone)
    return -1;

  if (details)
    details->setValue(part);
  return mParentPlot->selectionTolerance()*0.99;
}

/*!
  Returns a list of all the plottables that have this axis as key or value axis.

  If you are only interested in plottables of type QCPGraph, see \ref graphs.

  \see graphs, items
*/
QList<QCPAbstractPlottable*> QCPAxis::plottables() const
{
  QList<QCPAbstractPlottable*> result;
  if (!mParentPlot) return result;

  for (int i=0; i<mParentPlot->mPlottables.size(); ++i)
  {
    if (mParentPlot->mPlottables.at(i)->keyAxis() == this ||mParentPlot->mPlottables.at(i)->valueAxis() == this)
      result.append(mParentPlot->mPlottables.at(i));
  }
  return result;
}

/*!
  Returns a list of all the graphs that have this axis as key or value axis.

  \see plottables, items
*/
QList<QCPGraph*> QCPAxis::graphs() const
{
  QList<QCPGraph*> result;
  if (!mParentPlot) return result;

  for (int i=0; i<mParentPlot->mGraphs.size(); ++i)
  {
    if (mParentPlot->mGraphs.at(i)->keyAxis() == this || mParentPlot->mGraphs.at(i)->valueAxis() == this)
      result.append(mParentPlot->mGraphs.at(i));
  }
  return result;
}

/*!
  Returns a list of all the items that are associated with this axis. An item is considered
  associated with an axis if at least one of its positions uses the axis as key or value axis.

  \see plottables, graphs
*/
QList<QCPAbstractItem*> QCPAxis::items() const
{
  QList<QCPAbstractItem*> result;
  if (!mParentPlot) return result;

  for (int itemId=0; itemId<mParentPlot->mItems.size(); ++itemId)
  {
    QList<QCPItemPosition*> positions = mParentPlot->mItems.at(itemId)->positions();
    for (int posId=0; posId<positions.size(); ++posId)
    {
      if (positions.at(posId)->keyAxis() == this || positions.at(posId)->valueAxis() == this)
      {
        result.append(mParentPlot->mItems.at(itemId));
        break;
      }
    }
  }
  return result;
}

/*!
  Transforms a margin side to the logically corresponding axis type. (QCP::msLeft to
  QCPAxis::atLeft, QCP::msRight to QCPAxis::atRight, etc.)
*/
QCPAxis::AxisType QCPAxis::marginSideToAxisType(QCP::MarginSide side)
{
  switch (side)
  {
    case QCP::msLeft: return atLeft;
    case QCP::msRight: return atRight;
    case QCP::msTop: return atTop;
    case QCP::msBottom: return atBottom;
    default: break;
  }
  qDebug() << Q_FUNC_INFO << "Invalid margin side passed:" << (int)side;
  return atLeft;
}

/*!
  Returns the axis type that describes the opposite axis of an axis with the specified \a type.
*/
QCPAxis::AxisType QCPAxis::opposite(QCPAxis::AxisType type)
{
  switch (type)
  {
    case atLeft: return atRight; break;
    case atRight: return atLeft; break;
    case atBottom: return atTop; break;
    case atTop: return atBottom; break;
    default: qDebug() << Q_FUNC_INFO << "invalid axis type"; return atLeft; break;
  }
}

/* inherits documentation from base class */
void QCPAxis::selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged)
{
  Q_UNUSED(event)
  SelectablePart part = details.value<SelectablePart>();
  if (mSelectableParts.testFlag(part))
  {
    SelectableParts selBefore = mSelectedParts;
    setSelectedParts(additive ? mSelectedParts^part : part);
    if (selectionStateChanged)
      *selectionStateChanged = mSelectedParts != selBefore;
  }
}

/* inherits documentation from base class */
void QCPAxis::deselectEvent(bool *selectionStateChanged)
{
  SelectableParts selBefore = mSelectedParts;
  setSelectedParts(mSelectedParts & ~mSelectableParts);
  if (selectionStateChanged)
    *selectionStateChanged = mSelectedParts != selBefore;
}

/*! \internal

  This mouse event reimplementation provides the functionality to let the user drag individual axes
  exclusively, by startig the drag on top of the axis.

  For the axis to accept this event and perform the single axis drag, the parent \ref QCPAxisRect
  must be configured accordingly, i.e. it must allow range dragging in the orientation of this axis
  (\ref QCPAxisRect::setRangeDrag) and this axis must be a draggable axis (\ref
  QCPAxisRect::setRangeDragAxes)

  \seebaseclassmethod

  \note The dragging of possibly multiple axes at once by starting the drag anywhere in the axis
  rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::mousePressEvent.
*/
void QCPAxis::mousePressEvent(QMouseEvent *event, const QVariant &details)
{
  Q_UNUSED(details)
  if (!mParentPlot->interactions().testFlag(QCP::iRangeDrag) ||
      !mAxisRect->rangeDrag().testFlag(orientation()) ||
      !mAxisRect->rangeDragAxes(orientation()).contains(this))
  {
    event->ignore();
    return;
  }

  if (event->buttons() & Qt::LeftButton)
  {
    mDragging = true;
    // initialize antialiasing backup in case we start dragging:
    if (mParentPlot->noAntialiasingOnDrag())
    {
      mAADragBackup = mParentPlot->antialiasedElements();
      mNotAADragBackup = mParentPlot->notAntialiasedElements();
    }
    // Mouse range dragging interaction:
    if (mParentPlot->interactions().testFlag(QCP::iRangeDrag))
      mDragStartRange = mRange;
  }
}

/*! \internal

  This mouse event reimplementation provides the functionality to let the user drag individual axes
  exclusively, by startig the drag on top of the axis.

  \seebaseclassmethod

  \note The dragging of possibly multiple axes at once by starting the drag anywhere in the axis
  rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::mousePressEvent.

  \see QCPAxis::mousePressEvent
*/
void QCPAxis::mouseMoveEvent(QMouseEvent *event, const QPointF &startPos)
{
  if (mDragging)
  {
    const double startPixel = orientation() == Qt::Horizontal ? startPos.x() : startPos.y();
    const double currentPixel = orientation() == Qt::Horizontal ? event->pos().x() : event->pos().y();
    if (mScaleType == QCPAxis::stLinear)
    {
      const double diff = pixelToCoord(startPixel) - pixelToCoord(currentPixel);
      setRange(mDragStartRange.lower+diff, mDragStartRange.upper+diff);
    } else if (mScaleType == QCPAxis::stLogarithmic)
    {
      const double diff = pixelToCoord(startPixel) / pixelToCoord(currentPixel);
      setRange(mDragStartRange.lower*diff, mDragStartRange.upper*diff);
    }

    if (mParentPlot->noAntialiasingOnDrag())
      mParentPlot->setNotAntialiasedElements(QCP::aeAll);
    mParentPlot->replot(QCustomPlot::rpQueuedReplot);
  }
}

/*! \internal

  This mouse event reimplementation provides the functionality to let the user drag individual axes
  exclusively, by startig the drag on top of the axis.

  \seebaseclassmethod

  \note The dragging of possibly multiple axes at once by starting the drag anywhere in the axis
  rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::mousePressEvent.

  \see QCPAxis::mousePressEvent
*/
void QCPAxis::mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos)
{
  Q_UNUSED(event)
  Q_UNUSED(startPos)
  mDragging = false;
  if (mParentPlot->noAntialiasingOnDrag())
  {
    mParentPlot->setAntialiasedElements(mAADragBackup);
    mParentPlot->setNotAntialiasedElements(mNotAADragBackup);
  }
}

/*! \internal

  This mouse event reimplementation provides the functionality to let the user zoom individual axes
  exclusively, by performing the wheel event on top of the axis.

  For the axis to accept this event and perform the single axis zoom, the parent \ref QCPAxisRect
  must be configured accordingly, i.e. it must allow range zooming in the orientation of this axis
  (\ref QCPAxisRect::setRangeZoom) and this axis must be a zoomable axis (\ref
  QCPAxisRect::setRangeZoomAxes)

  \seebaseclassmethod

  \note The zooming of possibly multiple axes at once by performing the wheel event anywhere in the
  axis rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::wheelEvent.
*/
void QCPAxis::wheelEvent(QWheelEvent *event)
{
  // Mouse range zooming interaction:
  if (!mParentPlot->interactions().testFlag(QCP::iRangeZoom) ||
      !mAxisRect->rangeZoom().testFlag(orientation()) ||
      !mAxisRect->rangeZoomAxes(orientation()).contains(this))
  {
    event->ignore();
    return;
  }

  const double wheelSteps = event->delta()/120.0; // a single step delta is +/-120 usually
  const double factor = qPow(mAxisRect->rangeZoomFactor(orientation()), wheelSteps);
  scaleRange(factor, pixelToCoord(orientation() == Qt::Horizontal ? event->pos().x() : event->pos().y()));
  mParentPlot->replot();
}

/*! \internal

  A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
  before drawing axis lines.

  This is the antialiasing state the painter passed to the \ref draw method is in by default.

  This function takes into account the local setting of the antialiasing flag as well as the
  overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements.

  \seebaseclassmethod

  \see setAntialiased
*/
void QCPAxis::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiased, QCP::aeAxes);
}

/*! \internal

  Draws the axis with the specified \a painter, using the internal QCPAxisPainterPrivate instance.

  \seebaseclassmethod
*/
void QCPAxis::draw(QCPPainter *painter)
{
  QVector<double> subTickPositions; // the final coordToPixel transformed vector passed to QCPAxisPainter
  QVector<double> tickPositions; // the final coordToPixel transformed vector passed to QCPAxisPainter
  QVector<QString> tickLabels; // the final vector passed to QCPAxisPainter
  tickPositions.reserve(mTickVector.size());
  tickLabels.reserve(mTickVector.size());
  subTickPositions.reserve(mSubTickVector.size());

  if (mTicks)
  {
    for (int i=0; i<mTickVector.size(); ++i)
    {
      tickPositions.append(coordToPixel(mTickVector.at(i)));
      if (mTickLabels)
        tickLabels.append(mTickVectorLabels.at(i));
    }

    if (mSubTicks)
    {
      const int subTickCount = mSubTickVector.size();
      for (int i=0; i<subTickCount; ++i)
        subTickPositions.append(coordToPixel(mSubTickVector.at(i)));
    }
  }

  // transfer all properties of this axis to QCPAxisPainterPrivate which it needs to draw the axis.
  // Note that some axis painter properties are already set by direct feed-through with QCPAxis setters
  mAxisPainter->type = mAxisType;
  mAxisPainter->basePen = getBasePen();
  mAxisPainter->labelFont = getLabelFont();
  mAxisPainter->labelColor = getLabelColor();
  mAxisPainter->label = mLabel;
  mAxisPainter->substituteExponent = mNumberBeautifulPowers;
  mAxisPainter->tickPen = getTickPen();
  mAxisPainter->subTickPen = getSubTickPen();
  mAxisPainter->tickLabelFont = getTickLabelFont();
  mAxisPainter->tickLabelColor = getTickLabelColor();
  mAxisPainter->axisRect = mAxisRect->rect();
  mAxisPainter->viewportRect = mParentPlot->viewport();
  mAxisPainter->abbreviateDecimalPowers = mScaleType == stLogarithmic;
  mAxisPainter->reversedEndings = mRangeReversed;
  mAxisPainter->tickPositions = tickPositions;
  mAxisPainter->tickLabels = tickLabels;
  mAxisPainter->subTickPositions = subTickPositions;
  mAxisPainter->draw(painter);
}

/*! \internal

  Prepares the internal tick vector, sub tick vector and tick label vector. This is done by calling
  QCPAxisTicker::generate on the currently installed ticker.

  If a change in the label text/count is detected, the cached axis margin is invalidated to make
  sure the next margin calculation recalculates the label sizes and returns an up-to-date value.
*/
void QCPAxis::setupTickVectors()
{
  if (!mParentPlot) return;
  if ((!mTicks && !mTickLabels && !mGrid->visible()) || mRange.size() <= 0) return;

  QVector<QString> oldLabels = mTickVectorLabels;
  mTicker->generate(mRange, mParentPlot->locale(), mNumberFormatChar, mNumberPrecision, mTickVector, mSubTicks ? &mSubTickVector : 0, mTickLabels ? &mTickVectorLabels : 0);
  mCachedMarginValid &= mTickVectorLabels == oldLabels; // if labels have changed, margin might have changed, too
}

/*! \internal

  Returns the pen that is used to draw the axis base line. Depending on the selection state, this
  is either mSelectedBasePen or mBasePen.
*/
QPen QCPAxis::getBasePen() const
{
  return mSelectedParts.testFlag(spAxis) ? mSelectedBasePen : mBasePen;
}

/*! \internal

  Returns the pen that is used to draw the (major) ticks. Depending on the selection state, this
  is either mSelectedTickPen or mTickPen.
*/
QPen QCPAxis::getTickPen() const
{
  return mSelectedParts.testFlag(spAxis) ? mSelectedTickPen : mTickPen;
}

/*! \internal

  Returns the pen that is used to draw the subticks. Depending on the selection state, this
  is either mSelectedSubTickPen or mSubTickPen.
*/
QPen QCPAxis::getSubTickPen() const
{
  return mSelectedParts.testFlag(spAxis) ? mSelectedSubTickPen : mSubTickPen;
}

/*! \internal

  Returns the font that is used to draw the tick labels. Depending on the selection state, this
  is either mSelectedTickLabelFont or mTickLabelFont.
*/
QFont QCPAxis::getTickLabelFont() const
{
  return mSelectedParts.testFlag(spTickLabels) ? mSelectedTickLabelFont : mTickLabelFont;
}

/*! \internal

  Returns the font that is used to draw the axis label. Depending on the selection state, this
  is either mSelectedLabelFont or mLabelFont.
*/
QFont QCPAxis::getLabelFont() const
{
  return mSelectedParts.testFlag(spAxisLabel) ? mSelectedLabelFont : mLabelFont;
}

/*! \internal

  Returns the color that is used to draw the tick labels. Depending on the selection state, this
  is either mSelectedTickLabelColor or mTickLabelColor.
*/
QColor QCPAxis::getTickLabelColor() const
{
  return mSelectedParts.testFlag(spTickLabels) ? mSelectedTickLabelColor : mTickLabelColor;
}

/*! \internal

  Returns the color that is used to draw the axis label. Depending on the selection state, this
  is either mSelectedLabelColor or mLabelColor.
*/
QColor QCPAxis::getLabelColor() const
{
  return mSelectedParts.testFlag(spAxisLabel) ? mSelectedLabelColor : mLabelColor;
}

/*! \internal

  Returns the appropriate outward margin for this axis. It is needed if \ref
  QCPAxisRect::setAutoMargins is set to true on the parent axis rect. An axis with axis type \ref
  atLeft will return an appropriate left margin, \ref atBottom will return an appropriate bottom
  margin and so forth. For the calculation, this function goes through similar steps as \ref draw,
  so changing one function likely requires the modification of the other one as well.

  The margin consists of the outward tick length, tick label padding, tick label size, label
  padding, label size, and padding.

  The margin is cached internally, so repeated calls while leaving the axis range, fonts, etc.
  unchanged are very fast.
*/
int QCPAxis::calculateMargin()
{
  if (!mVisible) // if not visible, directly return 0, don't cache 0 because we can't react to setVisible in QCPAxis
    return 0;

  if (mCachedMarginValid)
    return mCachedMargin;

  // run through similar steps as QCPAxis::draw, and calculate margin needed to fit axis and its labels
  int margin = 0;

  QVector<double> tickPositions; // the final coordToPixel transformed vector passed to QCPAxisPainter
  QVector<QString> tickLabels; // the final vector passed to QCPAxisPainter
  tickPositions.reserve(mTickVector.size());
  tickLabels.reserve(mTickVector.size());

  if (mTicks)
  {
    for (int i=0; i<mTickVector.size(); ++i)
    {
      tickPositions.append(coordToPixel(mTickVector.at(i)));
      if (mTickLabels)
        tickLabels.append(mTickVectorLabels.at(i));
    }
  }
  // transfer all properties of this axis to QCPAxisPainterPrivate which it needs to calculate the size.
  // Note that some axis painter properties are already set by direct feed-through with QCPAxis setters
  mAxisPainter->type = mAxisType;
  mAxisPainter->labelFont = getLabelFont();
  mAxisPainter->label = mLabel;
  mAxisPainter->tickLabelFont = mTickLabelFont;
  mAxisPainter->axisRect = mAxisRect->rect();
  mAxisPainter->viewportRect = mParentPlot->viewport();
  mAxisPainter->tickPositions = tickPositions;
  mAxisPainter->tickLabels = tickLabels;
  margin += mAxisPainter->size();
  margin += mPadding;

  mCachedMargin = margin;
  mCachedMarginValid = true;
  return margin;
}

/* inherits documentation from base class */
QCP::Interaction QCPAxis::selectionCategory() const
{
  return QCP::iSelectAxes;
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxisPainterPrivate
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPAxisPainterPrivate

  \internal
  \brief (Private)

  This is a private class and not part of the public QCustomPlot interface.

  It is used by QCPAxis to do the low-level drawing of axis backbone, tick marks, tick labels and
  axis label. It also buffers the labels to reduce replot times. The parameters are configured by
  directly accessing the public member variables.
*/

/*!
  Constructs a QCPAxisPainterPrivate instance. Make sure to not create a new instance on every
  redraw, to utilize the caching mechanisms.
*/
QCPAxisPainterPrivate::QCPAxisPainterPrivate(QCustomPlot *parentPlot) :
  type(QCPAxis::atLeft),
  basePen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
  lowerEnding(QCPLineEnding::esNone),
  upperEnding(QCPLineEnding::esNone),
  labelPadding(0),
  tickLabelPadding(0),
  tickLabelRotation(0),
  tickLabelSide(QCPAxis::lsOutside),
  substituteExponent(true),
  numberMultiplyCross(false),
  tickLengthIn(5),
  tickLengthOut(0),
  subTickLengthIn(2),
  subTickLengthOut(0),
  tickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
  subTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
  offset(0),
  abbreviateDecimalPowers(false),
  reversedEndings(false),
  mParentPlot(parentPlot),
  mLabelCache(16) // cache at most 16 (tick) labels
{
}

QCPAxisPainterPrivate::~QCPAxisPainterPrivate()
{
}

/*! \internal

  Draws the axis with the specified \a painter.

  The selection boxes (mAxisSelectionBox, mTickLabelsSelectionBox, mLabelSelectionBox) are set
  here, too.
*/
void QCPAxisPainterPrivate::draw(QCPPainter *painter)
{
  QByteArray newHash = generateLabelParameterHash();
  if (newHash != mLabelParameterHash)
  {
    mLabelCache.clear();
    mLabelParameterHash = newHash;
  }

  QPoint origin;
  switch (type)
  {
    case QCPAxis::atLeft:   origin = axisRect.bottomLeft() +QPoint(-offset, 0); break;
    case QCPAxis::atRight:  origin = axisRect.bottomRight()+QPoint(+offset, 0); break;
    case QCPAxis::atTop:    origin = axisRect.topLeft()    +QPoint(0, -offset); break;
    case QCPAxis::atBottom: origin = axisRect.bottomLeft() +QPoint(0, +offset); break;
  }

  double xCor = 0, yCor = 0; // paint system correction, for pixel exact matches (affects baselines and ticks of top/right axes)
  switch (type)
  {
    case QCPAxis::atTop: yCor = -1; break;
    case QCPAxis::atRight: xCor = 1; break;
    default: break;
  }
  int margin = 0;
  // draw baseline:
  QLineF baseLine;
  painter->setPen(basePen);
  if (QCPAxis::orientation(type) == Qt::Horizontal)
    baseLine.setPoints(origin+QPointF(xCor, yCor), origin+QPointF(axisRect.width()+xCor, yCor));
  else
    baseLine.setPoints(origin+QPointF(xCor, yCor), origin+QPointF(xCor, -axisRect.height()+yCor));
  if (reversedEndings)
    baseLine = QLineF(baseLine.p2(), baseLine.p1()); // won't make a difference for line itself, but for line endings later
  painter->drawLine(baseLine);

  // draw ticks:
  if (!tickPositions.isEmpty())
  {
    painter->setPen(tickPen);
    int tickDir = (type == QCPAxis::atBottom || type == QCPAxis::atRight) ? -1 : 1; // direction of ticks ("inward" is right for left axis and left for right axis)
    if (QCPAxis::orientation(type) == Qt::Horizontal)
    {
      for (int i=0; i<tickPositions.size(); ++i)
        painter->drawLine(QLineF(tickPositions.at(i)+xCor, origin.y()-tickLengthOut*tickDir+yCor, tickPositions.at(i)+xCor, origin.y()+tickLengthIn*tickDir+yCor));
    } else
    {
      for (int i=0; i<tickPositions.size(); ++i)
        painter->drawLine(QLineF(origin.x()-tickLengthOut*tickDir+xCor, tickPositions.at(i)+yCor, origin.x()+tickLengthIn*tickDir+xCor, tickPositions.at(i)+yCor));
    }
  }

  // draw subticks:
  if (!subTickPositions.isEmpty())
  {
    painter->setPen(subTickPen);
    // direction of ticks ("inward" is right for left axis and left for right axis)
    int tickDir = (type == QCPAxis::atBottom || type == QCPAxis::atRight) ? -1 : 1;
    if (QCPAxis::orientation(type) == Qt::Horizontal)
    {
      for (int i=0; i<subTickPositions.size(); ++i)
        painter->drawLine(QLineF(subTickPositions.at(i)+xCor, origin.y()-subTickLengthOut*tickDir+yCor, subTickPositions.at(i)+xCor, origin.y()+subTickLengthIn*tickDir+yCor));
    } else
    {
      for (int i=0; i<subTickPositions.size(); ++i)
        painter->drawLine(QLineF(origin.x()-subTickLengthOut*tickDir+xCor, subTickPositions.at(i)+yCor, origin.x()+subTickLengthIn*tickDir+xCor, subTickPositions.at(i)+yCor));
    }
  }
  margin += qMax(0, qMax(tickLengthOut, subTickLengthOut));

  // draw axis base endings:
  bool antialiasingBackup = painter->antialiasing();
  painter->setAntialiasing(true); // always want endings to be antialiased, even if base and ticks themselves aren't
  painter->setBrush(QBrush(basePen.color()));
  QCPVector2D baseLineVector(baseLine.dx(), baseLine.dy());
  if (lowerEnding.style() != QCPLineEnding::esNone)
    lowerEnding.draw(painter, QCPVector2D(baseLine.p1())-baseLineVector.normalized()*lowerEnding.realLength()*(lowerEnding.inverted()?-1:1), -baseLineVector);
  if (upperEnding.style() != QCPLineEnding::esNone)
    upperEnding.draw(painter, QCPVector2D(baseLine.p2())+baseLineVector.normalized()*upperEnding.realLength()*(upperEnding.inverted()?-1:1), baseLineVector);
  painter->setAntialiasing(antialiasingBackup);

  // tick labels:
  QRect oldClipRect;
  if (tickLabelSide == QCPAxis::lsInside) // if using inside labels, clip them to the axis rect
  {
    oldClipRect = painter->clipRegion().boundingRect();
    painter->setClipRect(axisRect);
  }
  QSize tickLabelsSize(0, 0); // size of largest tick label, for offset calculation of axis label
  if (!tickLabels.isEmpty())
  {
    if (tickLabelSide == QCPAxis::lsOutside)
      margin += tickLabelPadding;
    painter->setFont(tickLabelFont);
    painter->setPen(QPen(tickLabelColor));
    const int maxLabelIndex = qMin(tickPositions.size(), tickLabels.size());
    int distanceToAxis = margin;
    if (tickLabelSide == QCPAxis::lsInside)
      distanceToAxis = -(qMax(tickLengthIn, subTickLengthIn)+tickLabelPadding);
    for (int i=0; i<maxLabelIndex; ++i)
      placeTickLabel(painter, tickPositions.at(i), distanceToAxis, tickLabels.at(i), &tickLabelsSize);
    if (tickLabelSide == QCPAxis::lsOutside)
      margin += (QCPAxis::orientation(type) == Qt::Horizontal) ? tickLabelsSize.height() : tickLabelsSize.width();
  }
  if (tickLabelSide == QCPAxis::lsInside)
    painter->setClipRect(oldClipRect);

  // axis label:
  QRect labelBounds;
  if (!label.isEmpty())
  {
    margin += labelPadding;
    painter->setFont(labelFont);
    painter->setPen(QPen(labelColor));
    labelBounds = painter->fontMetrics().boundingRect(0, 0, 0, 0, Qt::TextDontClip, label);
    if (type == QCPAxis::atLeft)
    {
      QTransform oldTransform = painter->transform();
      painter->translate((origin.x()-margin-labelBounds.height()), origin.y());
      painter->rotate(-90);
      painter->drawText(0, 0, axisRect.height(), labelBounds.height(), Qt::TextDontClip | Qt::AlignCenter, label);
      painter->setTransform(oldTransform);
    }
    else if (type == QCPAxis::atRight)
    {
      QTransform oldTransform = painter->transform();
      painter->translate((origin.x()+margin+labelBounds.height()), origin.y()-axisRect.height());
      painter->rotate(90);
      painter->drawText(0, 0, axisRect.height(), labelBounds.height(), Qt::TextDontClip | Qt::AlignCenter, label);
      painter->setTransform(oldTransform);
    }
    else if (type == QCPAxis::atTop)
      painter->drawText(origin.x(), origin.y()-margin-labelBounds.height(), axisRect.width(), labelBounds.height(), Qt::TextDontClip | Qt::AlignCenter, label);
    else if (type == QCPAxis::atBottom)
      painter->drawText(origin.x(), origin.y()+margin, axisRect.width(), labelBounds.height(), Qt::TextDontClip | Qt::AlignCenter, label);
  }

  // set selection boxes:
  int selectionTolerance = 0;
  if (mParentPlot)
    selectionTolerance = mParentPlot->selectionTolerance();
  else
    qDebug() << Q_FUNC_INFO << "mParentPlot is null";
  int selAxisOutSize = qMax(qMax(tickLengthOut, subTickLengthOut), selectionTolerance);
  int selAxisInSize = selectionTolerance;
  int selTickLabelSize;
  int selTickLabelOffset;
  if (tickLabelSide == QCPAxis::lsOutside)
  {
    selTickLabelSize = (QCPAxis::orientation(type) == Qt::Horizontal ? tickLabelsSize.height() : tickLabelsSize.width());
    selTickLabelOffset = qMax(tickLengthOut, subTickLengthOut)+tickLabelPadding;
  } else
  {
    selTickLabelSize = -(QCPAxis::orientation(type) == Qt::Horizontal ? tickLabelsSize.height() : tickLabelsSize.width());
    selTickLabelOffset = -(qMax(tickLengthIn, subTickLengthIn)+tickLabelPadding);
  }
  int selLabelSize = labelBounds.height();
  int selLabelOffset = qMax(tickLengthOut, subTickLengthOut)+(!tickLabels.isEmpty() && tickLabelSide == QCPAxis::lsOutside ? tickLabelPadding+selTickLabelSize : 0)+labelPadding;
  if (type == QCPAxis::atLeft)
  {
    mAxisSelectionBox.setCoords(origin.x()-selAxisOutSize, axisRect.top(), origin.x()+selAxisInSize, axisRect.bottom());
    mTickLabelsSelectionBox.setCoords(origin.x()-selTickLabelOffset-selTickLabelSize, axisRect.top(), origin.x()-selTickLabelOffset, axisRect.bottom());
    mLabelSelectionBox.setCoords(origin.x()-selLabelOffset-selLabelSize, axisRect.top(), origin.x()-selLabelOffset, axisRect.bottom());
  } else if (type == QCPAxis::atRight)
  {
    mAxisSelectionBox.setCoords(origin.x()-selAxisInSize, axisRect.top(), origin.x()+selAxisOutSize, axisRect.bottom());
    mTickLabelsSelectionBox.setCoords(origin.x()+selTickLabelOffset+selTickLabelSize, axisRect.top(), origin.x()+selTickLabelOffset, axisRect.bottom());
    mLabelSelectionBox.setCoords(origin.x()+selLabelOffset+selLabelSize, axisRect.top(), origin.x()+selLabelOffset, axisRect.bottom());
  } else if (type == QCPAxis::atTop)
  {
    mAxisSelectionBox.setCoords(axisRect.left(), origin.y()-selAxisOutSize, axisRect.right(), origin.y()+selAxisInSize);
    mTickLabelsSelectionBox.setCoords(axisRect.left(), origin.y()-selTickLabelOffset-selTickLabelSize, axisRect.right(), origin.y()-selTickLabelOffset);
    mLabelSelectionBox.setCoords(axisRect.left(), origin.y()-selLabelOffset-selLabelSize, axisRect.right(), origin.y()-selLabelOffset);
  } else if (type == QCPAxis::atBottom)
  {
    mAxisSelectionBox.setCoords(axisRect.left(), origin.y()-selAxisInSize, axisRect.right(), origin.y()+selAxisOutSize);
    mTickLabelsSelectionBox.setCoords(axisRect.left(), origin.y()+selTickLabelOffset+selTickLabelSize, axisRect.right(), origin.y()+selTickLabelOffset);
    mLabelSelectionBox.setCoords(axisRect.left(), origin.y()+selLabelOffset+selLabelSize, axisRect.right(), origin.y()+selLabelOffset);
  }
  mAxisSelectionBox = mAxisSelectionBox.normalized();
  mTickLabelsSelectionBox = mTickLabelsSelectionBox.normalized();
  mLabelSelectionBox = mLabelSelectionBox.normalized();
  // draw hitboxes for debug purposes:
  //painter->setBrush(Qt::NoBrush);
  //painter->drawRects(QVector<QRect>() << mAxisSelectionBox << mTickLabelsSelectionBox << mLabelSelectionBox);
}

/*! \internal

  Returns the size ("margin" in QCPAxisRect context, so measured perpendicular to the axis backbone
  direction) needed to fit the axis.
*/
int QCPAxisPainterPrivate::size() const
{
  int result = 0;

  // get length of tick marks pointing outwards:
  if (!tickPositions.isEmpty())
    result += qMax(0, qMax(tickLengthOut, subTickLengthOut));

  // calculate size of tick labels:
  if (tickLabelSide == QCPAxis::lsOutside)
  {
    QSize tickLabelsSize(0, 0);
    if (!tickLabels.isEmpty())
    {
      for (int i=0; i<tickLabels.size(); ++i)
        getMaxTickLabelSize(tickLabelFont, tickLabels.at(i), &tickLabelsSize);
      result += QCPAxis::orientation(type) == Qt::Horizontal ? tickLabelsSize.height() : tickLabelsSize.width();
    result += tickLabelPadding;
    }
  }

  // calculate size of axis label (only height needed, because left/right labels are rotated by 90 degrees):
  if (!label.isEmpty())
  {
    QFontMetrics fontMetrics(labelFont);
    QRect bounds;
    bounds = fontMetrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip | Qt::AlignHCenter | Qt::AlignVCenter, label);
    result += bounds.height() + labelPadding;
  }

  return result;
}

/*! \internal

  Clears the internal label cache. Upon the next \ref draw, all labels will be created new. This
  method is called automatically in \ref draw, if any parameters have changed that invalidate the
  cached labels, such as font, color, etc.
*/
void QCPAxisPainterPrivate::clearCache()
{
  mLabelCache.clear();
}

/*! \internal

  Returns a hash that allows uniquely identifying whether the label parameters have changed such
  that the cached labels must be refreshed (\ref clearCache). It is used in \ref draw. If the
  return value of this method hasn't changed since the last redraw, the respective label parameters
  haven't changed and cached labels may be used.
*/
QByteArray QCPAxisPainterPrivate::generateLabelParameterHash() const
{
  QByteArray result;
  result.append(QByteArray::number(mParentPlot->bufferDevicePixelRatio()));
  result.append(QByteArray::number(tickLabelRotation));
  result.append(QByteArray::number((int)tickLabelSide));
  result.append(QByteArray::number((int)substituteExponent));
  result.append(QByteArray::number((int)numberMultiplyCross));
  result.append(tickLabelColor.name().toLatin1()+QByteArray::number(tickLabelColor.alpha(), 16));
  result.append(tickLabelFont.toString().toLatin1());
  return result;
}

/*! \internal

  Draws a single tick label with the provided \a painter, utilizing the internal label cache to
  significantly speed up drawing of labels that were drawn in previous calls. The tick label is
  always bound to an axis, the distance to the axis is controllable via \a distanceToAxis in
  pixels. The pixel position in the axis direction is passed in the \a position parameter. Hence
  for the bottom axis, \a position would indicate the horizontal pixel position (not coordinate),
  at which the label should be drawn.

  In order to later draw the axis label in a place that doesn't overlap with the tick labels, the
  largest tick label size is needed. This is acquired by passing a \a tickLabelsSize to the \ref
  drawTickLabel calls during the process of drawing all tick labels of one axis. In every call, \a
  tickLabelsSize is expanded, if the drawn label exceeds the value \a tickLabelsSize currently
  holds.

  The label is drawn with the font and pen that are currently set on the \a painter. To draw
  superscripted powers, the font is temporarily made smaller by a fixed factor (see \ref
  getTickLabelData).
*/
void QCPAxisPainterPrivate::placeTickLabel(QCPPainter *painter, double position, int distanceToAxis, const QString &text, QSize *tickLabelsSize)
{
  // warning: if you change anything here, also adapt getMaxTickLabelSize() accordingly!
  if (text.isEmpty()) return;
  QSize finalSize;
  QPointF labelAnchor;
  switch (type)
  {
    case QCPAxis::atLeft:   labelAnchor = QPointF(axisRect.left()-distanceToAxis-offset, position); break;
    case QCPAxis::atRight:  labelAnchor = QPointF(axisRect.right()+distanceToAxis+offset, position); break;
    case QCPAxis::atTop:    labelAnchor = QPointF(position, axisRect.top()-distanceToAxis-offset); break;
    case QCPAxis::atBottom: labelAnchor = QPointF(position, axisRect.bottom()+distanceToAxis+offset); break;
  }
  if (mParentPlot->plottingHints().testFlag(QCP::phCacheLabels) && !painter->modes().testFlag(QCPPainter::pmNoCaching)) // label caching enabled
  {
    CachedLabel *cachedLabel = mLabelCache.take(text); // attempt to get label from cache
    if (!cachedLabel)  // no cached label existed, create it
    {
      cachedLabel = new CachedLabel;
      TickLabelData labelData = getTickLabelData(painter->font(), text);
      cachedLabel->offset = getTickLabelDrawOffset(labelData)+labelData.rotatedTotalBounds.topLeft();
      if (!qFuzzyCompare(1.0, mParentPlot->bufferDevicePixelRatio()))
      {
        cachedLabel->pixmap = QPixmap(labelData.rotatedTotalBounds.size()*mParentPlot->bufferDevicePixelRatio());
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
#  ifdef QCP_DEVICEPIXELRATIO_FLOAT
        cachedLabel->pixmap.setDevicePixelRatio(mParentPlot->devicePixelRatioF());
#  else
        cachedLabel->pixmap.setDevicePixelRatio(mParentPlot->devicePixelRatio());
#  endif
#endif
      } else
        cachedLabel->pixmap = QPixmap(labelData.rotatedTotalBounds.size());
      cachedLabel->pixmap.fill(Qt::transparent);
      QCPPainter cachePainter(&cachedLabel->pixmap);
      cachePainter.setPen(painter->pen());
      drawTickLabel(&cachePainter, -labelData.rotatedTotalBounds.topLeft().x(), -labelData.rotatedTotalBounds.topLeft().y(), labelData);
    }
    // if label would be partly clipped by widget border on sides, don't draw it (only for outside tick labels):
    bool labelClippedByBorder = false;
    if (tickLabelSide == QCPAxis::lsOutside)
    {
      if (QCPAxis::orientation(type) == Qt::Horizontal)
        labelClippedByBorder = labelAnchor.x()+cachedLabel->offset.x()+cachedLabel->pixmap.width()/mParentPlot->bufferDevicePixelRatio() > viewportRect.right() || labelAnchor.x()+cachedLabel->offset.x() < viewportRect.left();
      else
        labelClippedByBorder = labelAnchor.y()+cachedLabel->offset.y()+cachedLabel->pixmap.height()/mParentPlot->bufferDevicePixelRatio() > viewportRect.bottom() || labelAnchor.y()+cachedLabel->offset.y() < viewportRect.top();
    }
    if (!labelClippedByBorder)
    {
      painter->drawPixmap(labelAnchor+cachedLabel->offset, cachedLabel->pixmap);
      finalSize = cachedLabel->pixmap.size()/mParentPlot->bufferDevicePixelRatio();
    }
    mLabelCache.insert(text, cachedLabel); // return label to cache or insert for the first time if newly created
  } else // label caching disabled, draw text directly on surface:
  {
    TickLabelData labelData = getTickLabelData(painter->font(), text);
    QPointF finalPosition = labelAnchor + getTickLabelDrawOffset(labelData);
    // if label would be partly clipped by widget border on sides, don't draw it (only for outside tick labels):
     bool labelClippedByBorder = false;
    if (tickLabelSide == QCPAxis::lsOutside)
    {
      if (QCPAxis::orientation(type) == Qt::Horizontal)
        labelClippedByBorder = finalPosition.x()+(labelData.rotatedTotalBounds.width()+labelData.rotatedTotalBounds.left()) > viewportRect.right() || finalPosition.x()+labelData.rotatedTotalBounds.left() < viewportRect.left();
      else
        labelClippedByBorder = finalPosition.y()+(labelData.rotatedTotalBounds.height()+labelData.rotatedTotalBounds.top()) > viewportRect.bottom() || finalPosition.y()+labelData.rotatedTotalBounds.top() < viewportRect.top();
    }
    if (!labelClippedByBorder)
    {
      drawTickLabel(painter, finalPosition.x(), finalPosition.y(), labelData);
      finalSize = labelData.rotatedTotalBounds.size();
    }
  }

  // expand passed tickLabelsSize if current tick label is larger:
  if (finalSize.width() > tickLabelsSize->width())
    tickLabelsSize->setWidth(finalSize.width());
  if (finalSize.height() > tickLabelsSize->height())
    tickLabelsSize->setHeight(finalSize.height());
}

/*! \internal

  This is a \ref placeTickLabel helper function.

  Draws the tick label specified in \a labelData with \a painter at the pixel positions \a x and \a
  y. This function is used by \ref placeTickLabel to create new tick labels for the cache, or to
  directly draw the labels on the QCustomPlot surface when label caching is disabled, i.e. when
  QCP::phCacheLabels plotting hint is not set.
*/
void QCPAxisPainterPrivate::drawTickLabel(QCPPainter *painter, double x, double y, const TickLabelData &labelData) const
{
  // backup painter settings that we're about to change:
  QTransform oldTransform = painter->transform();
  QFont oldFont = painter->font();

  // transform painter to position/rotation:
  painter->translate(x, y);
  if (!qFuzzyIsNull(tickLabelRotation))
    painter->rotate(tickLabelRotation);

  // draw text:
  if (!labelData.expPart.isEmpty()) // indicator that beautiful powers must be used
  {
    painter->setFont(labelData.baseFont);
    painter->drawText(0, 0, 0, 0, Qt::TextDontClip, labelData.basePart);
    if (!labelData.suffixPart.isEmpty())
      painter->drawText(labelData.baseBounds.width()+1+labelData.expBounds.width(), 0, 0, 0, Qt::TextDontClip, labelData.suffixPart);
    painter->setFont(labelData.expFont);
    painter->drawText(labelData.baseBounds.width()+1, 0, labelData.expBounds.width(), labelData.expBounds.height(), Qt::TextDontClip,  labelData.expPart);
  } else
  {
    painter->setFont(labelData.baseFont);
    painter->drawText(0, 0, labelData.totalBounds.width(), labelData.totalBounds.height(), Qt::TextDontClip | Qt::AlignHCenter, labelData.basePart);
  }

  // reset painter settings to what it was before:
  painter->setTransform(oldTransform);
  painter->setFont(oldFont);
}

/*! \internal

  This is a \ref placeTickLabel helper function.

  Transforms the passed \a text and \a font to a tickLabelData structure that can then be further
  processed by \ref getTickLabelDrawOffset and \ref drawTickLabel. It splits the text into base and
  exponent if necessary (member substituteExponent) and calculates appropriate bounding boxes.
*/
QCPAxisPainterPrivate::TickLabelData QCPAxisPainterPrivate::getTickLabelData(const QFont &font, const QString &text) const
{
  TickLabelData result;

  // determine whether beautiful decimal powers should be used
  bool useBeautifulPowers = false;
  int ePos = -1; // first index of exponent part, text before that will be basePart, text until eLast will be expPart
  int eLast = -1; // last index of exponent part, rest of text after this will be suffixPart
  if (substituteExponent)
  {
    ePos = text.indexOf(QLatin1Char('e'));
    if (ePos > 0 && text.at(ePos-1).isDigit())
    {
      eLast = ePos;
      while (eLast+1 < text.size() && (text.at(eLast+1) == QLatin1Char('+') || text.at(eLast+1) == QLatin1Char('-') || text.at(eLast+1).isDigit()))
        ++eLast;
      if (eLast > ePos) // only if also to right of 'e' is a digit/+/- interpret it as beautifiable power
        useBeautifulPowers = true;
    }
  }

  // calculate text bounding rects and do string preparation for beautiful decimal powers:
  result.baseFont = font;
  if (result.baseFont.pointSizeF() > 0) // might return -1 if specified with setPixelSize, in that case we can't do correction in next line
    result.baseFont.setPointSizeF(result.baseFont.pointSizeF()+0.05); // QFontMetrics.boundingRect has a bug for exact point sizes that make the results oscillate due to internal rounding
  if (useBeautifulPowers)
  {
    // split text into parts of number/symbol that will be drawn normally and part that will be drawn as exponent:
    result.basePart = text.left(ePos);
    result.suffixPart = text.mid(eLast+1); // also drawn normally but after exponent
    // in log scaling, we want to turn "1*10^n" into "10^n", else add multiplication sign and decimal base:
    if (abbreviateDecimalPowers && result.basePart == QLatin1String("1"))
      result.basePart = QLatin1String("10");
    else
      result.basePart += (numberMultiplyCross ? QString(QChar(215)) : QString(QChar(183))) + QLatin1String("10");
    result.expPart = text.mid(ePos+1, eLast-ePos);
    // clip "+" and leading zeros off expPart:
    while (result.expPart.length() > 2 && result.expPart.at(1) == QLatin1Char('0')) // length > 2 so we leave one zero when numberFormatChar is 'e'
      result.expPart.remove(1, 1);
    if (!result.expPart.isEmpty() && result.expPart.at(0) == QLatin1Char('+'))
      result.expPart.remove(0, 1);
    // prepare smaller font for exponent:
    result.expFont = font;
    if (result.expFont.pointSize() > 0)
      result.expFont.setPointSize(result.expFont.pointSize()*0.75);
    else
      result.expFont.setPixelSize(result.expFont.pixelSize()*0.75);
    // calculate bounding rects of base part(s), exponent part and total one:
    result.baseBounds = QFontMetrics(result.baseFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip, result.basePart);
    result.expBounds = QFontMetrics(result.expFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip, result.expPart);
    if (!result.suffixPart.isEmpty())
      result.suffixBounds = QFontMetrics(result.baseFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip, result.suffixPart);
    result.totalBounds = result.baseBounds.adjusted(0, 0, result.expBounds.width()+result.suffixBounds.width()+2, 0); // +2 consists of the 1 pixel spacing between base and exponent (see drawTickLabel) and an extra pixel to include AA
  } else // useBeautifulPowers == false
  {
    result.basePart = text;
    result.totalBounds = QFontMetrics(result.baseFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip | Qt::AlignHCenter, result.basePart);
  }
  result.totalBounds.moveTopLeft(QPoint(0, 0)); // want bounding box aligned top left at origin, independent of how it was created, to make further processing simpler

  // calculate possibly different bounding rect after rotation:
  result.rotatedTotalBounds = result.totalBounds;
  if (!qFuzzyIsNull(tickLabelRotation))
  {
    QTransform transform;
    transform.rotate(tickLabelRotation);
    result.rotatedTotalBounds = transform.mapRect(result.rotatedTotalBounds);
  }

  return result;
}

/*! \internal

  This is a \ref placeTickLabel helper function.

  Calculates the offset at which the top left corner of the specified tick label shall be drawn.
  The offset is relative to a point right next to the tick the label belongs to.

  This function is thus responsible for e.g. centering tick labels under ticks and positioning them
  appropriately when they are rotated.
*/
QPointF QCPAxisPainterPrivate::getTickLabelDrawOffset(const TickLabelData &labelData) const
{
  /*
    calculate label offset from base point at tick (non-trivial, for best visual appearance): short
    explanation for bottom axis: The anchor, i.e. the point in the label that is placed
    horizontally under the corresponding tick is always on the label side that is closer to the
    axis (e.g. the left side of the text when we're rotating clockwise). On that side, the height
    is halved and the resulting point is defined the anchor. This way, a 90 degree rotated text
    will be centered under the tick (i.e. displaced horizontally by half its height). At the same
    time, a 45 degree rotated text will "point toward" its tick, as is typical for rotated tick
    labels.
  */
  bool doRotation = !qFuzzyIsNull(tickLabelRotation);
  bool flip = qFuzzyCompare(qAbs(tickLabelRotation), 90.0); // perfect +/-90 degree flip. Indicates vertical label centering on vertical axes.
  double radians = tickLabelRotation/180.0*M_PI;
  int x=0, y=0;
  if ((type == QCPAxis::atLeft && tickLabelSide == QCPAxis::lsOutside) || (type == QCPAxis::atRight && tickLabelSide == QCPAxis::lsInside)) // Anchor at right side of tick label
  {
    if (doRotation)
    {
      if (tickLabelRotation > 0)
      {
        x = -qCos(radians)*labelData.totalBounds.width();
        y = flip ? -labelData.totalBounds.width()/2.0 : -qSin(radians)*labelData.totalBounds.width()-qCos(radians)*labelData.totalBounds.height()/2.0;
      } else
      {
        x = -qCos(-radians)*labelData.totalBounds.width()-qSin(-radians)*labelData.totalBounds.height();
        y = flip ? +labelData.totalBounds.width()/2.0 : +qSin(-radians)*labelData.totalBounds.width()-qCos(-radians)*labelData.totalBounds.height()/2.0;
      }
    } else
    {
      x = -labelData.totalBounds.width();
      y = -labelData.totalBounds.height()/2.0;
    }
  } else if ((type == QCPAxis::atRight && tickLabelSide == QCPAxis::lsOutside) || (type == QCPAxis::atLeft && tickLabelSide == QCPAxis::lsInside)) // Anchor at left side of tick label
  {
    if (doRotation)
    {
      if (tickLabelRotation > 0)
      {
        x = +qSin(radians)*labelData.totalBounds.height();
        y = flip ? -labelData.totalBounds.width()/2.0 : -qCos(radians)*labelData.totalBounds.height()/2.0;
      } else
      {
        x = 0;
        y = flip ? +labelData.totalBounds.width()/2.0 : -qCos(-radians)*labelData.totalBounds.height()/2.0;
      }
    } else
    {
      x = 0;
      y = -labelData.totalBounds.height()/2.0;
    }
  } else if ((type == QCPAxis::atTop && tickLabelSide == QCPAxis::lsOutside) || (type == QCPAxis::atBottom && tickLabelSide == QCPAxis::lsInside)) // Anchor at bottom side of tick label
  {
    if (doRotation)
    {
      if (tickLabelRotation > 0)
      {
        x = -qCos(radians)*labelData.totalBounds.width()+qSin(radians)*labelData.totalBounds.height()/2.0;
        y = -qSin(radians)*labelData.totalBounds.width()-qCos(radians)*labelData.totalBounds.height();
      } else
      {
        x = -qSin(-radians)*labelData.totalBounds.height()/2.0;
        y = -qCos(-radians)*labelData.totalBounds.height();
      }
    } else
    {
      x = -labelData.totalBounds.width()/2.0;
      y = -labelData.totalBounds.height();
    }
  } else if ((type == QCPAxis::atBottom && tickLabelSide == QCPAxis::lsOutside) || (type == QCPAxis::atTop && tickLabelSide == QCPAxis::lsInside)) // Anchor at top side of tick label
  {
    if (doRotation)
    {
      if (tickLabelRotation > 0)
      {
        x = +qSin(radians)*labelData.totalBounds.height()/2.0;
        y = 0;
      } else
      {
        x = -qCos(-radians)*labelData.totalBounds.width()-qSin(-radians)*labelData.totalBounds.height()/2.0;
        y = +qSin(-radians)*labelData.totalBounds.width();
      }
    } else
    {
      x = -labelData.totalBounds.width()/2.0;
      y = 0;
    }
  }

  return QPointF(x, y);
}

/*! \internal

  Simulates the steps done by \ref placeTickLabel by calculating bounding boxes of the text label
  to be drawn, depending on number format etc. Since only the largest tick label is wanted for the
  margin calculation, the passed \a tickLabelsSize is only expanded, if it's currently set to a
  smaller width/height.
*/
void QCPAxisPainterPrivate::getMaxTickLabelSize(const QFont &font, const QString &text,  QSize *tickLabelsSize) const
{
  // note: this function must return the same tick label sizes as the placeTickLabel function.
  QSize finalSize;
  if (mParentPlot->plottingHints().testFlag(QCP::phCacheLabels) && mLabelCache.contains(text)) // label caching enabled and have cached label
  {
    const CachedLabel *cachedLabel = mLabelCache.object(text);
    finalSize = cachedLabel->pixmap.size()/mParentPlot->bufferDevicePixelRatio();
  } else // label caching disabled or no label with this text cached:
  {
    TickLabelData labelData = getTickLabelData(font, text);
    finalSize = labelData.rotatedTotalBounds.size();
  }

  // expand passed tickLabelsSize if current tick label is larger:
  if (finalSize.width() > tickLabelsSize->width())
    tickLabelsSize->setWidth(finalSize.width());
  if (finalSize.height() > tickLabelsSize->height())
    tickLabelsSize->setHeight(finalSize.height());
}
/* end of 'src/axis/axis.cpp' */


/* including file 'src/scatterstyle.cpp', size 17450                         */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPScatterStyle
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPScatterStyle
  \brief Represents the visual appearance of scatter points

  This class holds information about shape, color and size of scatter points. In plottables like
  QCPGraph it is used to store how scatter points shall be drawn. For example, \ref
  QCPGraph::setScatterStyle takes a QCPScatterStyle instance.

  A scatter style consists of a shape (\ref setShape), a line color (\ref setPen) and possibly a
  fill (\ref setBrush), if the shape provides a fillable area. Further, the size of the shape can
  be controlled with \ref setSize.

  \section QCPScatterStyle-defining Specifying a scatter style

  You can set all these configurations either by calling the respective functions on an instance:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpscatterstyle-creation-1

  Or you can use one of the various constructors that take different parameter combinations, making
  it easy to specify a scatter style in a single call, like so:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpscatterstyle-creation-2

  \section QCPScatterStyle-undefinedpen Leaving the color/pen up to the plottable

  There are two constructors which leave the pen undefined: \ref QCPScatterStyle() and \ref
  QCPScatterStyle(ScatterShape shape, double size). If those constructors are used, a call to \ref
  isPenDefined will return false. It leads to scatter points that inherit the pen from the
  plottable that uses the scatter style. Thus, if such a scatter style is passed to QCPGraph, the line
  color of the graph (\ref QCPGraph::setPen) will be used by the scatter points. This makes
  it very convenient to set up typical scatter settings:

  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpscatterstyle-shortcreation

  Notice that it wasn't even necessary to explicitly call a QCPScatterStyle constructor. This works
  because QCPScatterStyle provides a constructor that can transform a \ref ScatterShape directly
  into a QCPScatterStyle instance (that's the \ref QCPScatterStyle(ScatterShape shape, double size)
  constructor with a default for \a size). In those cases, C++ allows directly supplying a \ref
  ScatterShape, where actually a QCPScatterStyle is expected.

  \section QCPScatterStyle-custompath-and-pixmap Custom shapes and pixmaps

  QCPScatterStyle supports drawing custom shapes and arbitrary pixmaps as scatter points.

  For custom shapes, you can provide a QPainterPath with the desired shape to the \ref
  setCustomPath function or call the constructor that takes a painter path. The scatter shape will
  automatically be set to \ref ssCustom.

  For pixmaps, you call \ref setPixmap with the desired QPixmap. Alternatively you can use the
  constructor that takes a QPixmap. The scatter shape will automatically be set to \ref ssPixmap.
  Note that \ref setSize does not influence the appearance of the pixmap.
*/

/* start documentation of inline functions */

/*! \fn bool QCPScatterStyle::isNone() const

  Returns whether the scatter shape is \ref ssNone.

  \see setShape
*/

/*! \fn bool QCPScatterStyle::isPenDefined() const

  Returns whether a pen has been defined for this scatter style.

  The pen is undefined if a constructor is called that does not carry \a pen as parameter. Those
  are \ref QCPScatterStyle() and \ref QCPScatterStyle(ScatterShape shape, double size). If the pen
  is undefined, the pen of the respective plottable will be used for drawing scatters.

  If a pen was defined for this scatter style instance, and you now wish to undefine the pen, call
  \ref undefinePen.

  \see setPen
*/

/* end documentation of inline functions */

/*!
  Creates a new QCPScatterStyle instance with size set to 6. No shape, pen or brush is defined.

  Since the pen is undefined (\ref isPenDefined returns false), the scatter color will be inherited
  from the plottable that uses this scatter style.
*/
QCPScatterStyle::QCPScatterStyle() :
  mSize(6),
  mShape(ssNone),
  mPen(Qt::NoPen),
  mBrush(Qt::NoBrush),
  mPenDefined(false)
{
}

/*!
  Creates a new QCPScatterStyle instance with shape set to \a shape and size to \a size. No pen or
  brush is defined.

  Since the pen is undefined (\ref isPenDefined returns false), the scatter color will be inherited
  from the plottable that uses this scatter style.
*/
QCPScatterStyle::QCPScatterStyle(ScatterShape shape, double size) :
  mSize(size),
  mShape(shape),
  mPen(Qt::NoPen),
  mBrush(Qt::NoBrush),
  mPenDefined(false)
{
}

/*!
  Creates a new QCPScatterStyle instance with shape set to \a shape, the pen color set to \a color,
  and size to \a size. No brush is defined, i.e. the scatter point will not be filled.
*/
QCPScatterStyle::QCPScatterStyle(ScatterShape shape, const QColor &color, double size) :
  mSize(size),
  mShape(shape),
  mPen(QPen(color)),
  mBrush(Qt::NoBrush),
  mPenDefined(true)
{
}

/*!
  Creates a new QCPScatterStyle instance with shape set to \a shape, the pen color set to \a color,
  the brush color to \a fill (with a solid pattern), and size to \a size.
*/
QCPScatterStyle::QCPScatterStyle(ScatterShape shape, const QColor &color, const QColor &fill, double size) :
  mSize(size),
  mShape(shape),
  mPen(QPen(color)),
  mBrush(QBrush(fill)),
  mPenDefined(true)
{
}

/*!
  Creates a new QCPScatterStyle instance with shape set to \a shape, the pen set to \a pen, the
  brush to \a brush, and size to \a size.

  \warning In some cases it might be tempting to directly use a pen style like <tt>Qt::NoPen</tt> as \a pen
  and a color like <tt>Qt::blue</tt> as \a brush. Notice however, that the corresponding call\n
  <tt>QCPScatterStyle(QCPScatterShape::ssCircle, Qt::NoPen, Qt::blue, 5)</tt>\n
  doesn't necessarily lead C++ to use this constructor in some cases, but might mistake
  <tt>Qt::NoPen</tt> for a QColor and use the
  \ref QCPScatterStyle(ScatterShape shape, const QColor &color, const QColor &fill, double size)
  constructor instead (which will lead to an unexpected look of the scatter points). To prevent
  this, be more explicit with the parameter types. For example, use <tt>QBrush(Qt::blue)</tt>
  instead of just <tt>Qt::blue</tt>, to clearly point out to the compiler that this constructor is
  wanted.
*/
QCPScatterStyle::QCPScatterStyle(ScatterShape shape, const QPen &pen, const QBrush &brush, double size) :
  mSize(size),
  mShape(shape),
  mPen(pen),
  mBrush(brush),
  mPenDefined(pen.style() != Qt::NoPen)
{
}

/*!
  Creates a new QCPScatterStyle instance which will show the specified \a pixmap. The scatter shape
  is set to \ref ssPixmap.
*/
QCPScatterStyle::QCPScatterStyle(const QPixmap &pixmap) :
  mSize(5),
  mShape(ssPixmap),
  mPen(Qt::NoPen),
  mBrush(Qt::NoBrush),
  mPixmap(pixmap),
  mPenDefined(false)
{
}

/*!
  Creates a new QCPScatterStyle instance with a custom shape that is defined via \a customPath. The
  scatter shape is set to \ref ssCustom.

  The custom shape line will be drawn with \a pen and filled with \a brush. The size has a slightly
  different meaning than for built-in scatter points: The custom path will be drawn scaled by a
  factor of \a size/6.0. Since the default \a size is 6, the custom path will appear in its
  original size by default. To for example double the size of the path, set \a size to 12.
*/
QCPScatterStyle::QCPScatterStyle(const QPainterPath &customPath, const QPen &pen, const QBrush &brush, double size) :
  mSize(size),
  mShape(ssCustom),
  mPen(pen),
  mBrush(brush),
  mCustomPath(customPath),
  mPenDefined(pen.style() != Qt::NoPen)
{
}

/*!
  Copies the specified \a properties from the \a other scatter style to this scatter style.
*/
void QCPScatterStyle::setFromOther(const QCPScatterStyle &other, ScatterProperties properties)
{
  if (properties.testFlag(spPen))
  {
    setPen(other.pen());
    if (!other.isPenDefined())
      undefinePen();
  }
  if (properties.testFlag(spBrush))
    setBrush(other.brush());
  if (properties.testFlag(spSize))
    setSize(other.size());
  if (properties.testFlag(spShape))
  {
    setShape(other.shape());
    if (other.shape() == ssPixmap)
      setPixmap(other.pixmap());
    else if (other.shape() == ssCustom)
      setCustomPath(other.customPath());
  }
}

/*!
  Sets the size (pixel diameter) of the drawn scatter points to \a size.

  \see setShape
*/
void QCPScatterStyle::setSize(double size)
{
  mSize = size;
}

/*!
  Sets the shape to \a shape.

  Note that the calls \ref setPixmap and \ref setCustomPath automatically set the shape to \ref
  ssPixmap and \ref ssCustom, respectively.

  \see setSize
*/
void QCPScatterStyle::setShape(QCPScatterStyle::ScatterShape shape)
{
  mShape = shape;
}

/*!
  Sets the pen that will be used to draw scatter points to \a pen.

  If the pen was previously undefined (see \ref isPenDefined), the pen is considered defined after
  a call to this function, even if \a pen is <tt>Qt::NoPen</tt>. If you have defined a pen
  previously by calling this function and now wish to undefine the pen, call \ref undefinePen.

  \see setBrush
*/
void QCPScatterStyle::setPen(const QPen &pen)
{
  mPenDefined = true;
  mPen = pen;
}

/*!
  Sets the brush that will be used to fill scatter points to \a brush. Note that not all scatter
  shapes have fillable areas. For example, \ref ssPlus does not while \ref ssCircle does.

  \see setPen
*/
void QCPScatterStyle::setBrush(const QBrush &brush)
{
  mBrush = brush;
}

/*!
  Sets the pixmap that will be drawn as scatter point to \a pixmap.

  Note that \ref setSize does not influence the appearance of the pixmap.

  The scatter shape is automatically set to \ref ssPixmap.
*/
void QCPScatterStyle::setPixmap(const QPixmap &pixmap)
{
  setShape(ssPixmap);
  mPixmap = pixmap;
}

/*!
  Sets the custom shape that will be drawn as scatter point to \a customPath.

  The scatter shape is automatically set to \ref ssCustom.
*/
void QCPScatterStyle::setCustomPath(const QPainterPath &customPath)
{
  setShape(ssCustom);
  mCustomPath = customPath;
}

/*!
  Sets this scatter style to have an undefined pen (see \ref isPenDefined for what an undefined pen
  implies).

  A call to \ref setPen will define a pen.
*/
void QCPScatterStyle::undefinePen()
{
  mPenDefined = false;
}

/*!
  Applies the pen and the brush of this scatter style to \a painter. If this scatter style has an
  undefined pen (\ref isPenDefined), sets the pen of \a painter to \a defaultPen instead.

  This function is used by plottables (or any class that wants to draw scatters) just before a
  number of scatters with this style shall be drawn with the \a painter.

  \see drawShape
*/
void QCPScatterStyle::applyTo(QCPPainter *painter, const QPen &defaultPen) const
{
  painter->setPen(mPenDefined ? mPen : defaultPen);
  painter->setBrush(mBrush);
}

/*!
  Draws the scatter shape with \a painter at position \a pos.

  This function does not modify the pen or the brush on the painter, as \ref applyTo is meant to be
  called before scatter points are drawn with \ref drawShape.

  \see applyTo
*/
void QCPScatterStyle::drawShape(QCPPainter *painter, const QPointF &pos) const
{
  drawShape(painter, pos.x(), pos.y());
}

/*! \overload
  Draws the scatter shape with \a painter at position \a x and \a y.
*/
void QCPScatterStyle::drawShape(QCPPainter *painter, double x, double y) const
{
  double w = mSize/2.0;
  switch (mShape)
  {
    case ssNone: break;
    case ssDot:
    {
      painter->drawLine(QPointF(x, y), QPointF(x+0.0001, y));
      break;
    }
    case ssCross:
    {
      painter->drawLine(QLineF(x-w, y-w, x+w, y+w));
      painter->drawLine(QLineF(x-w, y+w, x+w, y-w));
      break;
    }
    case ssPlus:
    {
      painter->drawLine(QLineF(x-w,   y, x+w,   y));
      painter->drawLine(QLineF(  x, y+w,   x, y-w));
      break;
    }
    case ssCircle:
    {
      painter->drawEllipse(QPointF(x , y), w, w);
      break;
    }
    case ssDisc:
    {
      QBrush b = painter->brush();
      painter->setBrush(painter->pen().color());
      painter->drawEllipse(QPointF(x , y), w, w);
      painter->setBrush(b);
      break;
    }
    case ssSquare:
    {
      painter->drawRect(QRectF(x-w, y-w, mSize, mSize));
      break;
    }
    case ssDiamond:
    {
      QPointF lineArray[4] = {QPointF(x-w,   y),
                              QPointF(  x, y-w),
                              QPointF(x+w,   y),
                              QPointF(  x, y+w)};
      painter->drawPolygon(lineArray, 4);
      break;
    }
    case ssStar:
    {
      painter->drawLine(QLineF(x-w,   y, x+w,   y));
      painter->drawLine(QLineF(  x, y+w,   x, y-w));
      painter->drawLine(QLineF(x-w*0.707, y-w*0.707, x+w*0.707, y+w*0.707));
      painter->drawLine(QLineF(x-w*0.707, y+w*0.707, x+w*0.707, y-w*0.707));
      break;
    }
    case ssTriangle:
    {
      QPointF lineArray[3] = {QPointF(x-w, y+0.755*w),
                              QPointF(x+w, y+0.755*w),
                              QPointF(  x, y-0.977*w)};
      painter->drawPolygon(lineArray, 3);
      break;
    }
    case ssTriangleInverted:
    {
      QPointF lineArray[3] = {QPointF(x-w, y-0.755*w),
                              QPointF(x+w, y-0.755*w),
                              QPointF(  x, y+0.977*w)};
      painter->drawPolygon(lineArray, 3);
      break;
    }
    case ssCrossSquare:
    {
      painter->drawRect(QRectF(x-w, y-w, mSize, mSize));
      painter->drawLine(QLineF(x-w, y-w, x+w*0.95, y+w*0.95));
      painter->drawLine(QLineF(x-w, y+w*0.95, x+w*0.95, y-w));
      break;
    }
    case ssPlusSquare:
    {
      painter->drawRect(QRectF(x-w, y-w, mSize, mSize));
      painter->drawLine(QLineF(x-w,   y, x+w*0.95,   y));
      painter->drawLine(QLineF(  x, y+w,        x, y-w));
      break;
    }
    case ssCrossCircle:
    {
      painter->drawEllipse(QPointF(x, y), w, w);
      painter->drawLine(QLineF(x-w*0.707, y-w*0.707, x+w*0.670, y+w*0.670));
      painter->drawLine(QLineF(x-w*0.707, y+w*0.670, x+w*0.670, y-w*0.707));
      break;
    }
    case ssPlusCircle:
    {
      painter->drawEllipse(QPointF(x, y), w, w);
      painter->drawLine(QLineF(x-w,   y, x+w,   y));
      painter->drawLine(QLineF(  x, y+w,   x, y-w));
      break;
    }
    case ssPeace:
    {
      painter->drawEllipse(QPointF(x, y), w, w);
      painter->drawLine(QLineF(x, y-w,         x,       y+w));
      painter->drawLine(QLineF(x,   y, x-w*0.707, y+w*0.707));
      painter->drawLine(QLineF(x,   y, x+w*0.707, y+w*0.707));
      break;
    }
    case ssPixmap:
    {
      const double widthHalf = mPixmap.width()*0.5;
      const double heightHalf = mPixmap.height()*0.5;
#if QT_VERSION < QT_VERSION_CHECK(4, 8, 0)
      const QRectF clipRect = painter->clipRegion().boundingRect().adjusted(-widthHalf, -heightHalf, widthHalf, heightHalf);
#else
      const QRectF clipRect = painter->clipBoundingRect().adjusted(-widthHalf, -heightHalf, widthHalf, heightHalf);
#endif
      if (clipRect.contains(x, y))
        painter->drawPixmap(x-widthHalf, y-heightHalf, mPixmap);
      break;
    }
    case ssCustom:
    {
      QTransform oldTransform = painter->transform();
      painter->translate(x, y);
      painter->scale(mSize/6.0, mSize/6.0);
      painter->drawPath(mCustomPath);
      painter->setTransform(oldTransform);
      break;
    }
  }
}
/* end of 'src/scatterstyle.cpp' */

//amalgamation: add datacontainer.cpp

/* including file 'src/plottable.cpp', size 38845                            */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPSelectionDecorator
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPSelectionDecorator
  \brief Controls how a plottable's data selection is drawn

  Each \ref QCPAbstractPlottable instance has one \ref QCPSelectionDecorator (accessible via \ref
  QCPAbstractPlottable::selectionDecorator) and uses it when drawing selected segments of its data.

  The selection decorator controls both pen (\ref setPen) and brush (\ref setBrush), as well as the
  scatter style (\ref setScatterStyle) if the plottable draws scatters. Since a \ref
  QCPScatterStyle is itself composed of different properties such as color shape and size, the
  decorator allows specifying exactly which of those properties shall be used for the selected data
  point, via \ref setUsedScatterProperties.

  A \ref QCPSelectionDecorator subclass instance can be passed to a plottable via \ref
  QCPAbstractPlottable::setSelectionDecorator, allowing greater customizability of the appearance
  of selected segments.

  Use \ref copyFrom to easily transfer the settings of one decorator to another one. This is
  especially useful since plottables take ownership of the passed selection decorator, and thus the
  same decorator instance can not be passed to multiple plottables.

  Selection decorators can also themselves perform drawing operations by reimplementing \ref
  drawDecoration, which is called by the plottable's draw method. The base class \ref
  QCPSelectionDecorator does not make use of this however. For example, \ref
  QCPSelectionDecoratorBracket draws brackets around selected data segments.
*/

/*!
  Creates a new QCPSelectionDecorator instance with default values
*/
QCPSelectionDecorator::QCPSelectionDecorator() :
  mPen(QColor(80, 80, 255), 2.5),
  mBrush(Qt::NoBrush),
  mScatterStyle(),
  mUsedScatterProperties(QCPScatterStyle::spNone),
  mPlottable(0)
{
}

QCPSelectionDecorator::~QCPSelectionDecorator()
{
}

/*!
  Sets the pen that will be used by the parent plottable to draw selected data segments.
*/
void QCPSelectionDecorator::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the brush that will be used by the parent plottable to draw selected data segments.
*/
void QCPSelectionDecorator::setBrush(const QBrush &brush)
{
  mBrush = brush;
}

/*!
  Sets the scatter style that will be used by the parent plottable to draw scatters in selected
  data segments.

  \a usedProperties specifies which parts of the passed \a scatterStyle will be used by the
  plottable. The used properties can also be changed via \ref setUsedScatterProperties.
*/
void QCPSelectionDecorator::setScatterStyle(const QCPScatterStyle &scatterStyle, QCPScatterStyle::ScatterProperties usedProperties)
{
  mScatterStyle = scatterStyle;
  setUsedScatterProperties(usedProperties);
}

/*!
  Use this method to define which properties of the scatter style (set via \ref setScatterStyle)
  will be used for selected data segments. All properties of the scatter style that are not
  specified in \a properties will remain as specified in the plottable's original scatter style.

  \see QCPScatterStyle::ScatterProperty
*/
void QCPSelectionDecorator::setUsedScatterProperties(const QCPScatterStyle::ScatterProperties &properties)
{
  mUsedScatterProperties = properties;
}

/*!
  Sets the pen of \a painter to the pen of this selection decorator.

  \see applyBrush, getFinalScatterStyle
*/
void QCPSelectionDecorator::applyPen(QCPPainter *painter) const
{
  painter->setPen(mPen);
}

/*!
  Sets the brush of \a painter to the brush of this selection decorator.

  \see applyPen, getFinalScatterStyle
*/
void QCPSelectionDecorator::applyBrush(QCPPainter *painter) const
{
  painter->setBrush(mBrush);
}

/*!
  Returns the scatter style that the parent plottable shall use for selected scatter points. The
  plottable's original (unselected) scatter style must be passed as \a unselectedStyle. Depending
  on the setting of \ref setUsedScatterProperties, the returned scatter style is a mixture of this
  selecion decorator's scatter style (\ref setScatterStyle), and \a unselectedStyle.

  \see applyPen, applyBrush, setScatterStyle
*/
QCPScatterStyle QCPSelectionDecorator::getFinalScatterStyle(const QCPScatterStyle &unselectedStyle) const
{
  QCPScatterStyle result(unselectedStyle);
  result.setFromOther(mScatterStyle, mUsedScatterProperties);

  // if style shall inherit pen from plottable (has no own pen defined), give it the selected
  // plottable pen explicitly, so it doesn't use the unselected plottable pen when used in the
  // plottable:
  if (!result.isPenDefined())
    result.setPen(mPen);

  return result;
}

/*!
  Copies all properties (e.g. color, fill, scatter style) of the \a other selection decorator to
  this selection decorator.
*/
void QCPSelectionDecorator::copyFrom(const QCPSelectionDecorator *other)
{
  setPen(other->pen());
  setBrush(other->brush());
  setScatterStyle(other->scatterStyle(), other->usedScatterProperties());
}

/*!
  This method is called by all plottables' draw methods to allow custom selection decorations to be
  drawn. Use the passed \a painter to perform the drawing operations. \a selection carries the data
  selection for which the decoration shall be drawn.

  The default base class implementation of \ref QCPSelectionDecorator has no special decoration, so
  this method does nothing.
*/
void QCPSelectionDecorator::drawDecoration(QCPPainter *painter, QCPDataSelection selection)
{
  Q_UNUSED(painter)
  Q_UNUSED(selection)
}

/*! \internal

  This method is called as soon as a selection decorator is associated with a plottable, by a call
  to \ref QCPAbstractPlottable::setSelectionDecorator. This way the selection decorator can obtain a pointer to the plottable that uses it (e.g. to access
  data points via the \ref QCPAbstractPlottable::interface1D interface).

  If the selection decorator was already added to a different plottable before, this method aborts
  the registration and returns false.
*/
bool QCPSelectionDecorator::registerWithPlottable(QCPAbstractPlottable *plottable)
{
  if (!mPlottable)
  {
    mPlottable = plottable;
    return true;
  } else
  {
    qDebug() << Q_FUNC_INFO << "This selection decorator is already registered with plottable:" << reinterpret_cast<quintptr>(mPlottable);
    return false;
  }
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAbstractPlottable
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPAbstractPlottable
  \brief The abstract base class for all data representing objects in a plot.

  It defines a very basic interface like name, pen, brush, visibility etc. Since this class is
  abstract, it can't be instantiated. Use one of the subclasses or create a subclass yourself to
  create new ways of displaying data (see "Creating own plottables" below). Plottables that display
  one-dimensional data (i.e. data points have a single key dimension and one or multiple values at
  each key) are based off of the template subclass \ref QCPAbstractPlottable1D, see details
  there.

  All further specifics are in the subclasses, for example:
  \li A normal graph with possibly a line and/or scatter points \ref QCPGraph
  (typically created with \ref QCustomPlot::addGraph)
  \li A parametric curve: \ref QCPCurve
  \li A bar chart: \ref QCPBars
  \li A statistical box plot: \ref QCPStatisticalBox
  \li A color encoded two-dimensional map: \ref QCPColorMap
  \li An OHLC/Candlestick chart: \ref QCPFinancial

  \section plottables-subclassing Creating own plottables

  Subclassing directly from QCPAbstractPlottable is only recommended if you wish to display
  two-dimensional data like \ref QCPColorMap, i.e. two logical key dimensions and one (or more)
  data dimensions. If you want to display data with only one logical key dimension, you should
  rather derive from \ref QCPAbstractPlottable1D.

  If subclassing QCPAbstractPlottable directly, these are the pure virtual functions you must
  implement:
  \li \ref selectTest
  \li \ref draw
  \li \ref drawLegendIcon
  \li \ref getKeyRange
  \li \ref getValueRange

  See the documentation of those functions for what they need to do.

  For drawing your plot, you can use the \ref coordsToPixels functions to translate a point in plot
  coordinates to pixel coordinates. This function is quite convenient, because it takes the
  orientation of the key and value axes into account for you (x and y are swapped when the key axis
  is vertical and the value axis horizontal). If you are worried about performance (i.e. you need
  to translate many points in a loop like QCPGraph), you can directly use \ref
  QCPAxis::coordToPixel. However, you must then take care about the orientation of the axis
  yourself.

  Here are some important members you inherit from QCPAbstractPlottable:
  <table>
  <tr>
    <td>QCustomPlot *\b mParentPlot</td>
    <td>A pointer to the parent QCustomPlot instance. The parent plot is inferred from the axes that are passed in the constructor.</td>
  </tr><tr>
    <td>QString \b mName</td>
    <td>The name of the plottable.</td>
  </tr><tr>
    <td>QPen \b mPen</td>
    <td>The generic pen of the plottable. You should use this pen for the most prominent data representing lines in the plottable
        (e.g QCPGraph uses this pen for its graph lines and scatters)</td>
  </tr><tr>
    <td>QBrush \b mBrush</td>
    <td>The generic brush of the plottable. You should use this brush for the most prominent fillable structures in the plottable
        (e.g. QCPGraph uses this brush to control filling under the graph)</td>
  </tr><tr>
    <td>QPointer<\ref QCPAxis> \b mKeyAxis, \b mValueAxis</td>
    <td>The key and value axes this plottable is attached to. Call their QCPAxis::coordToPixel functions to translate coordinates
        to pixels in either the key or value dimension. Make sure to check whether the pointer is null before using it. If one of
        the axes is null, don't draw the plottable.</td>
  </tr><tr>
    <td>\ref QCPSelectionDecorator \b mSelectionDecorator</td>
    <td>The currently set selection decorator which specifies how selected data of the plottable shall be drawn and decorated.
        When drawing your data, you must consult this decorator for the appropriate pen/brush before drawing unselected/selected data segments.
        Finally, you should call its \ref QCPSelectionDecorator::drawDecoration method at the end of your \ref draw implementation.</td>
  </tr><tr>
    <td>\ref QCP::SelectionType \b mSelectable</td>
    <td>In which composition, if at all, this plottable's data may be selected. Enforcing this setting on the data selection is done
        by QCPAbstractPlottable automatically.</td>
  </tr><tr>
    <td>\ref QCPDataSelection \b mSelection</td>
    <td>Holds the current selection state of the plottable's data, i.e. the selected data ranges (\ref QCPDataRange).</td>
  </tr>
  </table>
*/

/* start of documentation of inline functions */

/*! \fn QCPSelectionDecorator *QCPAbstractPlottable::selectionDecorator() const

  Provides access to the selection decorator of this plottable. The selection decorator controls
  how selected data ranges are drawn (e.g. their pen color and fill), see \ref
  QCPSelectionDecorator for details.

  If you wish to use an own \ref QCPSelectionDecorator subclass, pass an instance of it to \ref
  setSelectionDecorator.
*/

/*! \fn bool QCPAbstractPlottable::selected() const

  Returns true if there are any data points of the plottable currently selected. Use \ref selection
  to retrieve the current \ref QCPDataSelection.
*/

/*! \fn QCPDataSelection QCPAbstractPlottable::selection() const

  Returns a \ref QCPDataSelection encompassing all the data points that are currently selected on
  this plottable.

  \see selected, setSelection, setSelectable
*/

/*! \fn virtual QCPPlottableInterface1D *QCPAbstractPlottable::interface1D()

  If this plottable is a one-dimensional plottable, i.e. it implements the \ref
  QCPPlottableInterface1D, returns the \a this pointer with that type. Otherwise (e.g. in the case
  of a \ref QCPColorMap) returns zero.

  You can use this method to gain read access to data coordinates while holding a pointer to the
  abstract base class only.
*/

/* end of documentation of inline functions */
/* start of documentation of pure virtual functions */

/*! \fn void QCPAbstractPlottable::drawLegendIcon(QCPPainter *painter, const QRect &rect) const = 0
  \internal

  called by QCPLegend::draw (via QCPPlottableLegendItem::draw) to create a graphical representation
  of this plottable inside \a rect, next to the plottable name.

  The passed \a painter has its cliprect set to \a rect, so painting outside of \a rect won't
  appear outside the legend icon border.
*/

/*! \fn QCPRange QCPAbstractPlottable::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const = 0

  Returns the coordinate range that all data in this plottable span in the key axis dimension. For
  logarithmic plots, one can set \a inSignDomain to either \ref QCP::sdNegative or \ref
  QCP::sdPositive in order to restrict the returned range to that sign domain. E.g. when only
  negative range is wanted, set \a inSignDomain to \ref QCP::sdNegative and all positive points
  will be ignored for range calculation. For no restriction, just set \a inSignDomain to \ref
  QCP::sdBoth (default). \a foundRange is an output parameter that indicates whether a range could
  be found or not. If this is false, you shouldn't use the returned range (e.g. no points in data).

  Note that \a foundRange is not the same as \ref QCPRange::validRange, since the range returned by
  this function may have size zero (e.g. when there is only one data point). In this case \a
  foundRange would return true, but the returned range is not a valid range in terms of \ref
  QCPRange::validRange.

  \see rescaleAxes, getValueRange
*/

/*! \fn QCPRange QCPAbstractPlottable::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const = 0

  Returns the coordinate range that the data points in the specified key range (\a inKeyRange) span
  in the value axis dimension. For logarithmic plots, one can set \a inSignDomain to either \ref
  QCP::sdNegative or \ref QCP::sdPositive in order to restrict the returned range to that sign
  domain. E.g. when only negative range is wanted, set \a inSignDomain to \ref QCP::sdNegative and
  all positive points will be ignored for range calculation. For no restriction, just set \a
  inSignDomain to \ref QCP::sdBoth (default). \a foundRange is an output parameter that indicates
  whether a range could be found or not. If this is false, you shouldn't use the returned range
  (e.g. no points in data).

  If \a inKeyRange has both lower and upper bound set to zero (is equal to <tt>QCPRange()</tt>),
  all data points are considered, without any restriction on the keys.

  Note that \a foundRange is not the same as \ref QCPRange::validRange, since the range returned by
  this function may have size zero (e.g. when there is only one data point). In this case \a
  foundRange would return true, but the returned range is not a valid range in terms of \ref
  QCPRange::validRange.

  \see rescaleAxes, getKeyRange
*/

/* end of documentation of pure virtual functions */
/* start of documentation of signals */

/*! \fn void QCPAbstractPlottable::selectionChanged(bool selected)

  This signal is emitted when the selection state of this plottable has changed, either by user
  interaction or by a direct call to \ref setSelection. The parameter \a selected indicates whether
  there are any points selected or not.

  \see selectionChanged(const QCPDataSelection &selection)
*/

/*! \fn void QCPAbstractPlottable::selectionChanged(const QCPDataSelection &selection)

  This signal is emitted when the selection state of this plottable has changed, either by user
  interaction or by a direct call to \ref setSelection. The parameter \a selection holds the
  currently selected data ranges.

  \see selectionChanged(bool selected)
*/

/*! \fn void QCPAbstractPlottable::selectableChanged(QCP::SelectionType selectable);

  This signal is emitted when the selectability of this plottable has changed.

  \see setSelectable
*/

/* end of documentation of signals */

/*!
  Constructs an abstract plottable which uses \a keyAxis as its key axis ("x") and \a valueAxis as
  its value axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance
  and have perpendicular orientations. If either of these restrictions is violated, a corresponding
  message is printed to the debug output (qDebug), the construction is not aborted, though.

  Since QCPAbstractPlottable is an abstract class that defines the basic interface to plottables,
  it can't be directly instantiated.

  You probably want one of the subclasses like \ref QCPGraph or \ref QCPCurve instead.
*/
QCPAbstractPlottable::QCPAbstractPlottable(QCPAxis *keyAxis, QCPAxis *valueAxis) :
  QCPLayerable(keyAxis->parentPlot(), QString(), keyAxis->axisRect()),
  mName(),
  mAntialiasedFill(true),
  mAntialiasedScatters(true),
  mPen(Qt::black),
  mBrush(Qt::NoBrush),
  mKeyAxis(keyAxis),
  mValueAxis(valueAxis),
  mSelectable(QCP::stWhole),
  mSelectionDecorator(0)
{
  if (keyAxis->parentPlot() != valueAxis->parentPlot())
    qDebug() << Q_FUNC_INFO << "Parent plot of keyAxis is not the same as that of valueAxis.";
  if (keyAxis->orientation() == valueAxis->orientation())
    qDebug() << Q_FUNC_INFO << "keyAxis and valueAxis must be orthogonal to each other.";

  mParentPlot->registerPlottable(this);
  setSelectionDecorator(new QCPSelectionDecorator);
}

QCPAbstractPlottable::~QCPAbstractPlottable()
{
  if (mSelectionDecorator)
  {
    delete mSelectionDecorator;
    mSelectionDecorator = 0;
  }
}

/*!
   The name is the textual representation of this plottable as it is displayed in the legend
   (\ref QCPLegend). It may contain any UTF-8 characters, including newlines.
*/
void QCPAbstractPlottable::setName(const QString &name)
{
  mName = name;
}

/*!
  Sets whether fills of this plottable are drawn antialiased or not.

  Note that this setting may be overridden by \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements.
*/
void QCPAbstractPlottable::setAntialiasedFill(bool enabled)
{
  mAntialiasedFill = enabled;
}

/*!
  Sets whether the scatter symbols of this plottable are drawn antialiased or not.

  Note that this setting may be overridden by \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements.
*/
void QCPAbstractPlottable::setAntialiasedScatters(bool enabled)
{
  mAntialiasedScatters = enabled;
}

/*!
  The pen is used to draw basic lines that make up the plottable representation in the
  plot.

  For example, the \ref QCPGraph subclass draws its graph lines with this pen.

  \see setBrush
*/
void QCPAbstractPlottable::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  The brush is used to draw basic fills of the plottable representation in the
  plot. The Fill can be a color, gradient or texture, see the usage of QBrush.

  For example, the \ref QCPGraph subclass draws the fill under the graph with this brush, when
  it's not set to Qt::NoBrush.

  \see setPen
*/
void QCPAbstractPlottable::setBrush(const QBrush &brush)
{
  mBrush = brush;
}

/*!
  The key axis of a plottable can be set to any axis of a QCustomPlot, as long as it is orthogonal
  to the plottable's value axis. This function performs no checks to make sure this is the case.
  The typical mathematical choice is to use the x-axis (QCustomPlot::xAxis) as key axis and the
  y-axis (QCustomPlot::yAxis) as value axis.

  Normally, the key and value axes are set in the constructor of the plottable (or \ref
  QCustomPlot::addGraph when working with QCPGraphs through the dedicated graph interface).

  \see setValueAxis
*/
void QCPAbstractPlottable::setKeyAxis(QCPAxis *axis)
{
  mKeyAxis = axis;
}

/*!
  The value axis of a plottable can be set to any axis of a QCustomPlot, as long as it is
  orthogonal to the plottable's key axis. This function performs no checks to make sure this is the
  case. The typical mathematical choice is to use the x-axis (QCustomPlot::xAxis) as key axis and
  the y-axis (QCustomPlot::yAxis) as value axis.

  Normally, the key and value axes are set in the constructor of the plottable (or \ref
  QCustomPlot::addGraph when working with QCPGraphs through the dedicated graph interface).

  \see setKeyAxis
*/
void QCPAbstractPlottable::setValueAxis(QCPAxis *axis)
{
  mValueAxis = axis;
}


/*!
  Sets which data ranges of this plottable are selected. Selected data ranges are drawn differently
  (e.g. color) in the plot. This can be controlled via the selection decorator (see \ref
  selectionDecorator).

  The entire selection mechanism for plottables is handled automatically when \ref
  QCustomPlot::setInteractions contains iSelectPlottables. You only need to call this function when
  you wish to change the selection state programmatically.

  Using \ref setSelectable you can further specify for each plottable whether and to which
  granularity it is selectable. If \a selection is not compatible with the current \ref
  QCP::SelectionType set via \ref setSelectable, the resulting selection will be adjusted
  accordingly (see \ref QCPDataSelection::enforceType).

  emits the \ref selectionChanged signal when \a selected is different from the previous selection state.

  \see setSelectable, selectTest
*/
void QCPAbstractPlottable::setSelection(QCPDataSelection selection)
{
  selection.enforceType(mSelectable);
  if (mSelection != selection)
  {
    mSelection = selection;
    emit selectionChanged(selected());
    emit selectionChanged(mSelection);
  }
}

/*!
  Use this method to set an own QCPSelectionDecorator (subclass) instance. This allows you to
  customize the visual representation of selected data ranges further than by using the default
  QCPSelectionDecorator.

  The plottable takes ownership of the \a decorator.

  The currently set decorator can be accessed via \ref selectionDecorator.
*/
void QCPAbstractPlottable::setSelectionDecorator(QCPSelectionDecorator *decorator)
{
  if (decorator)
  {
    if (decorator->registerWithPlottable(this))
    {
      if (mSelectionDecorator) // delete old decorator if necessary
        delete mSelectionDecorator;
      mSelectionDecorator = decorator;
    }
  } else if (mSelectionDecorator) // just clear decorator
  {
    delete mSelectionDecorator;
    mSelectionDecorator = 0;
  }
}

/*!
  Sets whether and to which granularity this plottable can be selected.

  A selection can happen by clicking on the QCustomPlot surface (When \ref
  QCustomPlot::setInteractions contains \ref QCP::iSelectPlottables), by dragging a selection rect
  (When \ref QCustomPlot::setSelectionRectMode is \ref QCP::srmSelect), or programmatically by
  calling \ref setSelection.

  \see setSelection, QCP::SelectionType
*/
void QCPAbstractPlottable::setSelectable(QCP::SelectionType selectable)
{
  if (mSelectable != selectable)
  {
    mSelectable = selectable;
    QCPDataSelection oldSelection = mSelection;
    mSelection.enforceType(mSelectable);
    emit selectableChanged(mSelectable);
    if (mSelection != oldSelection)
    {
      emit selectionChanged(selected());
      emit selectionChanged(mSelection);
    }
  }
}


/*!
  Convenience function for transforming a key/value pair to pixels on the QCustomPlot surface,
  taking the orientations of the axes associated with this plottable into account (e.g. whether key
  represents x or y).

  \a key and \a value are transformed to the coodinates in pixels and are written to \a x and \a y.

  \see pixelsToCoords, QCPAxis::coordToPixel
*/
void QCPAbstractPlottable::coordsToPixels(double key, double value, double &x, double &y) const
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }

  if (keyAxis->orientation() == Qt::Horizontal)
  {
    x = keyAxis->coordToPixel(key);
    y = valueAxis->coordToPixel(value);
  } else
  {
    y = keyAxis->coordToPixel(key);
    x = valueAxis->coordToPixel(value);
  }
}

/*! \overload

  Transforms the given \a key and \a value to pixel coordinates and returns them in a QPointF.
*/
const QPointF QCPAbstractPlottable::coordsToPixels(double key, double value) const
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return QPointF(); }

  if (keyAxis->orientation() == Qt::Horizontal)
    return QPointF(keyAxis->coordToPixel(key), valueAxis->coordToPixel(value));
  else
    return QPointF(valueAxis->coordToPixel(value), keyAxis->coordToPixel(key));
}

/*!
  Convenience function for transforming a x/y pixel pair on the QCustomPlot surface to plot coordinates,
  taking the orientations of the axes associated with this plottable into account (e.g. whether key
  represents x or y).

  \a x and \a y are transformed to the plot coodinates and are written to \a key and \a value.

  \see coordsToPixels, QCPAxis::coordToPixel
*/
void QCPAbstractPlottable::pixelsToCoords(double x, double y, double &key, double &value) const
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }

  if (keyAxis->orientation() == Qt::Horizontal)
  {
    key = keyAxis->pixelToCoord(x);
    value = valueAxis->pixelToCoord(y);
  } else
  {
    key = keyAxis->pixelToCoord(y);
    value = valueAxis->pixelToCoord(x);
  }
}

/*! \overload

  Returns the pixel input \a pixelPos as plot coordinates \a key and \a value.
*/
void QCPAbstractPlottable::pixelsToCoords(const QPointF &pixelPos, double &key, double &value) const
{
  pixelsToCoords(pixelPos.x(), pixelPos.y(), key, value);
}

/*!
  Rescales the key and value axes associated with this plottable to contain all displayed data, so
  the whole plottable is visible. If the scaling of an axis is logarithmic, rescaleAxes will make
  sure not to rescale to an illegal range i.e. a range containing different signs and/or zero.
  Instead it will stay in the current sign domain and ignore all parts of the plottable that lie
  outside of that domain.

  \a onlyEnlarge makes sure the ranges are only expanded, never reduced. So it's possible to show
  multiple plottables in their entirety by multiple calls to rescaleAxes where the first call has
  \a onlyEnlarge set to false (the default), and all subsequent set to true.

  \see rescaleKeyAxis, rescaleValueAxis, QCustomPlot::rescaleAxes, QCPAxis::rescale
*/
void QCPAbstractPlottable::rescaleAxes(bool onlyEnlarge) const
{
  rescaleKeyAxis(onlyEnlarge);
  rescaleValueAxis(onlyEnlarge);
}

/*!
  Rescales the key axis of the plottable so the whole plottable is visible.

  See \ref rescaleAxes for detailed behaviour.
*/
void QCPAbstractPlottable::rescaleKeyAxis(bool onlyEnlarge) const
{
  QCPAxis *keyAxis = mKeyAxis.data();
  if (!keyAxis) { qDebug() << Q_FUNC_INFO << "invalid key axis"; return; }

  QCP::SignDomain signDomain = QCP::sdBoth;
  if (keyAxis->scaleType() == QCPAxis::stLogarithmic)
    signDomain = (keyAxis->range().upper < 0 ? QCP::sdNegative : QCP::sdPositive);

  bool foundRange;
  QCPRange newRange = getKeyRange(foundRange, signDomain);
  if (foundRange)
  {
    if (onlyEnlarge)
      newRange.expand(keyAxis->range());
    if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
    {
      double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
      if (keyAxis->scaleType() == QCPAxis::stLinear)
      {
        newRange.lower = center-keyAxis->range().size()/2.0;
        newRange.upper = center+keyAxis->range().size()/2.0;
      } else // scaleType() == stLogarithmic
      {
        newRange.lower = center/qSqrt(keyAxis->range().upper/keyAxis->range().lower);
        newRange.upper = center*qSqrt(keyAxis->range().upper/keyAxis->range().lower);
      }
    }
    keyAxis->setRange(newRange);
  }
}

/*!
  Rescales the value axis of the plottable so the whole plottable is visible. If \a inKeyRange is
  set to true, only the data points which are in the currently visible key axis range are
  considered.

  Returns true if the axis was actually scaled. This might not be the case if this plottable has an
  invalid range, e.g. because it has no data points.

  See \ref rescaleAxes for detailed behaviour.
*/
void QCPAbstractPlottable::rescaleValueAxis(bool onlyEnlarge, bool inKeyRange) const
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }

  QCP::SignDomain signDomain = QCP::sdBoth;
  if (valueAxis->scaleType() == QCPAxis::stLogarithmic)
    signDomain = (valueAxis->range().upper < 0 ? QCP::sdNegative : QCP::sdPositive);

  bool foundRange;
  QCPRange newRange = getValueRange(foundRange, signDomain, inKeyRange ? keyAxis->range() : QCPRange());
  if (foundRange)
  {
    if (onlyEnlarge)
      newRange.expand(valueAxis->range());
    if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
    {
      double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
      if (valueAxis->scaleType() == QCPAxis::stLinear)
      {
        newRange.lower = center-valueAxis->range().size()/2.0;
        newRange.upper = center+valueAxis->range().size()/2.0;
      } else // scaleType() == stLogarithmic
      {
        newRange.lower = center/qSqrt(valueAxis->range().upper/valueAxis->range().lower);
        newRange.upper = center*qSqrt(valueAxis->range().upper/valueAxis->range().lower);
      }
    }
    valueAxis->setRange(newRange);
  }
}

/*! \overload

  Adds this plottable to the specified \a legend.

  Creates a QCPPlottableLegendItem which is inserted into the legend. Returns true on success, i.e.
  when the legend exists and a legend item associated with this plottable isn't already in the
  legend.

  If the plottable needs a more specialized representation in the legend, you can create a
  corresponding subclass of \ref QCPPlottableLegendItem and add it to the legend manually instead
  of calling this method.

  \see removeFromLegend, QCPLegend::addItem
*/
bool QCPAbstractPlottable::addToLegend(QCPLegend *legend)
{
  if (!legend)
  {
    qDebug() << Q_FUNC_INFO << "passed legend is null";
    return false;
  }
  if (legend->parentPlot() != mParentPlot)
  {
    qDebug() << Q_FUNC_INFO << "passed legend isn't in the same QCustomPlot as this plottable";
    return false;
  }

  if (!legend->hasItemWithPlottable(this))
  {
    legend->addItem(new QCPPlottableLegendItem(legend, this));
    return true;
  } else
    return false;
}

/*! \overload

  Adds this plottable to the legend of the parent QCustomPlot (\ref QCustomPlot::legend).

  \see removeFromLegend
*/
bool QCPAbstractPlottable::addToLegend()
{
  if (!mParentPlot || !mParentPlot->legend)
    return false;
  else
    return addToLegend(mParentPlot->legend);
}

/*! \overload

  Removes the plottable from the specifed \a legend. This means the \ref QCPPlottableLegendItem
  that is associated with this plottable is removed.

  Returns true on success, i.e. if the legend exists and a legend item associated with this
  plottable was found and removed.

  \see addToLegend, QCPLegend::removeItem
*/
bool QCPAbstractPlottable::removeFromLegend(QCPLegend *legend) const
{
  if (!legend)
  {
    qDebug() << Q_FUNC_INFO << "passed legend is null";
    return false;
  }

  if (QCPPlottableLegendItem *lip = legend->itemWithPlottable(this))
    return legend->removeItem(lip);
  else
    return false;
}

/*! \overload

  Removes the plottable from the legend of the parent QCustomPlot.

  \see addToLegend
*/
bool QCPAbstractPlottable::removeFromLegend() const
{
  if (!mParentPlot || !mParentPlot->legend)
    return false;
  else
    return removeFromLegend(mParentPlot->legend);
}

/* inherits documentation from base class */
QRect QCPAbstractPlottable::clipRect() const
{
  if (mKeyAxis && mValueAxis)
    return mKeyAxis.data()->axisRect()->rect() & mValueAxis.data()->axisRect()->rect();
  else
    return QRect();
}

/* inherits documentation from base class */
QCP::Interaction QCPAbstractPlottable::selectionCategory() const
{
  return QCP::iSelectPlottables;
}

/*! \internal

  A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
  before drawing plottable lines.

  This is the antialiasing state the painter passed to the \ref draw method is in by default.

  This function takes into account the local setting of the antialiasing flag as well as the
  overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements.

  \seebaseclassmethod

  \see setAntialiased, applyFillAntialiasingHint, applyScattersAntialiasingHint
*/
void QCPAbstractPlottable::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiased, QCP::aePlottables);
}

/*! \internal

  A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
  before drawing plottable fills.

  This function takes into account the local setting of the antialiasing flag as well as the
  overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements.

  \see setAntialiased, applyDefaultAntialiasingHint, applyScattersAntialiasingHint
*/
void QCPAbstractPlottable::applyFillAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiasedFill, QCP::aeFills);
}

/*! \internal

  A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
  before drawing plottable scatter points.

  This function takes into account the local setting of the antialiasing flag as well as the
  overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements.

  \see setAntialiased, applyFillAntialiasingHint, applyDefaultAntialiasingHint
*/
void QCPAbstractPlottable::applyScattersAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiasedScatters, QCP::aeScatters);
}

/* inherits documentation from base class */
void QCPAbstractPlottable::selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged)
{
  Q_UNUSED(event)

  if (mSelectable != QCP::stNone)
  {
    QCPDataSelection newSelection = details.value<QCPDataSelection>();
    QCPDataSelection selectionBefore = mSelection;
    if (additive)
    {
      if (mSelectable == QCP::stWhole) // in whole selection mode, we toggle to no selection even if currently unselected point was hit
      {
        if (selected())
          setSelection(QCPDataSelection());
        else
          setSelection(newSelection);
      } else // in all other selection modes we toggle selections of homogeneously selected/unselected segments
      {
        if (mSelection.contains(newSelection)) // if entire newSelection is already selected, toggle selection
          setSelection(mSelection-newSelection);
        else
          setSelection(mSelection+newSelection);
      }
    } else
      setSelection(newSelection);
    if (selectionStateChanged)
      *selectionStateChanged = mSelection != selectionBefore;
  }
}

/* inherits documentation from base class */
void QCPAbstractPlottable::deselectEvent(bool *selectionStateChanged)
{
  if (mSelectable != QCP::stNone)
  {
    QCPDataSelection selectionBefore = mSelection;
    setSelection(QCPDataSelection());
    if (selectionStateChanged)
      *selectionStateChanged = mSelection != selectionBefore;
  }
}
/* end of 'src/plottable.cpp' */


/* including file 'src/item.cpp', size 49271                                 */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemAnchor
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemAnchor
  \brief An anchor of an item to which positions can be attached to.

  An item (QCPAbstractItem) may have one or more anchors. Unlike QCPItemPosition, an anchor doesn't
  control anything on its item, but provides a way to tie other items via their positions to the
  anchor.

  For example, a QCPItemRect is defined by its positions \a topLeft and \a bottomRight.
  Additionally it has various anchors like \a top, \a topRight or \a bottomLeft etc. So you can
  attach the \a start (which is a QCPItemPosition) of a QCPItemLine to one of the anchors by
  calling QCPItemPosition::setParentAnchor on \a start, passing the wanted anchor of the
  QCPItemRect. This way the start of the line will now always follow the respective anchor location
  on the rect item.

  Note that QCPItemPosition derives from QCPItemAnchor, so every position can also serve as an
  anchor to other positions.

  To learn how to provide anchors in your own item subclasses, see the subclassing section of the
  QCPAbstractItem documentation.
*/

/* start documentation of inline functions */

/*! \fn virtual QCPItemPosition *QCPItemAnchor::toQCPItemPosition()

  Returns 0 if this instance is merely a QCPItemAnchor, and a valid pointer of type QCPItemPosition* if
  it actually is a QCPItemPosition (which is a subclass of QCPItemAnchor).

  This safe downcast functionality could also be achieved with a dynamic_cast. However, QCustomPlot avoids
  dynamic_cast to work with projects that don't have RTTI support enabled (e.g. -fno-rtti flag with
  gcc compiler).
*/

/* end documentation of inline functions */

/*!
  Creates a new QCPItemAnchor. You shouldn't create QCPItemAnchor instances directly, even if
  you want to make a new item subclass. Use \ref QCPAbstractItem::createAnchor instead, as
  explained in the subclassing section of the QCPAbstractItem documentation.
*/
QCPItemAnchor::QCPItemAnchor(QCustomPlot *parentPlot, QCPAbstractItem *parentItem, const QString &name, int anchorId) :
  mName(name),
  mParentPlot(parentPlot),
  mParentItem(parentItem),
  mAnchorId(anchorId)
{
}

QCPItemAnchor::~QCPItemAnchor()
{
  // unregister as parent at children:
  foreach (QCPItemPosition *child, mChildrenX.toList())
  {
    if (child->parentAnchorX() == this)
      child->setParentAnchorX(0); // this acts back on this anchor and child removes itself from mChildrenX
  }
  foreach (QCPItemPosition *child, mChildrenY.toList())
  {
    if (child->parentAnchorY() == this)
      child->setParentAnchorY(0); // this acts back on this anchor and child removes itself from mChildrenY
  }
}

/*!
  Returns the final absolute pixel position of the QCPItemAnchor on the QCustomPlot surface.

  The pixel information is internally retrieved via QCPAbstractItem::anchorPixelPosition of the
  parent item, QCPItemAnchor is just an intermediary.
*/
QPointF QCPItemAnchor::pixelPosition() const
{
  if (mParentItem)
  {
    if (mAnchorId > -1)
    {
      return mParentItem->anchorPixelPosition(mAnchorId);
    } else
    {
      qDebug() << Q_FUNC_INFO << "no valid anchor id set:" << mAnchorId;
      return QPointF();
    }
  } else
  {
    qDebug() << Q_FUNC_INFO << "no parent item set";
    return QPointF();
  }
}

/*! \internal

  Adds \a pos to the childX list of this anchor, which keeps track of which children use this
  anchor as parent anchor for the respective coordinate. This is necessary to notify the children
  prior to destruction of the anchor.

  Note that this function does not change the parent setting in \a pos.
*/
void QCPItemAnchor::addChildX(QCPItemPosition *pos)
{
  if (!mChildrenX.contains(pos))
    mChildrenX.insert(pos);
  else
    qDebug() << Q_FUNC_INFO << "provided pos is child already" << reinterpret_cast<quintptr>(pos);
}

/*! \internal

  Removes \a pos from the childX list of this anchor.

  Note that this function does not change the parent setting in \a pos.
*/
void QCPItemAnchor::removeChildX(QCPItemPosition *pos)
{
  if (!mChildrenX.remove(pos))
    qDebug() << Q_FUNC_INFO << "provided pos isn't child" << reinterpret_cast<quintptr>(pos);
}

/*! \internal

  Adds \a pos to the childY list of this anchor, which keeps track of which children use this
  anchor as parent anchor for the respective coordinate. This is necessary to notify the children
  prior to destruction of the anchor.

  Note that this function does not change the parent setting in \a pos.
*/
void QCPItemAnchor::addChildY(QCPItemPosition *pos)
{
  if (!mChildrenY.contains(pos))
    mChildrenY.insert(pos);
  else
    qDebug() << Q_FUNC_INFO << "provided pos is child already" << reinterpret_cast<quintptr>(pos);
}

/*! \internal

  Removes \a pos from the childY list of this anchor.

  Note that this function does not change the parent setting in \a pos.
*/
void QCPItemAnchor::removeChildY(QCPItemPosition *pos)
{
  if (!mChildrenY.remove(pos))
    qDebug() << Q_FUNC_INFO << "provided pos isn't child" << reinterpret_cast<quintptr>(pos);
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemPosition
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemPosition
  \brief Manages the position of an item.

  Every item has at least one public QCPItemPosition member pointer which provides ways to position the
  item on the QCustomPlot surface. Some items have multiple positions, for example QCPItemRect has two:
  \a topLeft and \a bottomRight.

  QCPItemPosition has a type (\ref PositionType) that can be set with \ref setType. This type
  defines how coordinates passed to \ref setCoords are to be interpreted, e.g. as absolute pixel
  coordinates, as plot coordinates of certain axes, etc. For more advanced plots it is also
  possible to assign different types per X/Y coordinate of the position (see \ref setTypeX, \ref
  setTypeY). This way an item could be positioned at a fixed pixel distance from the top in the Y
  direction, while following a plot coordinate in the X direction.

  A QCPItemPosition may have a parent QCPItemAnchor, see \ref setParentAnchor. This way you can tie
  multiple items together. If the QCPItemPosition has a parent, its coordinates (\ref setCoords)
  are considered to be absolute pixels in the reference frame of the parent anchor, where (0, 0)
  means directly ontop of the parent anchor. For example, You could attach the \a start position of
  a QCPItemLine to the \a bottom anchor of a QCPItemText to make the starting point of the line
  always be centered under the text label, no matter where the text is moved to. For more advanced
  plots, it is possible to assign different parent anchors per X/Y coordinate of the position, see
  \ref setParentAnchorX, \ref setParentAnchorY. This way an item could follow another item in the X
  direction but stay at a fixed position in the Y direction. Or even follow item A in X, and item B
  in Y.

  Note that every QCPItemPosition inherits from QCPItemAnchor and thus can itself be used as parent
  anchor for other positions.

  To set the apparent pixel position on the QCustomPlot surface directly, use \ref setPixelPosition. This
  works no matter what type this QCPItemPosition is or what parent-child situation it is in, as \ref
  setPixelPosition transforms the coordinates appropriately, to make the position appear at the specified
  pixel values.
*/

/* start documentation of inline functions */

/*! \fn QCPItemPosition::PositionType *QCPItemPosition::type() const

  Returns the current position type.

  If different types were set for X and Y (\ref setTypeX, \ref setTypeY), this method returns the
  type of the X coordinate. In that case rather use \a typeX() and \a typeY().

  \see setType
*/

/*! \fn QCPItemAnchor *QCPItemPosition::parentAnchor() const

  Returns the current parent anchor.

  If different parent anchors were set for X and Y (\ref setParentAnchorX, \ref setParentAnchorY),
  this method returns the parent anchor of the Y coordinate. In that case rather use \a
  parentAnchorX() and \a parentAnchorY().

  \see setParentAnchor
*/

/* end documentation of inline functions */

/*!
  Creates a new QCPItemPosition. You shouldn't create QCPItemPosition instances directly, even if
  you want to make a new item subclass. Use \ref QCPAbstractItem::createPosition instead, as
  explained in the subclassing section of the QCPAbstractItem documentation.
*/
QCPItemPosition::QCPItemPosition(QCustomPlot *parentPlot, QCPAbstractItem *parentItem, const QString &name) :
  QCPItemAnchor(parentPlot, parentItem, name),
  mPositionTypeX(ptAbsolute),
  mPositionTypeY(ptAbsolute),
  mKey(0),
  mValue(0),
  mParentAnchorX(0),
  mParentAnchorY(0)
{
}

QCPItemPosition::~QCPItemPosition()
{
  // unregister as parent at children:
  // Note: this is done in ~QCPItemAnchor again, but it's important QCPItemPosition does it itself, because only then
  //       the setParentAnchor(0) call the correct QCPItemPosition::pixelPosition function instead of QCPItemAnchor::pixelPosition
  foreach (QCPItemPosition *child, mChildrenX.toList())
  {
    if (child->parentAnchorX() == this)
      child->setParentAnchorX(0); // this acts back on this anchor and child removes itself from mChildrenX
  }
  foreach (QCPItemPosition *child, mChildrenY.toList())
  {
    if (child->parentAnchorY() == this)
      child->setParentAnchorY(0); // this acts back on this anchor and child removes itself from mChildrenY
  }
  // unregister as child in parent:
  if (mParentAnchorX)
    mParentAnchorX->removeChildX(this);
  if (mParentAnchorY)
    mParentAnchorY->removeChildY(this);
}

/* can't make this a header inline function, because QPointer breaks with forward declared types, see QTBUG-29588 */
QCPAxisRect *QCPItemPosition::axisRect() const
{
  return mAxisRect.data();
}

/*!
  Sets the type of the position. The type defines how the coordinates passed to \ref setCoords
  should be handled and how the QCPItemPosition should behave in the plot.

  The possible values for \a type can be separated in two main categories:

  \li The position is regarded as a point in plot coordinates. This corresponds to \ref ptPlotCoords
  and requires two axes that define the plot coordinate system. They can be specified with \ref setAxes.
  By default, the QCustomPlot's x- and yAxis are used.

  \li The position is fixed on the QCustomPlot surface, i.e. independent of axis ranges. This
  corresponds to all other types, i.e. \ref ptAbsolute, \ref ptViewportRatio and \ref
  ptAxisRectRatio. They differ only in the way the absolute position is described, see the
  documentation of \ref PositionType for details. For \ref ptAxisRectRatio, note that you can specify
  the axis rect with \ref setAxisRect. By default this is set to the main axis rect.

  Note that the position type \ref ptPlotCoords is only available (and sensible) when the position
  has no parent anchor (\ref setParentAnchor).

  If the type is changed, the apparent pixel position on the plot is preserved. This means
  the coordinates as retrieved with coords() and set with \ref setCoords may change in the process.

  This method sets the type for both X and Y directions. It is also possible to set different types
  for X and Y, see \ref setTypeX, \ref setTypeY.
*/
void QCPItemPosition::setType(QCPItemPosition::PositionType type)
{
  setTypeX(type);
  setTypeY(type);
}

/*!
  This method sets the position type of the X coordinate to \a type.

  For a detailed description of what a position type is, see the documentation of \ref setType.

  \see setType, setTypeY
*/
void QCPItemPosition::setTypeX(QCPItemPosition::PositionType type)
{
  if (mPositionTypeX != type)
  {
    // if switching from or to coordinate type that isn't valid (e.g. because axes or axis rect
    // were deleted), don't try to recover the pixelPosition() because it would output a qDebug warning.
    bool retainPixelPosition = true;
    if ((mPositionTypeX == ptPlotCoords || type == ptPlotCoords) && (!mKeyAxis || !mValueAxis))
      retainPixelPosition = false;
    if ((mPositionTypeX == ptAxisRectRatio || type == ptAxisRectRatio) && (!mAxisRect))
      retainPixelPosition = false;

    QPointF pixel;
    if (retainPixelPosition)
      pixel = pixelPosition();

    mPositionTypeX = type;

    if (retainPixelPosition)
      setPixelPosition(pixel);
  }
}

/*!
  This method sets the position type of the Y coordinate to \a type.

  For a detailed description of what a position type is, see the documentation of \ref setType.

  \see setType, setTypeX
*/
void QCPItemPosition::setTypeY(QCPItemPosition::PositionType type)
{
  if (mPositionTypeY != type)
  {
    // if switching from or to coordinate type that isn't valid (e.g. because axes or axis rect
    // were deleted), don't try to recover the pixelPosition() because it would output a qDebug warning.
    bool retainPixelPosition = true;
    if ((mPositionTypeY == ptPlotCoords || type == ptPlotCoords) && (!mKeyAxis || !mValueAxis))
      retainPixelPosition = false;
    if ((mPositionTypeY == ptAxisRectRatio || type == ptAxisRectRatio) && (!mAxisRect))
      retainPixelPosition = false;

    QPointF pixel;
    if (retainPixelPosition)
      pixel = pixelPosition();

    mPositionTypeY = type;

    if (retainPixelPosition)
      setPixelPosition(pixel);
  }
}

/*!
  Sets the parent of this QCPItemPosition to \a parentAnchor. This means the position will now
  follow any position changes of the anchor. The local coordinate system of positions with a parent
  anchor always is absolute pixels, with (0, 0) being exactly on top of the parent anchor. (Hence
  the type shouldn't be set to \ref ptPlotCoords for positions with parent anchors.)

  if \a keepPixelPosition is true, the current pixel position of the QCPItemPosition is preserved
  during reparenting. If it's set to false, the coordinates are set to (0, 0), i.e. the position
  will be exactly on top of the parent anchor.

  To remove this QCPItemPosition from any parent anchor, set \a parentAnchor to 0.

  If the QCPItemPosition previously had no parent and the type is \ref ptPlotCoords, the type is
  set to \ref ptAbsolute, to keep the position in a valid state.

  This method sets the parent anchor for both X and Y directions. It is also possible to set
  different parents for X and Y, see \ref setParentAnchorX, \ref setParentAnchorY.
*/
bool QCPItemPosition::setParentAnchor(QCPItemAnchor *parentAnchor, bool keepPixelPosition)
{
  bool successX = setParentAnchorX(parentAnchor, keepPixelPosition);
  bool successY = setParentAnchorY(parentAnchor, keepPixelPosition);
  return successX && successY;
}

/*!
  This method sets the parent anchor of the X coordinate to \a parentAnchor.

  For a detailed description of what a parent anchor is, see the documentation of \ref setParentAnchor.

  \see setParentAnchor, setParentAnchorY
*/
bool QCPItemPosition::setParentAnchorX(QCPItemAnchor *parentAnchor, bool keepPixelPosition)
{
  // make sure self is not assigned as parent:
  if (parentAnchor == this)
  {
    qDebug() << Q_FUNC_INFO << "can't set self as parent anchor" << reinterpret_cast<quintptr>(parentAnchor);
    return false;
  }
  // make sure no recursive parent-child-relationships are created:
  QCPItemAnchor *currentParent = parentAnchor;
  while (currentParent)
  {
    if (QCPItemPosition *currentParentPos = currentParent->toQCPItemPosition())
    {
      // is a QCPItemPosition, might have further parent, so keep iterating
      if (currentParentPos == this)
      {
        qDebug() << Q_FUNC_INFO << "can't create recursive parent-child-relationship" << reinterpret_cast<quintptr>(parentAnchor);
        return false;
      }
      currentParent = currentParentPos->parentAnchorX();
    } else
    {
      // is a QCPItemAnchor, can't have further parent. Now make sure the parent items aren't the
      // same, to prevent a position being child of an anchor which itself depends on the position,
      // because they're both on the same item:
      if (currentParent->mParentItem == mParentItem)
      {
        qDebug() << Q_FUNC_INFO << "can't set parent to be an anchor which itself depends on this position" << reinterpret_cast<quintptr>(parentAnchor);
        return false;
      }
      break;
    }
  }

  // if previously no parent set and PosType is still ptPlotCoords, set to ptAbsolute:
  if (!mParentAnchorX && mPositionTypeX == ptPlotCoords)
    setTypeX(ptAbsolute);

  // save pixel position:
  QPointF pixelP;
  if (keepPixelPosition)
    pixelP = pixelPosition();
  // unregister at current parent anchor:
  if (mParentAnchorX)
    mParentAnchorX->removeChildX(this);
  // register at new parent anchor:
  if (parentAnchor)
    parentAnchor->addChildX(this);
  mParentAnchorX = parentAnchor;
  // restore pixel position under new parent:
  if (keepPixelPosition)
    setPixelPosition(pixelP);
  else
    setCoords(0, coords().y());
  return true;
}

/*!
  This method sets the parent anchor of the Y coordinate to \a parentAnchor.

  For a detailed description of what a parent anchor is, see the documentation of \ref setParentAnchor.

  \see setParentAnchor, setParentAnchorX
*/
bool QCPItemPosition::setParentAnchorY(QCPItemAnchor *parentAnchor, bool keepPixelPosition)
{
  // make sure self is not assigned as parent:
  if (parentAnchor == this)
  {
    qDebug() << Q_FUNC_INFO << "can't set self as parent anchor" << reinterpret_cast<quintptr>(parentAnchor);
    return false;
  }
  // make sure no recursive parent-child-relationships are created:
  QCPItemAnchor *currentParent = parentAnchor;
  while (currentParent)
  {
    if (QCPItemPosition *currentParentPos = currentParent->toQCPItemPosition())
    {
      // is a QCPItemPosition, might have further parent, so keep iterating
      if (currentParentPos == this)
      {
        qDebug() << Q_FUNC_INFO << "can't create recursive parent-child-relationship" << reinterpret_cast<quintptr>(parentAnchor);
        return false;
      }
      currentParent = currentParentPos->parentAnchorY();
    } else
    {
      // is a QCPItemAnchor, can't have further parent. Now make sure the parent items aren't the
      // same, to prevent a position being child of an anchor which itself depends on the position,
      // because they're both on the same item:
      if (currentParent->mParentItem == mParentItem)
      {
        qDebug() << Q_FUNC_INFO << "can't set parent to be an anchor which itself depends on this position" << reinterpret_cast<quintptr>(parentAnchor);
        return false;
      }
      break;
    }
  }

  // if previously no parent set and PosType is still ptPlotCoords, set to ptAbsolute:
  if (!mParentAnchorY && mPositionTypeY == ptPlotCoords)
    setTypeY(ptAbsolute);

  // save pixel position:
  QPointF pixelP;
  if (keepPixelPosition)
    pixelP = pixelPosition();
  // unregister at current parent anchor:
  if (mParentAnchorY)
    mParentAnchorY->removeChildY(this);
  // register at new parent anchor:
  if (parentAnchor)
    parentAnchor->addChildY(this);
  mParentAnchorY = parentAnchor;
  // restore pixel position under new parent:
  if (keepPixelPosition)
    setPixelPosition(pixelP);
  else
    setCoords(coords().x(), 0);
  return true;
}

/*!
  Sets the coordinates of this QCPItemPosition. What the coordinates mean, is defined by the type
  (\ref setType, \ref setTypeX, \ref setTypeY).

  For example, if the type is \ref ptAbsolute, \a key and \a value mean the x and y pixel position
  on the QCustomPlot surface. In that case the origin (0, 0) is in the top left corner of the
  QCustomPlot viewport. If the type is \ref ptPlotCoords, \a key and \a value mean a point in the
  plot coordinate system defined by the axes set by \ref setAxes. By default those are the
  QCustomPlot's xAxis and yAxis. See the documentation of \ref setType for other available
  coordinate types and their meaning.

  If different types were configured for X and Y (\ref setTypeX, \ref setTypeY), \a key and \a
  value must also be provided in the different coordinate systems. Here, the X type refers to \a
  key, and the Y type refers to \a value.

  \see setPixelPosition
*/
void QCPItemPosition::setCoords(double key, double value)
{
  mKey = key;
  mValue = value;
}

/*! \overload

  Sets the coordinates as a QPointF \a pos where pos.x has the meaning of \a key and pos.y the
  meaning of \a value of the \ref setCoords(double key, double value) method.
*/
void QCPItemPosition::setCoords(const QPointF &pos)
{
  setCoords(pos.x(), pos.y());
}

/*!
  Returns the final absolute pixel position of the QCPItemPosition on the QCustomPlot surface. It
  includes all effects of type (\ref setType) and possible parent anchors (\ref setParentAnchor).

  \see setPixelPosition
*/
QPointF QCPItemPosition::pixelPosition() const
{
  QPointF result;

  // determine X:
  switch (mPositionTypeX)
  {
    case ptAbsolute:
    {
      result.rx() = mKey;
      if (mParentAnchorX)
        result.rx() += mParentAnchorX->pixelPosition().x();
      break;
    }
    case ptViewportRatio:
    {
      result.rx() = mKey*mParentPlot->viewport().width();
      if (mParentAnchorX)
        result.rx() += mParentAnchorX->pixelPosition().x();
      else
        result.rx() += mParentPlot->viewport().left();
      break;
    }
    case ptAxisRectRatio:
    {
      if (mAxisRect)
      {
        result.rx() = mKey*mAxisRect.data()->width();
        if (mParentAnchorX)
          result.rx() += mParentAnchorX->pixelPosition().x();
        else
          result.rx() += mAxisRect.data()->left();
      } else
        qDebug() << Q_FUNC_INFO << "Item position type x is ptAxisRectRatio, but no axis rect was defined";
      break;
    }
    case ptPlotCoords:
    {
      if (mKeyAxis && mKeyAxis.data()->orientation() == Qt::Horizontal)
        result.rx() = mKeyAxis.data()->coordToPixel(mKey);
      else if (mValueAxis && mValueAxis.data()->orientation() == Qt::Horizontal)
        result.rx() = mValueAxis.data()->coordToPixel(mValue);
      else
        qDebug() << Q_FUNC_INFO << "Item position type x is ptPlotCoords, but no axes were defined";
      break;
    }
  }

  // determine Y:
  switch (mPositionTypeY)
  {
    case ptAbsolute:
    {
      result.ry() = mValue;
      if (mParentAnchorY)
        result.ry() += mParentAnchorY->pixelPosition().y();
      break;
    }
    case ptViewportRatio:
    {
      result.ry() = mValue*mParentPlot->viewport().height();
      if (mParentAnchorY)
        result.ry() += mParentAnchorY->pixelPosition().y();
      else
        result.ry() += mParentPlot->viewport().top();
      break;
    }
    case ptAxisRectRatio:
    {
      if (mAxisRect)
      {
        result.ry() = mValue*mAxisRect.data()->height();
        if (mParentAnchorY)
          result.ry() += mParentAnchorY->pixelPosition().y();
        else
          result.ry() += mAxisRect.data()->top();
      } else
        qDebug() << Q_FUNC_INFO << "Item position type y is ptAxisRectRatio, but no axis rect was defined";
      break;
    }
    case ptPlotCoords:
    {
      if (mKeyAxis && mKeyAxis.data()->orientation() == Qt::Vertical)
        result.ry() = mKeyAxis.data()->coordToPixel(mKey);
      else if (mValueAxis && mValueAxis.data()->orientation() == Qt::Vertical)
        result.ry() = mValueAxis.data()->coordToPixel(mValue);
      else
        qDebug() << Q_FUNC_INFO << "Item position type y is ptPlotCoords, but no axes were defined";
      break;
    }
  }

  return result;
}

/*!
  When \ref setType is \ref ptPlotCoords, this function may be used to specify the axes the
  coordinates set with \ref setCoords relate to. By default they are set to the initial xAxis and
  yAxis of the QCustomPlot.
*/
void QCPItemPosition::setAxes(QCPAxis *keyAxis, QCPAxis *valueAxis)
{
  mKeyAxis = keyAxis;
  mValueAxis = valueAxis;
}

/*!
  When \ref setType is \ref ptAxisRectRatio, this function may be used to specify the axis rect the
  coordinates set with \ref setCoords relate to. By default this is set to the main axis rect of
  the QCustomPlot.
*/
void QCPItemPosition::setAxisRect(QCPAxisRect *axisRect)
{
  mAxisRect = axisRect;
}

/*!
  Sets the apparent pixel position. This works no matter what type (\ref setType) this
  QCPItemPosition is or what parent-child situation it is in, as coordinates are transformed
  appropriately, to make the position finally appear at the specified pixel values.

  Only if the type is \ref ptAbsolute and no parent anchor is set, this function's effect is
  identical to that of \ref setCoords.

  \see pixelPosition, setCoords
*/
void QCPItemPosition::setPixelPosition(const QPointF &pixelPosition)
{
  double x = pixelPosition.x();
  double y = pixelPosition.y();

  switch (mPositionTypeX)
  {
    case ptAbsolute:
    {
      if (mParentAnchorX)
        x -= mParentAnchorX->pixelPosition().x();
      break;
    }
    case ptViewportRatio:
    {
      if (mParentAnchorX)
        x -= mParentAnchorX->pixelPosition().x();
      else
        x -= mParentPlot->viewport().left();
      x /= (double)mParentPlot->viewport().width();
      break;
    }
    case ptAxisRectRatio:
    {
      if (mAxisRect)
      {
        if (mParentAnchorX)
          x -= mParentAnchorX->pixelPosition().x();
        else
          x -= mAxisRect.data()->left();
        x /= (double)mAxisRect.data()->width();
      } else
        qDebug() << Q_FUNC_INFO << "Item position type x is ptAxisRectRatio, but no axis rect was defined";
      break;
    }
    case ptPlotCoords:
    {
      if (mKeyAxis && mKeyAxis.data()->orientation() == Qt::Horizontal)
        x = mKeyAxis.data()->pixelToCoord(x);
      else if (mValueAxis && mValueAxis.data()->orientation() == Qt::Horizontal)
        y = mValueAxis.data()->pixelToCoord(x);
      else
        qDebug() << Q_FUNC_INFO << "Item position type x is ptPlotCoords, but no axes were defined";
      break;
    }
  }

  switch (mPositionTypeY)
  {
    case ptAbsolute:
    {
      if (mParentAnchorY)
        y -= mParentAnchorY->pixelPosition().y();
      break;
    }
    case ptViewportRatio:
    {
      if (mParentAnchorY)
        y -= mParentAnchorY->pixelPosition().y();
      else
        y -= mParentPlot->viewport().top();
      y /= (double)mParentPlot->viewport().height();
      break;
    }
    case ptAxisRectRatio:
    {
      if (mAxisRect)
      {
        if (mParentAnchorY)
          y -= mParentAnchorY->pixelPosition().y();
        else
          y -= mAxisRect.data()->top();
        y /= (double)mAxisRect.data()->height();
      } else
        qDebug() << Q_FUNC_INFO << "Item position type y is ptAxisRectRatio, but no axis rect was defined";
      break;
    }
    case ptPlotCoords:
    {
      if (mKeyAxis && mKeyAxis.data()->orientation() == Qt::Vertical)
        x = mKeyAxis.data()->pixelToCoord(y);
      else if (mValueAxis && mValueAxis.data()->orientation() == Qt::Vertical)
        y = mValueAxis.data()->pixelToCoord(y);
      else
        qDebug() << Q_FUNC_INFO << "Item position type y is ptPlotCoords, but no axes were defined";
      break;
    }
  }

  setCoords(x, y);
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAbstractItem
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPAbstractItem
  \brief The abstract base class for all items in a plot.

  In QCustomPlot, items are supplemental graphical elements that are neither plottables
  (QCPAbstractPlottable) nor axes (QCPAxis). While plottables are always tied to two axes and thus
  plot coordinates, items can also be placed in absolute coordinates independent of any axes. Each
  specific item has at least one QCPItemPosition member which controls the positioning. Some items
  are defined by more than one coordinate and thus have two or more QCPItemPosition members (For
  example, QCPItemRect has \a topLeft and \a bottomRight).

  This abstract base class defines a very basic interface like visibility and clipping. Since this
  class is abstract, it can't be instantiated. Use one of the subclasses or create a subclass
  yourself to create new items.

  The built-in items are:
  <table>
  <tr><td>QCPItemLine</td><td>A line defined by a start and an end point. May have different ending styles on each side (e.g. arrows).</td></tr>
  <tr><td>QCPItemStraightLine</td><td>A straight line defined by a start and a direction point. Unlike QCPItemLine, the straight line is infinitely long and has no endings.</td></tr>
  <tr><td>QCPItemCurve</td><td>A curve defined by start, end and two intermediate control points. May have different ending styles on each side (e.g. arrows).</td></tr>
  <tr><td>QCPItemRect</td><td>A rectangle</td></tr>
  <tr><td>QCPItemEllipse</td><td>An ellipse</td></tr>
  <tr><td>QCPItemPixmap</td><td>An arbitrary pixmap</td></tr>
  <tr><td>QCPItemText</td><td>A text label</td></tr>
  <tr><td>QCPItemBracket</td><td>A bracket which may be used to reference/highlight certain parts in the plot.</td></tr>
  <tr><td>QCPItemTracer</td><td>An item that can be attached to a QCPGraph and sticks to its data points, given a key coordinate.</td></tr>
  </table>

  \section items-clipping Clipping

  Items are by default clipped to the main axis rect (they are only visible inside the axis rect).
  To make an item visible outside that axis rect, disable clipping via \ref setClipToAxisRect
  "setClipToAxisRect(false)".

  On the other hand if you want the item to be clipped to a different axis rect, specify it via
  \ref setClipAxisRect. This clipAxisRect property of an item is only used for clipping behaviour, and
  in principle is independent of the coordinate axes the item might be tied to via its position
  members (\ref QCPItemPosition::setAxes). However, it is common that the axis rect for clipping
  also contains the axes used for the item positions.

  \section items-using Using items

  First you instantiate the item you want to use and add it to the plot:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-1
  by default, the positions of the item are bound to the x- and y-Axis of the plot. So we can just
  set the plot coordinates where the line should start/end:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-2
  If we don't want the line to be positioned in plot coordinates but a different coordinate system,
  e.g. absolute pixel positions on the QCustomPlot surface, we need to change the position type like this:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-3
  Then we can set the coordinates, this time in pixels:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-4
  and make the line visible on the entire QCustomPlot, by disabling clipping to the axis rect:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-5

  For more advanced plots, it is even possible to set different types and parent anchors per X/Y
  coordinate of an item position, using for example \ref QCPItemPosition::setTypeX or \ref
  QCPItemPosition::setParentAnchorX. For details, see the documentation of \ref QCPItemPosition.

  \section items-subclassing Creating own items

  To create an own item, you implement a subclass of QCPAbstractItem. These are the pure
  virtual functions, you must implement:
  \li \ref selectTest
  \li \ref draw

  See the documentation of those functions for what they need to do.

  \subsection items-positioning Allowing the item to be positioned

  As mentioned, item positions are represented by QCPItemPosition members. Let's assume the new item shall
  have only one point as its position (as opposed to two like a rect or multiple like a polygon). You then add
  a public member of type QCPItemPosition like so:

  \code QCPItemPosition * const myPosition;\endcode

  the const makes sure the pointer itself can't be modified from the user of your new item (the QCPItemPosition
  instance it points to, can be modified, of course).
  The initialization of this pointer is made easy with the \ref createPosition function. Just assign
  the return value of this function to each QCPItemPosition in the constructor of your item. \ref createPosition
  takes a string which is the name of the position, typically this is identical to the variable name.
  For example, the constructor of QCPItemExample could look like this:

  \code
  QCPItemExample::QCPItemExample(QCustomPlot *parentPlot) :
    QCPAbstractItem(parentPlot),
    myPosition(createPosition("myPosition"))
  {
    // other constructor code
  }
  \endcode

  \subsection items-drawing The draw function

  To give your item a visual representation, reimplement the \ref draw function and use the passed
  QCPPainter to draw the item. You can retrieve the item position in pixel coordinates from the
  position member(s) via \ref QCPItemPosition::pixelPosition.

  To optimize performance you should calculate a bounding rect first (don't forget to take the pen
  width into account), check whether it intersects the \ref clipRect, and only draw the item at all
  if this is the case.

  \subsection items-selection The selectTest function

  Your implementation of the \ref selectTest function may use the helpers \ref
  QCPVector2D::distanceSquaredToLine and \ref rectDistance. With these, the implementation of the
  selection test becomes significantly simpler for most items. See the documentation of \ref
  selectTest for what the function parameters mean and what the function should return.

  \subsection anchors Providing anchors

  Providing anchors (QCPItemAnchor) starts off like adding a position. First you create a public
  member, e.g.

  \code QCPItemAnchor * const bottom;\endcode

  and create it in the constructor with the \ref createAnchor function, assigning it a name and an
  anchor id (an integer enumerating all anchors on the item, you may create an own enum for this).
  Since anchors can be placed anywhere, relative to the item's position(s), your item needs to
  provide the position of every anchor with the reimplementation of the \ref anchorPixelPosition(int
  anchorId) function.

  In essence the QCPItemAnchor is merely an intermediary that itself asks your item for the pixel
  position when anything attached to the anchor needs to know the coordinates.
*/

/* start of documentation of inline functions */

/*! \fn QList<QCPItemPosition*> QCPAbstractItem::positions() const

  Returns all positions of the item in a list.

  \see anchors, position
*/

/*! \fn QList<QCPItemAnchor*> QCPAbstractItem::anchors() const

  Returns all anchors of the item in a list. Note that since a position (QCPItemPosition) is always
  also an anchor, the list will also contain the positions of this item.

  \see positions, anchor
*/

/* end of documentation of inline functions */
/* start documentation of pure virtual functions */

/*! \fn void QCPAbstractItem::draw(QCPPainter *painter) = 0
  \internal

  Draws this item with the provided \a painter.

  The cliprect of the provided painter is set to the rect returned by \ref clipRect before this
  function is called. The clipRect depends on the clipping settings defined by \ref
  setClipToAxisRect and \ref setClipAxisRect.
*/

/* end documentation of pure virtual functions */
/* start documentation of signals */

/*! \fn void QCPAbstractItem::selectionChanged(bool selected)
  This signal is emitted when the selection state of this item has changed, either by user interaction
  or by a direct call to \ref setSelected.
*/

/* end documentation of signals */

/*!
  Base class constructor which initializes base class members.
*/
QCPAbstractItem::QCPAbstractItem(QCustomPlot *parentPlot) :
  QCPLayerable(parentPlot),
  mClipToAxisRect(false),
  mSelectable(true),
  mSelected(false)
{
  parentPlot->registerItem(this);

  QList<QCPAxisRect*> rects = parentPlot->axisRects();
  if (rects.size() > 0)
  {
    setClipToAxisRect(true);
    setClipAxisRect(rects.first());
  }
}

QCPAbstractItem::~QCPAbstractItem()
{
  // don't delete mPositions because every position is also an anchor and thus in mAnchors
  qDeleteAll(mAnchors);
}

/* can't make this a header inline function, because QPointer breaks with forward declared types, see QTBUG-29588 */
QCPAxisRect *QCPAbstractItem::clipAxisRect() const
{
  return mClipAxisRect.data();
}

/*!
  Sets whether the item shall be clipped to an axis rect or whether it shall be visible on the
  entire QCustomPlot. The axis rect can be set with \ref setClipAxisRect.

  \see setClipAxisRect
*/
void QCPAbstractItem::setClipToAxisRect(bool clip)
{
  mClipToAxisRect = clip;
  if (mClipToAxisRect)
    setParentLayerable(mClipAxisRect.data());
}

/*!
  Sets the clip axis rect. It defines the rect that will be used to clip the item when \ref
  setClipToAxisRect is set to true.

  \see setClipToAxisRect
*/
void QCPAbstractItem::setClipAxisRect(QCPAxisRect *rect)
{
  mClipAxisRect = rect;
  if (mClipToAxisRect)
    setParentLayerable(mClipAxisRect.data());
}

/*!
  Sets whether the user can (de-)select this item by clicking on the QCustomPlot surface.
  (When \ref QCustomPlot::setInteractions contains QCustomPlot::iSelectItems.)

  However, even when \a selectable was set to false, it is possible to set the selection manually,
  by calling \ref setSelected.

  \see QCustomPlot::setInteractions, setSelected
*/
void QCPAbstractItem::setSelectable(bool selectable)
{
  if (mSelectable != selectable)
  {
    mSelectable = selectable;
    emit selectableChanged(mSelectable);
  }
}

/*!
  Sets whether this item is selected or not. When selected, it might use a different visual
  appearance (e.g. pen and brush), this depends on the specific item though.

  The entire selection mechanism for items is handled automatically when \ref
  QCustomPlot::setInteractions contains QCustomPlot::iSelectItems. You only need to call this
  function when you wish to change the selection state manually.

  This function can change the selection state even when \ref setSelectable was set to false.

  emits the \ref selectionChanged signal when \a selected is different from the previous selection state.

  \see setSelectable, selectTest
*/
void QCPAbstractItem::setSelected(bool selected)
{
  if (mSelected != selected)
  {
    mSelected = selected;
    emit selectionChanged(mSelected);
  }
}

/*!
  Returns the QCPItemPosition with the specified \a name. If this item doesn't have a position by
  that name, returns 0.

  This function provides an alternative way to access item positions. Normally, you access
  positions direcly by their member pointers (which typically have the same variable name as \a
  name).

  \see positions, anchor
*/
QCPItemPosition *QCPAbstractItem::position(const QString &name) const
{
  for (int i=0; i<mPositions.size(); ++i)
  {
    if (mPositions.at(i)->name() == name)
      return mPositions.at(i);
  }
  qDebug() << Q_FUNC_INFO << "position with name not found:" << name;
  return 0;
}

/*!
  Returns the QCPItemAnchor with the specified \a name. If this item doesn't have an anchor by
  that name, returns 0.

  This function provides an alternative way to access item anchors. Normally, you access
  anchors direcly by their member pointers (which typically have the same variable name as \a
  name).

  \see anchors, position
*/
QCPItemAnchor *QCPAbstractItem::anchor(const QString &name) const
{
  for (int i=0; i<mAnchors.size(); ++i)
  {
    if (mAnchors.at(i)->name() == name)
      return mAnchors.at(i);
  }
  qDebug() << Q_FUNC_INFO << "anchor with name not found:" << name;
  return 0;
}

/*!
  Returns whether this item has an anchor with the specified \a name.

  Note that you can check for positions with this function, too. This is because every position is
  also an anchor (QCPItemPosition inherits from QCPItemAnchor).

  \see anchor, position
*/
bool QCPAbstractItem::hasAnchor(const QString &name) const
{
  for (int i=0; i<mAnchors.size(); ++i)
  {
    if (mAnchors.at(i)->name() == name)
      return true;
  }
  return false;
}

/*! \internal

  Returns the rect the visual representation of this item is clipped to. This depends on the
  current setting of \ref setClipToAxisRect as well as the axis rect set with \ref setClipAxisRect.

  If the item is not clipped to an axis rect, QCustomPlot's viewport rect is returned.

  \see draw
*/
QRect QCPAbstractItem::clipRect() const
{
  if (mClipToAxisRect && mClipAxisRect)
    return mClipAxisRect.data()->rect();
  else
    return mParentPlot->viewport();
}

/*! \internal

  A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
  before drawing item lines.

  This is the antialiasing state the painter passed to the \ref draw method is in by default.

  This function takes into account the local setting of the antialiasing flag as well as the
  overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements.

  \see setAntialiased
*/
void QCPAbstractItem::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiased, QCP::aeItems);
}

/*! \internal

  A convenience function which returns the selectTest value for a specified \a rect and a specified
  click position \a pos. \a filledRect defines whether a click inside the rect should also be
  considered a hit or whether only the rect border is sensitive to hits.

  This function may be used to help with the implementation of the \ref selectTest function for
  specific items.

  For example, if your item consists of four rects, call this function four times, once for each
  rect, in your \ref selectTest reimplementation. Finally, return the minimum (non -1) of all four
  returned values.
*/
double QCPAbstractItem::rectDistance(const QRectF &rect, const QPointF &pos, bool filledRect) const
{
  double result = -1;

  // distance to border:
  QList<QLineF> lines;
  lines << QLineF(rect.topLeft(), rect.topRight()) << QLineF(rect.bottomLeft(), rect.bottomRight())
        << QLineF(rect.topLeft(), rect.bottomLeft()) << QLineF(rect.topRight(), rect.bottomRight());
  double minDistSqr = (std::numeric_limits<double>::max)();
  for (int i=0; i<lines.size(); ++i)
  {
    double distSqr = QCPVector2D(pos).distanceSquaredToLine(lines.at(i).p1(), lines.at(i).p2());
    if (distSqr < minDistSqr)
      minDistSqr = distSqr;
  }
  result = qSqrt(minDistSqr);

  // filled rect, allow click inside to count as hit:
  if (filledRect && result > mParentPlot->selectionTolerance()*0.99)
  {
    if (rect.contains(pos))
      result = mParentPlot->selectionTolerance()*0.99;
  }
  return result;
}

/*! \internal

  Returns the pixel position of the anchor with Id \a anchorId. This function must be reimplemented in
  item subclasses if they want to provide anchors (QCPItemAnchor).

  For example, if the item has two anchors with id 0 and 1, this function takes one of these anchor
  ids and returns the respective pixel points of the specified anchor.

  \see createAnchor
*/
QPointF QCPAbstractItem::anchorPixelPosition(int anchorId) const
{
  qDebug() << Q_FUNC_INFO << "called on item which shouldn't have any anchors (this method not reimplemented). anchorId" << anchorId;
  return QPointF();
}

/*! \internal

  Creates a QCPItemPosition, registers it with this item and returns a pointer to it. The specified
  \a name must be a unique string that is usually identical to the variable name of the position
  member (This is needed to provide the name-based \ref position access to positions).

  Don't delete positions created by this function manually, as the item will take care of it.

  Use this function in the constructor (initialization list) of the specific item subclass to
  create each position member. Don't create QCPItemPositions with \b new yourself, because they
  won't be registered with the item properly.

  \see createAnchor
*/
QCPItemPosition *QCPAbstractItem::createPosition(const QString &name)
{
  if (hasAnchor(name))
    qDebug() << Q_FUNC_INFO << "anchor/position with name exists already:" << name;
  QCPItemPosition *newPosition = new QCPItemPosition(mParentPlot, this, name);
  mPositions.append(newPosition);
  mAnchors.append(newPosition); // every position is also an anchor
  newPosition->setAxes(mParentPlot->xAxis, mParentPlot->yAxis);
  newPosition->setType(QCPItemPosition::ptPlotCoords);
  if (mParentPlot->axisRect())
    newPosition->setAxisRect(mParentPlot->axisRect());
  newPosition->setCoords(0, 0);
  return newPosition;
}

/*! \internal

  Creates a QCPItemAnchor, registers it with this item and returns a pointer to it. The specified
  \a name must be a unique string that is usually identical to the variable name of the anchor
  member (This is needed to provide the name based \ref anchor access to anchors).

  The \a anchorId must be a number identifying the created anchor. It is recommended to create an
  enum (e.g. "AnchorIndex") for this on each item that uses anchors. This id is used by the anchor
  to identify itself when it calls QCPAbstractItem::anchorPixelPosition. That function then returns
  the correct pixel coordinates for the passed anchor id.

  Don't delete anchors created by this function manually, as the item will take care of it.

  Use this function in the constructor (initialization list) of the specific item subclass to
  create each anchor member. Don't create QCPItemAnchors with \b new yourself, because then they
  won't be registered with the item properly.

  \see createPosition
*/
QCPItemAnchor *QCPAbstractItem::createAnchor(const QString &name, int anchorId)
{
  if (hasAnchor(name))
    qDebug() << Q_FUNC_INFO << "anchor/position with name exists already:" << name;
  QCPItemAnchor *newAnchor = new QCPItemAnchor(mParentPlot, this, name, anchorId);
  mAnchors.append(newAnchor);
  return newAnchor;
}

/* inherits documentation from base class */
void QCPAbstractItem::selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged)
{
  Q_UNUSED(event)
  Q_UNUSED(details)
  if (mSelectable)
  {
    bool selBefore = mSelected;
    setSelected(additive ? !mSelected : true);
    if (selectionStateChanged)
      *selectionStateChanged = mSelected != selBefore;
  }
}

/* inherits documentation from base class */
void QCPAbstractItem::deselectEvent(bool *selectionStateChanged)
{
  if (mSelectable)
  {
    bool selBefore = mSelected;
    setSelected(false);
    if (selectionStateChanged)
      *selectionStateChanged = mSelected != selBefore;
  }
}

/* inherits documentation from base class */
QCP::Interaction QCPAbstractItem::selectionCategory() const
{
  return QCP::iSelectItems;
}
/* end of 'src/item.cpp' */


/* including file 'src/core.cpp', size 126207                                */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCustomPlot
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCustomPlot

  \brief The central class of the library. This is the QWidget which displays the plot and
  interacts with the user.

  For tutorials on how to use QCustomPlot, see the website\n
  http://www.qcustomplot.com/
*/

/* start of documentation of inline functions */

/*! \fn QCPSelectionRect *QCustomPlot::selectionRect() const

  Allows access to the currently used QCPSelectionRect instance (or subclass thereof), that is used
  to handle and draw selection rect interactions (see \ref setSelectionRectMode).

  \see setSelectionRect
*/

/*! \fn QCPLayoutGrid *QCustomPlot::plotLayout() const

  Returns the top level layout of this QCustomPlot instance. It is a \ref QCPLayoutGrid, initially containing just
  one cell with the main QCPAxisRect inside.
*/

/* end of documentation of inline functions */
/* start of documentation of signals */

/*! \fn void QCustomPlot::mouseDoubleClick(QMouseEvent *event)

  This signal is emitted when the QCustomPlot receives a mouse double click event.
*/

/*! \fn void QCustomPlot::mousePress(QMouseEvent *event)

  This signal is emitted when the QCustomPlot receives a mouse press event.

  It is emitted before QCustomPlot handles any other mechanism like range dragging. So a slot
  connected to this signal can still influence the behaviour e.g. with \ref QCPAxisRect::setRangeDrag or \ref
  QCPAxisRect::setRangeDragAxes.
*/

/*! \fn void QCustomPlot::mouseMove(QMouseEvent *event)

  This signal is emitted when the QCustomPlot receives a mouse move event.

  It is emitted before QCustomPlot handles any other mechanism like range dragging. So a slot
  connected to this signal can still influence the behaviour e.g. with \ref QCPAxisRect::setRangeDrag or \ref
  QCPAxisRect::setRangeDragAxes.

  \warning It is discouraged to change the drag-axes with \ref QCPAxisRect::setRangeDragAxes here,
  because the dragging starting point was saved the moment the mouse was pressed. Thus it only has
  a meaning for the range drag axes that were set at that moment. If you want to change the drag
  axes, consider doing this in the \ref mousePress signal instead.
*/

/*! \fn void QCustomPlot::mouseRelease(QMouseEvent *event)

  This signal is emitted when the QCustomPlot receives a mouse release event.

  It is emitted before QCustomPlot handles any other mechanisms like object selection. So a
  slot connected to this signal can still influence the behaviour e.g. with \ref setInteractions or
  \ref QCPAbstractPlottable::setSelectable.
*/

/*! \fn void QCustomPlot::mouseWheel(QMouseEvent *event)

  This signal is emitted when the QCustomPlot receives a mouse wheel event.

  It is emitted before QCustomPlot handles any other mechanisms like range zooming. So a slot
  connected to this signal can still influence the behaviour e.g. with \ref QCPAxisRect::setRangeZoom, \ref
  QCPAxisRect::setRangeZoomAxes or \ref QCPAxisRect::setRangeZoomFactor.
*/

/*! \fn void QCustomPlot::plottableClick(QCPAbstractPlottable *plottable, int dataIndex, QMouseEvent *event)

  This signal is emitted when a plottable is clicked.

  \a event is the mouse event that caused the click and \a plottable is the plottable that received
  the click. The parameter \a dataIndex indicates the data point that was closest to the click
  position.

  \see plottableDoubleClick
*/

/*! \fn void QCustomPlot::plottableDoubleClick(QCPAbstractPlottable *plottable, int dataIndex, QMouseEvent *event)

  This signal is emitted when a plottable is double clicked.

  \a event is the mouse event that caused the click and \a plottable is the plottable that received
  the click. The parameter \a dataIndex indicates the data point that was closest to the click
  position.

  \see plottableClick
*/

/*! \fn void QCustomPlot::itemClick(QCPAbstractItem *item, QMouseEvent *event)

  This signal is emitted when an item is clicked.

  \a event is the mouse event that caused the click and \a item is the item that received the
  click.

  \see itemDoubleClick
*/

/*! \fn void QCustomPlot::itemDoubleClick(QCPAbstractItem *item, QMouseEvent *event)

  This signal is emitted when an item is double clicked.

  \a event is the mouse event that caused the click and \a item is the item that received the
  click.

  \see itemClick
*/

/*! \fn void QCustomPlot::axisClick(QCPAxis *axis, QCPAxis::SelectablePart part, QMouseEvent *event)

  This signal is emitted when an axis is clicked.

  \a event is the mouse event that caused the click, \a axis is the axis that received the click and
  \a part indicates the part of the axis that was clicked.

  \see axisDoubleClick
*/

/*! \fn void QCustomPlot::axisDoubleClick(QCPAxis *axis, QCPAxis::SelectablePart part, QMouseEvent *event)

  This signal is emitted when an axis is double clicked.

  \a event is the mouse event that caused the click, \a axis is the axis that received the click and
  \a part indicates the part of the axis that was clicked.

  \see axisClick
*/

/*! \fn void QCustomPlot::legendClick(QCPLegend *legend, QCPAbstractLegendItem *item, QMouseEvent *event)

  This signal is emitted when a legend (item) is clicked.

  \a event is the mouse event that caused the click, \a legend is the legend that received the
  click and \a item is the legend item that received the click. If only the legend and no item is
  clicked, \a item is 0. This happens for a click inside the legend padding or the space between
  two items.

  \see legendDoubleClick
*/

/*! \fn void QCustomPlot::legendDoubleClick(QCPLegend *legend,  QCPAbstractLegendItem *item, QMouseEvent *event)

  This signal is emitted when a legend (item) is double clicked.

  \a event is the mouse event that caused the click, \a legend is the legend that received the
  click and \a item is the legend item that received the click. If only the legend and no item is
  clicked, \a item is 0. This happens for a click inside the legend padding or the space between
  two items.

  \see legendClick
*/

/*! \fn void QCustomPlot::selectionChangedByUser()

  This signal is emitted after the user has changed the selection in the QCustomPlot, e.g. by
  clicking. It is not emitted when the selection state of an object has changed programmatically by
  a direct call to <tt>setSelected()</tt>/<tt>setSelection()</tt> on an object or by calling \ref
  deselectAll.

  In addition to this signal, selectable objects also provide individual signals, for example \ref
  QCPAxis::selectionChanged or \ref QCPAbstractPlottable::selectionChanged. Note that those signals
  are emitted even if the selection state is changed programmatically.

  See the documentation of \ref setInteractions for details about the selection mechanism.

  \see selectedPlottables, selectedGraphs, selectedItems, selectedAxes, selectedLegends
*/

/*! \fn void QCustomPlot::beforeReplot()

  This signal is emitted immediately before a replot takes place (caused by a call to the slot \ref
  replot).

  It is safe to mutually connect the replot slot with this signal on two QCustomPlots to make them
  replot synchronously, it won't cause an infinite recursion.

  \see replot, afterReplot
*/

/*! \fn void QCustomPlot::afterReplot()

  This signal is emitted immediately after a replot has taken place (caused by a call to the slot \ref
  replot).

  It is safe to mutually connect the replot slot with this signal on two QCustomPlots to make them
  replot synchronously, it won't cause an infinite recursion.

  \see replot, beforeReplot
*/

/* end of documentation of signals */
/* start of documentation of public members */

/*! \var QCPAxis *QCustomPlot::xAxis

  A pointer to the primary x Axis (bottom) of the main axis rect of the plot.

  QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
  yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
  axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
  layout system\endlink to add multiple axis rects or multiple axes to one side, use the \ref
  QCPAxisRect::axis interface to access the new axes. If one of the four default axes or the
  default legend is removed due to manipulation of the layout system (e.g. by removing the main
  axis rect), the corresponding pointers become 0.

  If an axis convenience pointer is currently zero and a new axis rect or a corresponding axis is
  added in the place of the main axis rect, QCustomPlot resets the convenience pointers to the
  according new axes. Similarly the \ref legend convenience pointer will be reset if a legend is
  added after the main legend was removed before.
*/

/*! \var QCPAxis *QCustomPlot::yAxis

  A pointer to the primary y Axis (left) of the main axis rect of the plot.

  QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
  yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
  axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
  layout system\endlink to add multiple axis rects or multiple axes to one side, use the \ref
  QCPAxisRect::axis interface to access the new axes. If one of the four default axes or the
  default legend is removed due to manipulation of the layout system (e.g. by removing the main
  axis rect), the corresponding pointers become 0.

  If an axis convenience pointer is currently zero and a new axis rect or a corresponding axis is
  added in the place of the main axis rect, QCustomPlot resets the convenience pointers to the
  according new axes. Similarly the \ref legend convenience pointer will be reset if a legend is
  added after the main legend was removed before.
*/

/*! \var QCPAxis *QCustomPlot::xAxis2

  A pointer to the secondary x Axis (top) of the main axis rect of the plot. Secondary axes are
  invisible by default. Use QCPAxis::setVisible to change this (or use \ref
  QCPAxisRect::setupFullAxesBox).

  QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
  yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
  axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
  layout system\endlink to add multiple axis rects or multiple axes to one side, use the \ref
  QCPAxisRect::axis interface to access the new axes. If one of the four default axes or the
  default legend is removed due to manipulation of the layout system (e.g. by removing the main
  axis rect), the corresponding pointers become 0.

  If an axis convenience pointer is currently zero and a new axis rect or a corresponding axis is
  added in the place of the main axis rect, QCustomPlot resets the convenience pointers to the
  according new axes. Similarly the \ref legend convenience pointer will be reset if a legend is
  added after the main legend was removed before.
*/

/*! \var QCPAxis *QCustomPlot::yAxis2

  A pointer to the secondary y Axis (right) of the main axis rect of the plot. Secondary axes are
  invisible by default. Use QCPAxis::setVisible to change this (or use \ref
  QCPAxisRect::setupFullAxesBox).

  QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
  yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
  axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
  layout system\endlink to add multiple axis rects or multiple axes to one side, use the \ref
  QCPAxisRect::axis interface to access the new axes. If one of the four default axes or the
  default legend is removed due to manipulation of the layout system (e.g. by removing the main
  axis rect), the corresponding pointers become 0.

  If an axis convenience pointer is currently zero and a new axis rect or a corresponding axis is
  added in the place of the main axis rect, QCustomPlot resets the convenience pointers to the
  according new axes. Similarly the \ref legend convenience pointer will be reset if a legend is
  added after the main legend was removed before.
*/

/*! \var QCPLegend *QCustomPlot::legend

  A pointer to the default legend of the main axis rect. The legend is invisible by default. Use
  QCPLegend::setVisible to change this.

  QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
  yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
  axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
  layout system\endlink to add multiple legends to the plot, use the layout system interface to
  access the new legend. For example, legends can be placed inside an axis rect's \ref
  QCPAxisRect::insetLayout "inset layout", and must then also be accessed via the inset layout. If
  the default legend is removed due to manipulation of the layout system (e.g. by removing the main
  axis rect), the corresponding pointer becomes 0.

  If an axis convenience pointer is currently zero and a new axis rect or a corresponding axis is
  added in the place of the main axis rect, QCustomPlot resets the convenience pointers to the
  according new axes. Similarly the \ref legend convenience pointer will be reset if a legend is
  added after the main legend was removed before.
*/

/* end of documentation of public members */

/*!
  Constructs a QCustomPlot and sets reasonable default values.
*/
QCustomPlot::QCustomPlot(QWidget *parent) :
  QWidget(parent),
  xAxis(0),
  yAxis(0),
  xAxis2(0),
  yAxis2(0),
  legend(0),
  mBufferDevicePixelRatio(1.0), // will be adapted to primary screen below
  mPlotLayout(0),
  mAutoAddPlottableToLegend(true),
  mAntialiasedElements(QCP::aeNone),
  mNotAntialiasedElements(QCP::aeNone),
  mInteractions(0),
  mSelectionTolerance(8),
  mNoAntialiasingOnDrag(false),
  mBackgroundBrush(Qt::white, Qt::SolidPattern),
  mBackgroundScaled(true),
  mBackgroundScaledMode(Qt::KeepAspectRatioByExpanding),
  mCurrentLayer(0),
  mPlottingHints(QCP::phCacheLabels|QCP::phImmediateRefresh),
  mMultiSelectModifier(Qt::ControlModifier),
  mSelectionRectMode(QCP::srmNone),
  mSelectionRect(0),
  mOpenGl(false),
  mMouseHasMoved(false),
  mMouseEventLayerable(0),
  mMouseSignalLayerable(0),
  mReplotting(false),
  mReplotQueued(false),
  mOpenGlMultisamples(16),
  mOpenGlAntialiasedElementsBackup(QCP::aeNone),
  mOpenGlCacheLabelsBackup(true)
{
  setAttribute(Qt::WA_NoMousePropagation);
  setAttribute(Qt::WA_OpaquePaintEvent);
  setFocusPolicy(Qt::ClickFocus);
  setMouseTracking(true);
  QLocale currentLocale = locale();
  currentLocale.setNumberOptions(QLocale::OmitGroupSeparator);
  setLocale(currentLocale);
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
#  ifdef QCP_DEVICEPIXELRATIO_FLOAT
  setBufferDevicePixelRatio(QWidget::devicePixelRatioF());
#  else
  setBufferDevicePixelRatio(QWidget::devicePixelRatio());
#  endif
#endif

  mOpenGlAntialiasedElementsBackup = mAntialiasedElements;
  mOpenGlCacheLabelsBackup = mPlottingHints.testFlag(QCP::phCacheLabels);
  // create initial layers:
  mLayers.append(new QCPLayer(this, QLatin1String("background")));
  mLayers.append(new QCPLayer(this, QLatin1String("grid")));
  mLayers.append(new QCPLayer(this, QLatin1String("main")));
  mLayers.append(new QCPLayer(this, QLatin1String("axes")));
  mLayers.append(new QCPLayer(this, QLatin1String("legend")));
  mLayers.append(new QCPLayer(this, QLatin1String("overlay")));
  updateLayerIndices();
  setCurrentLayer(QLatin1String("main"));
  layer(QLatin1String("overlay"))->setMode(QCPLayer::lmBuffered);

  // create initial layout, axis rect and legend:
  mPlotLayout = new QCPLayoutGrid;
  mPlotLayout->initializeParentPlot(this);
  mPlotLayout->setParent(this); // important because if parent is QWidget, QCPLayout::sizeConstraintsChanged will call QWidget::updateGeometry
  mPlotLayout->setLayer(QLatin1String("main"));
  QCPAxisRect *defaultAxisRect = new QCPAxisRect(this, true);
  mPlotLayout->addElement(0, 0, defaultAxisRect);
  xAxis = defaultAxisRect->axis(QCPAxis::atBottom);
  yAxis = defaultAxisRect->axis(QCPAxis::atLeft);
  xAxis2 = defaultAxisRect->axis(QCPAxis::atTop);
  yAxis2 = defaultAxisRect->axis(QCPAxis::atRight);
  legend = new QCPLegend;
  legend->setVisible(false);
  defaultAxisRect->insetLayout()->addElement(legend, Qt::AlignRight|Qt::AlignTop);
  defaultAxisRect->insetLayout()->setMargins(QMargins(12, 12, 12, 12));

  defaultAxisRect->setLayer(QLatin1String("background"));
  xAxis->setLayer(QLatin1String("axes"));
  yAxis->setLayer(QLatin1String("axes"));
  xAxis2->setLayer(QLatin1String("axes"));
  yAxis2->setLayer(QLatin1String("axes"));
  xAxis->grid()->setLayer(QLatin1String("grid"));
  yAxis->grid()->setLayer(QLatin1String("grid"));
  xAxis2->grid()->setLayer(QLatin1String("grid"));
  yAxis2->grid()->setLayer(QLatin1String("grid"));
  legend->setLayer(QLatin1String("legend"));

  // create selection rect instance:
  mSelectionRect = new QCPSelectionRect(this);
  mSelectionRect->setLayer(QLatin1String("overlay"));

  setViewport(rect()); // needs to be called after mPlotLayout has been created

  replot(rpQueuedReplot);
}

QCustomPlot::~QCustomPlot()
{
  clearPlottables();
  clearItems();

  if (mPlotLayout)
  {
    delete mPlotLayout;
    mPlotLayout = 0;
  }

  mCurrentLayer = 0;
  qDeleteAll(mLayers); // don't use removeLayer, because it would prevent the last layer to be removed
  mLayers.clear();
}

/*!
  Sets which elements are forcibly drawn antialiased as an \a or combination of QCP::AntialiasedElement.

  This overrides the antialiasing settings for whole element groups, normally controlled with the
  \a setAntialiasing function on the individual elements. If an element is neither specified in
  \ref setAntialiasedElements nor in \ref setNotAntialiasedElements, the antialiasing setting on
  each individual element instance is used.

  For example, if \a antialiasedElements contains \ref QCP::aePlottables, all plottables will be
  drawn antialiased, no matter what the specific QCPAbstractPlottable::setAntialiased value was set
  to.

  if an element in \a antialiasedElements is already set in \ref setNotAntialiasedElements, it is
  removed from there.

  \see setNotAntialiasedElements
*/
void QCustomPlot::setAntialiasedElements(const QCP::AntialiasedElements &antialiasedElements)
{
  mAntialiasedElements = antialiasedElements;

  // make sure elements aren't in mNotAntialiasedElements and mAntialiasedElements simultaneously:
  if ((mNotAntialiasedElements & mAntialiasedElements) != 0)
    mNotAntialiasedElements |= ~mAntialiasedElements;
}

/*!
  Sets whether the specified \a antialiasedElement is forcibly drawn antialiased.

  See \ref setAntialiasedElements for details.

  \see setNotAntialiasedElement
*/
void QCustomPlot::setAntialiasedElement(QCP::AntialiasedElement antialiasedElement, bool enabled)
{
  if (!enabled && mAntialiasedElements.testFlag(antialiasedElement))
    mAntialiasedElements &= ~antialiasedElement;
  else if (enabled && !mAntialiasedElements.testFlag(antialiasedElement))
    mAntialiasedElements |= antialiasedElement;

  // make sure elements aren't in mNotAntialiasedElements and mAntialiasedElements simultaneously:
  if ((mNotAntialiasedElements & mAntialiasedElements) != 0)
    mNotAntialiasedElements |= ~mAntialiasedElements;
}

/*!
  Sets which elements are forcibly drawn not antialiased as an \a or combination of
  QCP::AntialiasedElement.

  This overrides the antialiasing settings for whole element groups, normally controlled with the
  \a setAntialiasing function on the individual elements. If an element is neither specified in
  \ref setAntialiasedElements nor in \ref setNotAntialiasedElements, the antialiasing setting on
  each individual element instance is used.

  For example, if \a notAntialiasedElements contains \ref QCP::aePlottables, no plottables will be
  drawn antialiased, no matter what the specific QCPAbstractPlottable::setAntialiased value was set
  to.

  if an element in \a notAntialiasedElements is already set in \ref setAntialiasedElements, it is
  removed from there.

  \see setAntialiasedElements
*/
void QCustomPlot::setNotAntialiasedElements(const QCP::AntialiasedElements &notAntialiasedElements)
{
  mNotAntialiasedElements = notAntialiasedElements;

  // make sure elements aren't in mNotAntialiasedElements and mAntialiasedElements simultaneously:
  if ((mNotAntialiasedElements & mAntialiasedElements) != 0)
    mAntialiasedElements |= ~mNotAntialiasedElements;
}

/*!
  Sets whether the specified \a notAntialiasedElement is forcibly drawn not antialiased.

  See \ref setNotAntialiasedElements for details.

  \see setAntialiasedElement
*/
void QCustomPlot::setNotAntialiasedElement(QCP::AntialiasedElement notAntialiasedElement, bool enabled)
{
  if (!enabled && mNotAntialiasedElements.testFlag(notAntialiasedElement))
    mNotAntialiasedElements &= ~notAntialiasedElement;
  else if (enabled && !mNotAntialiasedElements.testFlag(notAntialiasedElement))
    mNotAntialiasedElements |= notAntialiasedElement;

  // make sure elements aren't in mNotAntialiasedElements and mAntialiasedElements simultaneously:
  if ((mNotAntialiasedElements & mAntialiasedElements) != 0)
    mAntialiasedElements |= ~mNotAntialiasedElements;
}

/*!
  If set to true, adding a plottable (e.g. a graph) to the QCustomPlot automatically also adds the
  plottable to the legend (QCustomPlot::legend).

  \see addGraph, QCPLegend::addItem
*/
void QCustomPlot::setAutoAddPlottableToLegend(bool on)
{
  mAutoAddPlottableToLegend = on;
}

/*!
  Sets the possible interactions of this QCustomPlot as an or-combination of \ref QCP::Interaction
  enums. There are the following types of interactions:

  <b>Axis range manipulation</b> is controlled via \ref QCP::iRangeDrag and \ref QCP::iRangeZoom. When the
  respective interaction is enabled, the user may drag axes ranges and zoom with the mouse wheel.
  For details how to control which axes the user may drag/zoom and in what orientations, see \ref
  QCPAxisRect::setRangeDrag, \ref QCPAxisRect::setRangeZoom, \ref QCPAxisRect::setRangeDragAxes,
  \ref QCPAxisRect::setRangeZoomAxes.

  <b>Plottable data selection</b> is controlled by \ref QCP::iSelectPlottables. If \ref
  QCP::iSelectPlottables is set, the user may select plottables (graphs, curves, bars,...) and
  their data by clicking on them or in their vicinity (\ref setSelectionTolerance). Whether the
  user can actually select a plottable and its data can further be restricted with the \ref
  QCPAbstractPlottable::setSelectable method on the specific plottable. For details, see the
  special page about the \ref dataselection "data selection mechanism". To retrieve a list of all
  currently selected plottables, call \ref selectedPlottables. If you're only interested in
  QCPGraphs, you may use the convenience function \ref selectedGraphs.

  <b>Item selection</b> is controlled by \ref QCP::iSelectItems. If \ref QCP::iSelectItems is set, the user
  may select items (QCPItemLine, QCPItemText,...) by clicking on them or in their vicinity. To find
  out whether a specific item is selected, call QCPAbstractItem::selected(). To retrieve a list of
  all currently selected items, call \ref selectedItems.

  <b>Axis selection</b> is controlled with \ref QCP::iSelectAxes. If \ref QCP::iSelectAxes is set, the user
  may select parts of the axes by clicking on them. What parts exactly (e.g. Axis base line, tick
  labels, axis label) are selectable can be controlled via \ref QCPAxis::setSelectableParts for
  each axis. To retrieve a list of all axes that currently contain selected parts, call \ref
  selectedAxes. Which parts of an axis are selected, can be retrieved with QCPAxis::selectedParts().

  <b>Legend selection</b> is controlled with \ref QCP::iSelectLegend. If this is set, the user may
  select the legend itself or individual items by clicking on them. What parts exactly are
  selectable can be controlled via \ref QCPLegend::setSelectableParts. To find out whether the
  legend or any of its child items are selected, check the value of QCPLegend::selectedParts. To
  find out which child items are selected, call \ref QCPLegend::selectedItems.

  <b>All other selectable elements</b> The selection of all other selectable objects (e.g.
  QCPTextElement, or your own layerable subclasses) is controlled with \ref QCP::iSelectOther. If set, the
  user may select those objects by clicking on them. To find out which are currently selected, you
  need to check their selected state explicitly.

  If the selection state has changed by user interaction, the \ref selectionChangedByUser signal is
  emitted. Each selectable object additionally emits an individual selectionChanged signal whenever
  their selection state has changed, i.e. not only by user interaction.

  To allow multiple objects to be selected by holding the selection modifier (\ref
  setMultiSelectModifier), set the flag \ref QCP::iMultiSelect.

  \note In addition to the selection mechanism presented here, QCustomPlot always emits
  corresponding signals, when an object is clicked or double clicked. see \ref plottableClick and
  \ref plottableDoubleClick for example.

  \see setInteraction, setSelectionTolerance
*/
void QCustomPlot::setInteractions(const QCP::Interactions &interactions)
{
  mInteractions = interactions;
}

/*!
  Sets the single \a interaction of this QCustomPlot to \a enabled.

  For details about the interaction system, see \ref setInteractions.

  \see setInteractions
*/
void QCustomPlot::setInteraction(const QCP::Interaction &interaction, bool enabled)
{
  if (!enabled && mInteractions.testFlag(interaction))
    mInteractions &= ~interaction;
  else if (enabled && !mInteractions.testFlag(interaction))
    mInteractions |= interaction;
}

/*!
  Sets the tolerance that is used to decide whether a click selects an object (e.g. a plottable) or
  not.

  If the user clicks in the vicinity of the line of e.g. a QCPGraph, it's only regarded as a
  potential selection when the minimum distance between the click position and the graph line is
  smaller than \a pixels. Objects that are defined by an area (e.g. QCPBars) only react to clicks
  directly inside the area and ignore this selection tolerance. In other words, it only has meaning
  for parts of objects that are too thin to exactly hit with a click and thus need such a
  tolerance.

  \see setInteractions, QCPLayerable::selectTest
*/
void QCustomPlot::setSelectionTolerance(int pixels)
{
  mSelectionTolerance = pixels;
}

/*!
  Sets whether antialiasing is disabled for this QCustomPlot while the user is dragging axes
  ranges. If many objects, especially plottables, are drawn antialiased, this greatly improves
  performance during dragging. Thus it creates a more responsive user experience. As soon as the
  user stops dragging, the last replot is done with normal antialiasing, to restore high image
  quality.

  \see setAntialiasedElements, setNotAntialiasedElements
*/
void QCustomPlot::setNoAntialiasingOnDrag(bool enabled)
{
  mNoAntialiasingOnDrag = enabled;
}

/*!
  Sets the plotting hints for this QCustomPlot instance as an \a or combination of QCP::PlottingHint.

  \see setPlottingHint
*/
void QCustomPlot::setPlottingHints(const QCP::PlottingHints &hints)
{
  mPlottingHints = hints;
}

/*!
  Sets the specified plotting \a hint to \a enabled.

  \see setPlottingHints
*/
void QCustomPlot::setPlottingHint(QCP::PlottingHint hint, bool enabled)
{
  QCP::PlottingHints newHints = mPlottingHints;
  if (!enabled)
    newHints &= ~hint;
  else
    newHints |= hint;

  if (newHints != mPlottingHints)
    setPlottingHints(newHints);
}

/*!
  Sets the keyboard modifier that will be recognized as multi-select-modifier.

  If \ref QCP::iMultiSelect is specified in \ref setInteractions, the user may select multiple
  objects (or data points) by clicking on them one after the other while holding down \a modifier.

  By default the multi-select-modifier is set to Qt::ControlModifier.

  \see setInteractions
*/
void QCustomPlot::setMultiSelectModifier(Qt::KeyboardModifier modifier)
{
  mMultiSelectModifier = modifier;
}

/*!
  Sets how QCustomPlot processes mouse click-and-drag interactions by the user.

  If \a mode is \ref QCP::srmNone, the mouse drag is forwarded to the underlying objects. For
  example, QCPAxisRect may process a mouse drag by dragging axis ranges, see \ref
  QCPAxisRect::setRangeDrag. If \a mode is not \ref QCP::srmNone, the current selection rect (\ref
  selectionRect) becomes activated and allows e.g. rect zooming and data point selection.

  If you wish to provide your user both with axis range dragging and data selection/range zooming,
  use this method to switch between the modes just before the interaction is processed, e.g. in
  reaction to the \ref mousePress or \ref mouseMove signals. For example you could check whether
  the user is holding a certain keyboard modifier, and then decide which \a mode shall be set.

  If a selection rect interaction is currently active, and \a mode is set to \ref QCP::srmNone, the
  interaction is canceled (\ref QCPSelectionRect::cancel). Switching between any of the other modes
  will keep the selection rect active. Upon completion of the interaction, the behaviour is as
  defined by the currently set \a mode, not the mode that was set when the interaction started.

  \see setInteractions, setSelectionRect, QCPSelectionRect
*/
void QCustomPlot::setSelectionRectMode(QCP::SelectionRectMode mode)
{
  if (mSelectionRect)
  {
    if (mode == QCP::srmNone)
      mSelectionRect->cancel(); // when switching to none, we immediately want to abort a potentially active selection rect

    // disconnect old connections:
    if (mSelectionRectMode == QCP::srmSelect)
      disconnect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectSelection(QRect,QMouseEvent*)));
    else if (mSelectionRectMode == QCP::srmZoom)
      disconnect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectZoom(QRect,QMouseEvent*)));

    // establish new ones:
    if (mode == QCP::srmSelect)
      connect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectSelection(QRect,QMouseEvent*)));
    else if (mode == QCP::srmZoom)
      connect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectZoom(QRect,QMouseEvent*)));
  }

  mSelectionRectMode = mode;
}

/*!
  Sets the \ref QCPSelectionRect instance that QCustomPlot will use if \a mode is not \ref
  QCP::srmNone and the user performs a click-and-drag interaction. QCustomPlot takes ownership of
  the passed \a selectionRect. It can be accessed later via \ref selectionRect.

  This method is useful if you wish to replace the default QCPSelectionRect instance with an
  instance of a QCPSelectionRect subclass, to introduce custom behaviour of the selection rect.

  \see setSelectionRectMode
*/
void QCustomPlot::setSelectionRect(QCPSelectionRect *selectionRect)
{
  if (mSelectionRect)
    delete mSelectionRect;

  mSelectionRect = selectionRect;

  if (mSelectionRect)
  {
    // establish connections with new selection rect:
    if (mSelectionRectMode == QCP::srmSelect)
      connect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectSelection(QRect,QMouseEvent*)));
    else if (mSelectionRectMode == QCP::srmZoom)
      connect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectZoom(QRect,QMouseEvent*)));
  }
}

/*!
  \warning This is still an experimental feature and its performance depends on the system that it
  runs on. Having multiple QCustomPlot widgets in one application with enabled OpenGL rendering
  might cause context conflicts on some systems.

  This method allows to enable OpenGL plot rendering, for increased plotting performance of
  graphically demanding plots (thick lines, translucent fills, etc.).

  If \a enabled is set to true, QCustomPlot will try to initialize OpenGL and, if successful,
  continue plotting with hardware acceleration. The parameter \a multisampling controls how many
  samples will be used per pixel, it essentially controls the antialiasing quality. If \a
  multisampling is set too high for the current graphics hardware, the maximum allowed value will
  be used.

  You can test whether switching to OpenGL rendering was successful by checking whether the
  according getter \a QCustomPlot::openGl() returns true. If the OpenGL initialization fails,
  rendering continues with the regular software rasterizer, and an according qDebug output is
  generated.

  If switching to OpenGL was successful, this method disables label caching (\ref setPlottingHint
  "setPlottingHint(QCP::phCacheLabels, false)") and turns on QCustomPlot's antialiasing override
  for all elements (\ref setAntialiasedElements "setAntialiasedElements(QCP::aeAll)"), leading to a
  higher quality output. The antialiasing override allows for pixel-grid aligned drawing in the
  OpenGL paint device. As stated before, in OpenGL rendering the actual antialiasing of the plot is
  controlled with \a multisampling. If \a enabled is set to false, the antialiasing/label caching
  settings are restored to what they were before OpenGL was enabled, if they weren't altered in the
  meantime.

  \note OpenGL support is only enabled if QCustomPlot is compiled with the macro \c QCUSTOMPLOT_USE_OPENGL
  defined. This define must be set before including the QCustomPlot header both during compilation
  of the QCustomPlot library as well as when compiling your application. It is best to just include
  the line <tt>DEFINES += QCUSTOMPLOT_USE_OPENGL</tt> in the respective qmake project files.
  \note If you are using a Qt version before 5.0, you must also add the module "opengl" to your \c
  QT variable in the qmake project files. For Qt versions 5.0 and higher, QCustomPlot switches to a
  newer OpenGL interface which is already in the "gui" module.
*/
void QCustomPlot::setOpenGl(bool enabled, int multisampling)
{
  mOpenGlMultisamples = qMax(0, multisampling);
#ifdef QCUSTOMPLOT_USE_OPENGL
  mOpenGl = enabled;
  if (mOpenGl)
  {
    if (setupOpenGl())
    {
      // backup antialiasing override and labelcaching setting so we can restore upon disabling OpenGL
      mOpenGlAntialiasedElementsBackup = mAntialiasedElements;
      mOpenGlCacheLabelsBackup = mPlottingHints.testFlag(QCP::phCacheLabels);
      // set antialiasing override to antialias all (aligns gl pixel grid properly), and disable label caching (would use software rasterizer for pixmap caches):
      setAntialiasedElements(QCP::aeAll);
      setPlottingHint(QCP::phCacheLabels, false);
    } else
    {
      qDebug() << Q_FUNC_INFO << "Failed to enable OpenGL, continuing plotting without hardware acceleration.";
      mOpenGl = false;
    }
  } else
  {
    // restore antialiasing override and labelcaching to what it was before enabling OpenGL, if nobody changed it in the meantime:
    if (mAntialiasedElements == QCP::aeAll)
      setAntialiasedElements(mOpenGlAntialiasedElementsBackup);
    if (!mPlottingHints.testFlag(QCP::phCacheLabels))
      setPlottingHint(QCP::phCacheLabels, mOpenGlCacheLabelsBackup);
    freeOpenGl();
  }
  // recreate all paint buffers:
  mPaintBuffers.clear();
  setupPaintBuffers();
#else
  Q_UNUSED(enabled)
  qDebug() << Q_FUNC_INFO << "QCustomPlot can't use OpenGL because QCUSTOMPLOT_USE_OPENGL was not defined during compilation (add 'DEFINES += QCUSTOMPLOT_USE_OPENGL' to your qmake .pro file)";
#endif
}

/*!
  Sets the viewport of this QCustomPlot. Usually users of QCustomPlot don't need to change the
  viewport manually.

  The viewport is the area in which the plot is drawn. All mechanisms, e.g. margin caluclation take
  the viewport to be the outer border of the plot. The viewport normally is the rect() of the
  QCustomPlot widget, i.e. a rect with top left (0, 0) and size of the QCustomPlot widget.

  Don't confuse the viewport with the axis rect (QCustomPlot::axisRect). An axis rect is typically
  an area enclosed by four axes, where the graphs/plottables are drawn in. The viewport is larger
  and contains also the axes themselves, their tick numbers, their labels, or even additional axis
  rects, color scales and other layout elements.

  This function is used to allow arbitrary size exports with \ref toPixmap, \ref savePng, \ref
  savePdf, etc. by temporarily changing the viewport size.
*/
void QCustomPlot::setViewport(const QRect &rect)
{
  mViewport = rect;
  if (mPlotLayout)
    mPlotLayout->setOuterRect(mViewport);
}

/*!
  Sets the device pixel ratio used by the paint buffers of this QCustomPlot instance.

  Normally, this doesn't need to be set manually, because it is initialized with the regular \a
  QWidget::devicePixelRatio which is configured by Qt to fit the display device (e.g. 1 for normal
  displays, 2 for High-DPI displays).

  Device pixel ratios are supported by Qt only for Qt versions since 5.4. If this method is called
  when QCustomPlot is being used with older Qt versions, outputs an according qDebug message and
  leaves the internal buffer device pixel ratio at 1.0.
*/
void QCustomPlot::setBufferDevicePixelRatio(double ratio)
{
  if (!qFuzzyCompare(ratio, mBufferDevicePixelRatio))
  {
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
    mBufferDevicePixelRatio = ratio;
    for (int i=0; i<mPaintBuffers.size(); ++i)
      mPaintBuffers.at(i)->setDevicePixelRatio(mBufferDevicePixelRatio);
    // Note: axis label cache has devicePixelRatio as part of cache hash, so no need to manually clear cache here
#else
    qDebug() << Q_FUNC_INFO << "Device pixel ratios not supported for Qt versions before 5.4";
    mBufferDevicePixelRatio = 1.0;
#endif
  }
}

/*!
  Sets \a pm as the viewport background pixmap (see \ref setViewport). The pixmap is always drawn
  below all other objects in the plot.

  For cases where the provided pixmap doesn't have the same size as the viewport, scaling can be
  enabled with \ref setBackgroundScaled and the scaling mode (whether and how the aspect ratio is
  preserved) can be set with \ref setBackgroundScaledMode. To set all these options in one call,
  consider using the overloaded version of this function.

  If a background brush was set with \ref setBackground(const QBrush &brush), the viewport will
  first be filled with that brush, before drawing the background pixmap. This can be useful for
  background pixmaps with translucent areas.

  \see setBackgroundScaled, setBackgroundScaledMode
*/
void QCustomPlot::setBackground(const QPixmap &pm)
{
  mBackgroundPixmap = pm;
  mScaledBackgroundPixmap = QPixmap();
}

/*!
  Sets the background brush of the viewport (see \ref setViewport).

  Before drawing everything else, the background is filled with \a brush. If a background pixmap
  was set with \ref setBackground(const QPixmap &pm), this brush will be used to fill the viewport
  before the background pixmap is drawn. This can be useful for background pixmaps with translucent
  areas.

  Set \a brush to Qt::NoBrush or Qt::Transparent to leave background transparent. This can be
  useful for exporting to image formats which support transparency, e.g. \ref savePng.

  \see setBackgroundScaled, setBackgroundScaledMode
*/
void QCustomPlot::setBackground(const QBrush &brush)
{
  mBackgroundBrush = brush;
}

/*! \overload

  Allows setting the background pixmap of the viewport, whether it shall be scaled and how it
  shall be scaled in one call.

  \see setBackground(const QPixmap &pm), setBackgroundScaled, setBackgroundScaledMode
*/
void QCustomPlot::setBackground(const QPixmap &pm, bool scaled, Qt::AspectRatioMode mode)
{
  mBackgroundPixmap = pm;
  mScaledBackgroundPixmap = QPixmap();
  mBackgroundScaled = scaled;
  mBackgroundScaledMode = mode;
}

/*!
  Sets whether the viewport background pixmap shall be scaled to fit the viewport. If \a scaled is
  set to true, control whether and how the aspect ratio of the original pixmap is preserved with
  \ref setBackgroundScaledMode.

  Note that the scaled version of the original pixmap is buffered, so there is no performance
  penalty on replots. (Except when the viewport dimensions are changed continuously.)

  \see setBackground, setBackgroundScaledMode
*/
void QCustomPlot::setBackgroundScaled(bool scaled)
{
  mBackgroundScaled = scaled;
}

/*!
  If scaling of the viewport background pixmap is enabled (\ref setBackgroundScaled), use this
  function to define whether and how the aspect ratio of the original pixmap is preserved.

  \see setBackground, setBackgroundScaled
*/
void QCustomPlot::setBackgroundScaledMode(Qt::AspectRatioMode mode)
{
  mBackgroundScaledMode = mode;
}

/*!
  Returns the plottable with \a index. If the index is invalid, returns 0.

  There is an overloaded version of this function with no parameter which returns the last added
  plottable, see QCustomPlot::plottable()

  \see plottableCount
*/
QCPAbstractPlottable *QCustomPlot::plottable(int index)
{
  if (index >= 0 && index < mPlottables.size())
  {
    return mPlottables.at(index);
  } else
  {
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
    return 0;
  }
}

/*! \overload

  Returns the last plottable that was added to the plot. If there are no plottables in the plot,
  returns 0.

  \see plottableCount
*/
QCPAbstractPlottable *QCustomPlot::plottable()
{
  if (!mPlottables.isEmpty())
  {
    return mPlottables.last();
  } else
    return 0;
}

/*!
  Removes the specified plottable from the plot and deletes it. If necessary, the corresponding
  legend item is also removed from the default legend (QCustomPlot::legend).

  Returns true on success.

  \see clearPlottables
*/
bool QCustomPlot::removePlottable(QCPAbstractPlottable *plottable)
{
  if (!mPlottables.contains(plottable))
  {
    qDebug() << Q_FUNC_INFO << "plottable not in list:" << reinterpret_cast<quintptr>(plottable);
    return false;
  }

  // remove plottable from legend:
  plottable->removeFromLegend();
  // special handling for QCPGraphs to maintain the simple graph interface:
  if (QCPGraph *graph = qobject_cast<QCPGraph*>(plottable))
    mGraphs.removeOne(graph);
  // remove plottable:
  delete plottable;
  mPlottables.removeOne(plottable);
  return true;
}

/*! \overload

  Removes and deletes the plottable by its \a index.
*/
bool QCustomPlot::removePlottable(int index)
{
  if (index >= 0 && index < mPlottables.size())
    return removePlottable(mPlottables[index]);
  else
  {
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
    return false;
  }
}

/*!
  Removes all plottables from the plot and deletes them. Corresponding legend items are also
  removed from the default legend (QCustomPlot::legend).

  Returns the number of plottables removed.

  \see removePlottable
*/
int QCustomPlot::clearPlottables()
{
  int c = mPlottables.size();
  for (int i=c-1; i >= 0; --i)
    removePlottable(mPlottables[i]);
  return c;
}

/*!
  Returns the number of currently existing plottables in the plot

  \see plottable
*/
int QCustomPlot::plottableCount() const
{
  return mPlottables.size();
}

/*!
  Returns a list of the selected plottables. If no plottables are currently selected, the list is empty.

  There is a convenience function if you're only interested in selected graphs, see \ref selectedGraphs.

  \see setInteractions, QCPAbstractPlottable::setSelectable, QCPAbstractPlottable::setSelection
*/
QList<QCPAbstractPlottable*> QCustomPlot::selectedPlottables() const
{
  QList<QCPAbstractPlottable*> result;
  foreach (QCPAbstractPlottable *plottable, mPlottables)
  {
    if (plottable->selected())
      result.append(plottable);
  }
  return result;
}

/*!
  Returns the plottable at the pixel position \a pos. Plottables that only consist of single lines
  (like graphs) have a tolerance band around them, see \ref setSelectionTolerance. If multiple
  plottables come into consideration, the one closest to \a pos is returned.

  If \a onlySelectable is true, only plottables that are selectable
  (QCPAbstractPlottable::setSelectable) are considered.

  If there is no plottable at \a pos, the return value is 0.

  \see itemAt, layoutElementAt
*/
QCPAbstractPlottable *QCustomPlot::plottableAt(const QPointF &pos, bool onlySelectable) const
{
  QCPAbstractPlottable *resultPlottable = 0;
  double resultDistance = mSelectionTolerance; // only regard clicks with distances smaller than mSelectionTolerance as selections, so initialize with that value

  foreach (QCPAbstractPlottable *plottable, mPlottables)
  {
    if (onlySelectable && !plottable->selectable()) // we could have also passed onlySelectable to the selectTest function, but checking here is faster, because we have access to QCPabstractPlottable::selectable
      continue;
    if ((plottable->keyAxis()->axisRect()->rect() & plottable->valueAxis()->axisRect()->rect()).contains(pos.toPoint())) // only consider clicks inside the rect that is spanned by the plottable's key/value axes
    {
      double currentDistance = plottable->selectTest(pos, false);
      if (currentDistance >= 0 && currentDistance < resultDistance)
      {
        resultPlottable = plottable;
        resultDistance = currentDistance;
      }
    }
  }

  return resultPlottable;
}

/*!
  Returns whether this QCustomPlot instance contains the \a plottable.
*/
bool QCustomPlot::hasPlottable(QCPAbstractPlottable *plottable) const
{
  return mPlottables.contains(plottable);
}

/*!
  Returns the graph with \a index. If the index is invalid, returns 0.

  There is an overloaded version of this function with no parameter which returns the last created
  graph, see QCustomPlot::graph()

  \see graphCount, addGraph
*/
QCPGraph *QCustomPlot::graph(int index) const
{
  if (index >= 0 && index < mGraphs.size())
  {
    return mGraphs.at(index);
  } else
  {
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
    return 0;
  }
}

/*! \overload

  Returns the last graph, that was created with \ref addGraph. If there are no graphs in the plot,
  returns 0.

  \see graphCount, addGraph
*/
QCPGraph *QCustomPlot::graph() const
{
  if (!mGraphs.isEmpty())
  {
    return mGraphs.last();
  } else
    return 0;
}

/*!
  Creates a new graph inside the plot. If \a keyAxis and \a valueAxis are left unspecified (0), the
  bottom (xAxis) is used as key and the left (yAxis) is used as value axis. If specified, \a
  keyAxis and \a valueAxis must reside in this QCustomPlot.

  \a keyAxis will be used as key axis (typically "x") and \a valueAxis as value axis (typically
  "y") for the graph.

  Returns a pointer to the newly created graph, or 0 if adding the graph failed.

  \see graph, graphCount, removeGraph, clearGraphs
*/
QCPGraph *QCustomPlot::addGraph(QCPAxis *keyAxis, QCPAxis *valueAxis)
{
  if (!keyAxis) keyAxis = xAxis;
  if (!valueAxis) valueAxis = yAxis;
  if (!keyAxis || !valueAxis)
  {
    qDebug() << Q_FUNC_INFO << "can't use default QCustomPlot xAxis or yAxis, because at least one is invalid (has been deleted)";
    return 0;
  }
  if (keyAxis->parentPlot() != this || valueAxis->parentPlot() != this)
  {
    qDebug() << Q_FUNC_INFO << "passed keyAxis or valueAxis doesn't have this QCustomPlot as parent";
    return 0;
  }

  QCPGraph *newGraph = new QCPGraph(keyAxis, valueAxis);
  newGraph->setName(QLatin1String("Graph ")+QString::number(mGraphs.size()));
  return newGraph;
}

/*!
  Removes the specified \a graph from the plot and deletes it. If necessary, the corresponding
  legend item is also removed from the default legend (QCustomPlot::legend). If any other graphs in
  the plot have a channel fill set towards the removed graph, the channel fill property of those
  graphs is reset to zero (no channel fill).

  Returns true on success.

  \see clearGraphs
*/
bool QCustomPlot::removeGraph(QCPGraph *graph)
{
  return removePlottable(graph);
}

/*! \overload

  Removes and deletes the graph by its \a index.
*/
bool QCustomPlot::removeGraph(int index)
{
  if (index >= 0 && index < mGraphs.size())
    return removeGraph(mGraphs[index]);
  else
    return false;
}

/*!
  Removes all graphs from the plot and deletes them. Corresponding legend items are also removed
  from the default legend (QCustomPlot::legend).

  Returns the number of graphs removed.

  \see removeGraph
*/
int QCustomPlot::clearGraphs()
{
  int c = mGraphs.size();
  for (int i=c-1; i >= 0; --i)
    removeGraph(mGraphs[i]);
  return c;
}

/*!
  Returns the number of currently existing graphs in the plot

  \see graph, addGraph
*/
int QCustomPlot::graphCount() const
{
  return mGraphs.size();
}

/*!
  Returns a list of the selected graphs. If no graphs are currently selected, the list is empty.

  If you are not only interested in selected graphs but other plottables like QCPCurve, QCPBars,
  etc., use \ref selectedPlottables.

  \see setInteractions, selectedPlottables, QCPAbstractPlottable::setSelectable, QCPAbstractPlottable::setSelection
*/
QList<QCPGraph*> QCustomPlot::selectedGraphs() const
{
  QList<QCPGraph*> result;
  foreach (QCPGraph *graph, mGraphs)
  {
    if (graph->selected())
      result.append(graph);
  }
  return result;
}

/*!
  Returns the item with \a index. If the index is invalid, returns 0.

  There is an overloaded version of this function with no parameter which returns the last added
  item, see QCustomPlot::item()

  \see itemCount
*/
QCPAbstractItem *QCustomPlot::item(int index) const
{
  if (index >= 0 && index < mItems.size())
  {
    return mItems.at(index);
  } else
  {
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
    return 0;
  }
}

/*! \overload

  Returns the last item that was added to this plot. If there are no items in the plot,
  returns 0.

  \see itemCount
*/
QCPAbstractItem *QCustomPlot::item() const
{
  if (!mItems.isEmpty())
  {
    return mItems.last();
  } else
    return 0;
}

/*!
  Removes the specified item from the plot and deletes it.

  Returns true on success.

  \see clearItems
*/
bool QCustomPlot::removeItem(QCPAbstractItem *item)
{
  if (mItems.contains(item))
  {
    delete item;
    mItems.removeOne(item);
    return true;
  } else
  {
    qDebug() << Q_FUNC_INFO << "item not in list:" << reinterpret_cast<quintptr>(item);
    return false;
  }
}

/*! \overload

  Removes and deletes the item by its \a index.
*/
bool QCustomPlot::removeItem(int index)
{
  if (index >= 0 && index < mItems.size())
    return removeItem(mItems[index]);
  else
  {
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
    return false;
  }
}

/*!
  Removes all items from the plot and deletes them.

  Returns the number of items removed.

  \see removeItem
*/
int QCustomPlot::clearItems()
{
  int c = mItems.size();
  for (int i=c-1; i >= 0; --i)
    removeItem(mItems[i]);
  return c;
}

/*!
  Returns the number of currently existing items in the plot

  \see item
*/
int QCustomPlot::itemCount() const
{
  return mItems.size();
}

/*!
  Returns a list of the selected items. If no items are currently selected, the list is empty.

  \see setInteractions, QCPAbstractItem::setSelectable, QCPAbstractItem::setSelected
*/
QList<QCPAbstractItem*> QCustomPlot::selectedItems() const
{
  QList<QCPAbstractItem*> result;
  foreach (QCPAbstractItem *item, mItems)
  {
    if (item->selected())
      result.append(item);
  }
  return result;
}

/*!
  Returns the item at the pixel position \a pos. Items that only consist of single lines (e.g. \ref
  QCPItemLine or \ref QCPItemCurve) have a tolerance band around them, see \ref
  setSelectionTolerance. If multiple items come into consideration, the one closest to \a pos is
  returned.

  If \a onlySelectable is true, only items that are selectable (QCPAbstractItem::setSelectable) are
  considered.

  If there is no item at \a pos, the return value is 0.

  \see plottableAt, layoutElementAt
*/
QCPAbstractItem *QCustomPlot::itemAt(const QPointF &pos, bool onlySelectable) const
{
  QCPAbstractItem *resultItem = 0;
  double resultDistance = mSelectionTolerance; // only regard clicks with distances smaller than mSelectionTolerance as selections, so initialize with that value

  foreach (QCPAbstractItem *item, mItems)
  {
    if (onlySelectable && !item->selectable()) // we could have also passed onlySelectable to the selectTest function, but checking here is faster, because we have access to QCPAbstractItem::selectable
      continue;
    if (!item->clipToAxisRect() || item->clipRect().contains(pos.toPoint())) // only consider clicks inside axis cliprect of the item if actually clipped to it
    {
      double currentDistance = item->selectTest(pos, false);
      if (currentDistance >= 0 && currentDistance < resultDistance)
      {
        resultItem = item;
        resultDistance = currentDistance;
      }
    }
  }

  return resultItem;
}

/*!
  Returns whether this QCustomPlot contains the \a item.

  \see item
*/
bool QCustomPlot::hasItem(QCPAbstractItem *item) const
{
  return mItems.contains(item);
}

/*!
  Returns the layer with the specified \a name. If there is no layer with the specified name, 0 is
  returned.

  Layer names are case-sensitive.

  \see addLayer, moveLayer, removeLayer
*/
QCPLayer *QCustomPlot::layer(const QString &name) const
{
  foreach (QCPLayer *layer, mLayers)
  {
    if (layer->name() == name)
      return layer;
  }
  return 0;
}

/*! \overload

  Returns the layer by \a index. If the index is invalid, 0 is returned.

  \see addLayer, moveLayer, removeLayer
*/
QCPLayer *QCustomPlot::layer(int index) const
{
  if (index >= 0 && index < mLayers.size())
  {
    return mLayers.at(index);
  } else
  {
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
    return 0;
  }
}

/*!
  Returns the layer that is set as current layer (see \ref setCurrentLayer).
*/
QCPLayer *QCustomPlot::currentLayer() const
{
  return mCurrentLayer;
}

/*!
  Sets the layer with the specified \a name to be the current layer. All layerables (\ref
  QCPLayerable), e.g. plottables and items, are created on the current layer.

  Returns true on success, i.e. if there is a layer with the specified \a name in the QCustomPlot.

  Layer names are case-sensitive.

  \see addLayer, moveLayer, removeLayer, QCPLayerable::setLayer
*/
bool QCustomPlot::setCurrentLayer(const QString &name)
{
  if (QCPLayer *newCurrentLayer = layer(name))
  {
    return setCurrentLayer(newCurrentLayer);
  } else
  {
    qDebug() << Q_FUNC_INFO << "layer with name doesn't exist:" << name;
    return false;
  }
}

/*! \overload

  Sets the provided \a layer to be the current layer.

  Returns true on success, i.e. when \a layer is a valid layer in the QCustomPlot.

  \see addLayer, moveLayer, removeLayer
*/
bool QCustomPlot::setCurrentLayer(QCPLayer *layer)
{
  if (!mLayers.contains(layer))
  {
    qDebug() << Q_FUNC_INFO << "layer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(layer);
    return false;
  }

  mCurrentLayer = layer;
  return true;
}

/*!
  Returns the number of currently existing layers in the plot

  \see layer, addLayer
*/
int QCustomPlot::layerCount() const
{
  return mLayers.size();
}

/*!
  Adds a new layer to this QCustomPlot instance. The new layer will have the name \a name, which
  must be unique. Depending on \a insertMode, it is positioned either below or above \a otherLayer.

  Returns true on success, i.e. if there is no other layer named \a name and \a otherLayer is a
  valid layer inside this QCustomPlot.

  If \a otherLayer is 0, the highest layer in the QCustomPlot will be used.

  For an explanation of what layers are in QCustomPlot, see the documentation of \ref QCPLayer.

  \see layer, moveLayer, removeLayer
*/
bool QCustomPlot::addLayer(const QString &name, QCPLayer *otherLayer, QCustomPlot::LayerInsertMode insertMode)
{
  if (!otherLayer)
    otherLayer = mLayers.last();
  if (!mLayers.contains(otherLayer))
  {
    qDebug() << Q_FUNC_INFO << "otherLayer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(otherLayer);
    return false;
  }
  if (layer(name))
  {
    qDebug() << Q_FUNC_INFO << "A layer exists already with the name" << name;
    return false;
  }

  QCPLayer *newLayer = new QCPLayer(this, name);
  mLayers.insert(otherLayer->index() + (insertMode==limAbove ? 1:0), newLayer);
  updateLayerIndices();
  setupPaintBuffers(); // associates new layer with the appropriate paint buffer
  return true;
}

/*!
  Removes the specified \a layer and returns true on success.

  All layerables (e.g. plottables and items) on the removed layer will be moved to the layer below
  \a layer. If \a layer is the bottom layer, the layerables are moved to the layer above. In both
  cases, the total rendering order of all layerables in the QCustomPlot is preserved.

  If \a layer is the current layer (\ref setCurrentLayer), the layer below (or above, if bottom
  layer) becomes the new current layer.

  It is not possible to remove the last layer of the plot.

  \see layer, addLayer, moveLayer
*/
bool QCustomPlot::removeLayer(QCPLayer *layer)
{
  if (!mLayers.contains(layer))
  {
    qDebug() << Q_FUNC_INFO << "layer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(layer);
    return false;
  }
  if (mLayers.size() < 2)
  {
    qDebug() << Q_FUNC_INFO << "can't remove last layer";
    return false;
  }

  // append all children of this layer to layer below (if this is lowest layer, prepend to layer above)
  int removedIndex = layer->index();
  bool isFirstLayer = removedIndex==0;
  QCPLayer *targetLayer = isFirstLayer ? mLayers.at(removedIndex+1) : mLayers.at(removedIndex-1);
  QList<QCPLayerable*> children = layer->children();
  if (isFirstLayer) // prepend in reverse order (so order relative to each other stays the same)
  {
    for (int i=children.size()-1; i>=0; --i)
      children.at(i)->moveToLayer(targetLayer, true);
  } else  // append normally
  {
    for (int i=0; i<children.size(); ++i)
      children.at(i)->moveToLayer(targetLayer, false);
  }
  // if removed layer is current layer, change current layer to layer below/above:
  if (layer == mCurrentLayer)
    setCurrentLayer(targetLayer);
  // invalidate the paint buffer that was responsible for this layer:
  if (!layer->mPaintBuffer.isNull())
    layer->mPaintBuffer.data()->setInvalidated();
  // remove layer:
  delete layer;
  mLayers.removeOne(layer);
  updateLayerIndices();
  return true;
}

/*!
  Moves the specified \a layer either above or below \a otherLayer. Whether it's placed above or
  below is controlled with \a insertMode.

  Returns true on success, i.e. when both \a layer and \a otherLayer are valid layers in the
  QCustomPlot.

  \see layer, addLayer, moveLayer
*/
bool QCustomPlot::moveLayer(QCPLayer *layer, QCPLayer *otherLayer, QCustomPlot::LayerInsertMode insertMode)
{
  if (!mLayers.contains(layer))
  {
    qDebug() << Q_FUNC_INFO << "layer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(layer);
    return false;
  }
  if (!mLayers.contains(otherLayer))
  {
    qDebug() << Q_FUNC_INFO << "otherLayer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(otherLayer);
    return false;
  }

  if (layer->index() > otherLayer->index())
    mLayers.move(layer->index(), otherLayer->index() + (insertMode==limAbove ? 1:0));
  else if (layer->index() < otherLayer->index())
    mLayers.move(layer->index(), otherLayer->index() + (insertMode==limAbove ? 0:-1));

  // invalidate the paint buffers that are responsible for the layers:
  if (!layer->mPaintBuffer.isNull())
    layer->mPaintBuffer.data()->setInvalidated();
  if (!otherLayer->mPaintBuffer.isNull())
    otherLayer->mPaintBuffer.data()->setInvalidated();

  updateLayerIndices();
  return true;
}

/*!
  Returns the number of axis rects in the plot.

  All axis rects can be accessed via QCustomPlot::axisRect().

  Initially, only one axis rect exists in the plot.

  \see axisRect, axisRects
*/
int QCustomPlot::axisRectCount() const
{
  return axisRects().size();
}

/*!
  Returns the axis rect with \a index.

  Initially, only one axis rect (with index 0) exists in the plot. If multiple axis rects were
  added, all of them may be accessed with this function in a linear fashion (even when they are
  nested in a layout hierarchy or inside other axis rects via QCPAxisRect::insetLayout).

  The order of the axis rects is given by the fill order of the \ref QCPLayout that is holding
  them. For example, if the axis rects are in the top level grid layout (accessible via \ref
  QCustomPlot::plotLayout), they are ordered from left to right, top to bottom, if the layout's
  default \ref QCPLayoutGrid::setFillOrder "setFillOrder" of \ref QCPLayoutGrid::foColumnsFirst
  "foColumnsFirst" wasn't changed.

  If you want to access axis rects by their row and column index, use the layout interface. For
  example, use \ref QCPLayoutGrid::element of the top level grid layout, and \c qobject_cast the
  returned layout element to \ref QCPAxisRect. (See also \ref thelayoutsystem.)

  \see axisRectCount, axisRects, QCPLayoutGrid::setFillOrder
*/
QCPAxisRect *QCustomPlot::axisRect(int index) const
{
  const QList<QCPAxisRect*> rectList = axisRects();
  if (index >= 0 && index < rectList.size())
  {
    return rectList.at(index);
  } else
  {
    qDebug() << Q_FUNC_INFO << "invalid axis rect index" << index;
    return 0;
  }
}

/*!
  Returns all axis rects in the plot.

  The order of the axis rects is given by the fill order of the \ref QCPLayout that is holding
  them. For example, if the axis rects are in the top level grid layout (accessible via \ref
  QCustomPlot::plotLayout), they are ordered from left to right, top to bottom, if the layout's
  default \ref QCPLayoutGrid::setFillOrder "setFillOrder" of \ref QCPLayoutGrid::foColumnsFirst
  "foColumnsFirst" wasn't changed.

  \see axisRectCount, axisRect, QCPLayoutGrid::setFillOrder
*/
QList<QCPAxisRect*> QCustomPlot::axisRects() const
{
  QList<QCPAxisRect*> result;
  QStack<QCPLayoutElement*> elementStack;
  if (mPlotLayout)
    elementStack.push(mPlotLayout);

  while (!elementStack.isEmpty())
  {
    foreach (QCPLayoutElement *element, elementStack.pop()->elements(false))
    {
      if (element)
      {
        elementStack.push(element);
        if (QCPAxisRect *ar = qobject_cast<QCPAxisRect*>(element))
          result.append(ar);
      }
    }
  }

  return result;
}

/*!
  Returns the layout element at pixel position \a pos. If there is no element at that position,
  returns 0.

  Only visible elements are used. If \ref QCPLayoutElement::setVisible on the element itself or on
  any of its parent elements is set to false, it will not be considered.

  \see itemAt, plottableAt
*/
QCPLayoutElement *QCustomPlot::layoutElementAt(const QPointF &pos) const
{
  QCPLayoutElement *currentElement = mPlotLayout;
  bool searchSubElements = true;
  while (searchSubElements && currentElement)
  {
    searchSubElements = false;
    foreach (QCPLayoutElement *subElement, currentElement->elements(false))
    {
      if (subElement && subElement->realVisibility() && subElement->selectTest(pos, false) >= 0)
      {
        currentElement = subElement;
        searchSubElements = true;
        break;
      }
    }
  }
  return currentElement;
}

/*!
  Returns the layout element of type \ref QCPAxisRect at pixel position \a pos. This method ignores
  other layout elements even if they are visually in front of the axis rect (e.g. a \ref
  QCPLegend). If there is no axis rect at that position, returns 0.

  Only visible axis rects are used. If \ref QCPLayoutElement::setVisible on the axis rect itself or
  on any of its parent elements is set to false, it will not be considered.

  \see layoutElementAt
*/
QCPAxisRect *QCustomPlot::axisRectAt(const QPointF &pos) const
{
  QCPAxisRect *result = 0;
  QCPLayoutElement *currentElement = mPlotLayout;
  bool searchSubElements = true;
  while (searchSubElements && currentElement)
  {
    searchSubElements = false;
    foreach (QCPLayoutElement *subElement, currentElement->elements(false))
    {
      if (subElement && subElement->realVisibility() && subElement->selectTest(pos, false) >= 0)
      {
        currentElement = subElement;
        searchSubElements = true;
        if (QCPAxisRect *ar = qobject_cast<QCPAxisRect*>(currentElement))
          result = ar;
        break;
      }
    }
  }
  return result;
}

/*!
  Returns the axes that currently have selected parts, i.e. whose selection state is not \ref
  QCPAxis::spNone.

  \see selectedPlottables, selectedLegends, setInteractions, QCPAxis::setSelectedParts,
  QCPAxis::setSelectableParts
*/
QList<QCPAxis*> QCustomPlot::selectedAxes() const
{
  QList<QCPAxis*> result, allAxes;
  foreach (QCPAxisRect *rect, axisRects())
    allAxes << rect->axes();

  foreach (QCPAxis *axis, allAxes)
  {
    if (axis->selectedParts() != QCPAxis::spNone)
      result.append(axis);
  }

  return result;
}

/*!
  Returns the legends that currently have selected parts, i.e. whose selection state is not \ref
  QCPLegend::spNone.

  \see selectedPlottables, selectedAxes, setInteractions, QCPLegend::setSelectedParts,
  QCPLegend::setSelectableParts, QCPLegend::selectedItems
*/
QList<QCPLegend*> QCustomPlot::selectedLegends() const
{
  QList<QCPLegend*> result;

  QStack<QCPLayoutElement*> elementStack;
  if (mPlotLayout)
    elementStack.push(mPlotLayout);

  while (!elementStack.isEmpty())
  {
    foreach (QCPLayoutElement *subElement, elementStack.pop()->elements(false))
    {
      if (subElement)
      {
        elementStack.push(subElement);
        if (QCPLegend *leg = qobject_cast<QCPLegend*>(subElement))
        {
          if (leg->selectedParts() != QCPLegend::spNone)
            result.append(leg);
        }
      }
    }
  }

  return result;
}

/*!
  Deselects all layerables (plottables, items, axes, legends,...) of the QCustomPlot.

  Since calling this function is not a user interaction, this does not emit the \ref
  selectionChangedByUser signal. The individual selectionChanged signals are emitted though, if the
  objects were previously selected.

  \see setInteractions, selectedPlottables, selectedItems, selectedAxes, selectedLegends
*/
void QCustomPlot::deselectAll()
{
  foreach (QCPLayer *layer, mLayers)
  {
    foreach (QCPLayerable *layerable, layer->children())
      layerable->deselectEvent(0);
  }
}

/*!
  Causes a complete replot into the internal paint buffer(s). Finally, the widget surface is
  refreshed with the new buffer contents. This is the method that must be called to make changes to
  the plot, e.g. on the axis ranges or data points of graphs, visible.

  The parameter \a refreshPriority can be used to fine-tune the timing of the replot. For example
  if your application calls \ref replot very quickly in succession (e.g. multiple independent
  functions change some aspects of the plot and each wants to make sure the change gets replotted),
  it is advisable to set \a refreshPriority to \ref QCustomPlot::rpQueuedReplot. This way, the
  actual replotting is deferred to the next event loop iteration. Multiple successive calls of \ref
  replot with this priority will only cause a single replot, avoiding redundant replots and
  improving performance.

  Under a few circumstances, QCustomPlot causes a replot by itself. Those are resize events of the
  QCustomPlot widget and user interactions (object selection and range dragging/zooming).

  Before the replot happens, the signal \ref beforeReplot is emitted. After the replot, \ref
  afterReplot is emitted. It is safe to mutually connect the replot slot with any of those two
  signals on two QCustomPlots to make them replot synchronously, it won't cause an infinite
  recursion.

  If a layer is in mode \ref QCPLayer::lmBuffered (\ref QCPLayer::setMode), it is also possible to
  replot only that specific layer via \ref QCPLayer::replot. See the documentation there for
  details.
*/
void QCustomPlot::replot(QCustomPlot::RefreshPriority refreshPriority)
{
  if (refreshPriority == QCustomPlot::rpQueuedReplot)
  {
    if (!mReplotQueued)
    {
      mReplotQueued = true;
      QTimer::singleShot(0, this, SLOT(replot()));
    }
    return;
  }

  if (mReplotting) // incase signals loop back to replot slot
    return;
  mReplotting = true;
  mReplotQueued = false;
  emit beforeReplot();

  updateLayout();
  // draw all layered objects (grid, axes, plottables, items, legend,...) into their buffers:
  setupPaintBuffers();
  foreach (QCPLayer *layer, mLayers)
    layer->drawToPaintBuffer();
  for (int i=0; i<mPaintBuffers.size(); ++i)
    mPaintBuffers.at(i)->setInvalidated(false);

  if ((refreshPriority == rpRefreshHint && mPlottingHints.testFlag(QCP::phImmediateRefresh)) || refreshPriority==rpImmediateRefresh)
    repaint();
  else
    update();

  emit afterReplot();
  mReplotting = false;
}

/*!
  Rescales the axes such that all plottables (like graphs) in the plot are fully visible.

  if \a onlyVisiblePlottables is set to true, only the plottables that have their visibility set to true
  (QCPLayerable::setVisible), will be used to rescale the axes.

  \see QCPAbstractPlottable::rescaleAxes, QCPAxis::rescale
*/
void QCustomPlot::rescaleAxes(bool onlyVisiblePlottables)
{
  QList<QCPAxis*> allAxes;
  foreach (QCPAxisRect *rect, axisRects())
    allAxes << rect->axes();

  foreach (QCPAxis *axis, allAxes)
    axis->rescale(onlyVisiblePlottables);
}

/*!
  Saves a PDF with the vectorized plot to the file \a fileName. The axis ratio as well as the scale
  of texts and lines will be derived from the specified \a width and \a height. This means, the
  output will look like the normal on-screen output of a QCustomPlot widget with the corresponding
  pixel width and height. If either \a width or \a height is zero, the exported image will have the
  same dimensions as the QCustomPlot widget currently has.

  Setting \a exportPen to \ref QCP::epNoCosmetic allows to disable the use of cosmetic pens when
  drawing to the PDF file. Cosmetic pens are pens with numerical width 0, which are always drawn as
  a one pixel wide line, no matter what zoom factor is set in the PDF-Viewer. For more information
  about cosmetic pens, see the QPainter and QPen documentation.

  The objects of the plot will appear in the current selection state. If you don't want any
  selected objects to be painted in their selected look, deselect everything with \ref deselectAll
  before calling this function.

  Returns true on success.

  \warning Please consider the following:
  \li If you plan on editing the exported PDF file with a vector graphics editor like Inkscape, it
  is advised to set \a exportPen to \ref QCP::epNoCosmetic to avoid losing those cosmetic lines
  (which might be quite many, because cosmetic pens are the default for e.g. axes and tick marks).
  \li If calling this function inside the constructor of the parent of the QCustomPlot widget
  (i.e. the MainWindow constructor, if QCustomPlot is inside the MainWindow), always provide
  explicit non-zero widths and heights. If you leave \a width or \a height as 0 (default), this
  function uses the current width and height of the QCustomPlot widget. However, in Qt, these
  aren't defined yet inside the constructor, so you would get an image that has strange
  widths/heights.

  \a pdfCreator and \a pdfTitle may be used to set the according metadata fields in the resulting
  PDF file.

  \note On Android systems, this method does nothing and issues an according qDebug warning
  message. This is also the case if for other reasons the define flag \c QT_NO_PRINTER is set.

  \see savePng, saveBmp, saveJpg, saveRastered
*/
bool QCustomPlot::savePdf(const QString &fileName, int width, int height, QCP::ExportPen exportPen, const QString &pdfCreator, const QString &pdfTitle)
{
  bool success = false;
#ifdef QT_NO_PRINTER
  Q_UNUSED(fileName)
  Q_UNUSED(exportPen)
  Q_UNUSED(width)
  Q_UNUSED(height)
  Q_UNUSED(pdfCreator)
  Q_UNUSED(pdfTitle)
  qDebug() << Q_FUNC_INFO << "Qt was built without printer support (QT_NO_PRINTER). PDF not created.";
#else
  int newWidth, newHeight;
  if (width == 0 || height == 0)
  {
    newWidth = this->width();
    newHeight = this->height();
  } else
  {
    newWidth = width;
    newHeight = height;
  }

  QPrinter printer(QPrinter::ScreenResolution);
  printer.setOutputFileName(fileName);
  printer.setOutputFormat(QPrinter::PdfFormat);
  printer.setColorMode(QPrinter::Color);
  printer.printEngine()->setProperty(QPrintEngine::PPK_Creator, pdfCreator);
  printer.printEngine()->setProperty(QPrintEngine::PPK_DocumentName, pdfTitle);
  QRect oldViewport = viewport();
  setViewport(QRect(0, 0, newWidth, newHeight));
#if QT_VERSION < QT_VERSION_CHECK(5, 3, 0)
  printer.setFullPage(true);
  printer.setPaperSize(viewport().size(), QPrinter::DevicePixel);
#else
  QPageLayout pageLayout;
  pageLayout.setMode(QPageLayout::FullPageMode);
  pageLayout.setOrientation(QPageLayout::Portrait);
  pageLayout.setMargins(QMarginsF(0, 0, 0, 0));
  pageLayout.setPageSize(QPageSize(viewport().size(), QPageSize::Point, QString(), QPageSize::ExactMatch));
  printer.setPageLayout(pageLayout);
#endif
  QCPPainter printpainter;
  if (printpainter.begin(&printer))
  {
    printpainter.setMode(QCPPainter::pmVectorized);
    printpainter.setMode(QCPPainter::pmNoCaching);
    printpainter.setMode(QCPPainter::pmNonCosmetic, exportPen==QCP::epNoCosmetic);
    printpainter.setWindow(mViewport);
    if (mBackgroundBrush.style() != Qt::NoBrush &&
        mBackgroundBrush.color() != Qt::white &&
        mBackgroundBrush.color() != Qt::transparent &&
        mBackgroundBrush.color().alpha() > 0) // draw pdf background color if not white/transparent
      printpainter.fillRect(viewport(), mBackgroundBrush);
    draw(&printpainter);
    printpainter.end();
    success = true;
  }
  setViewport(oldViewport);
#endif // QT_NO_PRINTER
  return success;
}

/*!
  Saves a PNG image file to \a fileName on disc. The output plot will have the dimensions \a width
  and \a height in pixels, multiplied by \a scale. If either \a width or \a height is zero, the
  current width and height of the QCustomPlot widget is used instead. Line widths and texts etc.
  are not scaled up when larger widths/heights are used. If you want that effect, use the \a scale
  parameter.

  For example, if you set both \a width and \a height to 100 and \a scale to 2, you will end up with an
  image file of size 200*200 in which all graphical elements are scaled up by factor 2 (line widths,
  texts, etc.). This scaling is not done by stretching a 100*100 image, the result will have full
  200*200 pixel resolution.

  If you use a high scaling factor, it is recommended to enable antialiasing for all elements by
  temporarily setting \ref QCustomPlot::setAntialiasedElements to \ref QCP::aeAll as this allows
  QCustomPlot to place objects with sub-pixel accuracy.

  image compression can be controlled with the \a quality parameter which must be between 0 and 100
  or -1 to use the default setting.

  The \a resolution will be written to the image file header and has no direct consequence for the
  quality or the pixel size. However, if opening the image with a tool which respects the metadata,
  it will be able to scale the image to match either a given size in real units of length (inch,
  centimeters, etc.), or the target display DPI. You can specify in which units \a resolution is
  given, by setting \a resolutionUnit. The \a resolution is converted to the format's expected
  resolution unit internally.

  Returns true on success. If this function fails, most likely the PNG format isn't supported by
  the system, see Qt docs about QImageWriter::supportedImageFormats().

  The objects of the plot will appear in the current selection state. If you don't want any selected
  objects to be painted in their selected look, deselect everything with \ref deselectAll before calling
  this function.

  If you want the PNG to have a transparent background, call \ref setBackground(const QBrush &brush)
  with no brush (Qt::NoBrush) or a transparent color (Qt::transparent), before saving.

  \warning If calling this function inside the constructor of the parent of the QCustomPlot widget
  (i.e. the MainWindow constructor, if QCustomPlot is inside the MainWindow), always provide
  explicit non-zero widths and heights. If you leave \a width or \a height as 0 (default), this
  function uses the current width and height of the QCustomPlot widget. However, in Qt, these
  aren't defined yet inside the constructor, so you would get an image that has strange
  widths/heights.

  \see savePdf, saveBmp, saveJpg, saveRastered
*/
bool QCustomPlot::savePng(const QString &fileName, int width, int height, double scale, int quality, int resolution, QCP::ResolutionUnit resolutionUnit)
{
  return saveRastered(fileName, width, height, scale, "PNG", quality, resolution, resolutionUnit);
}

/*!
  Saves a JPEG image file to \a fileName on disc. The output plot will have the dimensions \a width
  and \a height in pixels, multiplied by \a scale. If either \a width or \a height is zero, the
  current width and height of the QCustomPlot widget is used instead. Line widths and texts etc.
  are not scaled up when larger widths/heights are used. If you want that effect, use the \a scale
  parameter.

  For example, if you set both \a width and \a height to 100 and \a scale to 2, you will end up with an
  image file of size 200*200 in which all graphical elements are scaled up by factor 2 (line widths,
  texts, etc.). This scaling is not done by stretching a 100*100 image, the result will have full
  200*200 pixel resolution.

  If you use a high scaling factor, it is recommended to enable antialiasing for all elements by
  temporarily setting \ref QCustomPlot::setAntialiasedElements to \ref QCP::aeAll as this allows
  QCustomPlot to place objects with sub-pixel accuracy.

  image compression can be controlled with the \a quality parameter which must be between 0 and 100
  or -1 to use the default setting.

  The \a resolution will be written to the image file header and has no direct consequence for the
  quality or the pixel size. However, if opening the image with a tool which respects the metadata,
  it will be able to scale the image to match either a given size in real units of length (inch,
  centimeters, etc.), or the target display DPI. You can specify in which units \a resolution is
  given, by setting \a resolutionUnit. The \a resolution is converted to the format's expected
  resolution unit internally.

  Returns true on success. If this function fails, most likely the JPEG format isn't supported by
  the system, see Qt docs about QImageWriter::supportedImageFormats().

  The objects of the plot will appear in the current selection state. If you don't want any selected
  objects to be painted in their selected look, deselect everything with \ref deselectAll before calling
  this function.

  \warning If calling this function inside the constructor of the parent of the QCustomPlot widget
  (i.e. the MainWindow constructor, if QCustomPlot is inside the MainWindow), always provide
  explicit non-zero widths and heights. If you leave \a width or \a height as 0 (default), this
  function uses the current width and height of the QCustomPlot widget. However, in Qt, these
  aren't defined yet inside the constructor, so you would get an image that has strange
  widths/heights.

  \see savePdf, savePng, saveBmp, saveRastered
*/
bool QCustomPlot::saveJpg(const QString &fileName, int width, int height, double scale, int quality, int resolution, QCP::ResolutionUnit resolutionUnit)
{
  return saveRastered(fileName, width, height, scale, "JPG", quality, resolution, resolutionUnit);
}

/*!
  Saves a BMP image file to \a fileName on disc. The output plot will have the dimensions \a width
  and \a height in pixels, multiplied by \a scale. If either \a width or \a height is zero, the
  current width and height of the QCustomPlot widget is used instead. Line widths and texts etc.
  are not scaled up when larger widths/heights are used. If you want that effect, use the \a scale
  parameter.

  For example, if you set both \a width and \a height to 100 and \a scale to 2, you will end up with an
  image file of size 200*200 in which all graphical elements are scaled up by factor 2 (line widths,
  texts, etc.). This scaling is not done by stretching a 100*100 image, the result will have full
  200*200 pixel resolution.

  If you use a high scaling factor, it is recommended to enable antialiasing for all elements by
  temporarily setting \ref QCustomPlot::setAntialiasedElements to \ref QCP::aeAll as this allows
  QCustomPlot to place objects with sub-pixel accuracy.

  The \a resolution will be written to the image file header and has no direct consequence for the
  quality or the pixel size. However, if opening the image with a tool which respects the metadata,
  it will be able to scale the image to match either a given size in real units of length (inch,
  centimeters, etc.), or the target display DPI. You can specify in which units \a resolution is
  given, by setting \a resolutionUnit. The \a resolution is converted to the format's expected
  resolution unit internally.

  Returns true on success. If this function fails, most likely the BMP format isn't supported by
  the system, see Qt docs about QImageWriter::supportedImageFormats().

  The objects of the plot will appear in the current selection state. If you don't want any selected
  objects to be painted in their selected look, deselect everything with \ref deselectAll before calling
  this function.

  \warning If calling this function inside the constructor of the parent of the QCustomPlot widget
  (i.e. the MainWindow constructor, if QCustomPlot is inside the MainWindow), always provide
  explicit non-zero widths and heights. If you leave \a width or \a height as 0 (default), this
  function uses the current width and height of the QCustomPlot widget. However, in Qt, these
  aren't defined yet inside the constructor, so you would get an image that has strange
  widths/heights.

  \see savePdf, savePng, saveJpg, saveRastered
*/
bool QCustomPlot::saveBmp(const QString &fileName, int width, int height, double scale, int resolution, QCP::ResolutionUnit resolutionUnit)
{
  return saveRastered(fileName, width, height, scale, "BMP", -1, resolution, resolutionUnit);
}

/*! \internal

  Returns a minimum size hint that corresponds to the minimum size of the top level layout
  (\ref plotLayout). To prevent QCustomPlot from being collapsed to size/width zero, set a minimum
  size (setMinimumSize) either on the whole QCustomPlot or on any layout elements inside the plot.
  This is especially important, when placed in a QLayout where other components try to take in as
  much space as possible (e.g. QMdiArea).
*/
QSize QCustomPlot::minimumSizeHint() const
{
  return mPlotLayout->minimumOuterSizeHint();
}

/*! \internal

  Returns a size hint that is the same as \ref minimumSizeHint.

*/
QSize QCustomPlot::sizeHint() const
{
  return mPlotLayout->minimumOuterSizeHint();
}

/*! \internal

  Event handler for when the QCustomPlot widget needs repainting. This does not cause a \ref replot, but
  draws the internal buffer on the widget surface.
*/
void QCustomPlot::paintEvent(QPaintEvent *event)
{
  Q_UNUSED(event);
  QCPPainter painter(this);
  if (painter.isActive())
  {
    painter.setRenderHint(QPainter::HighQualityAntialiasing); // to make Antialiasing look good if using the OpenGL graphicssystem
    if (mBackgroundBrush.style() != Qt::NoBrush)
      painter.fillRect(mViewport, mBackgroundBrush);
    drawBackground(&painter);
    for (int bufferIndex = 0; bufferIndex < mPaintBuffers.size(); ++bufferIndex)
      mPaintBuffers.at(bufferIndex)->draw(&painter);
  }
}

/*! \internal

  Event handler for a resize of the QCustomPlot widget. The viewport (which becomes the outer rect
  of mPlotLayout) is resized appropriately. Finally a \ref replot is performed.
*/
void QCustomPlot::resizeEvent(QResizeEvent *event)
{
  Q_UNUSED(event)
  // resize and repaint the buffer:
  setViewport(rect());
  replot(rpQueuedRefresh); // queued refresh is important here, to prevent painting issues in some contexts (e.g. MDI subwindow)
}

/*! \internal

 Event handler for when a double click occurs. Emits the \ref mouseDoubleClick signal, then
 determines the layerable under the cursor and forwards the event to it. Finally, emits the
 specialized signals when certain objecs are clicked (e.g. \ref plottableDoubleClick, \ref
 axisDoubleClick, etc.).

 \see mousePressEvent, mouseReleaseEvent
*/
void QCustomPlot::mouseDoubleClickEvent(QMouseEvent *event)
{
  emit mouseDoubleClick(event);
  mMouseHasMoved = false;
  mMousePressPos = event->pos();

  // determine layerable under the cursor (this event is called instead of the second press event in a double-click):
  QList<QVariant> details;
  QList<QCPLayerable*> candidates = layerableListAt(mMousePressPos, false, &details);
  for (int i=0; i<candidates.size(); ++i)
  {
    event->accept(); // default impl of QCPLayerable's mouse events ignore the event, in that case propagate to next candidate in list
    candidates.at(i)->mouseDoubleClickEvent(event, details.at(i));
    if (event->isAccepted())
    {
      mMouseEventLayerable = candidates.at(i);
      mMouseEventLayerableDetails = details.at(i);
      break;
    }
  }

  // emit specialized object double click signals:
  if (!candidates.isEmpty())
  {
    if (QCPAbstractPlottable *ap = qobject_cast<QCPAbstractPlottable*>(candidates.first()))
    {
      int dataIndex = 0;
      if (!details.first().value<QCPDataSelection>().isEmpty())
        dataIndex = details.first().value<QCPDataSelection>().dataRange().begin();
      emit plottableDoubleClick(ap, dataIndex, event);
    } else if (QCPAxis *ax = qobject_cast<QCPAxis*>(candidates.first()))
      emit axisDoubleClick(ax, details.first().value<QCPAxis::SelectablePart>(), event);
    else if (QCPAbstractItem *ai = qobject_cast<QCPAbstractItem*>(candidates.first()))
      emit itemDoubleClick(ai, event);
    else if (QCPLegend *lg = qobject_cast<QCPLegend*>(candidates.first()))
      emit legendDoubleClick(lg, 0, event);
    else if (QCPAbstractLegendItem *li = qobject_cast<QCPAbstractLegendItem*>(candidates.first()))
      emit legendDoubleClick(li->parentLegend(), li, event);
  }

  event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
}

/*! \internal

  Event handler for when a mouse button is pressed. Emits the mousePress signal.

  If the current \ref setSelectionRectMode is not \ref QCP::srmNone, passes the event to the
  selection rect. Otherwise determines the layerable under the cursor and forwards the event to it.

  \see mouseMoveEvent, mouseReleaseEvent
*/
void QCustomPlot::mousePressEvent(QMouseEvent *event)
{
  emit mousePress(event);
  // save some state to tell in releaseEvent whether it was a click:
  mMouseHasMoved = false;
  mMousePressPos = event->pos();

  if (mSelectionRect && mSelectionRectMode != QCP::srmNone)
  {
    if (mSelectionRectMode != QCP::srmZoom || qobject_cast<QCPAxisRect*>(axisRectAt(mMousePressPos))) // in zoom mode only activate selection rect if on an axis rect
      mSelectionRect->startSelection(event);
  } else
  {
    // no selection rect interaction, prepare for click signal emission and forward event to layerable under the cursor:
    QList<QVariant> details;
    QList<QCPLayerable*> candidates = layerableListAt(mMousePressPos, false, &details);
    if (!candidates.isEmpty())
    {
      mMouseSignalLayerable = candidates.first(); // candidate for signal emission is always topmost hit layerable (signal emitted in release event)
      mMouseSignalLayerableDetails = details.first();
    }
    // forward event to topmost candidate which accepts the event:
    for (int i=0; i<candidates.size(); ++i)
    {
      event->accept(); // default impl of QCPLayerable's mouse events call ignore() on the event, in that case propagate to next candidate in list
      candidates.at(i)->mousePressEvent(event, details.at(i));
      if (event->isAccepted())
      {
        mMouseEventLayerable = candidates.at(i);
        mMouseEventLayerableDetails = details.at(i);
        break;
      }
    }
  }

  event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
}

/*! \internal

  Event handler for when the cursor is moved. Emits the \ref mouseMove signal.

  If the selection rect (\ref setSelectionRect) is currently active, the event is forwarded to it
  in order to update the rect geometry.

  Otherwise, if a layout element has mouse capture focus (a mousePressEvent happened on top of the
  layout element before), the mouseMoveEvent is forwarded to that element.

  \see mousePressEvent, mouseReleaseEvent
*/
void QCustomPlot::mouseMoveEvent(QMouseEvent *event)
{
  emit mouseMove(event);

  if (!mMouseHasMoved && (mMousePressPos-event->pos()).manhattanLength() > 3)
    mMouseHasMoved = true; // moved too far from mouse press position, don't handle as click on mouse release

  if (mSelectionRect && mSelectionRect->isActive())
    mSelectionRect->moveSelection(event);
  else if (mMouseEventLayerable) // call event of affected layerable:
    mMouseEventLayerable->mouseMoveEvent(event, mMousePressPos);

  event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
}

/*! \internal

  Event handler for when a mouse button is released. Emits the \ref mouseRelease signal.

  If the mouse was moved less than a certain threshold in any direction since the \ref
  mousePressEvent, it is considered a click which causes the selection mechanism (if activated via
  \ref setInteractions) to possibly change selection states accordingly. Further, specialized mouse
  click signals are emitted (e.g. \ref plottableClick, \ref axisClick, etc.)

  If a layerable is the mouse capturer (a \ref mousePressEvent happened on top of the layerable
  before), the \ref mouseReleaseEvent is forwarded to that element.

  \see mousePressEvent, mouseMoveEvent
*/
void QCustomPlot::mouseReleaseEvent(QMouseEvent *event)
{
  emit mouseRelease(event);

  if (!mMouseHasMoved) // mouse hasn't moved (much) between press and release, so handle as click
  {
    if (mSelectionRect && mSelectionRect->isActive()) // a simple click shouldn't successfully finish a selection rect, so cancel it here
      mSelectionRect->cancel();
    if (event->button() == Qt::LeftButton)
      processPointSelection(event);

    // emit specialized click signals of QCustomPlot instance:
    if (QCPAbstractPlottable *ap = qobject_cast<QCPAbstractPlottable*>(mMouseSignalLayerable))
    {
      int dataIndex = 0;
      if (!mMouseSignalLayerableDetails.value<QCPDataSelection>().isEmpty())
        dataIndex = mMouseSignalLayerableDetails.value<QCPDataSelection>().dataRange().begin();
      emit plottableClick(ap, dataIndex, event);
    } else if (QCPAxis *ax = qobject_cast<QCPAxis*>(mMouseSignalLayerable))
      emit axisClick(ax, mMouseSignalLayerableDetails.value<QCPAxis::SelectablePart>(), event);
    else if (QCPAbstractItem *ai = qobject_cast<QCPAbstractItem*>(mMouseSignalLayerable))
      emit itemClick(ai, event);
    else if (QCPLegend *lg = qobject_cast<QCPLegend*>(mMouseSignalLayerable))
      emit legendClick(lg, 0, event);
    else if (QCPAbstractLegendItem *li = qobject_cast<QCPAbstractLegendItem*>(mMouseSignalLayerable))
      emit legendClick(li->parentLegend(), li, event);
    mMouseSignalLayerable = 0;
  }

  if (mSelectionRect && mSelectionRect->isActive()) // Note: if a click was detected above, the selection rect is canceled there
  {
    // finish selection rect, the appropriate action will be taken via signal-slot connection:
    mSelectionRect->endSelection(event);
  } else
  {
    // call event of affected layerable:
    if (mMouseEventLayerable)
    {
      mMouseEventLayerable->mouseReleaseEvent(event, mMousePressPos);
      mMouseEventLayerable = 0;
    }
  }

  if (noAntialiasingOnDrag())
    replot(rpQueuedReplot);

  event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
}

/*! \internal

  Event handler for mouse wheel events. First, the \ref mouseWheel signal is emitted. Then
  determines the affected layerable and forwards the event to it.
*/
void QCustomPlot::wheelEvent(QWheelEvent *event)
{
  emit mouseWheel(event);
  // forward event to layerable under cursor:
  QList<QCPLayerable*> candidates = layerableListAt(event->pos(), false);
  for (int i=0; i<candidates.size(); ++i)
  {
    event->accept(); // default impl of QCPLayerable's mouse events ignore the event, in that case propagate to next candidate in list
    candidates.at(i)->wheelEvent(event);
    if (event->isAccepted())
      break;
  }
  event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
}

/*! \internal

  This function draws the entire plot, including background pixmap, with the specified \a painter.
  It does not make use of the paint buffers like \ref replot, so this is the function typically
  used by saving/exporting methods such as \ref savePdf or \ref toPainter.

  Note that it does not fill the background with the background brush (as the user may specify with
  \ref setBackground(const QBrush &brush)), this is up to the respective functions calling this
  method.
*/
void QCustomPlot::draw(QCPPainter *painter)
{
  updateLayout();

  // draw viewport background pixmap:
  drawBackground(painter);

  // draw all layered objects (grid, axes, plottables, items, legend,...):
  foreach (QCPLayer *layer, mLayers)
    layer->draw(painter);

  /* Debug code to draw all layout element rects
  foreach (QCPLayoutElement* el, findChildren<QCPLayoutElement*>())
  {
    painter->setBrush(Qt::NoBrush);
    painter->setPen(QPen(QColor(0, 0, 0, 100), 0, Qt::DashLine));
    painter->drawRect(el->rect());
    painter->setPen(QPen(QColor(255, 0, 0, 100), 0, Qt::DashLine));
    painter->drawRect(el->outerRect());
  }
  */
}

/*! \internal

  Performs the layout update steps defined by \ref QCPLayoutElement::UpdatePhase, by calling \ref
  QCPLayoutElement::update on the main plot layout.

  Here, the layout elements calculate their positions and margins, and prepare for the following
  draw call.
*/
void QCustomPlot::updateLayout()
{
  // run through layout phases:
  mPlotLayout->update(QCPLayoutElement::upPreparation);
  mPlotLayout->update(QCPLayoutElement::upMargins);
  mPlotLayout->update(QCPLayoutElement::upLayout);
}

/*! \internal

  Draws the viewport background pixmap of the plot.

  If a pixmap was provided via \ref setBackground, this function buffers the scaled version
  depending on \ref setBackgroundScaled and \ref setBackgroundScaledMode and then draws it inside
  the viewport with the provided \a painter. The scaled version is buffered in
  mScaledBackgroundPixmap to prevent expensive rescaling at every redraw. It is only updated, when
  the axis rect has changed in a way that requires a rescale of the background pixmap (this is
  dependent on the \ref setBackgroundScaledMode), or when a differend axis background pixmap was
  set.

  Note that this function does not draw a fill with the background brush
  (\ref setBackground(const QBrush &brush)) beneath the pixmap.

  \see setBackground, setBackgroundScaled, setBackgroundScaledMode
*/
void QCustomPlot::drawBackground(QCPPainter *painter)
{
  // Note: background color is handled in individual replot/save functions

  // draw background pixmap (on top of fill, if brush specified):
  if (!mBackgroundPixmap.isNull())
  {
    if (mBackgroundScaled)
    {
      // check whether mScaledBackground needs to be updated:
      QSize scaledSize(mBackgroundPixmap.size());
      scaledSize.scale(mViewport.size(), mBackgroundScaledMode);
      if (mScaledBackgroundPixmap.size() != scaledSize)
        mScaledBackgroundPixmap = mBackgroundPixmap.scaled(mViewport.size(), mBackgroundScaledMode, Qt::SmoothTransformation);
      painter->drawPixmap(mViewport.topLeft(), mScaledBackgroundPixmap, QRect(0, 0, mViewport.width(), mViewport.height()) & mScaledBackgroundPixmap.rect());
    } else
    {
      painter->drawPixmap(mViewport.topLeft(), mBackgroundPixmap, QRect(0, 0, mViewport.width(), mViewport.height()));
    }
  }
}

/*! \internal

  Goes through the layers and makes sure this QCustomPlot instance holds the correct number of
  paint buffers and that they have the correct configuration (size, pixel ratio, etc.).
  Allocations, reallocations and deletions of paint buffers are performed as necessary. It also
  associates the paint buffers with the layers, so they draw themselves into the right buffer when
  \ref QCPLayer::drawToPaintBuffer is called. This means it associates adjacent \ref
  QCPLayer::lmLogical layers to a mutual paint buffer and creates dedicated paint buffers for
  layers in \ref QCPLayer::lmBuffered mode.

  This method uses \ref createPaintBuffer to create new paint buffers.

  After this method, the paint buffers are empty (filled with \c Qt::transparent) and invalidated
  (so an attempt to replot only a single buffered layer causes a full replot).

  This method is called in every \ref replot call, prior to actually drawing the layers (into their
  associated paint buffer). If the paint buffers don't need changing/reallocating, this method
  basically leaves them alone and thus finishes very fast.
*/
void QCustomPlot::setupPaintBuffers()
{
  int bufferIndex = 0;
  if (mPaintBuffers.isEmpty())
    mPaintBuffers.append(QSharedPointer<QCPAbstractPaintBuffer>(createPaintBuffer()));

  for (int layerIndex = 0; layerIndex < mLayers.size(); ++layerIndex)
  {
    QCPLayer *layer = mLayers.at(layerIndex);
    if (layer->mode() == QCPLayer::lmLogical)
    {
      layer->mPaintBuffer = mPaintBuffers.at(bufferIndex).toWeakRef();
    } else if (layer->mode() == QCPLayer::lmBuffered)
    {
      ++bufferIndex;
      if (bufferIndex >= mPaintBuffers.size())
        mPaintBuffers.append(QSharedPointer<QCPAbstractPaintBuffer>(createPaintBuffer()));
      layer->mPaintBuffer = mPaintBuffers.at(bufferIndex).toWeakRef();
      if (layerIndex < mLayers.size()-1 && mLayers.at(layerIndex+1)->mode() == QCPLayer::lmLogical) // not last layer, and next one is logical, so prepare another buffer for next layerables
      {
        ++bufferIndex;
        if (bufferIndex >= mPaintBuffers.size())
          mPaintBuffers.append(QSharedPointer<QCPAbstractPaintBuffer>(createPaintBuffer()));
      }
    }
  }
  // remove unneeded buffers:
  while (mPaintBuffers.size()-1 > bufferIndex)
    mPaintBuffers.removeLast();
  // resize buffers to viewport size and clear contents:
  for (int i=0; i<mPaintBuffers.size(); ++i)
  {
    mPaintBuffers.at(i)->setSize(viewport().size()); // won't do anything if already correct size
    mPaintBuffers.at(i)->clear(Qt::transparent);
    mPaintBuffers.at(i)->setInvalidated();
  }
}

/*! \internal

  This method is used by \ref setupPaintBuffers when it needs to create new paint buffers.

  Depending on the current setting of \ref setOpenGl, and the current Qt version, different
  backends (subclasses of \ref QCPAbstractPaintBuffer) are created, initialized with the proper
  size and device pixel ratio, and returned.
*/
QCPAbstractPaintBuffer *QCustomPlot::createPaintBuffer()
{
  if (mOpenGl)
  {
#if defined(QCP_OPENGL_FBO)
    return new QCPPaintBufferGlFbo(viewport().size(), mBufferDevicePixelRatio, mGlContext, mGlPaintDevice);
#elif defined(QCP_OPENGL_PBUFFER)
    return new QCPPaintBufferGlPbuffer(viewport().size(), mBufferDevicePixelRatio, mOpenGlMultisamples);
#else
    qDebug() << Q_FUNC_INFO << "OpenGL enabled even though no support for it compiled in, this shouldn't have happened. Falling back to pixmap paint buffer.";
    return new QCPPaintBufferPixmap(viewport().size(), mBufferDevicePixelRatio);
#endif
  } else
    return new QCPPaintBufferPixmap(viewport().size(), mBufferDevicePixelRatio);
}

/*!
  This method returns whether any of the paint buffers held by this QCustomPlot instance are
  invalidated.

  If any buffer is invalidated, a partial replot (\ref QCPLayer::replot) is not allowed and always
  causes a full replot (\ref QCustomPlot::replot) of all layers. This is the case when for example
  the layer order has changed, new layers were added, layers were removed, or layer modes were
  changed (\ref QCPLayer::setMode).

  \see QCPAbstractPaintBuffer::setInvalidated
*/
bool QCustomPlot::hasInvalidatedPaintBuffers()
{
  for (int i=0; i<mPaintBuffers.size(); ++i)
  {
    if (mPaintBuffers.at(i)->invalidated())
      return true;
  }
  return false;
}

/*! \internal

  When \ref setOpenGl is set to true, this method is used to initialize OpenGL (create a context,
  surface, paint device).

  Returns true on success.

  If this method is successful, all paint buffers should be deleted and then reallocated by calling
  \ref setupPaintBuffers, so the OpenGL-based paint buffer subclasses (\ref
  QCPPaintBufferGlPbuffer, \ref QCPPaintBufferGlFbo) are used for subsequent replots.

  \see freeOpenGl
*/
bool QCustomPlot::setupOpenGl()
{
#ifdef QCP_OPENGL_FBO
  freeOpenGl();
  QSurfaceFormat proposedSurfaceFormat;
  proposedSurfaceFormat.setSamples(mOpenGlMultisamples);
#ifdef QCP_OPENGL_OFFSCREENSURFACE
  QOffscreenSurface *surface = new QOffscreenSurface;
#else
  QWindow *surface = new QWindow;
  surface->setSurfaceType(QSurface::OpenGLSurface);
#endif
  surface->setFormat(proposedSurfaceFormat);
  surface->create();
  mGlSurface = QSharedPointer<QSurface>(surface);
  mGlContext = QSharedPointer<QOpenGLContext>(new QOpenGLContext);
  mGlContext->setFormat(mGlSurface->format());
  if (!mGlContext->create())
  {
    qDebug() << Q_FUNC_INFO << "Failed to create OpenGL context";
    mGlContext.clear();
    mGlSurface.clear();
    return false;
  }
  if (!mGlContext->makeCurrent(mGlSurface.data())) // context needs to be current to create paint device
  {
    qDebug() << Q_FUNC_INFO << "Failed to make opengl context current";
    mGlContext.clear();
    mGlSurface.clear();
    return false;
  }
  if (!QOpenGLFramebufferObject::hasOpenGLFramebufferObjects())
  {
    qDebug() << Q_FUNC_INFO << "OpenGL of this system doesn't support frame buffer objects";
    mGlContext.clear();
    mGlSurface.clear();
    return false;
  }
  mGlPaintDevice = QSharedPointer<QOpenGLPaintDevice>(new QOpenGLPaintDevice);
  return true;
#elif defined(QCP_OPENGL_PBUFFER)
  return QGLFormat::hasOpenGL();
#else
  return false;
#endif
}

/*! \internal

  When \ref setOpenGl is set to false, this method is used to deinitialize OpenGL (releases the
  context and frees resources).

  After OpenGL is disabled, all paint buffers should be deleted and then reallocated by calling
  \ref setupPaintBuffers, so the standard software rendering paint buffer subclass (\ref
  QCPPaintBufferPixmap) is used for subsequent replots.

  \see setupOpenGl
*/
void QCustomPlot::freeOpenGl()
{
#ifdef QCP_OPENGL_FBO
  mGlPaintDevice.clear();
  mGlContext.clear();
  mGlSurface.clear();
#endif
}

/*! \internal

  This method is used by \ref QCPAxisRect::removeAxis to report removed axes to the QCustomPlot
  so it may clear its QCustomPlot::xAxis, yAxis, xAxis2 and yAxis2 members accordingly.
*/
void QCustomPlot::axisRemoved(QCPAxis *axis)
{
  if (xAxis == axis)
    xAxis = 0;
  if (xAxis2 == axis)
    xAxis2 = 0;
  if (yAxis == axis)
    yAxis = 0;
  if (yAxis2 == axis)
    yAxis2 = 0;

  // Note: No need to take care of range drag axes and range zoom axes, because they are stored in smart pointers
}

/*! \internal

  This method is used by the QCPLegend destructor to report legend removal to the QCustomPlot so
  it may clear its QCustomPlot::legend member accordingly.
*/
void QCustomPlot::legendRemoved(QCPLegend *legend)
{
  if (this->legend == legend)
    this->legend = 0;
}

/*! \internal

  This slot is connected to the selection rect's \ref QCPSelectionRect::accepted signal when \ref
  setSelectionRectMode is set to \ref QCP::srmSelect.

  First, it determines which axis rect was the origin of the selection rect judging by the starting
  point of the selection. Then it goes through the plottables (\ref QCPAbstractPlottable1D to be
  precise) associated with that axis rect and finds the data points that are in \a rect. It does
  this by querying their \ref QCPAbstractPlottable1D::selectTestRect method.

  Then, the actual selection is done by calling the plottables' \ref
  QCPAbstractPlottable::selectEvent, placing the found selected data points in the \a details
  parameter as <tt>QVariant</tt> (\ref QCPDataSelection). All plottables that weren't touched by \a
  rect receive a \ref QCPAbstractPlottable::deselectEvent.

  \see processRectZoom
*/
void QCustomPlot::processRectSelection(QRect rect, QMouseEvent *event)
{
  bool selectionStateChanged = false;

  if (mInteractions.testFlag(QCP::iSelectPlottables))
  {
    QMap<int, QPair<QCPAbstractPlottable*, QCPDataSelection> > potentialSelections; // map key is number of selected data points, so we have selections sorted by size
    QRectF rectF(rect.normalized());
    if (QCPAxisRect *affectedAxisRect = axisRectAt(rectF.topLeft()))
    {
      // determine plottables that were hit by the rect and thus are candidates for selection:
      foreach (QCPAbstractPlottable *plottable, affectedAxisRect->plottables())
      {
        if (QCPPlottableInterface1D *plottableInterface = plottable->interface1D())
        {
          QCPDataSelection dataSel = plottableInterface->selectTestRect(rectF, true);
          if (!dataSel.isEmpty())
            potentialSelections.insertMulti(dataSel.dataPointCount(), QPair<QCPAbstractPlottable*, QCPDataSelection>(plottable, dataSel));
        }
      }

      if (!mInteractions.testFlag(QCP::iMultiSelect))
      {
        // only leave plottable with most selected points in map, since we will only select a single plottable:
        if (!potentialSelections.isEmpty())
        {
          QMap<int, QPair<QCPAbstractPlottable*, QCPDataSelection> >::iterator it = potentialSelections.begin();
          while (it != potentialSelections.end()-1) // erase all except last element
            it = potentialSelections.erase(it);
        }
      }

      bool additive = event->modifiers().testFlag(mMultiSelectModifier);
      // deselect all other layerables if not additive selection:
      if (!additive)
      {
        // emit deselection except to those plottables who will be selected afterwards:
        foreach (QCPLayer *layer, mLayers)
        {
          foreach (QCPLayerable *layerable, layer->children())
          {
            if ((potentialSelections.isEmpty() || potentialSelections.constBegin()->first != layerable) && mInteractions.testFlag(layerable->selectionCategory()))
            {
              bool selChanged = false;
              layerable->deselectEvent(&selChanged);
              selectionStateChanged |= selChanged;
            }
          }
        }
      }

      // go through selections in reverse (largest selection first) and emit select events:
      QMap<int, QPair<QCPAbstractPlottable*, QCPDataSelection> >::const_iterator it = potentialSelections.constEnd();
      while (it != potentialSelections.constBegin())
      {
        --it;
        if (mInteractions.testFlag(it.value().first->selectionCategory()))
        {
          bool selChanged = false;
          it.value().first->selectEvent(event, additive, QVariant::fromValue(it.value().second), &selChanged);
          selectionStateChanged |= selChanged;
        }
      }
    }
  }

  if (selectionStateChanged)
  {
    emit selectionChangedByUser();
    replot(rpQueuedReplot);
  } else if (mSelectionRect)
    mSelectionRect->layer()->replot();
}

/*! \internal

  This slot is connected to the selection rect's \ref QCPSelectionRect::accepted signal when \ref
  setSelectionRectMode is set to \ref QCP::srmZoom.

  It determines which axis rect was the origin of the selection rect judging by the starting point
  of the selection, and then zooms the axes defined via \ref QCPAxisRect::setRangeZoomAxes to the
  provided \a rect (see \ref QCPAxisRect::zoom).

  \see processRectSelection
*/
void QCustomPlot::processRectZoom(QRect rect, QMouseEvent *event)
{
  Q_UNUSED(event)
  if (QCPAxisRect *axisRect = axisRectAt(rect.topLeft()))
  {
    QList<QCPAxis*> affectedAxes = QList<QCPAxis*>() << axisRect->rangeZoomAxes(Qt::Horizontal) << axisRect->rangeZoomAxes(Qt::Vertical);
    affectedAxes.removeAll(static_cast<QCPAxis*>(0));
    axisRect->zoom(QRectF(rect), affectedAxes);
  }
  replot(rpQueuedReplot); // always replot to make selection rect disappear
}

/*! \internal

  This method is called when a simple left mouse click was detected on the QCustomPlot surface.

  It first determines the layerable that was hit by the click, and then calls its \ref
  QCPLayerable::selectEvent. All other layerables receive a QCPLayerable::deselectEvent (unless the
  multi-select modifier was pressed, see \ref setMultiSelectModifier).

  In this method the hit layerable is determined a second time using \ref layerableAt (after the
  one in \ref mousePressEvent), because we want \a onlySelectable set to true this time. This
  implies that the mouse event grabber (mMouseEventLayerable) may be a different one from the
  clicked layerable determined here. For example, if a non-selectable layerable is in front of a
  selectable layerable at the click position, the front layerable will receive mouse events but the
  selectable one in the back will receive the \ref QCPLayerable::selectEvent.

  \see processRectSelection, QCPLayerable::selectTest
*/
void QCustomPlot::processPointSelection(QMouseEvent *event)
{
  QVariant details;
  QCPLayerable *clickedLayerable = layerableAt(event->pos(), true, &details);
  bool selectionStateChanged = false;
  bool additive = mInteractions.testFlag(QCP::iMultiSelect) && event->modifiers().testFlag(mMultiSelectModifier);
  // deselect all other layerables if not additive selection:
  if (!additive)
  {
    foreach (QCPLayer *layer, mLayers)
    {
      foreach (QCPLayerable *layerable, layer->children())
      {
        if (layerable != clickedLayerable && mInteractions.testFlag(layerable->selectionCategory()))
        {
          bool selChanged = false;
          layerable->deselectEvent(&selChanged);
          selectionStateChanged |= selChanged;
        }
      }
    }
  }
  if (clickedLayerable && mInteractions.testFlag(clickedLayerable->selectionCategory()))
  {
    // a layerable was actually clicked, call its selectEvent:
    bool selChanged = false;
    clickedLayerable->selectEvent(event, additive, details, &selChanged);
    selectionStateChanged |= selChanged;
  }
  if (selectionStateChanged)
  {
    emit selectionChangedByUser();
    replot(rpQueuedReplot);
  }
}

/*! \internal

  Registers the specified plottable with this QCustomPlot and, if \ref setAutoAddPlottableToLegend
  is enabled, adds it to the legend (QCustomPlot::legend). QCustomPlot takes ownership of the
  plottable.

  Returns true on success, i.e. when \a plottable isn't already in this plot and the parent plot of
  \a plottable is this QCustomPlot.

  This method is called automatically in the QCPAbstractPlottable base class constructor.
*/
bool QCustomPlot::registerPlottable(QCPAbstractPlottable *plottable)
{
  if (mPlottables.contains(plottable))
  {
    qDebug() << Q_FUNC_INFO << "plottable already added to this QCustomPlot:" << reinterpret_cast<quintptr>(plottable);
    return false;
  }
  if (plottable->parentPlot() != this)
  {
    qDebug() << Q_FUNC_INFO << "plottable not created with this QCustomPlot as parent:" << reinterpret_cast<quintptr>(plottable);
    return false;
  }

  mPlottables.append(plottable);
  // possibly add plottable to legend:
  if (mAutoAddPlottableToLegend)
    plottable->addToLegend();
  if (!plottable->layer()) // usually the layer is already set in the constructor of the plottable (via QCPLayerable constructor)
    plottable->setLayer(currentLayer());
  return true;
}

/*! \internal

  In order to maintain the simplified graph interface of QCustomPlot, this method is called by the
  QCPGraph constructor to register itself with this QCustomPlot's internal graph list. Returns true
  on success, i.e. if \a graph is valid and wasn't already registered with this QCustomPlot.

  This graph specific registration happens in addition to the call to \ref registerPlottable by the
  QCPAbstractPlottable base class.
*/
bool QCustomPlot::registerGraph(QCPGraph *graph)
{
  if (!graph)
  {
    qDebug() << Q_FUNC_INFO << "passed graph is zero";
    return false;
  }
  if (mGraphs.contains(graph))
  {
    qDebug() << Q_FUNC_INFO << "graph already registered with this QCustomPlot";
    return false;
  }

  mGraphs.append(graph);
  return true;
}


/*! \internal

  Registers the specified item with this QCustomPlot. QCustomPlot takes ownership of the item.

  Returns true on success, i.e. when \a item wasn't already in the plot and the parent plot of \a
  item is this QCustomPlot.

  This method is called automatically in the QCPAbstractItem base class constructor.
*/
bool QCustomPlot::registerItem(QCPAbstractItem *item)
{
  if (mItems.contains(item))
  {
    qDebug() << Q_FUNC_INFO << "item already added to this QCustomPlot:" << reinterpret_cast<quintptr>(item);
    return false;
  }
  if (item->parentPlot() != this)
  {
    qDebug() << Q_FUNC_INFO << "item not created with this QCustomPlot as parent:" << reinterpret_cast<quintptr>(item);
    return false;
  }

  mItems.append(item);
  if (!item->layer()) // usually the layer is already set in the constructor of the item (via QCPLayerable constructor)
    item->setLayer(currentLayer());
  return true;
}

/*! \internal

  Assigns all layers their index (QCPLayer::mIndex) in the mLayers list. This method is thus called
  after every operation that changes the layer indices, like layer removal, layer creation, layer
  moving.
*/
void QCustomPlot::updateLayerIndices() const
{
  for (int i=0; i<mLayers.size(); ++i)
    mLayers.at(i)->mIndex = i;
}

/*! \internal

  Returns the top-most layerable at pixel position \a pos. If \a onlySelectable is set to true,
  only those layerables that are selectable will be considered. (Layerable subclasses communicate
  their selectability via the QCPLayerable::selectTest method, by returning -1.)

  \a selectionDetails is an output parameter that contains selection specifics of the affected
  layerable. This is useful if the respective layerable shall be given a subsequent
  QCPLayerable::selectEvent (like in \ref mouseReleaseEvent). \a selectionDetails usually contains
  information about which part of the layerable was hit, in multi-part layerables (e.g.
  QCPAxis::SelectablePart). If the layerable is a plottable, \a selectionDetails contains a \ref
  QCPDataSelection instance with the single data point which is closest to \a pos.

  \see layerableListAt, layoutElementAt, axisRectAt
*/
QCPLayerable *QCustomPlot::layerableAt(const QPointF &pos, bool onlySelectable, QVariant *selectionDetails) const
{
  QList<QVariant> details;
  QList<QCPLayerable*> candidates = layerableListAt(pos, onlySelectable, selectionDetails ? &details : 0);
  if (selectionDetails && !details.isEmpty())
    *selectionDetails = details.first();
  if (!candidates.isEmpty())
    return candidates.first();
  else
    return 0;
}

/*! \internal

  Returns the layerables at pixel position \a pos. If \a onlySelectable is set to true, only those
  layerables that are selectable will be considered. (Layerable subclasses communicate their
  selectability via the QCPLayerable::selectTest method, by returning -1.)

  The returned list is sorted by the layerable/drawing order. If you only need to know the top-most
  layerable, rather use \ref layerableAt.

  \a selectionDetails is an output parameter that contains selection specifics of the affected
  layerable. This is useful if the respective layerable shall be given a subsequent
  QCPLayerable::selectEvent (like in \ref mouseReleaseEvent). \a selectionDetails usually contains
  information about which part of the layerable was hit, in multi-part layerables (e.g.
  QCPAxis::SelectablePart). If the layerable is a plottable, \a selectionDetails contains a \ref
  QCPDataSelection instance with the single data point which is closest to \a pos.

  \see layerableAt, layoutElementAt, axisRectAt
*/
QList<QCPLayerable*> QCustomPlot::layerableListAt(const QPointF &pos, bool onlySelectable, QList<QVariant> *selectionDetails) const
{
  QList<QCPLayerable*> result;
  for (int layerIndex=mLayers.size()-1; layerIndex>=0; --layerIndex)
  {
    const QList<QCPLayerable*> layerables = mLayers.at(layerIndex)->children();
    for (int i=layerables.size()-1; i>=0; --i)
    {
      if (!layerables.at(i)->realVisibility())
        continue;
      QVariant details;
      double dist = layerables.at(i)->selectTest(pos, onlySelectable, selectionDetails ? &details : 0);
      if (dist >= 0 && dist < selectionTolerance())
      {
        result.append(layerables.at(i));
        if (selectionDetails)
          selectionDetails->append(details);
      }
    }
  }
  return result;
}

/*!
  Saves the plot to a rastered image file \a fileName in the image format \a format. The plot is
  sized to \a width and \a height in pixels and scaled with \a scale. (width 100 and scale 2.0 lead
  to a full resolution file with width 200.) If the \a format supports compression, \a quality may
  be between 0 and 100 to control it.

  Returns true on success. If this function fails, most likely the given \a format isn't supported
  by the system, see Qt docs about QImageWriter::supportedImageFormats().

  The \a resolution will be written to the image file header (if the file format supports this) and
  has no direct consequence for the quality or the pixel size. However, if opening the image with a
  tool which respects the metadata, it will be able to scale the image to match either a given size
  in real units of length (inch, centimeters, etc.), or the target display DPI. You can specify in
  which units \a resolution is given, by setting \a resolutionUnit. The \a resolution is converted
  to the format's expected resolution unit internally.

  \see saveBmp, saveJpg, savePng, savePdf
*/
bool QCustomPlot::saveRastered(const QString &fileName, int width, int height, double scale, const char *format, int quality, int resolution, QCP::ResolutionUnit resolutionUnit)
{
  QImage buffer = toPixmap(width, height, scale).toImage();

  int dotsPerMeter = 0;
  switch (resolutionUnit)
  {
    case QCP::ruDotsPerMeter: dotsPerMeter = resolution; break;
    case QCP::ruDotsPerCentimeter: dotsPerMeter = resolution*100; break;
    case QCP::ruDotsPerInch: dotsPerMeter = resolution/0.0254; break;
  }
  buffer.setDotsPerMeterX(dotsPerMeter); // this is saved together with some image formats, e.g. PNG, and is relevant when opening image in other tools
  buffer.setDotsPerMeterY(dotsPerMeter); // this is saved together with some image formats, e.g. PNG, and is relevant when opening image in other tools
  if (!buffer.isNull())
    return buffer.save(fileName, format, quality);
  else
    return false;
}

/*!
  Renders the plot to a pixmap and returns it.

  The plot is sized to \a width and \a height in pixels and scaled with \a scale. (width 100 and
  scale 2.0 lead to a full resolution pixmap with width 200.)

  \see toPainter, saveRastered, saveBmp, savePng, saveJpg, savePdf
*/
QPixmap QCustomPlot::toPixmap(int width, int height, double scale)
{
  // this method is somewhat similar to toPainter. Change something here, and a change in toPainter might be necessary, too.
  int newWidth, newHeight;
  if (width == 0 || height == 0)
  {
    newWidth = this->width();
    newHeight = this->height();
  } else
  {
    newWidth = width;
    newHeight = height;
  }
  int scaledWidth = qRound(scale*newWidth);
  int scaledHeight = qRound(scale*newHeight);

  QPixmap result(scaledWidth, scaledHeight);
  result.fill(mBackgroundBrush.style() == Qt::SolidPattern ? mBackgroundBrush.color() : Qt::transparent); // if using non-solid pattern, make transparent now and draw brush pattern later
  QCPPainter painter;
  painter.begin(&result);
  if (painter.isActive())
  {
    QRect oldViewport = viewport();
    setViewport(QRect(0, 0, newWidth, newHeight));
    painter.setMode(QCPPainter::pmNoCaching);
    if (!qFuzzyCompare(scale, 1.0))
    {
      if (scale > 1.0) // for scale < 1 we always want cosmetic pens where possible, because else lines might disappear for very small scales
        painter.setMode(QCPPainter::pmNonCosmetic);
      painter.scale(scale, scale);
    }
    if (mBackgroundBrush.style() != Qt::SolidPattern && mBackgroundBrush.style() != Qt::NoBrush) // solid fills were done a few lines above with QPixmap::fill
      painter.fillRect(mViewport, mBackgroundBrush);
    draw(&painter);
    setViewport(oldViewport);
    painter.end();
  } else // might happen if pixmap has width or height zero
  {
    qDebug() << Q_FUNC_INFO << "Couldn't activate painter on pixmap";
    return QPixmap();
  }
  return result;
}

/*!
  Renders the plot using the passed \a painter.

  The plot is sized to \a width and \a height in pixels. If the \a painter's scale is not 1.0, the resulting plot will
  appear scaled accordingly.

  \note If you are restricted to using a QPainter (instead of QCPPainter), create a temporary QPicture and open a QCPPainter
  on it. Then call \ref toPainter with this QCPPainter. After ending the paint operation on the picture, draw it with
  the QPainter. This will reproduce the painter actions the QCPPainter took, with a QPainter.

  \see toPixmap
*/
void QCustomPlot::toPainter(QCPPainter *painter, int width, int height)
{
  // this method is somewhat similar to toPixmap. Change something here, and a change in toPixmap might be necessary, too.
  int newWidth, newHeight;
  if (width == 0 || height == 0)
  {
    newWidth = this->width();
    newHeight = this->height();
  } else
  {
    newWidth = width;
    newHeight = height;
  }

  if (painter->isActive())
  {
    QRect oldViewport = viewport();
    setViewport(QRect(0, 0, newWidth, newHeight));
    painter->setMode(QCPPainter::pmNoCaching);
    if (mBackgroundBrush.style() != Qt::NoBrush) // unlike in toPixmap, we can't do QPixmap::fill for Qt::SolidPattern brush style, so we also draw solid fills with fillRect here
      painter->fillRect(mViewport, mBackgroundBrush);
    draw(painter);
    setViewport(oldViewport);
  } else
    qDebug() << Q_FUNC_INFO << "Passed painter is not active";
}
/* end of 'src/core.cpp' */

//amalgamation: add plottable1d.cpp

/* including file 'src/colorgradient.cpp', size 25342                        */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPColorGradient
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPColorGradient
  \brief Defines a color gradient for use with e.g. \ref QCPColorMap

  This class describes a color gradient which can be used to encode data with color. For example,
  QCPColorMap and QCPColorScale have \ref QCPColorMap::setGradient "setGradient" methods which
  take an instance of this class. Colors are set with \ref setColorStopAt(double position, const QColor &color)
  with a \a position from 0 to 1. In between these defined color positions, the
  color will be interpolated linearly either in RGB or HSV space, see \ref setColorInterpolation.

  Alternatively, load one of the preset color gradients shown in the image below, with \ref
  loadPreset, or by directly specifying the preset in the constructor.

  Apart from red, green and blue components, the gradient also interpolates the alpha values of the
  configured color stops. This allows to display some portions of the data range as transparent in
  the plot.

  \image html QCPColorGradient.png

  The \ref QCPColorGradient(GradientPreset preset) constructor allows directly converting a \ref
  GradientPreset to a QCPColorGradient. This means that you can directly pass \ref GradientPreset
  to all the \a setGradient methods, e.g.:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolorgradient-setgradient

  The total number of levels used in the gradient can be set with \ref setLevelCount. Whether the
  color gradient shall be applied periodically (wrapping around) to data values that lie outside
  the data range specified on the plottable instance can be controlled with \ref setPeriodic.
*/

/*!
  Constructs a new, empty QCPColorGradient with no predefined color stops. You can add own color
  stops with \ref setColorStopAt.

  The color level count is initialized to 350.
*/
QCPColorGradient::QCPColorGradient() :
  mLevelCount(350),
  mColorInterpolation(ciRGB),
  mPeriodic(false),
  mColorBufferInvalidated(true)
{
  mColorBuffer.fill(qRgb(0, 0, 0), mLevelCount);
}

/*!
  Constructs a new QCPColorGradient initialized with the colors and color interpolation according
  to \a preset.

  The color level count is initialized to 350.
*/
QCPColorGradient::QCPColorGradient(GradientPreset preset) :
  mLevelCount(350),
  mColorInterpolation(ciRGB),
  mPeriodic(false),
  mColorBufferInvalidated(true)
{
  mColorBuffer.fill(qRgb(0, 0, 0), mLevelCount);
  loadPreset(preset);
}

/* undocumented operator */
bool QCPColorGradient::operator==(const QCPColorGradient &other) const
{
  return ((other.mLevelCount == this->mLevelCount) &&
          (other.mColorInterpolation == this->mColorInterpolation) &&
          (other.mPeriodic == this->mPeriodic) &&
          (other.mColorStops == this->mColorStops));
}

/*!
  Sets the number of discretization levels of the color gradient to \a n. The default is 350 which
  is typically enough to create a smooth appearance. The minimum number of levels is 2.

  \image html QCPColorGradient-levelcount.png
*/
void QCPColorGradient::setLevelCount(int n)
{
  if (n < 2)
  {
    qDebug() << Q_FUNC_INFO << "n must be greater or equal 2 but was" << n;
    n = 2;
  }
  if (n != mLevelCount)
  {
    mLevelCount = n;
    mColorBufferInvalidated = true;
  }
}

/*!
  Sets at which positions from 0 to 1 which color shall occur. The positions are the keys, the
  colors are the values of the passed QMap \a colorStops. In between these color stops, the color
  is interpolated according to \ref setColorInterpolation.

  A more convenient way to create a custom gradient may be to clear all color stops with \ref
  clearColorStops (or creating a new, empty QCPColorGradient) and then adding them one by one with
  \ref setColorStopAt.

  \see clearColorStops
*/
void QCPColorGradient::setColorStops(const QMap<double, QColor> &colorStops)
{
  mColorStops = colorStops;
  mColorBufferInvalidated = true;
}

/*!
  Sets the \a color the gradient will have at the specified \a position (from 0 to 1). In between
  these color stops, the color is interpolated according to \ref setColorInterpolation.

  \see setColorStops, clearColorStops
*/
void QCPColorGradient::setColorStopAt(double position, const QColor &color)
{
  mColorStops.insert(position, color);
  mColorBufferInvalidated = true;
}

/*!
  Sets whether the colors in between the configured color stops (see \ref setColorStopAt) shall be
  interpolated linearly in RGB or in HSV color space.

  For example, a sweep in RGB space from red to green will have a muddy brown intermediate color,
  whereas in HSV space the intermediate color is yellow.
*/
void QCPColorGradient::setColorInterpolation(QCPColorGradient::ColorInterpolation interpolation)
{
  if (interpolation != mColorInterpolation)
  {
    mColorInterpolation = interpolation;
    mColorBufferInvalidated = true;
  }
}

/*!
  Sets whether data points that are outside the configured data range (e.g. \ref
  QCPColorMap::setDataRange) are colored by periodically repeating the color gradient or whether
  they all have the same color, corresponding to the respective gradient boundary color.

  \image html QCPColorGradient-periodic.png

  As shown in the image above, gradients that have the same start and end color are especially
  suitable for a periodic gradient mapping, since they produce smooth color transitions throughout
  the color map. A preset that has this property is \ref gpHues.

  In practice, using periodic color gradients makes sense when the data corresponds to a periodic
  dimension, such as an angle or a phase. If this is not the case, the color encoding might become
  ambiguous, because multiple different data values are shown as the same color.
*/
void QCPColorGradient::setPeriodic(bool enabled)
{
  mPeriodic = enabled;
}

/*! \overload

  This method is used to quickly convert a \a data array to colors. The colors will be output in
  the array \a scanLine. Both \a data and \a scanLine must have the length \a n when passed to this
  function. The data range that shall be used for mapping the data value to the gradient is passed
  in \a range. \a logarithmic indicates whether the data values shall be mapped to colors
  logarithmically.

  if \a data actually contains 2D-data linearized via <tt>[row*columnCount + column]</tt>, you can
  set \a dataIndexFactor to <tt>columnCount</tt> to convert a column instead of a row of the data
  array, in \a scanLine. \a scanLine will remain a regular (1D) array. This works because \a data
  is addressed <tt>data[i*dataIndexFactor]</tt>.

  Use the overloaded method to additionally provide alpha map data.

  The QRgb values that are placed in \a scanLine have their r, g and b components premultiplied
  with alpha (see QImage::Format_ARGB32_Premultiplied).
*/
void QCPColorGradient::colorize(const double *data, const QCPRange &range, QRgb *scanLine, int n, int dataIndexFactor, bool logarithmic)
{
  // If you change something here, make sure to also adapt color() and the other colorize() overload
  if (!data)
  {
    qDebug() << Q_FUNC_INFO << "null pointer given as data";
    return;
  }
  if (!scanLine)
  {
    qDebug() << Q_FUNC_INFO << "null pointer given as scanLine";
    return;
  }
  if (mColorBufferInvalidated)
    updateColorBuffer();

  if (!logarithmic)
  {
    const double posToIndexFactor = (mLevelCount-1)/range.size();
    if (mPeriodic)
    {
      for (int i=0; i<n; ++i)
      {
        int index = (int)((data[dataIndexFactor*i]-range.lower)*posToIndexFactor) % mLevelCount;
        if (index < 0)
          index += mLevelCount;
        scanLine[i] = mColorBuffer.at(index);
      }
    } else
    {
      for (int i=0; i<n; ++i)
      {
        int index = (data[dataIndexFactor*i]-range.lower)*posToIndexFactor;
        if (index < 0)
          index = 0;
        else if (index >= mLevelCount)
          index = mLevelCount-1;
        scanLine[i] = mColorBuffer.at(index);
      }
    }
  } else // logarithmic == true
  {
    if (mPeriodic)
    {
      for (int i=0; i<n; ++i)
      {
        int index = (int)(qLn(data[dataIndexFactor*i]/range.lower)/qLn(range.upper/range.lower)*(mLevelCount-1)) % mLevelCount;
        if (index < 0)
          index += mLevelCount;
        scanLine[i] = mColorBuffer.at(index);
      }
    } else
    {
      for (int i=0; i<n; ++i)
      {
        int index = qLn(data[dataIndexFactor*i]/range.lower)/qLn(range.upper/range.lower)*(mLevelCount-1);
        if (index < 0)
          index = 0;
        else if (index >= mLevelCount)
          index = mLevelCount-1;
        scanLine[i] = mColorBuffer.at(index);
      }
    }
  }
}

/*! \overload

  Additionally to the other overload of \ref colorize, this method takes the array \a alpha, which
  has the same size and structure as \a data and encodes the alpha information per data point.

  The QRgb values that are placed in \a scanLine have their r, g and b components premultiplied
  with alpha (see QImage::Format_ARGB32_Premultiplied).
*/
void QCPColorGradient::colorize(const double *data, const unsigned char *alpha, const QCPRange &range, QRgb *scanLine, int n, int dataIndexFactor, bool logarithmic)
{
  // If you change something here, make sure to also adapt color() and the other colorize() overload
  if (!data)
  {
    qDebug() << Q_FUNC_INFO << "null pointer given as data";
    return;
  }
  if (!alpha)
  {
    qDebug() << Q_FUNC_INFO << "null pointer given as alpha";
    return;
  }
  if (!scanLine)
  {
    qDebug() << Q_FUNC_INFO << "null pointer given as scanLine";
    return;
  }
  if (mColorBufferInvalidated)
    updateColorBuffer();

  if (!logarithmic)
  {
    const double posToIndexFactor = (mLevelCount-1)/range.size();
    if (mPeriodic)
    {
      for (int i=0; i<n; ++i)
      {
        int index = (int)((data[dataIndexFactor*i]-range.lower)*posToIndexFactor) % mLevelCount;
        if (index < 0)
          index += mLevelCount;
        if (alpha[dataIndexFactor*i] == 255)
        {
          scanLine[i] = mColorBuffer.at(index);
        } else
        {
          const QRgb rgb = mColorBuffer.at(index);
          const float alphaF = alpha[dataIndexFactor*i]/255.0f;
          scanLine[i] = qRgba(qRed(rgb)*alphaF, qGreen(rgb)*alphaF, qBlue(rgb)*alphaF, qAlpha(rgb)*alphaF);
        }
      }
    } else
    {
      for (int i=0; i<n; ++i)
      {
        int index = (data[dataIndexFactor*i]-range.lower)*posToIndexFactor;
        if (index < 0)
          index = 0;
        else if (index >= mLevelCount)
          index = mLevelCount-1;
        if (alpha[dataIndexFactor*i] == 255)
        {
          scanLine[i] = mColorBuffer.at(index);
        } else
        {
          const QRgb rgb = mColorBuffer.at(index);
          const float alphaF = alpha[dataIndexFactor*i]/255.0f;
          scanLine[i] = qRgba(qRed(rgb)*alphaF, qGreen(rgb)*alphaF, qBlue(rgb)*alphaF, qAlpha(rgb)*alphaF);
        }
      }
    }
  } else // logarithmic == true
  {
    if (mPeriodic)
    {
      for (int i=0; i<n; ++i)
      {
        int index = (int)(qLn(data[dataIndexFactor*i]/range.lower)/qLn(range.upper/range.lower)*(mLevelCount-1)) % mLevelCount;
        if (index < 0)
          index += mLevelCount;
        if (alpha[dataIndexFactor*i] == 255)
        {
          scanLine[i] = mColorBuffer.at(index);
        } else
        {
          const QRgb rgb = mColorBuffer.at(index);
          const float alphaF = alpha[dataIndexFactor*i]/255.0f;
          scanLine[i] = qRgba(qRed(rgb)*alphaF, qGreen(rgb)*alphaF, qBlue(rgb)*alphaF, qAlpha(rgb)*alphaF);
        }
      }
    } else
    {
      for (int i=0; i<n; ++i)
      {
        int index = qLn(data[dataIndexFactor*i]/range.lower)/qLn(range.upper/range.lower)*(mLevelCount-1);
        if (index < 0)
          index = 0;
        else if (index >= mLevelCount)
          index = mLevelCount-1;
        if (alpha[dataIndexFactor*i] == 255)
        {
          scanLine[i] = mColorBuffer.at(index);
        } else
        {
          const QRgb rgb = mColorBuffer.at(index);
          const float alphaF = alpha[dataIndexFactor*i]/255.0f;
          scanLine[i] = qRgba(qRed(rgb)*alphaF, qGreen(rgb)*alphaF, qBlue(rgb)*alphaF, qAlpha(rgb)*alphaF);
        }
      }
    }
  }
}

/*! \internal

  This method is used to colorize a single data value given in \a position, to colors. The data
  range that shall be used for mapping the data value to the gradient is passed in \a range. \a
  logarithmic indicates whether the data value shall be mapped to a color logarithmically.

  If an entire array of data values shall be converted, rather use \ref colorize, for better
  performance.

  The returned QRgb has its r, g and b components premultiplied with alpha (see
  QImage::Format_ARGB32_Premultiplied).
*/
QRgb QCPColorGradient::color(double position, const QCPRange &range, bool logarithmic)
{
  // If you change something here, make sure to also adapt ::colorize()
  if (mColorBufferInvalidated)
    updateColorBuffer();
  int index = 0;
  if (!logarithmic)
    index = (position-range.lower)*(mLevelCount-1)/range.size();
  else
    index = qLn(position/range.lower)/qLn(range.upper/range.lower)*(mLevelCount-1);
  if (mPeriodic)
  {
    index = index % mLevelCount;
    if (index < 0)
      index += mLevelCount;
  } else
  {
    if (index < 0)
      index = 0;
    else if (index >= mLevelCount)
      index = mLevelCount-1;
  }
  return mColorBuffer.at(index);
}

/*!
  Clears the current color stops and loads the specified \a preset. A preset consists of predefined
  color stops and the corresponding color interpolation method.

  The available presets are:
  \image html QCPColorGradient.png
*/
void QCPColorGradient::loadPreset(GradientPreset preset)
{
  clearColorStops();
  switch (preset)
  {
    case gpGrayscale:
      setColorInterpolation(ciRGB);
      setColorStopAt(0, Qt::black);
      setColorStopAt(1, Qt::white);
      break;
    case gpHot:
      setColorInterpolation(ciRGB);
      setColorStopAt(0, QColor(50, 0, 0));
      setColorStopAt(0.2, QColor(180, 10, 0));
      setColorStopAt(0.4, QColor(245, 50, 0));
      setColorStopAt(0.6, QColor(255, 150, 10));
      setColorStopAt(0.8, QColor(255, 255, 50));
      setColorStopAt(1, QColor(255, 255, 255));
      break;
    case gpCold:
      setColorInterpolation(ciRGB);
      setColorStopAt(0, QColor(0, 0, 50));
      setColorStopAt(0.2, QColor(0, 10, 180));
      setColorStopAt(0.4, QColor(0, 50, 245));
      setColorStopAt(0.6, QColor(10, 150, 255));
      setColorStopAt(0.8, QColor(50, 255, 255));
      setColorStopAt(1, QColor(255, 255, 255));
      break;
    case gpNight:
      setColorInterpolation(ciHSV);
      setColorStopAt(0, QColor(10, 20, 30));
      setColorStopAt(1, QColor(250, 255, 250));
      break;
    case gpCandy:
      setColorInterpolation(ciHSV);
      setColorStopAt(0, QColor(0, 0, 255));
      setColorStopAt(1, QColor(255, 250, 250));
      break;
    case gpGeography:
      setColorInterpolation(ciRGB);
      setColorStopAt(0, QColor(70, 170, 210));
      setColorStopAt(0.20, QColor(90, 160, 180));
      setColorStopAt(0.25, QColor(45, 130, 175));
      setColorStopAt(0.30, QColor(100, 140, 125));
      setColorStopAt(0.5, QColor(100, 140, 100));
      setColorStopAt(0.6, QColor(130, 145, 120));
      setColorStopAt(0.7, QColor(140, 130, 120));
      setColorStopAt(0.9, QColor(180, 190, 190));
      setColorStopAt(1, QColor(210, 210, 230));
      break;
    case gpIon:
      setColorInterpolation(ciHSV);
      setColorStopAt(0, QColor(50, 10, 10));
      setColorStopAt(0.45, QColor(0, 0, 255));
      setColorStopAt(0.8, QColor(0, 255, 255));
      setColorStopAt(1, QColor(0, 255, 0));
      break;
    case gpThermal:
      setColorInterpolation(ciRGB);
      setColorStopAt(0, QColor(0, 0, 50));
      setColorStopAt(0.15, QColor(20, 0, 120));
      setColorStopAt(0.33, QColor(200, 30, 140));
      setColorStopAt(0.6, QColor(255, 100, 0));
      setColorStopAt(0.85, QColor(255, 255, 40));
      setColorStopAt(1, QColor(255, 255, 255));
      break;
    case gpPolar:
      setColorInterpolation(ciRGB);
      setColorStopAt(0, QColor(50, 255, 255));
      setColorStopAt(0.18, QColor(10, 70, 255));
      setColorStopAt(0.28, QColor(10, 10, 190));
      setColorStopAt(0.5, QColor(0, 0, 0));
      setColorStopAt(0.72, QColor(190, 10, 10));
      setColorStopAt(0.82, QColor(255, 70, 10));
      setColorStopAt(1, QColor(255, 255, 50));
      break;
    case gpSpectrum:
      setColorInterpolation(ciHSV);
      setColorStopAt(0, QColor(50, 0, 50));
      setColorStopAt(0.15, QColor(0, 0, 255));
      setColorStopAt(0.35, QColor(0, 255, 255));
      setColorStopAt(0.6, QColor(255, 255, 0));
      setColorStopAt(0.75, QColor(255, 30, 0));
      setColorStopAt(1, QColor(50, 0, 0));
      break;
    case gpJet:
      setColorInterpolation(ciRGB);
      setColorStopAt(0, QColor(0, 0, 100));
      setColorStopAt(0.15, QColor(0, 50, 255));
      setColorStopAt(0.35, QColor(0, 255, 255));
      setColorStopAt(0.65, QColor(255, 255, 0));
      setColorStopAt(0.85, QColor(255, 30, 0));
      setColorStopAt(1, QColor(100, 0, 0));
      break;
    case gpHues:
      setColorInterpolation(ciHSV);
      setColorStopAt(0, QColor(255, 0, 0));
      setColorStopAt(1.0/3.0, QColor(0, 0, 255));
      setColorStopAt(2.0/3.0, QColor(0, 255, 0));
      setColorStopAt(1, QColor(255, 0, 0));
      break;
  }
}

/*!
  Clears all color stops.

  \see setColorStops, setColorStopAt
*/
void QCPColorGradient::clearColorStops()
{
  mColorStops.clear();
  mColorBufferInvalidated = true;
}

/*!
  Returns an inverted gradient. The inverted gradient has all properties as this \ref
  QCPColorGradient, but the order of the color stops is inverted.

  \see setColorStops, setColorStopAt
*/
QCPColorGradient QCPColorGradient::inverted() const
{
  QCPColorGradient result(*this);
  result.clearColorStops();
  for (QMap<double, QColor>::const_iterator it=mColorStops.constBegin(); it!=mColorStops.constEnd(); ++it)
    result.setColorStopAt(1.0-it.key(), it.value());
  return result;
}

/*! \internal

  Returns true if the color gradient uses transparency, i.e. if any of the configured color stops
  has an alpha value below 255.
*/
bool QCPColorGradient::stopsUseAlpha() const
{
  for (QMap<double, QColor>::const_iterator it=mColorStops.constBegin(); it!=mColorStops.constEnd(); ++it)
  {
    if (it.value().alpha() < 255)
      return true;
  }
  return false;
}

/*! \internal

  Updates the internal color buffer which will be used by \ref colorize and \ref color, to quickly
  convert positions to colors. This is where the interpolation between color stops is calculated.
*/
void QCPColorGradient::updateColorBuffer()
{
  if (mColorBuffer.size() != mLevelCount)
    mColorBuffer.resize(mLevelCount);
  if (mColorStops.size() > 1)
  {
    double indexToPosFactor = 1.0/(double)(mLevelCount-1);
    const bool useAlpha = stopsUseAlpha();
    for (int i=0; i<mLevelCount; ++i)
    {
      double position = i*indexToPosFactor;
      QMap<double, QColor>::const_iterator it = mColorStops.lowerBound(position);
      if (it == mColorStops.constEnd()) // position is on or after last stop, use color of last stop
      {
        if (useAlpha)
        {
          const QColor col = (it-1).value();
          const float alphaPremultiplier = col.alpha()/255.0f; // since we use QImage::Format_ARGB32_Premultiplied
          mColorBuffer[i] = qRgba(col.red()*alphaPremultiplier, col.green()*alphaPremultiplier, col.blue()*alphaPremultiplier, col.alpha());
        } else
          mColorBuffer[i] = (it-1).value().rgba();
      } else if (it == mColorStops.constBegin()) // position is on or before first stop, use color of first stop
      {
        if (useAlpha)
        {
          const QColor col = it.value();
          const float alphaPremultiplier = col.alpha()/255.0f; // since we use QImage::Format_ARGB32_Premultiplied
          mColorBuffer[i] = qRgba(col.red()*alphaPremultiplier, col.green()*alphaPremultiplier, col.blue()*alphaPremultiplier, col.alpha());
        } else
          mColorBuffer[i] = it.value().rgba();
      } else // position is in between stops (or on an intermediate stop), interpolate color
      {
        QMap<double, QColor>::const_iterator high = it;
        QMap<double, QColor>::const_iterator low = it-1;
        double t = (position-low.key())/(high.key()-low.key()); // interpolation factor 0..1
        switch (mColorInterpolation)
        {
          case ciRGB:
          {
            if (useAlpha)
            {
              const int alpha = (1-t)*low.value().alpha() + t*high.value().alpha();
              const float alphaPremultiplier = alpha/255.0f; // since we use QImage::Format_ARGB32_Premultiplied
              mColorBuffer[i] = qRgba(((1-t)*low.value().red() + t*high.value().red())*alphaPremultiplier,
                                      ((1-t)*low.value().green() + t*high.value().green())*alphaPremultiplier,
                                      ((1-t)*low.value().blue() + t*high.value().blue())*alphaPremultiplier,
                                      alpha);
            } else
            {
              mColorBuffer[i] = qRgb(((1-t)*low.value().red() + t*high.value().red()),
                                     ((1-t)*low.value().green() + t*high.value().green()),
                                     ((1-t)*low.value().blue() + t*high.value().blue()));
            }
            break;
          }
          case ciHSV:
          {
            QColor lowHsv = low.value().toHsv();
            QColor highHsv = high.value().toHsv();
            double hue = 0;
            double hueDiff = highHsv.hueF()-lowHsv.hueF();
            if (hueDiff > 0.5)
              hue = lowHsv.hueF() - t*(1.0-hueDiff);
            else if (hueDiff < -0.5)
              hue = lowHsv.hueF() + t*(1.0+hueDiff);
            else
              hue = lowHsv.hueF() + t*hueDiff;
            if (hue < 0) hue += 1.0;
            else if (hue >= 1.0) hue -= 1.0;
            if (useAlpha)
            {
              const QRgb rgb = QColor::fromHsvF(hue,
                                                (1-t)*lowHsv.saturationF() + t*highHsv.saturationF(),
                                                (1-t)*lowHsv.valueF() + t*highHsv.valueF()).rgb();
              const float alpha = (1-t)*lowHsv.alphaF() + t*highHsv.alphaF();
              mColorBuffer[i] = qRgba(qRed(rgb)*alpha, qGreen(rgb)*alpha, qBlue(rgb)*alpha, 255*alpha);
            }
            else
            {
              mColorBuffer[i] = QColor::fromHsvF(hue,
                                                 (1-t)*lowHsv.saturationF() + t*highHsv.saturationF(),
                                                 (1-t)*lowHsv.valueF() + t*highHsv.valueF()).rgb();
            }
            break;
          }
        }
      }
    }
  } else if (mColorStops.size() == 1)
  {
    const QRgb rgb = mColorStops.constBegin().value().rgb();
    const float alpha = mColorStops.constBegin().value().alphaF();
    mColorBuffer.fill(qRgba(qRed(rgb)*alpha, qGreen(rgb)*alpha, qBlue(rgb)*alpha, 255*alpha));
  } else // mColorStops is empty, fill color buffer with black
  {
    mColorBuffer.fill(qRgb(0, 0, 0));
  }
  mColorBufferInvalidated = false;
}
/* end of 'src/colorgradient.cpp' */


/* including file 'src/selectiondecorator-bracket.cpp', size 12313           */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPSelectionDecoratorBracket
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPSelectionDecoratorBracket
  \brief A selection decorator which draws brackets around each selected data segment

  Additionally to the regular highlighting of selected segments via color, fill and scatter style,
  this \ref QCPSelectionDecorator subclass draws markers at the begin and end of each selected data
  segment of the plottable.

  The shape of the markers can be controlled with \ref setBracketStyle, \ref setBracketWidth and
  \ref setBracketHeight. The color/fill can be controlled with \ref setBracketPen and \ref
  setBracketBrush.

  To introduce custom bracket styles, it is only necessary to sublcass \ref
  QCPSelectionDecoratorBracket and reimplement \ref drawBracket. The rest will be managed by the
  base class.
*/

/*!
  Creates a new QCPSelectionDecoratorBracket instance with default values.
*/
QCPSelectionDecoratorBracket::QCPSelectionDecoratorBracket() :
  mBracketPen(QPen(Qt::black)),
  mBracketBrush(Qt::NoBrush),
  mBracketWidth(5),
  mBracketHeight(50),
  mBracketStyle(bsSquareBracket),
  mTangentToData(false),
  mTangentAverage(2)
{

}

QCPSelectionDecoratorBracket::~QCPSelectionDecoratorBracket()
{
}

/*!
  Sets the pen that will be used to draw the brackets at the beginning and end of each selected
  data segment.
*/
void QCPSelectionDecoratorBracket::setBracketPen(const QPen &pen)
{
  mBracketPen = pen;
}

/*!
  Sets the brush that will be used to draw the brackets at the beginning and end of each selected
  data segment.
*/
void QCPSelectionDecoratorBracket::setBracketBrush(const QBrush &brush)
{
  mBracketBrush = brush;
}

/*!
  Sets the width of the drawn bracket. The width dimension is always parallel to the key axis of
  the data, or the tangent direction of the current data slope, if \ref setTangentToData is
  enabled.
*/
void QCPSelectionDecoratorBracket::setBracketWidth(int width)
{
  mBracketWidth = width;
}

/*!
  Sets the height of the drawn bracket. The height dimension is always perpendicular to the key axis
  of the data, or the tangent direction of the current data slope, if \ref setTangentToData is
  enabled.
*/
void QCPSelectionDecoratorBracket::setBracketHeight(int height)
{
  mBracketHeight = height;
}

/*!
  Sets the shape that the bracket/marker will have.

  \see setBracketWidth, setBracketHeight
*/
void QCPSelectionDecoratorBracket::setBracketStyle(QCPSelectionDecoratorBracket::BracketStyle style)
{
  mBracketStyle = style;
}

/*!
  Sets whether the brackets will be rotated such that they align with the slope of the data at the
  position that they appear in.

  For noisy data, it might be more visually appealing to average the slope over multiple data
  points. This can be configured via \ref setTangentAverage.
*/
void QCPSelectionDecoratorBracket::setTangentToData(bool enabled)
{
  mTangentToData = enabled;
}

/*!
  Controls over how many data points the slope shall be averaged, when brackets shall be aligned
  with the data (if \ref setTangentToData is true).

  From the position of the bracket, \a pointCount points towards the selected data range will be
  taken into account. The smallest value of \a pointCount is 1, which is effectively equivalent to
  disabling \ref setTangentToData.
*/
void QCPSelectionDecoratorBracket::setTangentAverage(int pointCount)
{
  mTangentAverage = pointCount;
  if (mTangentAverage < 1)
    mTangentAverage = 1;
}

/*!
  Draws the bracket shape with \a painter. The parameter \a direction is either -1 or 1 and
  indicates whether the bracket shall point to the left or the right (i.e. is a closing or opening
  bracket, respectively).

  The passed \a painter already contains all transformations that are necessary to position and
  rotate the bracket appropriately. Painting operations can be performed as if drawing upright
  brackets on flat data with horizontal key axis, with (0, 0) being the center of the bracket.

  If you wish to sublcass \ref QCPSelectionDecoratorBracket in order to provide custom bracket
  shapes (see \ref QCPSelectionDecoratorBracket::bsUserStyle), this is the method you should
  reimplement.
*/
void QCPSelectionDecoratorBracket::drawBracket(QCPPainter *painter, int direction) const
{
  switch (mBracketStyle)
  {
    case bsSquareBracket:
    {
      painter->drawLine(QLineF(mBracketWidth*direction, -mBracketHeight*0.5, 0, -mBracketHeight*0.5));
      painter->drawLine(QLineF(mBracketWidth*direction, mBracketHeight*0.5, 0, mBracketHeight*0.5));
      painter->drawLine(QLineF(0, -mBracketHeight*0.5, 0, mBracketHeight*0.5));
      break;
    }
    case bsHalfEllipse:
    {
      painter->drawArc(-mBracketWidth*0.5, -mBracketHeight*0.5, mBracketWidth, mBracketHeight, -90*16, -180*16*direction);
      break;
    }
    case bsEllipse:
    {
      painter->drawEllipse(-mBracketWidth*0.5, -mBracketHeight*0.5, mBracketWidth, mBracketHeight);
      break;
    }
    case bsPlus:
    {
      painter->drawLine(QLineF(0, -mBracketHeight*0.5, 0, mBracketHeight*0.5));
      painter->drawLine(QLineF(-mBracketWidth*0.5, 0, mBracketWidth*0.5, 0));
      break;
    }
    default:
    {
      qDebug() << Q_FUNC_INFO << "unknown/custom bracket style can't be handeld by default implementation:" << static_cast<int>(mBracketStyle);
      break;
    }
  }
}

/*!
  Draws the bracket decoration on the data points at the begin and end of each selected data
  segment given in \a seletion.

  It uses the method \ref drawBracket to actually draw the shapes.

  \seebaseclassmethod
*/
void QCPSelectionDecoratorBracket::drawDecoration(QCPPainter *painter, QCPDataSelection selection)
{
  if (!mPlottable || selection.isEmpty()) return;

  if (QCPPlottableInterface1D *interface1d = mPlottable->interface1D())
  {
    foreach (const QCPDataRange &dataRange, selection.dataRanges())
    {
      // determine position and (if tangent mode is enabled) angle of brackets:
      int openBracketDir = (mPlottable->keyAxis() && !mPlottable->keyAxis()->rangeReversed()) ? 1 : -1;
      int closeBracketDir = -openBracketDir;
      QPointF openBracketPos = getPixelCoordinates(interface1d, dataRange.begin());
      QPointF closeBracketPos = getPixelCoordinates(interface1d, dataRange.end()-1);
      double openBracketAngle = 0;
      double closeBracketAngle = 0;
      if (mTangentToData)
      {
        openBracketAngle = getTangentAngle(interface1d, dataRange.begin(), openBracketDir);
        closeBracketAngle = getTangentAngle(interface1d, dataRange.end()-1, closeBracketDir);
      }
      // draw opening bracket:
      QTransform oldTransform = painter->transform();
      painter->setPen(mBracketPen);
      painter->setBrush(mBracketBrush);
      painter->translate(openBracketPos);
      painter->rotate(openBracketAngle/M_PI*180.0);
      drawBracket(painter, openBracketDir);
      painter->setTransform(oldTransform);
      // draw closing bracket:
      painter->setPen(mBracketPen);
      painter->setBrush(mBracketBrush);
      painter->translate(closeBracketPos);
      painter->rotate(closeBracketAngle/M_PI*180.0);
      drawBracket(painter, closeBracketDir);
      painter->setTransform(oldTransform);
    }
  }
}

/*! \internal

  If \ref setTangentToData is enabled, brackets need to be rotated according to the data slope.
  This method returns the angle in radians by which a bracket at the given \a dataIndex must be
  rotated.

  The parameter \a direction must be set to either -1 or 1, representing whether it is an opening
  or closing bracket. Since for slope calculation multiple data points are required, this defines
  the direction in which the algorithm walks, starting at \a dataIndex, to average those data
  points. (see \ref setTangentToData and \ref setTangentAverage)

  \a interface1d is the interface to the plottable's data which is used to query data coordinates.
*/
double QCPSelectionDecoratorBracket::getTangentAngle(const QCPPlottableInterface1D *interface1d, int dataIndex, int direction) const
{
  if (!interface1d || dataIndex < 0 || dataIndex >= interface1d->dataCount())
    return 0;
  direction = direction < 0 ? -1 : 1; // enforce direction is either -1 or 1

  // how many steps we can actually go from index in the given direction without exceeding data bounds:
  int averageCount;
  if (direction < 0)
    averageCount = qMin(mTangentAverage, dataIndex);
  else
    averageCount = qMin(mTangentAverage, interface1d->dataCount()-1-dataIndex);
  qDebug() << averageCount;
  // calculate point average of averageCount points:
  QVector<QPointF> points(averageCount);
  QPointF pointsAverage;
  int currentIndex = dataIndex;
  for (int i=0; i<averageCount; ++i)
  {
    points[i] = getPixelCoordinates(interface1d, currentIndex);
    pointsAverage += points[i];
    currentIndex += direction;
  }
  pointsAverage /= (double)averageCount;

  // calculate slope of linear regression through points:
  double numSum = 0;
  double denomSum = 0;
  for (int i=0; i<averageCount; ++i)
  {
    const double dx = points.at(i).x()-pointsAverage.x();
    const double dy = points.at(i).y()-pointsAverage.y();
    numSum += dx*dy;
    denomSum += dx*dx;
  }
  if (!qFuzzyIsNull(denomSum) && !qFuzzyIsNull(numSum))
  {
    return qAtan2(numSum, denomSum);
  } else // undetermined angle, probably mTangentAverage == 1, so using only one data point
    return 0;
}

/*! \internal

  Returns the pixel coordinates of the data point at \a dataIndex, using \a interface1d to access
  the data points.
*/
QPointF QCPSelectionDecoratorBracket::getPixelCoordinates(const QCPPlottableInterface1D *interface1d, int dataIndex) const
{
  QCPAxis *keyAxis = mPlottable->keyAxis();
  QCPAxis *valueAxis = mPlottable->valueAxis();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return QPointF(0, 0); }

  if (keyAxis->orientation() == Qt::Horizontal)
    return QPointF(keyAxis->coordToPixel(interface1d->dataMainKey(dataIndex)), valueAxis->coordToPixel(interface1d->dataMainValue(dataIndex)));
  else
    return QPointF(valueAxis->coordToPixel(interface1d->dataMainValue(dataIndex)), keyAxis->coordToPixel(interface1d->dataMainKey(dataIndex)));
}
/* end of 'src/selectiondecorator-bracket.cpp' */


/* including file 'src/layoutelements/layoutelement-axisrect.cpp', size 47584 */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200  */


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAxisRect
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPAxisRect
  \brief Holds multiple axes and arranges them in a rectangular shape.

  This class represents an axis rect, a rectangular area that is bounded on all sides with an
  arbitrary number of axes.

  Initially QCustomPlot has one axis rect, accessible via QCustomPlot::axisRect(). However, the
  layout system allows to have multiple axis rects, e.g. arranged in a grid layout
  (QCustomPlot::plotLayout).

  By default, QCPAxisRect comes with four axes, at bottom, top, left and right. They can be
  accessed via \ref axis by providing the respective axis type (\ref QCPAxis::AxisType) and index.
  If you need all axes in the axis rect, use \ref axes. The top and right axes are set to be
  invisible initially (QCPAxis::setVisible). To add more axes to a side, use \ref addAxis or \ref
  addAxes. To remove an axis, use \ref removeAxis.

  The axis rect layerable itself only draws a background pixmap or color, if specified (\ref
  setBackground). It is placed on the "background" layer initially (see \ref QCPLayer for an
  explanation of the QCustomPlot layer system). The axes that are held by the axis rect can be
  placed on other layers, independently of the axis rect.

  Every axis rect has a child layout of type \ref QCPLayoutInset. It is accessible via \ref
  insetLayout and can be used to have other layout elements (or even other layouts with multiple
  elements) hovering inside the axis rect.

  If an axis rect is clicked and dragged, it processes this by moving certain axis ranges. The
  behaviour can be controlled with \ref setRangeDrag and \ref setRangeDragAxes. If the mouse wheel
  is scrolled while the cursor is on the axis rect, certain axes are scaled. This is controllable
  via \ref setRangeZoom, \ref setRangeZoomAxes and \ref setRangeZoomFactor. These interactions are
  only enabled if \ref QCustomPlot::setInteractions contains \ref QCP::iRangeDrag and \ref
  QCP::iRangeZoom.

  \image html AxisRectSpacingOverview.png
  <center>Overview of the spacings and paddings that define the geometry of an axis. The dashed
  line on the far left indicates the viewport/widget border.</center>
*/

/* start documentation of inline functions */

/*! \fn QCPLayoutInset *QCPAxisRect::insetLayout() const

  Returns the inset layout of this axis rect. It can be used to place other layout elements (or
  even layouts with multiple other elements) inside/on top of an axis rect.

  \see QCPLayoutInset
*/

/*! \fn int QCPAxisRect::left() const

  Returns the pixel position of the left border of this axis rect. Margins are not taken into
  account here, so the returned value is with respect to the inner \ref rect.
*/

/*! \fn int QCPAxisRect::right() const

  Returns the pixel position of the right border of this axis rect. Margins are not taken into
  account here, so the returned value is with respect to the inner \ref rect.
*/

/*! \fn int QCPAxisRect::top() const

  Returns the pixel position of the top border of this axis rect. Margins are not taken into
  account here, so the returned value is with respect to the inner \ref rect.
*/

/*! \fn int QCPAxisRect::bottom() const

  Returns the pixel position of the bottom border of this axis rect. Margins are not taken into
  account here, so the returned value is with respect to the inner \ref rect.
*/

/*! \fn int QCPAxisRect::width() const

  Returns the pixel width of this axis rect. Margins are not taken into account here, so the
  returned value is with respect to the inner \ref rect.
*/

/*! \fn int QCPAxisRect::height() const

  Returns the pixel height of this axis rect. Margins are not taken into account here, so the
  returned value is with respect to the inner \ref rect.
*/

/*! \fn QSize QCPAxisRect::size() const

  Returns the pixel size of this axis rect. Margins are not taken into account here, so the
  returned value is with respect to the inner \ref rect.
*/

/*! \fn QPoint QCPAxisRect::topLeft() const

  Returns the top left corner of this axis rect in pixels. Margins are not taken into account here,
  so the returned value is with respect to the inner \ref rect.
*/

/*! \fn QPoint QCPAxisRect::topRight() const

  Returns the top right corner of this axis rect in pixels. Margins are not taken into account
  here, so the returned value is with respect to the inner \ref rect.
*/

/*! \fn QPoint QCPAxisRect::bottomLeft() const

  Returns the bottom left corner of this axis rect in pixels. Margins are not taken into account
  here, so the returned value is with respect to the inner \ref rect.
*/

/*! \fn QPoint QCPAxisRect::bottomRight() const

  Returns the bottom right corner of this axis rect in pixels. Margins are not taken into account
  here, so the returned value is with respect to the inner \ref rect.
*/

/*! \fn QPoint QCPAxisRect::center() const

  Returns the center of this axis rect in pixels. Margins are not taken into account here, so the
  returned value is with respect to the inner \ref rect.
*/

/* end documentation of inline functions */

/*!
  Creates a QCPAxisRect instance and sets default values. An axis is added for each of the four
  sides, the top and right axes are set invisible initially.
*/
QCPAxisRect::QCPAxisRect(QCustomPlot *parentPlot, bool setupDefaultAxes) :
  QCPLayoutElement(parentPlot),
  mBackgroundBrush(Qt::NoBrush),
  mBackgroundScaled(true),
  mBackgroundScaledMode(Qt::KeepAspectRatioByExpanding),
  mInsetLayout(new QCPLayoutInset),
  mRangeDrag(Qt::Horizontal|Qt::Vertical),
  mRangeZoom(Qt::Horizontal|Qt::Vertical),
  mRangeZoomFactorHorz(0.85),
  mRangeZoomFactorVert(0.85),
  mDragging(false)
{
  mInsetLayout->initializeParentPlot(mParentPlot);
  mInsetLayout->setParentLayerable(this);
  mInsetLayout->setParent(this);

  setMinimumSize(50, 50);
  setMinimumMargins(QMargins(15, 15, 15, 15));
  mAxes.insert(QCPAxis::atLeft, QList<QCPAxis*>());
  mAxes.insert(QCPAxis::atRight, QList<QCPAxis*>());
  mAxes.insert(QCPAxis::atTop, QList<QCPAxis*>());
  mAxes.insert(QCPAxis::atBottom, QList<QCPAxis*>());

  if (setupDefaultAxes)
  {
    QCPAxis *xAxis = addAxis(QCPAxis::atBottom);
    QCPAxis *yAxis = addAxis(QCPAxis::atLeft);
    QCPAxis *xAxis2 = addAxis(QCPAxis::atTop);
    QCPAxis *yAxis2 = addAxis(QCPAxis::atRight);
    setRangeDragAxes(xAxis, yAxis);
    setRangeZoomAxes(xAxis, yAxis);
    xAxis2->setVisible(false);
    yAxis2->setVisible(false);
    xAxis->grid()->setVisible(true);
    yAxis->grid()->setVisible(true);
    xAxis2->grid()->setVisible(false);
    yAxis2->grid()->setVisible(false);
    xAxis2->grid()->setZeroLinePen(Qt::NoPen);
    yAxis2->grid()->setZeroLinePen(Qt::NoPen);
    xAxis2->grid()->setVisible(false);
    yAxis2->grid()->setVisible(false);
  }
}

QCPAxisRect::~QCPAxisRect()
{
  delete mInsetLayout;
  mInsetLayout = 0;

  QList<QCPAxis*> axesList = axes();
  for (int i=0; i<axesList.size(); ++i)
    removeAxis(axesList.at(i));
}

/*!
  Returns the number of axes on the axis rect side specified with \a type.

  \see axis
*/
int QCPAxisRect::axisCount(QCPAxis::AxisType type) const
{
  return mAxes.value(type).size();
}

/*!
  Returns the axis with the given \a index on the axis rect side specified with \a type.

  \see axisCount, axes
*/
QCPAxis *QCPAxisRect::axis(QCPAxis::AxisType type, int index) const
{
  QList<QCPAxis*> ax(mAxes.value(type));
  if (index >= 0 && index < ax.size())
  {
    return ax.at(index);
  } else
  {
    qDebug() << Q_FUNC_INFO << "Axis index out of bounds:" << index;
    return 0;
  }
}

/*!
  Returns all axes on the axis rect sides specified with \a types.

  \a types may be a single \ref QCPAxis::AxisType or an <tt>or</tt>-combination, to get the axes of
  multiple sides.

  \see axis
*/
QList<QCPAxis*> QCPAxisRect::axes(QCPAxis::AxisTypes types) const
{
  QList<QCPAxis*> result;
  if (types.testFlag(QCPAxis::atLeft))
    result << mAxes.value(QCPAxis::atLeft);
  if (types.testFlag(QCPAxis::atRight))
    result << mAxes.value(QCPAxis::atRight);
  if (types.testFlag(QCPAxis::atTop))
    result << mAxes.value(QCPAxis::atTop);
  if (types.testFlag(QCPAxis::atBottom))
    result << mAxes.value(QCPAxis::atBottom);
  return result;
}

/*! \overload

  Returns all axes of this axis rect.
*/
QList<QCPAxis*> QCPAxisRect::axes() const
{
  QList<QCPAxis*> result;
  QHashIterator<QCPAxis::AxisType, QList<QCPAxis*> > it(mAxes);
  while (it.hasNext())
  {
    it.next();
    result << it.value();
  }
  return result;
}

/*!
  Adds a new axis to the axis rect side specified with \a type, and returns it. If \a axis is 0, a
  new QCPAxis instance is created internally. QCustomPlot owns the returned axis, so if you want to
  remove an axis, use \ref removeAxis instead of deleting it manually.

  You may inject QCPAxis instances (or subclasses of QCPAxis) by setting \a axis to an axis that was
  previously created outside QCustomPlot. It is important to note that QCustomPlot takes ownership
  of the axis, so you may not delete it afterwards. Further, the \a axis must have been created
  with this axis rect as parent and with the same axis type as specified in \a type. If this is not
  the case, a debug output is generated, the axis is not added, and the method returns 0.

  This method can not be used to move \a axis between axis rects. The same \a axis instance must
  not be added multiple times to the same or different axis rects.

  If an axis rect side already contains one or more axes, the lower and upper endings of the new
  axis (\ref QCPAxis::setLowerEnding, \ref QCPAxis::setUpperEnding) are set to \ref
  QCPLineEnding::esHalfBar.

  \see addAxes, setupFullAxesBox
*/
QCPAxis *QCPAxisRect::addAxis(QCPAxis::AxisType type, QCPAxis *axis)
{
  QCPAxis *newAxis = axis;
  if (!newAxis)
  {
    newAxis = new QCPAxis(this, type);
  } else // user provided existing axis instance, do some sanity checks
  {
    if (newAxis->axisType() != type)
    {
      qDebug() << Q_FUNC_INFO << "passed axis has different axis type than specified in type parameter";
      return 0;
    }
    if (newAxis->axisRect() != this)
    {
      qDebug() << Q_FUNC_INFO << "passed axis doesn't have this axis rect as parent axis rect";
      return 0;
    }
    if (axes().contains(newAxis))
    {
      qDebug() << Q_FUNC_INFO << "passed axis is already owned by this axis rect";
      return 0;
    }
  }
  if (mAxes[type].size() > 0) // multiple axes on one side, add half-bar axis ending to additional axes with offset
  {
    bool invert = (type == QCPAxis::atRight) || (type == QCPAxis::atBottom);
    newAxis->setLowerEnding(QCPLineEnding(QCPLineEnding::esHalfBar, 6, 10, !invert));
    newAxis->setUpperEnding(QCPLineEnding(QCPLineEnding::esHalfBar, 6, 10, invert));
  }
  mAxes[type].append(newAxis);

  // reset convenience axis pointers on parent QCustomPlot if they are unset:
  if (mParentPlot && mParentPlot->axisRectCount() > 0 && mParentPlot->axisRect(0) == this)
  {
    switch (type)
    {
      case QCPAxis::atBottom: { if (!mParentPlot->xAxis) mParentPlot->xAxis = newAxis; break; }
      case QCPAxis::atLeft: { if (!mParentPlot->yAxis) mParentPlot->yAxis = newAxis; break; }
      case QCPAxis::atTop: { if (!mParentPlot->xAxis2) mParentPlot->xAxis2 = newAxis; break; }
      case QCPAxis::atRight: { if (!mParentPlot->yAxis2) mParentPlot->yAxis2 = newAxis; break; }
    }
  }

  return newAxis;
}

/*!
  Adds a new axis with \ref addAxis to each axis rect side specified in \a types. This may be an
  <tt>or</tt>-combination of QCPAxis::AxisType, so axes can be added to multiple sides at once.

  Returns a list of the added axes.

  \see addAxis, setupFullAxesBox
*/
QList<QCPAxis*> QCPAxisRect::addAxes(QCPAxis::AxisTypes types)
{
  QList<QCPAxis*> result;
  if (types.testFlag(QCPAxis::atLeft))
    result << addAxis(QCPAxis::atLeft);
  if (types.testFlag(QCPAxis::atRight))
    result << addAxis(QCPAxis::atRight);
  if (types.testFlag(QCPAxis::atTop))
    result << addAxis(QCPAxis::atTop);
  if (types.testFlag(QCPAxis::atBottom))
    result << addAxis(QCPAxis::atBottom);
  return result;
}

/*!
  Removes the specified \a axis from the axis rect and deletes it.

  Returns true on success, i.e. if \a axis was a valid axis in this axis rect.

  \see addAxis
*/
bool QCPAxisRect::removeAxis(QCPAxis *axis)
{
  // don't access axis->axisType() to provide safety when axis is an invalid pointer, rather go through all axis containers:
  QHashIterator<QCPAxis::AxisType, QList<QCPAxis*> > it(mAxes);
  while (it.hasNext())
  {
    it.next();
    if (it.value().contains(axis))
    {
      if (it.value().first() == axis && it.value().size() > 1) // if removing first axis, transfer axis offset to the new first axis (which at this point is the second axis, if it exists)
        it.value()[1]->setOffset(axis->offset());
      mAxes[it.key()].removeOne(axis);
      if (qobject_cast<QCustomPlot*>(parentPlot())) // make sure this isn't called from QObject dtor when QCustomPlot is already destructed (happens when the axis rect is not in any layout and thus QObject-child of QCustomPlot)
        parentPlot()->axisRemoved(axis);
      delete axis;
      return true;
    }
  }
  qDebug() << Q_FUNC_INFO << "Axis isn't in axis rect:" << reinterpret_cast<quintptr>(axis);
  return false;
}

/*!
  Zooms in (or out) to the passed rectangular region \a pixelRect, given in pixel coordinates.

  All axes of this axis rect will have their range zoomed accordingly. If you only wish to zoom
  specific axes, use the overloaded version of this method.

  \see QCustomPlot::setSelectionRectMode
*/
void QCPAxisRect::zoom(const QRectF &pixelRect)
{
  zoom(pixelRect, axes());
}

/*! \overload

  Zooms in (or out) to the passed rectangular region \a pixelRect, given in pixel coordinates.

  Only the axes passed in \a affectedAxes will have their ranges zoomed accordingly.

  \see QCustomPlot::setSelectionRectMode
*/
void QCPAxisRect::zoom(const QRectF &pixelRect, const QList<QCPAxis*> &affectedAxes)
{
  foreach (QCPAxis *axis, affectedAxes)
  {
    if (!axis)
    {
      qDebug() << Q_FUNC_INFO << "a passed axis was zero";
      continue;
    }
    QCPRange pixelRange;
    if (axis->orientation() == Qt::Horizontal)
      pixelRange = QCPRange(pixelRect.left(), pixelRect.right());
    else
      pixelRange = QCPRange(pixelRect.top(), pixelRect.bottom());
    axis->setRange(axis->pixelToCoord(pixelRange.lower), axis->pixelToCoord(pixelRange.upper));
  }
}

/*!
  Convenience function to create an axis on each side that doesn't have any axes yet and set their
  visibility to true. Further, the top/right axes are assigned the following properties of the
  bottom/left axes:

  \li range (\ref QCPAxis::setRange)
  \li range reversed (\ref QCPAxis::setRangeReversed)
  \li scale type (\ref QCPAxis::setScaleType)
  \li tick visibility (\ref QCPAxis::setTicks)
  \li number format (\ref QCPAxis::setNumberFormat)
  \li number precision (\ref QCPAxis::setNumberPrecision)
  \li tick count of ticker (\ref QCPAxisTicker::setTickCount)
  \li tick origin of ticker (\ref QCPAxisTicker::setTickOrigin)

  Tick label visibility (\ref QCPAxis::setTickLabels) of the right and top axes are set to false.

  If \a connectRanges is true, the \ref QCPAxis::rangeChanged "rangeChanged" signals of the bottom
  and left axes are connected to the \ref QCPAxis::setRange slots of the top and right axes.
*/
void QCPAxisRect::setupFullAxesBox(bool connectRanges)
{
  QCPAxis *xAxis, *yAxis, *xAxis2, *yAxis2;
  if (axisCount(QCPAxis::atBottom) == 0)
    xAxis = addAxis(QCPAxis::atBottom);
  else
    xAxis = axis(QCPAxis::atBottom);

  if (axisCount(QCPAxis::atLeft) == 0)
    yAxis = addAxis(QCPAxis::atLeft);
  else
    yAxis = axis(QCPAxis::atLeft);

  if (axisCount(QCPAxis::atTop) == 0)
    xAxis2 = addAxis(QCPAxis::atTop);
  else
    xAxis2 = axis(QCPAxis::atTop);

  if (axisCount(QCPAxis::atRight) == 0)
    yAxis2 = addAxis(QCPAxis::atRight);
  else
    yAxis2 = axis(QCPAxis::atRight);

  xAxis->setVisible(true);
  yAxis->setVisible(true);
  xAxis2->setVisible(true);
  yAxis2->setVisible(true);
  xAxis2->setTickLabels(false);
  yAxis2->setTickLabels(false);

  xAxis2->setRange(xAxis->range());
  xAxis2->setRangeReversed(xAxis->rangeReversed());
  xAxis2->setScaleType(xAxis->scaleType());
  xAxis2->setTicks(xAxis->ticks());
  xAxis2->setNumberFormat(xAxis->numberFormat());
  xAxis2->setNumberPrecision(xAxis->numberPrecision());
  xAxis2->ticker()->setTickCount(xAxis->ticker()->tickCount());
  xAxis2->ticker()->setTickOrigin(xAxis->ticker()->tickOrigin());

  yAxis2->setRange(yAxis->range());
  yAxis2->setRangeReversed(yAxis->rangeReversed());
  yAxis2->setScaleType(yAxis->scaleType());
  yAxis2->setTicks(yAxis->ticks());
  yAxis2->setNumberFormat(yAxis->numberFormat());
  yAxis2->setNumberPrecision(yAxis->numberPrecision());
  yAxis2->ticker()->setTickCount(yAxis->ticker()->tickCount());
  yAxis2->ticker()->setTickOrigin(yAxis->ticker()->tickOrigin());

  if (connectRanges)
  {
    connect(xAxis, SIGNAL(rangeChanged(QCPRange)), xAxis2, SLOT(setRange(QCPRange)));
    connect(yAxis, SIGNAL(rangeChanged(QCPRange)), yAxis2, SLOT(setRange(QCPRange)));
  }
}

/*!
  Returns a list of all the plottables that are associated with this axis rect.

  A plottable is considered associated with an axis rect if its key or value axis (or both) is in
  this axis rect.

  \see graphs, items
*/
QList<QCPAbstractPlottable*> QCPAxisRect::plottables() const
{
  // Note: don't append all QCPAxis::plottables() into a list, because we might get duplicate entries
  QList<QCPAbstractPlottable*> result;
  for (int i=0; i<mParentPlot->mPlottables.size(); ++i)
  {
    if (mParentPlot->mPlottables.at(i)->keyAxis()->axisRect() == this || mParentPlot->mPlottables.at(i)->valueAxis()->axisRect() == this)
      result.append(mParentPlot->mPlottables.at(i));
  }
  return result;
}

/*!
  Returns a list of all the graphs that are associated with this axis rect.

  A graph is considered associated with an axis rect if its key or value axis (or both) is in
  this axis rect.

  \see plottables, items
*/
QList<QCPGraph*> QCPAxisRect::graphs() const
{
  // Note: don't append all QCPAxis::graphs() into a list, because we might get duplicate entries
  QList<QCPGraph*> result;
  for (int i=0; i<mParentPlot->mGraphs.size(); ++i)
  {
    if (mParentPlot->mGraphs.at(i)->keyAxis()->axisRect() == this || mParentPlot->mGraphs.at(i)->valueAxis()->axisRect() == this)
      result.append(mParentPlot->mGraphs.at(i));
  }
  return result;
}

/*!
  Returns a list of all the items that are associated with this axis rect.

  An item is considered associated with an axis rect if any of its positions has key or value axis
  set to an axis that is in this axis rect, or if any of its positions has \ref
  QCPItemPosition::setAxisRect set to the axis rect, or if the clip axis rect (\ref
  QCPAbstractItem::setClipAxisRect) is set to this axis rect.

  \see plottables, graphs
*/
QList<QCPAbstractItem *> QCPAxisRect::items() const
{
  // Note: don't just append all QCPAxis::items() into a list, because we might get duplicate entries
  //       and miss those items that have this axis rect as clipAxisRect.
  QList<QCPAbstractItem*> result;
  for (int itemId=0; itemId<mParentPlot->mItems.size(); ++itemId)
  {
    if (mParentPlot->mItems.at(itemId)->clipAxisRect() == this)
    {
      result.append(mParentPlot->mItems.at(itemId));
      continue;
    }
    QList<QCPItemPosition*> positions = mParentPlot->mItems.at(itemId)->positions();
    for (int posId=0; posId<positions.size(); ++posId)
    {
      if (positions.at(posId)->axisRect() == this ||
          positions.at(posId)->keyAxis()->axisRect() == this ||
          positions.at(posId)->valueAxis()->axisRect() == this)
      {
        result.append(mParentPlot->mItems.at(itemId));
        break;
      }
    }
  }
  return result;
}

/*!
  This method is called automatically upon replot and doesn't need to be called by users of
  QCPAxisRect.

  Calls the base class implementation to update the margins (see \ref QCPLayoutElement::update),
  and finally passes the \ref rect to the inset layout (\ref insetLayout) and calls its
  QCPInsetLayout::update function.

  \seebaseclassmethod
*/
void QCPAxisRect::update(UpdatePhase phase)
{
  QCPLayoutElement::update(phase);

  switch (phase)
  {
    case upPreparation:
    {
      QList<QCPAxis*> allAxes = axes();
      for (int i=0; i<allAxes.size(); ++i)
        allAxes.at(i)->setupTickVectors();
      break;
    }
    case upLayout:
    {
      mInsetLayout->setOuterRect(rect());
      break;
    }
    default: break;
  }

  // pass update call on to inset layout (doesn't happen automatically, because QCPAxisRect doesn't derive from QCPLayout):
  mInsetLayout->update(phase);
}

/* inherits documentation from base class */
QList<QCPLayoutElement*> QCPAxisRect::elements(bool recursive) const
{
  QList<QCPLayoutElement*> result;
  if (mInsetLayout)
  {
    result << mInsetLayout;
    if (recursive)
      result << mInsetLayout->elements(recursive);
  }
  return result;
}

/* inherits documentation from base class */
void QCPAxisRect::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  painter->setAntialiasing(false);
}

/* inherits documentation from base class */
void QCPAxisRect::draw(QCPPainter *painter)
{
  drawBackground(painter);
}

/*!
  Sets \a pm as the axis background pixmap. The axis background pixmap will be drawn inside the
  axis rect. Since axis rects place themselves on the "background" layer by default, the axis rect
  backgrounds are usually drawn below everything else.

  For cases where the provided pixmap doesn't have the same size as the axis rect, scaling can be
  enabled with \ref setBackgroundScaled and the scaling mode (i.e. whether and how the aspect ratio
  is preserved) can be set with \ref setBackgroundScaledMode. To set all these options in one call,
  consider using the overloaded version of this function.

  Below the pixmap, the axis rect may be optionally filled with a brush, if specified with \ref
  setBackground(const QBrush &brush).

  \see setBackgroundScaled, setBackgroundScaledMode, setBackground(const QBrush &brush)
*/
void QCPAxisRect::setBackground(const QPixmap &pm)
{
  mBackgroundPixmap = pm;
  mScaledBackgroundPixmap = QPixmap();
}

/*! \overload

  Sets \a brush as the background brush. The axis rect background will be filled with this brush.
  Since axis rects place themselves on the "background" layer by default, the axis rect backgrounds
  are usually drawn below everything else.

  The brush will be drawn before (under) any background pixmap, which may be specified with \ref
  setBackground(const QPixmap &pm).

  To disable drawing of a background brush, set \a brush to Qt::NoBrush.

  \see setBackground(const QPixmap &pm)
*/
void QCPAxisRect::setBackground(const QBrush &brush)
{
  mBackgroundBrush = brush;
}

/*! \overload

  Allows setting the background pixmap of the axis rect, whether it shall be scaled and how it
  shall be scaled in one call.

  \see setBackground(const QPixmap &pm), setBackgroundScaled, setBackgroundScaledMode
*/
void QCPAxisRect::setBackground(const QPixmap &pm, bool scaled, Qt::AspectRatioMode mode)
{
  mBackgroundPixmap = pm;
  mScaledBackgroundPixmap = QPixmap();
  mBackgroundScaled = scaled;
  mBackgroundScaledMode = mode;
}

/*!
  Sets whether the axis background pixmap shall be scaled to fit the axis rect or not. If \a scaled
  is set to true, you may control whether and how the aspect ratio of the original pixmap is
  preserved with \ref setBackgroundScaledMode.

  Note that the scaled version of the original pixmap is buffered, so there is no performance
  penalty on replots. (Except when the axis rect dimensions are changed continuously.)

  \see setBackground, setBackgroundScaledMode
*/
void QCPAxisRect::setBackgroundScaled(bool scaled)
{
  mBackgroundScaled = scaled;
}

/*!
  If scaling of the axis background pixmap is enabled (\ref setBackgroundScaled), use this function to
  define whether and how the aspect ratio of the original pixmap passed to \ref setBackground is preserved.
  \see setBackground, setBackgroundScaled
*/
void QCPAxisRect::setBackgroundScaledMode(Qt::AspectRatioMode mode)
{
  mBackgroundScaledMode = mode;
}

/*!
  Returns the range drag axis of the \a orientation provided. If multiple axes were set, returns
  the first one (use \ref rangeDragAxes to retrieve a list with all set axes).

  \see setRangeDragAxes
*/
QCPAxis *QCPAxisRect::rangeDragAxis(Qt::Orientation orientation)
{
  if (orientation == Qt::Horizontal)
    return mRangeDragHorzAxis.isEmpty() ? 0 : mRangeDragHorzAxis.first().data();
  else
    return mRangeDragVertAxis.isEmpty() ? 0 : mRangeDragVertAxis.first().data();
}

/*!
  Returns the range zoom axis of the \a orientation provided. If multiple axes were set, returns
  the first one (use \ref rangeZoomAxes to retrieve a list with all set axes).

  \see setRangeZoomAxes
*/
QCPAxis *QCPAxisRect::rangeZoomAxis(Qt::Orientation orientation)
{
  if (orientation == Qt::Horizontal)
    return mRangeZoomHorzAxis.isEmpty() ? 0 : mRangeZoomHorzAxis.first().data();
  else
    return mRangeZoomVertAxis.isEmpty() ? 0 : mRangeZoomVertAxis.first().data();
}

/*!
  Returns all range drag axes of the \a orientation provided.

  \see rangeZoomAxis, setRangeZoomAxes
*/
QList<QCPAxis*> QCPAxisRect::rangeDragAxes(Qt::Orientation orientation)
{
  QList<QCPAxis*> result;
  if (orientation == Qt::Horizontal)
  {
    for (int i=0; i<mRangeDragHorzAxis.size(); ++i)
    {
      if (!mRangeDragHorzAxis.at(i).isNull())
        result.append(mRangeDragHorzAxis.at(i).data());
    }
  } else
  {
    for (int i=0; i<mRangeDragVertAxis.size(); ++i)
    {
      if (!mRangeDragVertAxis.at(i).isNull())
        result.append(mRangeDragVertAxis.at(i).data());
    }
  }
  return result;
}

/*!
  Returns all range zoom axes of the \a orientation provided.

  \see rangeDragAxis, setRangeDragAxes
*/
QList<QCPAxis*> QCPAxisRect::rangeZoomAxes(Qt::Orientation orientation)
{
  QList<QCPAxis*> result;
  if (orientation == Qt::Horizontal)
  {
    for (int i=0; i<mRangeZoomHorzAxis.size(); ++i)
    {
      if (!mRangeZoomHorzAxis.at(i).isNull())
        result.append(mRangeZoomHorzAxis.at(i).data());
    }
  } else
  {
    for (int i=0; i<mRangeZoomVertAxis.size(); ++i)
    {
      if (!mRangeZoomVertAxis.at(i).isNull())
        result.append(mRangeZoomVertAxis.at(i).data());
    }
  }
  return result;
}

/*!
  Returns the range zoom factor of the \a orientation provided.

  \see setRangeZoomFactor
*/
double QCPAxisRect::rangeZoomFactor(Qt::Orientation orientation)
{
  return (orientation == Qt::Horizontal ? mRangeZoomFactorHorz : mRangeZoomFactorVert);
}

/*!
  Sets which axis orientation may be range dragged by the user with mouse interaction.
  What orientation corresponds to which specific axis can be set with
  \ref setRangeDragAxes(QCPAxis *horizontal, QCPAxis *vertical). By
  default, the horizontal axis is the bottom axis (xAxis) and the vertical axis
  is the left axis (yAxis).

  To disable range dragging entirely, pass 0 as \a orientations or remove \ref QCP::iRangeDrag from \ref
  QCustomPlot::setInteractions. To enable range dragging for both directions, pass <tt>Qt::Horizontal |
  Qt::Vertical</tt> as \a orientations.

  In addition to setting \a orientations to a non-zero value, make sure \ref QCustomPlot::setInteractions
  contains \ref QCP::iRangeDrag to enable the range dragging interaction.

  \see setRangeZoom, setRangeDragAxes, QCustomPlot::setNoAntialiasingOnDrag
*/
void QCPAxisRect::setRangeDrag(Qt::Orientations orientations)
{
  mRangeDrag = orientations;
}

/*!
  Sets which axis orientation may be zoomed by the user with the mouse wheel. What orientation
  corresponds to which specific axis can be set with \ref setRangeZoomAxes(QCPAxis *horizontal,
  QCPAxis *vertical). By default, the horizontal axis is the bottom axis (xAxis) and the vertical
  axis is the left axis (yAxis).

  To disable range zooming entirely, pass 0 as \a orientations or remove \ref QCP::iRangeZoom from \ref
  QCustomPlot::setInteractions. To enable range zooming for both directions, pass <tt>Qt::Horizontal |
  Qt::Vertical</tt> as \a orientations.

  In addition to setting \a orientations to a non-zero value, make sure \ref QCustomPlot::setInteractions
  contains \ref QCP::iRangeZoom to enable the range zooming interaction.

  \see setRangeZoomFactor, setRangeZoomAxes, setRangeDrag
*/
void QCPAxisRect::setRangeZoom(Qt::Orientations orientations)
{
  mRangeZoom = orientations;
}

/*! \overload

  Sets the axes whose range will be dragged when \ref setRangeDrag enables mouse range dragging on
  the QCustomPlot widget. Pass 0 if no axis shall be dragged in the respective orientation.

  Use the overload taking a list of axes, if multiple axes (more than one per orientation) shall
  react to dragging interactions.

  \see setRangeZoomAxes
*/
void QCPAxisRect::setRangeDragAxes(QCPAxis *horizontal, QCPAxis *vertical)
{
  QList<QCPAxis*> horz, vert;
  if (horizontal)
    horz.append(horizontal);
  if (vertical)
    vert.append(vertical);
  setRangeDragAxes(horz, vert);
}

/*! \overload

  This method allows to set up multiple axes to react to horizontal and vertical dragging. The drag
  orientation that the respective axis will react to is deduced from its orientation (\ref
  QCPAxis::orientation).

  In the unusual case that you wish to e.g. drag a vertically oriented axis with a horizontal drag
  motion, use the overload taking two separate lists for horizontal and vertical dragging.
*/
void QCPAxisRect::setRangeDragAxes(QList<QCPAxis*> axes)
{
  QList<QCPAxis*> horz, vert;
  foreach (QCPAxis *ax, axes)
  {
    if (ax->orientation() == Qt::Horizontal)
      horz.append(ax);
    else
      vert.append(ax);
  }
  setRangeDragAxes(horz, vert);
}

/*! \overload

  This method allows to set multiple axes up to react to horizontal and vertical dragging, and
  define specifically which axis reacts to which drag orientation (irrespective of the axis
  orientation).
*/
void QCPAxisRect::setRangeDragAxes(QList<QCPAxis*> horizontal, QList<QCPAxis*> vertical)
{
  mRangeDragHorzAxis.clear();
  foreach (QCPAxis *ax, horizontal)
  {
    QPointer<QCPAxis> axPointer(ax);
    if (!axPointer.isNull())
      mRangeDragHorzAxis.append(axPointer);
    else
      qDebug() << Q_FUNC_INFO << "invalid axis passed in horizontal list:" << reinterpret_cast<quintptr>(ax);
  }
  mRangeDragVertAxis.clear();
  foreach (QCPAxis *ax, vertical)
  {
    QPointer<QCPAxis> axPointer(ax);
    if (!axPointer.isNull())
      mRangeDragVertAxis.append(axPointer);
    else
      qDebug() << Q_FUNC_INFO << "invalid axis passed in vertical list:" << reinterpret_cast<quintptr>(ax);
  }
}

/*!
  Sets the axes whose range will be zoomed when \ref setRangeZoom enables mouse wheel zooming on
  the QCustomPlot widget. Pass 0 if no axis shall be zoomed in the respective orientation.

  The two axes can be zoomed with different strengths, when different factors are passed to \ref
  setRangeZoomFactor(double horizontalFactor, double verticalFactor).

  Use the overload taking a list of axes, if multiple axes (more than one per orientation) shall
  react to zooming interactions.

  \see setRangeDragAxes
*/
void QCPAxisRect::setRangeZoomAxes(QCPAxis *horizontal, QCPAxis *vertical)
{
  QList<QCPAxis*> horz, vert;
  if (horizontal)
    horz.append(horizontal);
  if (vertical)
    vert.append(vertical);
  setRangeZoomAxes(horz, vert);
}

/*! \overload

  This method allows to set up multiple axes to react to horizontal and vertical range zooming. The
  zoom orientation that the respective axis will react to is deduced from its orientation (\ref
  QCPAxis::orientation).

  In the unusual case that you wish to e.g. zoom a vertically oriented axis with a horizontal zoom
  interaction, use the overload taking two separate lists for horizontal and vertical zooming.
*/
void QCPAxisRect::setRangeZoomAxes(QList<QCPAxis*> axes)
{
  QList<QCPAxis*> horz, vert;
  foreach (QCPAxis *ax, axes)
  {
    if (ax->orientation() == Qt::Horizontal)
      horz.append(ax);
    else
      vert.append(ax);
  }
  setRangeZoomAxes(horz, vert);
}

/*! \overload

  This method allows to set multiple axes up to react to horizontal and vertical zooming, and
  define specifically which axis reacts to which zoom orientation (irrespective of the axis
  orientation).
*/
void QCPAxisRect::setRangeZoomAxes(QList<QCPAxis*> horizontal, QList<QCPAxis*> vertical)
{
  mRangeZoomHorzAxis.clear();
  foreach (QCPAxis *ax, horizontal)
  {
    QPointer<QCPAxis> axPointer(ax);
    if (!axPointer.isNull())
      mRangeZoomHorzAxis.append(axPointer);
    else
      qDebug() << Q_FUNC_INFO << "invalid axis passed in horizontal list:" << reinterpret_cast<quintptr>(ax);
  }
  mRangeZoomVertAxis.clear();
  foreach (QCPAxis *ax, vertical)
  {
    QPointer<QCPAxis> axPointer(ax);
    if (!axPointer.isNull())
      mRangeZoomVertAxis.append(axPointer);
    else
      qDebug() << Q_FUNC_INFO << "invalid axis passed in vertical list:" << reinterpret_cast<quintptr>(ax);
  }
}

/*!
  Sets how strong one rotation step of the mouse wheel zooms, when range zoom was activated with
  \ref setRangeZoom. The two parameters \a horizontalFactor and \a verticalFactor provide a way to
  let the horizontal axis zoom at different rates than the vertical axis. Which axis is horizontal
  and which is vertical, can be set with \ref setRangeZoomAxes.

  When the zoom factor is greater than one, scrolling the mouse wheel backwards (towards the user)
  will zoom in (make the currently visible range smaller). For zoom factors smaller than one, the
  same scrolling direction will zoom out.
*/
void QCPAxisRect::setRangeZoomFactor(double horizontalFactor, double verticalFactor)
{
  mRangeZoomFactorHorz = horizontalFactor;
  mRangeZoomFactorVert = verticalFactor;
}

/*! \overload

  Sets both the horizontal and vertical zoom \a factor.
*/
void QCPAxisRect::setRangeZoomFactor(double factor)
{
  mRangeZoomFactorHorz = factor;
  mRangeZoomFactorVert = factor;
}

/*! \internal

  Draws the background of this axis rect. It may consist of a background fill (a QBrush) and a
  pixmap.

  If a brush was given via \ref setBackground(const QBrush &brush), this function first draws an
  according filling inside the axis rect with the provided \a painter.

  Then, if a pixmap was provided via \ref setBackground, this function buffers the scaled version
  depending on \ref setBackgroundScaled and \ref setBackgroundScaledMode and then draws it inside
  the axis rect with the provided \a painter. The scaled version is buffered in
  mScaledBackgroundPixmap to prevent expensive rescaling at every redraw. It is only updated, when
  the axis rect has changed in a way that requires a rescale of the background pixmap (this is
  dependent on the \ref setBackgroundScaledMode), or when a differend axis background pixmap was
  set.

  \see setBackground, setBackgroundScaled, setBackgroundScaledMode
*/
void QCPAxisRect::drawBackground(QCPPainter *painter)
{
  // draw background fill:
  if (mBackgroundBrush != Qt::NoBrush)
    painter->fillRect(mRect, mBackgroundBrush);

  // draw background pixmap (on top of fill, if brush specified):
  if (!mBackgroundPixmap.isNull())
  {
    if (mBackgroundScaled)
    {
      // check whether mScaledBackground needs to be updated:
      QSize scaledSize(mBackgroundPixmap.size());
      scaledSize.scale(mRect.size(), mBackgroundScaledMode);
      if (mScaledBackgroundPixmap.size() != scaledSize)
        mScaledBackgroundPixmap = mBackgroundPixmap.scaled(mRect.size(), mBackgroundScaledMode, Qt::SmoothTransformation);
      painter->drawPixmap(mRect.topLeft()+QPoint(0, -1), mScaledBackgroundPixmap, QRect(0, 0, mRect.width(), mRect.height()) & mScaledBackgroundPixmap.rect());
    } else
    {
      painter->drawPixmap(mRect.topLeft()+QPoint(0, -1), mBackgroundPixmap, QRect(0, 0, mRect.width(), mRect.height()));
    }
  }
}

/*! \internal

  This function makes sure multiple axes on the side specified with \a type don't collide, but are
  distributed according to their respective space requirement (QCPAxis::calculateMargin).

  It does this by setting an appropriate offset (\ref QCPAxis::setOffset) on all axes except the
  one with index zero.

  This function is called by \ref calculateAutoMargin.
*/
void QCPAxisRect::updateAxesOffset(QCPAxis::AxisType type)
{
  const QList<QCPAxis*> axesList = mAxes.value(type);
  if (axesList.isEmpty())
    return;

  bool isFirstVisible = !axesList.first()->visible(); // if the first axis is visible, the second axis (which is where the loop starts) isn't the first visible axis, so initialize with false
  for (int i=1; i<axesList.size(); ++i)
  {
    int offset = axesList.at(i-1)->offset() + axesList.at(i-1)->calculateMargin();
    if (axesList.at(i)->visible()) // only add inner tick length to offset if this axis is visible and it's not the first visible one (might happen if true first axis is invisible)
    {
      if (!isFirstVisible)
        offset += axesList.at(i)->tickLengthIn();
      isFirstVisible = false;
    }
    axesList.at(i)->setOffset(offset);
  }
}

/* inherits documentation from base class */
int QCPAxisRect::calculateAutoMargin(QCP::MarginSide side)
{
  if (!mAutoMargins.testFlag(side))
    qDebug() << Q_FUNC_INFO << "Called with side that isn't specified as auto margin";

  updateAxesOffset(QCPAxis::marginSideToAxisType(side));

  // note: only need to look at the last (outer most) axis to determine the total margin, due to updateAxisOffset call
  const QList<QCPAxis*> axesList = mAxes.value(QCPAxis::marginSideToAxisType(side));
  if (axesList.size() > 0)
    return axesList.last()->offset() + axesList.last()->calculateMargin();
  else
    return 0;
}

/*! \internal

  Reacts to a change in layout to potentially set the convenience axis pointers \ref
  QCustomPlot::xAxis, \ref QCustomPlot::yAxis, etc. of the parent QCustomPlot to the respective
  axes of this axis rect. This is only done if the respective convenience pointer is currently zero
  and if there is no QCPAxisRect at position (0, 0) of the plot layout.

  This automation makes it simpler to replace the main axis rect with a newly created one, without
  the need to manually reset the convenience pointers.
*/
void QCPAxisRect::layoutChanged()
{
  if (mParentPlot && mParentPlot->axisRectCount() > 0 && mParentPlot->axisRect(0) == this)
  {
    if (axisCount(QCPAxis::atBottom) > 0 && !mParentPlot->xAxis)
      mParentPlot->xAxis = axis(QCPAxis::atBottom);
    if (axisCount(QCPAxis::atLeft) > 0 && !mParentPlot->yAxis)
      mParentPlot->yAxis = axis(QCPAxis::atLeft);
    if (axisCount(QCPAxis::atTop) > 0 && !mParentPlot->xAxis2)
      mParentPlot->xAxis2 = axis(QCPAxis::atTop);
    if (axisCount(QCPAxis::atRight) > 0 && !mParentPlot->yAxis2)
      mParentPlot->yAxis2 = axis(QCPAxis::atRight);
  }
}

/*! \internal

  Event handler for when a mouse button is pressed on the axis rect. If the left mouse button is
  pressed, the range dragging interaction is initialized (the actual range manipulation happens in
  the \ref mouseMoveEvent).

  The mDragging flag is set to true and some anchor points are set that are needed to determine the
  distance the mouse was dragged in the mouse move/release events later.

  \see mouseMoveEvent, mouseReleaseEvent
*/
void QCPAxisRect::mousePressEvent(QMouseEvent *event, const QVariant &details)
{
  Q_UNUSED(details)
  if (event->buttons() & Qt::LeftButton)
  {
    mDragging = true;
    // initialize antialiasing backup in case we start dragging:
    if (mParentPlot->noAntialiasingOnDrag())
    {
      mAADragBackup = mParentPlot->antialiasedElements();
      mNotAADragBackup = mParentPlot->notAntialiasedElements();
    }
    // Mouse range dragging interaction:
    if (mParentPlot->interactions().testFlag(QCP::iRangeDrag))
    {
      mDragStartHorzRange.clear();
      for (int i=0; i<mRangeDragHorzAxis.size(); ++i)
        mDragStartHorzRange.append(mRangeDragHorzAxis.at(i).isNull() ? QCPRange() : mRangeDragHorzAxis.at(i)->range());
      mDragStartVertRange.clear();
      for (int i=0; i<mRangeDragVertAxis.size(); ++i)
        mDragStartVertRange.append(mRangeDragVertAxis.at(i).isNull() ? QCPRange() : mRangeDragVertAxis.at(i)->range());
    }
  }
}

/*! \internal

  Event handler for when the mouse is moved on the axis rect. If range dragging was activated in a
  preceding \ref mousePressEvent, the range is moved accordingly.

  \see mousePressEvent, mouseReleaseEvent
*/
void QCPAxisRect::mouseMoveEvent(QMouseEvent *event, const QPointF &startPos)
{
  Q_UNUSED(startPos)
  // Mouse range dragging interaction:
  if (mDragging && mParentPlot->interactions().testFlag(QCP::iRangeDrag))
  {

    if (mRangeDrag.testFlag(Qt::Horizontal))
    {
      for (int i=0; i<mRangeDragHorzAxis.size(); ++i)
      {
        QCPAxis *ax = mRangeDragHorzAxis.at(i).data();
        if (!ax)
          continue;
        if (i >= mDragStartHorzRange.size())
          break;
        if (ax->mScaleType == QCPAxis::stLinear)
        {
          double diff = ax->pixelToCoord(startPos.x()) - ax->pixelToCoord(event->pos().x());
          ax->setRange(mDragStartHorzRange.at(i).lower+diff, mDragStartHorzRange.at(i).upper+diff);
        } else if (ax->mScaleType == QCPAxis::stLogarithmic)
        {
          double diff = ax->pixelToCoord(startPos.x()) / ax->pixelToCoord(event->pos().x());
          ax->setRange(mDragStartHorzRange.at(i).lower*diff, mDragStartHorzRange.at(i).upper*diff);
        }
      }
    }

    if (mRangeDrag.testFlag(Qt::Vertical))
    {
      for (int i=0; i<mRangeDragVertAxis.size(); ++i)
      {
        QCPAxis *ax = mRangeDragVertAxis.at(i).data();
        if (!ax)
          continue;
        if (i >= mDragStartVertRange.size())
          break;
        if (ax->mScaleType == QCPAxis::stLinear)
        {
          double diff = ax->pixelToCoord(startPos.y()) - ax->pixelToCoord(event->pos().y());
          ax->setRange(mDragStartVertRange.at(i).lower+diff, mDragStartVertRange.at(i).upper+diff);
        } else if (ax->mScaleType == QCPAxis::stLogarithmic)
        {
          double diff = ax->pixelToCoord(startPos.y()) / ax->pixelToCoord(event->pos().y());
          ax->setRange(mDragStartVertRange.at(i).lower*diff, mDragStartVertRange.at(i).upper*diff);
        }
      }
    }

    if (mRangeDrag != 0) // if either vertical or horizontal drag was enabled, do a replot
    {
      if (mParentPlot->noAntialiasingOnDrag())
        mParentPlot->setNotAntialiasedElements(QCP::aeAll);
      mParentPlot->replot(QCustomPlot::rpQueuedReplot);
    }

  }
}

/* inherits documentation from base class */
void QCPAxisRect::mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos)
{
  Q_UNUSED(event)
  Q_UNUSED(startPos)
  mDragging = false;
  if (mParentPlot->noAntialiasingOnDrag())
  {
    mParentPlot->setAntialiasedElements(mAADragBackup);
    mParentPlot->setNotAntialiasedElements(mNotAADragBackup);
  }
}

/*! \internal

  Event handler for mouse wheel events. If rangeZoom is Qt::Horizontal, Qt::Vertical or both, the
  ranges of the axes defined as rangeZoomHorzAxis and rangeZoomVertAxis are scaled. The center of
  the scaling operation is the current cursor position inside the axis rect. The scaling factor is
  dependent on the mouse wheel delta (which direction the wheel was rotated) to provide a natural
  zooming feel. The Strength of the zoom can be controlled via \ref setRangeZoomFactor.

  Note, that event->delta() is usually +/-120 for single rotation steps. However, if the mouse
  wheel is turned rapidly, many steps may bunch up to one event, so the event->delta() may then be
  multiples of 120. This is taken into account here, by calculating \a wheelSteps and using it as
  exponent of the range zoom factor. This takes care of the wheel direction automatically, by
  inverting the factor, when the wheel step is negative (f^-1 = 1/f).
*/
void QCPAxisRect::wheelEvent(QWheelEvent *event)
{
  // Mouse range zooming interaction:
  if (mParentPlot->interactions().testFlag(QCP::iRangeZoom))
  {
    if (mRangeZoom != 0)
    {
      double factor;
      double wheelSteps = event->delta()/120.0; // a single step delta is +/-120 usually
      if (mRangeZoom.testFlag(Qt::Horizontal))
      {
        factor = qPow(mRangeZoomFactorHorz, wheelSteps);
        for (int i=0; i<mRangeZoomHorzAxis.size(); ++i)
        {
          if (!mRangeZoomHorzAxis.at(i).isNull())
            mRangeZoomHorzAxis.at(i)->scaleRange(factor, mRangeZoomHorzAxis.at(i)->pixelToCoord(event->pos().x()));
        }
      }
      if (mRangeZoom.testFlag(Qt::Vertical))
      {
        factor = qPow(mRangeZoomFactorVert, wheelSteps);
        for (int i=0; i<mRangeZoomVertAxis.size(); ++i)
        {
          if (!mRangeZoomVertAxis.at(i).isNull())
            mRangeZoomVertAxis.at(i)->scaleRange(factor, mRangeZoomVertAxis.at(i)->pixelToCoord(event->pos().y()));
        }
      }
      mParentPlot->replot();
    }
  }
}
/* end of 'src/layoutelements/layoutelement-axisrect.cpp' */


/* including file 'src/layoutelements/layoutelement-legend.cpp', size 31153  */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPAbstractLegendItem
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPAbstractLegendItem
  \brief The abstract base class for all entries in a QCPLegend.

  It defines a very basic interface for entries in a QCPLegend. For representing plottables in the
  legend, the subclass \ref QCPPlottableLegendItem is more suitable.

  Only derive directly from this class when you need absolute freedom (e.g. a custom legend entry
  that's not even associated with a plottable).

  You must implement the following pure virtual functions:
  \li \ref draw (from QCPLayerable)

  You inherit the following members you may use:
  <table>
    <tr>
      <td>QCPLegend *\b mParentLegend</td>
      <td>A pointer to the parent QCPLegend.</td>
    </tr><tr>
      <td>QFont \b mFont</td>
      <td>The generic font of the item. You should use this font for all or at least the most prominent text of the item.</td>
    </tr>
  </table>
*/

/* start of documentation of signals */

/*! \fn void QCPAbstractLegendItem::selectionChanged(bool selected)

  This signal is emitted when the selection state of this legend item has changed, either by user
  interaction or by a direct call to \ref setSelected.
*/

/* end of documentation of signals */

/*!
  Constructs a QCPAbstractLegendItem and associates it with the QCPLegend \a parent. This does not
  cause the item to be added to \a parent, so \ref QCPLegend::addItem must be called separately.
*/
QCPAbstractLegendItem::QCPAbstractLegendItem(QCPLegend *parent) :
  QCPLayoutElement(parent->parentPlot()),
  mParentLegend(parent),
  mFont(parent->font()),
  mTextColor(parent->textColor()),
  mSelectedFont(parent->selectedFont()),
  mSelectedTextColor(parent->selectedTextColor()),
  mSelectable(true),
  mSelected(false)
{
  setLayer(QLatin1String("legend"));
  setMargins(QMargins(0, 0, 0, 0));
}

/*!
  Sets the default font of this specific legend item to \a font.

  \see setTextColor, QCPLegend::setFont
*/
void QCPAbstractLegendItem::setFont(const QFont &font)
{
  mFont = font;
}

/*!
  Sets the default text color of this specific legend item to \a color.

  \see setFont, QCPLegend::setTextColor
*/
void QCPAbstractLegendItem::setTextColor(const QColor &color)
{
  mTextColor = color;
}

/*!
  When this legend item is selected, \a font is used to draw generic text, instead of the normal
  font set with \ref setFont.

  \see setFont, QCPLegend::setSelectedFont
*/
void QCPAbstractLegendItem::setSelectedFont(const QFont &font)
{
  mSelectedFont = font;
}

/*!
  When this legend item is selected, \a color is used to draw generic text, instead of the normal
  color set with \ref setTextColor.

  \see setTextColor, QCPLegend::setSelectedTextColor
*/
void QCPAbstractLegendItem::setSelectedTextColor(const QColor &color)
{
  mSelectedTextColor = color;
}

/*!
  Sets whether this specific legend item is selectable.

  \see setSelectedParts, QCustomPlot::setInteractions
*/
void QCPAbstractLegendItem::setSelectable(bool selectable)
{
  if (mSelectable != selectable)
  {
    mSelectable = selectable;
    emit selectableChanged(mSelectable);
  }
}

/*!
  Sets whether this specific legend item is selected.

  It is possible to set the selection state of this item by calling this function directly, even if
  setSelectable is set to false.

  \see setSelectableParts, QCustomPlot::setInteractions
*/
void QCPAbstractLegendItem::setSelected(bool selected)
{
  if (mSelected != selected)
  {
    mSelected = selected;
    emit selectionChanged(mSelected);
  }
}

/* inherits documentation from base class */
double QCPAbstractLegendItem::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (!mParentPlot) return -1;
  if (onlySelectable && (!mSelectable || !mParentLegend->selectableParts().testFlag(QCPLegend::spItems)))
    return -1;

  if (mRect.contains(pos.toPoint()))
    return mParentPlot->selectionTolerance()*0.99;
  else
    return -1;
}

/* inherits documentation from base class */
void QCPAbstractLegendItem::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiased, QCP::aeLegendItems);
}

/* inherits documentation from base class */
QRect QCPAbstractLegendItem::clipRect() const
{
  return mOuterRect;
}

/* inherits documentation from base class */
void QCPAbstractLegendItem::selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged)
{
  Q_UNUSED(event)
  Q_UNUSED(details)
  if (mSelectable && mParentLegend->selectableParts().testFlag(QCPLegend::spItems))
  {
    bool selBefore = mSelected;
    setSelected(additive ? !mSelected : true);
    if (selectionStateChanged)
      *selectionStateChanged = mSelected != selBefore;
  }
}

/* inherits documentation from base class */
void QCPAbstractLegendItem::deselectEvent(bool *selectionStateChanged)
{
  if (mSelectable && mParentLegend->selectableParts().testFlag(QCPLegend::spItems))
  {
    bool selBefore = mSelected;
    setSelected(false);
    if (selectionStateChanged)
      *selectionStateChanged = mSelected != selBefore;
  }
}

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPPlottableLegendItem
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPPlottableLegendItem
  \brief A legend item representing a plottable with an icon and the plottable name.

  This is the standard legend item for plottables. It displays an icon of the plottable next to the
  plottable name. The icon is drawn by the respective plottable itself (\ref
  QCPAbstractPlottable::drawLegendIcon), and tries to give an intuitive symbol for the plottable.
  For example, the QCPGraph draws a centered horizontal line and/or a single scatter point in the
  middle.

  Legend items of this type are always associated with one plottable (retrievable via the
  plottable() function and settable with the constructor). You may change the font of the plottable
  name with \ref setFont. Icon padding and border pen is taken from the parent QCPLegend, see \ref
  QCPLegend::setIconBorderPen and \ref QCPLegend::setIconTextPadding.

  The function \ref QCPAbstractPlottable::addToLegend/\ref QCPAbstractPlottable::removeFromLegend
  creates/removes legend items of this type.

  Since QCPLegend is based on QCPLayoutGrid, a legend item itself is just a subclass of
  QCPLayoutElement. While it could be added to a legend (or any other layout) via the normal layout
  interface, QCPLegend has specialized functions for handling legend items conveniently, see the
  documentation of \ref QCPLegend.
*/

/*!
  Creates a new legend item associated with \a plottable.

  Once it's created, it can be added to the legend via \ref QCPLegend::addItem.

  A more convenient way of adding/removing a plottable to/from the legend is via the functions \ref
  QCPAbstractPlottable::addToLegend and \ref QCPAbstractPlottable::removeFromLegend.
*/
QCPPlottableLegendItem::QCPPlottableLegendItem(QCPLegend *parent, QCPAbstractPlottable *plottable) :
  QCPAbstractLegendItem(parent),
  mPlottable(plottable)
{
  setAntialiased(false);
}

/*! \internal

  Returns the pen that shall be used to draw the icon border, taking into account the selection
  state of this item.
*/
QPen QCPPlottableLegendItem::getIconBorderPen() const
{
  return mSelected ? mParentLegend->selectedIconBorderPen() : mParentLegend->iconBorderPen();
}

/*! \internal

  Returns the text color that shall be used to draw text, taking into account the selection state
  of this item.
*/
QColor QCPPlottableLegendItem::getTextColor() const
{
  return mSelected ? mSelectedTextColor : mTextColor;
}

/*! \internal

  Returns the font that shall be used to draw text, taking into account the selection state of this
  item.
*/
QFont QCPPlottableLegendItem::getFont() const
{
  return mSelected ? mSelectedFont : mFont;
}

/*! \internal

  Draws the item with \a painter. The size and position of the drawn legend item is defined by the
  parent layout (typically a \ref QCPLegend) and the \ref minimumOuterSizeHint and \ref
  maximumOuterSizeHint of this legend item.
*/
void QCPPlottableLegendItem::draw(QCPPainter *painter)
{
  if (!mPlottable) return;
  painter->setFont(getFont());
  painter->setPen(QPen(getTextColor()));
  QSizeF iconSize = mParentLegend->iconSize();
  QRectF textRect = painter->fontMetrics().boundingRect(0, 0, 0, iconSize.height(), Qt::TextDontClip, mPlottable->name());
  QRectF iconRect(mRect.topLeft(), iconSize);
  int textHeight = qMax(textRect.height(), iconSize.height());  // if text has smaller height than icon, center text vertically in icon height, else align tops
  painter->drawText(mRect.x()+iconSize.width()+mParentLegend->iconTextPadding(), mRect.y(), textRect.width(), textHeight, Qt::TextDontClip, mPlottable->name());
  // draw icon:
  painter->save();
  painter->setClipRect(iconRect, Qt::IntersectClip);
  mPlottable->drawLegendIcon(painter, iconRect);
  painter->restore();
  // draw icon border:
  if (getIconBorderPen().style() != Qt::NoPen)
  {
    painter->setPen(getIconBorderPen());
    painter->setBrush(Qt::NoBrush);
    int halfPen = qCeil(painter->pen().widthF()*0.5)+1;
    painter->setClipRect(mOuterRect.adjusted(-halfPen, -halfPen, halfPen, halfPen)); // extend default clip rect so thicker pens (especially during selection) are not clipped
    painter->drawRect(iconRect);
  }
}

/*! \internal

  Calculates and returns the size of this item. This includes the icon, the text and the padding in
  between.

  \seebaseclassmethod
*/
QSize QCPPlottableLegendItem::minimumOuterSizeHint() const
{
  if (!mPlottable) return QSize();
  QSize result(0, 0);
  QRect textRect;
  QFontMetrics fontMetrics(getFont());
  QSize iconSize = mParentLegend->iconSize();
  textRect = fontMetrics.boundingRect(0, 0, 0, iconSize.height(), Qt::TextDontClip, mPlottable->name());
  result.setWidth(iconSize.width() + mParentLegend->iconTextPadding() + textRect.width());
  result.setHeight(qMax(textRect.height(), iconSize.height()));
  result.rwidth() += mMargins.left()+mMargins.right();
  result.rheight() += mMargins.top()+mMargins.bottom();
  return result;
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPLegend
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPLegend
  \brief Manages a legend inside a QCustomPlot.

  A legend is a small box somewhere in the plot which lists plottables with their name and icon.

  A legend is populated with legend items by calling \ref QCPAbstractPlottable::addToLegend on the
  plottable, for which a legend item shall be created. In the case of the main legend (\ref
  QCustomPlot::legend), simply adding plottables to the plot while \ref
  QCustomPlot::setAutoAddPlottableToLegend is set to true (the default) creates corresponding
  legend items. The legend item associated with a certain plottable can be removed with \ref
  QCPAbstractPlottable::removeFromLegend. However, QCPLegend also offers an interface to add and
  manipulate legend items directly: \ref item, \ref itemWithPlottable, \ref itemCount, \ref
  addItem, \ref removeItem, etc.

  Since \ref QCPLegend derives from \ref QCPLayoutGrid, it can be placed in any position a \ref
  QCPLayoutElement may be positioned. The legend items are themselves \ref QCPLayoutElement
  "QCPLayoutElements" which are placed in the grid layout of the legend. \ref QCPLegend only adds
  an interface specialized for handling child elements of type \ref QCPAbstractLegendItem, as
  mentioned above. In principle, any other layout elements may also be added to a legend via the
  normal \ref QCPLayoutGrid interface. See the special page about \link thelayoutsystem The Layout
  System\endlink for examples on how to add other elements to the legend and move it outside the axis
  rect.

  Use the methods \ref setFillOrder and \ref setWrap inherited from \ref QCPLayoutGrid to control
  in which order (column first or row first) the legend is filled up when calling \ref addItem, and
  at which column or row wrapping occurs. The default fill order for legends is \ref foRowsFirst.

  By default, every QCustomPlot has one legend (\ref QCustomPlot::legend) which is placed in the
  inset layout of the main axis rect (\ref QCPAxisRect::insetLayout). To move the legend to another
  position inside the axis rect, use the methods of the \ref QCPLayoutInset. To move the legend
  outside of the axis rect, place it anywhere else with the \ref QCPLayout/\ref QCPLayoutElement
  interface.
*/

/* start of documentation of signals */

/*! \fn void QCPLegend::selectionChanged(QCPLegend::SelectableParts selection);

  This signal is emitted when the selection state of this legend has changed.

  \see setSelectedParts, setSelectableParts
*/

/* end of documentation of signals */

/*!
  Constructs a new QCPLegend instance with default values.

  Note that by default, QCustomPlot already contains a legend ready to be used as \ref
  QCustomPlot::legend
*/
QCPLegend::QCPLegend()
{
  setFillOrder(QCPLayoutGrid::foRowsFirst);
  setWrap(0);

  setRowSpacing(3);
  setColumnSpacing(8);
  setMargins(QMargins(7, 5, 7, 4));
  setAntialiased(false);
  setIconSize(32, 18);

  setIconTextPadding(7);

  setSelectableParts(spLegendBox | spItems);
  setSelectedParts(spNone);

  setBorderPen(QPen(Qt::black, 0));
  setSelectedBorderPen(QPen(Qt::blue, 2));
  setIconBorderPen(Qt::NoPen);
  setSelectedIconBorderPen(QPen(Qt::blue, 2));
  setBrush(Qt::white);
  setSelectedBrush(Qt::white);
  setTextColor(Qt::black);
  setSelectedTextColor(Qt::blue);
}

QCPLegend::~QCPLegend()
{
  clearItems();
  if (qobject_cast<QCustomPlot*>(mParentPlot)) // make sure this isn't called from QObject dtor when QCustomPlot is already destructed (happens when the legend is not in any layout and thus QObject-child of QCustomPlot)
    mParentPlot->legendRemoved(this);
}

/* no doc for getter, see setSelectedParts */
QCPLegend::SelectableParts QCPLegend::selectedParts() const
{
  // check whether any legend elements selected, if yes, add spItems to return value
  bool hasSelectedItems = false;
  for (int i=0; i<itemCount(); ++i)
  {
    if (item(i) && item(i)->selected())
    {
      hasSelectedItems = true;
      break;
    }
  }
  if (hasSelectedItems)
    return mSelectedParts | spItems;
  else
    return mSelectedParts & ~spItems;
}

/*!
  Sets the pen, the border of the entire legend is drawn with.
*/
void QCPLegend::setBorderPen(const QPen &pen)
{
  mBorderPen = pen;
}

/*!
  Sets the brush of the legend background.
*/
void QCPLegend::setBrush(const QBrush &brush)
{
  mBrush = brush;
}

/*!
  Sets the default font of legend text. Legend items that draw text (e.g. the name of a graph) will
  use this font by default. However, a different font can be specified on a per-item-basis by
  accessing the specific legend item.

  This function will also set \a font on all already existing legend items.

  \see QCPAbstractLegendItem::setFont
*/
void QCPLegend::setFont(const QFont &font)
{
  mFont = font;
  for (int i=0; i<itemCount(); ++i)
  {
    if (item(i))
      item(i)->setFont(mFont);
  }
}

/*!
  Sets the default color of legend text. Legend items that draw text (e.g. the name of a graph)
  will use this color by default. However, a different colors can be specified on a per-item-basis
  by accessing the specific legend item.

  This function will also set \a color on all already existing legend items.

  \see QCPAbstractLegendItem::setTextColor
*/
void QCPLegend::setTextColor(const QColor &color)
{
  mTextColor = color;
  for (int i=0; i<itemCount(); ++i)
  {
    if (item(i))
      item(i)->setTextColor(color);
  }
}

/*!
  Sets the size of legend icons. Legend items that draw an icon (e.g. a visual
  representation of the graph) will use this size by default.
*/
void QCPLegend::setIconSize(const QSize &size)
{
  mIconSize = size;
}

/*! \overload
*/
void QCPLegend::setIconSize(int width, int height)
{
  mIconSize.setWidth(width);
  mIconSize.setHeight(height);
}

/*!
  Sets the horizontal space in pixels between the legend icon and the text next to it.
  Legend items that draw an icon (e.g. a visual representation of the graph) and text (e.g. the
  name of the graph) will use this space by default.
*/
void QCPLegend::setIconTextPadding(int padding)
{
  mIconTextPadding = padding;
}

/*!
  Sets the pen used to draw a border around each legend icon. Legend items that draw an
  icon (e.g. a visual representation of the graph) will use this pen by default.

  If no border is wanted, set this to \a Qt::NoPen.
*/
void QCPLegend::setIconBorderPen(const QPen &pen)
{
  mIconBorderPen = pen;
}

/*!
  Sets whether the user can (de-)select the parts in \a selectable by clicking on the QCustomPlot surface.
  (When \ref QCustomPlot::setInteractions contains \ref QCP::iSelectLegend.)

  However, even when \a selectable is set to a value not allowing the selection of a specific part,
  it is still possible to set the selection of this part manually, by calling \ref setSelectedParts
  directly.

  \see SelectablePart, setSelectedParts
*/
void QCPLegend::setSelectableParts(const SelectableParts &selectable)
{
  if (mSelectableParts != selectable)
  {
    mSelectableParts = selectable;
    emit selectableChanged(mSelectableParts);
  }
}

/*!
  Sets the selected state of the respective legend parts described by \ref SelectablePart. When a part
  is selected, it uses a different pen/font and brush. If some legend items are selected and \a selected
  doesn't contain \ref spItems, those items become deselected.

  The entire selection mechanism is handled automatically when \ref QCustomPlot::setInteractions
  contains iSelectLegend. You only need to call this function when you wish to change the selection
  state manually.

  This function can change the selection state of a part even when \ref setSelectableParts was set to a
  value that actually excludes the part.

  emits the \ref selectionChanged signal when \a selected is different from the previous selection state.

  Note that it doesn't make sense to set the selected state \ref spItems here when it wasn't set
  before, because there's no way to specify which exact items to newly select. Do this by calling
  \ref QCPAbstractLegendItem::setSelected directly on the legend item you wish to select.

  \see SelectablePart, setSelectableParts, selectTest, setSelectedBorderPen, setSelectedIconBorderPen, setSelectedBrush,
  setSelectedFont
*/
void QCPLegend::setSelectedParts(const SelectableParts &selected)
{
  SelectableParts newSelected = selected;
  mSelectedParts = this->selectedParts(); // update mSelectedParts in case item selection changed

  if (mSelectedParts != newSelected)
  {
    if (!mSelectedParts.testFlag(spItems) && newSelected.testFlag(spItems)) // attempt to set spItems flag (can't do that)
    {
      qDebug() << Q_FUNC_INFO << "spItems flag can not be set, it can only be unset with this function";
      newSelected &= ~spItems;
    }
    if (mSelectedParts.testFlag(spItems) && !newSelected.testFlag(spItems)) // spItems flag was unset, so clear item selection
    {
      for (int i=0; i<itemCount(); ++i)
      {
        if (item(i))
          item(i)->setSelected(false);
      }
    }
    mSelectedParts = newSelected;
    emit selectionChanged(mSelectedParts);
  }
}

/*!
  When the legend box is selected, this pen is used to draw the border instead of the normal pen
  set via \ref setBorderPen.

  \see setSelectedParts, setSelectableParts, setSelectedBrush
*/
void QCPLegend::setSelectedBorderPen(const QPen &pen)
{
  mSelectedBorderPen = pen;
}

/*!
  Sets the pen legend items will use to draw their icon borders, when they are selected.

  \see setSelectedParts, setSelectableParts, setSelectedFont
*/
void QCPLegend::setSelectedIconBorderPen(const QPen &pen)
{
  mSelectedIconBorderPen = pen;
}

/*!
  When the legend box is selected, this brush is used to draw the legend background instead of the normal brush
  set via \ref setBrush.

  \see setSelectedParts, setSelectableParts, setSelectedBorderPen
*/
void QCPLegend::setSelectedBrush(const QBrush &brush)
{
  mSelectedBrush = brush;
}

/*!
  Sets the default font that is used by legend items when they are selected.

  This function will also set \a font on all already existing legend items.

  \see setFont, QCPAbstractLegendItem::setSelectedFont
*/
void QCPLegend::setSelectedFont(const QFont &font)
{
  mSelectedFont = font;
  for (int i=0; i<itemCount(); ++i)
  {
    if (item(i))
      item(i)->setSelectedFont(font);
  }
}

/*!
  Sets the default text color that is used by legend items when they are selected.

  This function will also set \a color on all already existing legend items.

  \see setTextColor, QCPAbstractLegendItem::setSelectedTextColor
*/
void QCPLegend::setSelectedTextColor(const QColor &color)
{
  mSelectedTextColor = color;
  for (int i=0; i<itemCount(); ++i)
  {
    if (item(i))
      item(i)->setSelectedTextColor(color);
  }
}

/*!
  Returns the item with index \a i.

  Note that the linear index depends on the current fill order (\ref setFillOrder).

  \see itemCount, addItem, itemWithPlottable
*/
QCPAbstractLegendItem *QCPLegend::item(int index) const
{
  return qobject_cast<QCPAbstractLegendItem*>(elementAt(index));
}

/*!
  Returns the QCPPlottableLegendItem which is associated with \a plottable (e.g. a \ref QCPGraph*).
  If such an item isn't in the legend, returns 0.

  \see hasItemWithPlottable
*/
QCPPlottableLegendItem *QCPLegend::itemWithPlottable(const QCPAbstractPlottable *plottable) const
{
  for (int i=0; i<itemCount(); ++i)
  {
    if (QCPPlottableLegendItem *pli = qobject_cast<QCPPlottableLegendItem*>(item(i)))
    {
      if (pli->plottable() == plottable)
        return pli;
    }
  }
  return 0;
}

/*!
  Returns the number of items currently in the legend.

  Note that if empty cells are in the legend (e.g. by calling methods of the \ref QCPLayoutGrid
  base class which allows creating empty cells), they are included in the returned count.

  \see item
*/
int QCPLegend::itemCount() const
{
  return elementCount();
}

/*!
  Returns whether the legend contains \a item.

  \see hasItemWithPlottable
*/
bool QCPLegend::hasItem(QCPAbstractLegendItem *item) const
{
  for (int i=0; i<itemCount(); ++i)
  {
    if (item == this->item(i))
        return true;
  }
  return false;
}

/*!
  Returns whether the legend contains a QCPPlottableLegendItem which is associated with \a plottable (e.g. a \ref QCPGraph*).
  If such an item isn't in the legend, returns false.

  \see itemWithPlottable
*/
bool QCPLegend::hasItemWithPlottable(const QCPAbstractPlottable *plottable) const
{
  return itemWithPlottable(plottable);
}

/*!
  Adds \a item to the legend, if it's not present already. The element is arranged according to the
  current fill order (\ref setFillOrder) and wrapping (\ref setWrap).

  Returns true on sucess, i.e. if the item wasn't in the list already and has been successfuly added.

  The legend takes ownership of the item.

  \see removeItem, item, hasItem
*/
bool QCPLegend::addItem(QCPAbstractLegendItem *item)
{
  return addElement(item);
}

/*! \overload

  Removes the item with the specified \a index from the legend and deletes it.

  After successful removal, the legend is reordered according to the current fill order (\ref
  setFillOrder) and wrapping (\ref setWrap), so no empty cell remains where the removed \a item
  was. If you don't want this, rather use the raw element interface of \ref QCPLayoutGrid.

  Returns true, if successful. Unlike \ref QCPLayoutGrid::removeAt, this method only removes
  elements derived from \ref QCPAbstractLegendItem.

  \see itemCount, clearItems
*/
bool QCPLegend::removeItem(int index)
{
  if (QCPAbstractLegendItem *ali = item(index))
  {
    bool success = remove(ali);
    if (success)
      setFillOrder(fillOrder(), true); // gets rid of empty cell by reordering
    return success;
  } else
    return false;
}

/*! \overload

  Removes \a item from the legend and deletes it.

  After successful removal, the legend is reordered according to the current fill order (\ref
  setFillOrder) and wrapping (\ref setWrap), so no empty cell remains where the removed \a item
  was. If you don't want this, rather use the raw element interface of \ref QCPLayoutGrid.

  Returns true, if successful.

  \see clearItems
*/
bool QCPLegend::removeItem(QCPAbstractLegendItem *item)
{
  bool success = remove(item);
  if (success)
    setFillOrder(fillOrder(), true); // gets rid of empty cell by reordering
  return success;
}

/*!
  Removes all items from the legend.
*/
void QCPLegend::clearItems()
{
  for (int i=itemCount()-1; i>=0; --i)
    removeItem(i);
}

/*!
  Returns the legend items that are currently selected. If no items are selected,
  the list is empty.

  \see QCPAbstractLegendItem::setSelected, setSelectable
*/
QList<QCPAbstractLegendItem *> QCPLegend::selectedItems() const
{
  QList<QCPAbstractLegendItem*> result;
  for (int i=0; i<itemCount(); ++i)
  {
    if (QCPAbstractLegendItem *ali = item(i))
    {
      if (ali->selected())
        result.append(ali);
    }
  }
  return result;
}

/*! \internal

  A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
  before drawing main legend elements.

  This is the antialiasing state the painter passed to the \ref draw method is in by default.

  This function takes into account the local setting of the antialiasing flag as well as the
  overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
  QCustomPlot::setNotAntialiasedElements.

  \seebaseclassmethod

  \see setAntialiased
*/
void QCPLegend::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiased, QCP::aeLegend);
}

/*! \internal

  Returns the pen used to paint the border of the legend, taking into account the selection state
  of the legend box.
*/
QPen QCPLegend::getBorderPen() const
{
  return mSelectedParts.testFlag(spLegendBox) ? mSelectedBorderPen : mBorderPen;
}

/*! \internal

  Returns the brush used to paint the background of the legend, taking into account the selection
  state of the legend box.
*/
QBrush QCPLegend::getBrush() const
{
  return mSelectedParts.testFlag(spLegendBox) ? mSelectedBrush : mBrush;
}

/*! \internal

  Draws the legend box with the provided \a painter. The individual legend items are layerables
  themselves, thus are drawn independently.
*/
void QCPLegend::draw(QCPPainter *painter)
{
  // draw background rect:
  painter->setBrush(getBrush());
  painter->setPen(getBorderPen());
  painter->drawRect(mOuterRect);
}

/* inherits documentation from base class */
double QCPLegend::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  if (!mParentPlot) return -1;
  if (onlySelectable && !mSelectableParts.testFlag(spLegendBox))
    return -1;

  if (mOuterRect.contains(pos.toPoint()))
  {
    if (details) details->setValue(spLegendBox);
    return mParentPlot->selectionTolerance()*0.99;
  }
  return -1;
}

/* inherits documentation from base class */
void QCPLegend::selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged)
{
  Q_UNUSED(event)
  mSelectedParts = selectedParts(); // in case item selection has changed
  if (details.value<SelectablePart>() == spLegendBox && mSelectableParts.testFlag(spLegendBox))
  {
    SelectableParts selBefore = mSelectedParts;
    setSelectedParts(additive ? mSelectedParts^spLegendBox : mSelectedParts|spLegendBox); // no need to unset spItems in !additive case, because they will be deselected by QCustomPlot (they're normal QCPLayerables with own deselectEvent)
    if (selectionStateChanged)
      *selectionStateChanged = mSelectedParts != selBefore;
  }
}

/* inherits documentation from base class */
void QCPLegend::deselectEvent(bool *selectionStateChanged)
{
  mSelectedParts = selectedParts(); // in case item selection has changed
  if (mSelectableParts.testFlag(spLegendBox))
  {
    SelectableParts selBefore = mSelectedParts;
    setSelectedParts(selectedParts() & ~spLegendBox);
    if (selectionStateChanged)
      *selectionStateChanged = mSelectedParts != selBefore;
  }
}

/* inherits documentation from base class */
QCP::Interaction QCPLegend::selectionCategory() const
{
  return QCP::iSelectLegend;
}

/* inherits documentation from base class */
QCP::Interaction QCPAbstractLegendItem::selectionCategory() const
{
  return QCP::iSelectLegend;
}

/* inherits documentation from base class */
void QCPLegend::parentPlotInitialized(QCustomPlot *parentPlot)
{
  if (parentPlot && !parentPlot->legend)
    parentPlot->legend = this;
}
/* end of 'src/layoutelements/layoutelement-legend.cpp' */


/* including file 'src/layoutelements/layoutelement-textelement.cpp', size 12761 */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200     */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPTextElement
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPTextElement
  \brief A layout element displaying a text

  The text may be specified with \ref setText, the formatting can be controlled with \ref setFont,
  \ref setTextColor, and \ref setTextFlags.

  A text element can be added as follows:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcptextelement-creation
*/

/* start documentation of signals */

/*! \fn void QCPTextElement::selectionChanged(bool selected)

  This signal is emitted when the selection state has changed to \a selected, either by user
  interaction or by a direct call to \ref setSelected.

  \see setSelected, setSelectable
*/

/*! \fn void QCPTextElement::clicked(QMouseEvent *event)

  This signal is emitted when the text element is clicked.

  \see doubleClicked, selectTest
*/

/*! \fn void QCPTextElement::doubleClicked(QMouseEvent *event)

  This signal is emitted when the text element is double clicked.

  \see clicked, selectTest
*/

/* end documentation of signals */

/*! \overload

  Creates a new QCPTextElement instance and sets default values. The initial text is empty (\ref
  setText).
*/
QCPTextElement::QCPTextElement(QCustomPlot *parentPlot) :
  QCPLayoutElement(parentPlot),
  mText(),
  mTextFlags(Qt::AlignCenter|Qt::TextWordWrap),
  mFont(QFont(QLatin1String("sans serif"), 12)), // will be taken from parentPlot if available, see below
  mTextColor(Qt::black),
  mSelectedFont(QFont(QLatin1String("sans serif"), 12)), // will be taken from parentPlot if available, see below
  mSelectedTextColor(Qt::blue),
  mSelectable(false),
  mSelected(false)
{
  if (parentPlot)
  {
    mFont = parentPlot->font();
    mSelectedFont = parentPlot->font();
  }
  setMargins(QMargins(2, 2, 2, 2));
}

/*! \overload

  Creates a new QCPTextElement instance and sets default values.

  The initial text is set to \a text.
*/
QCPTextElement::QCPTextElement(QCustomPlot *parentPlot, const QString &text) :
  QCPLayoutElement(parentPlot),
  mText(text),
  mTextFlags(Qt::AlignCenter|Qt::TextWordWrap),
  mFont(QFont(QLatin1String("sans serif"), 12)), // will be taken from parentPlot if available, see below
  mTextColor(Qt::black),
  mSelectedFont(QFont(QLatin1String("sans serif"), 12)), // will be taken from parentPlot if available, see below
  mSelectedTextColor(Qt::blue),
  mSelectable(false),
  mSelected(false)
{
  if (parentPlot)
  {
    mFont = parentPlot->font();
    mSelectedFont = parentPlot->font();
  }
  setMargins(QMargins(2, 2, 2, 2));
}

/*! \overload

  Creates a new QCPTextElement instance and sets default values.

  The initial text is set to \a text with \a pointSize.
*/
QCPTextElement::QCPTextElement(QCustomPlot *parentPlot, const QString &text, double pointSize) :
  QCPLayoutElement(parentPlot),
  mText(text),
  mTextFlags(Qt::AlignCenter|Qt::TextWordWrap),
  mFont(QFont(QLatin1String("sans serif"), pointSize)), // will be taken from parentPlot if available, see below
  mTextColor(Qt::black),
  mSelectedFont(QFont(QLatin1String("sans serif"), pointSize)), // will be taken from parentPlot if available, see below
  mSelectedTextColor(Qt::blue),
  mSelectable(false),
  mSelected(false)
{
  if (parentPlot)
  {
    mFont = parentPlot->font();
    mFont.setPointSizeF(pointSize);
    mSelectedFont = parentPlot->font();
    mSelectedFont.setPointSizeF(pointSize);
  }
  setMargins(QMargins(2, 2, 2, 2));
}

/*! \overload

  Creates a new QCPTextElement instance and sets default values.

  The initial text is set to \a text with \a pointSize and the specified \a fontFamily.
*/
QCPTextElement::QCPTextElement(QCustomPlot *parentPlot, const QString &text, const QString &fontFamily, double pointSize) :
  QCPLayoutElement(parentPlot),
  mText(text),
  mTextFlags(Qt::AlignCenter|Qt::TextWordWrap),
  mFont(QFont(fontFamily, pointSize)),
  mTextColor(Qt::black),
  mSelectedFont(QFont(fontFamily, pointSize)),
  mSelectedTextColor(Qt::blue),
  mSelectable(false),
  mSelected(false)
{
  setMargins(QMargins(2, 2, 2, 2));
}

/*! \overload

  Creates a new QCPTextElement instance and sets default values.

  The initial text is set to \a text with the specified \a font.
*/
QCPTextElement::QCPTextElement(QCustomPlot *parentPlot, const QString &text, const QFont &font) :
  QCPLayoutElement(parentPlot),
  mText(text),
  mTextFlags(Qt::AlignCenter|Qt::TextWordWrap),
  mFont(font),
  mTextColor(Qt::black),
  mSelectedFont(font),
  mSelectedTextColor(Qt::blue),
  mSelectable(false),
  mSelected(false)
{
  setMargins(QMargins(2, 2, 2, 2));
}

/*!
  Sets the text that will be displayed to \a text. Multiple lines can be created by insertion of "\n".

  \see setFont, setTextColor, setTextFlags
*/
void QCPTextElement::setText(const QString &text)
{
  mText = text;
}

/*!
  Sets options for text alignment and wrapping behaviour. \a flags is a bitwise OR-combination of
  \c Qt::AlignmentFlag and \c Qt::TextFlag enums.

  Possible enums are:
  - Qt::AlignLeft
  - Qt::AlignRight
  - Qt::AlignHCenter
  - Qt::AlignJustify
  - Qt::AlignTop
  - Qt::AlignBottom
  - Qt::AlignVCenter
  - Qt::AlignCenter
  - Qt::TextDontClip
  - Qt::TextSingleLine
  - Qt::TextExpandTabs
  - Qt::TextShowMnemonic
  - Qt::TextWordWrap
  - Qt::TextIncludeTrailingSpaces
*/
void QCPTextElement::setTextFlags(int flags)
{
  mTextFlags = flags;
}

/*!
  Sets the \a font of the text.

  \see setTextColor, setSelectedFont
*/
void QCPTextElement::setFont(const QFont &font)
{
  mFont = font;
}

/*!
  Sets the \a color of the text.

  \see setFont, setSelectedTextColor
*/
void QCPTextElement::setTextColor(const QColor &color)
{
  mTextColor = color;
}

/*!
  Sets the \a font of the text that will be used if the text element is selected (\ref setSelected).

  \see setFont
*/
void QCPTextElement::setSelectedFont(const QFont &font)
{
  mSelectedFont = font;
}

/*!
  Sets the \a color of the text that will be used if the text element is selected (\ref setSelected).

  \see setTextColor
*/
void QCPTextElement::setSelectedTextColor(const QColor &color)
{
  mSelectedTextColor = color;
}

/*!
  Sets whether the user may select this text element.

  Note that even when \a selectable is set to <tt>false</tt>, the selection state may be changed
  programmatically via \ref setSelected.
*/
void QCPTextElement::setSelectable(bool selectable)
{
  if (mSelectable != selectable)
  {
    mSelectable = selectable;
    emit selectableChanged(mSelectable);
  }
}

/*!
  Sets the selection state of this text element to \a selected. If the selection has changed, \ref
  selectionChanged is emitted.

  Note that this function can change the selection state independently of the current \ref
  setSelectable state.
*/
void QCPTextElement::setSelected(bool selected)
{
  if (mSelected != selected)
  {
    mSelected = selected;
    emit selectionChanged(mSelected);
  }
}

/* inherits documentation from base class */
void QCPTextElement::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  applyAntialiasingHint(painter, mAntialiased, QCP::aeOther);
}

/* inherits documentation from base class */
void QCPTextElement::draw(QCPPainter *painter)
{
  painter->setFont(mainFont());
  painter->setPen(QPen(mainTextColor()));
  painter->drawText(mRect, Qt::AlignCenter, mText, &mTextBoundingRect);
}

/* inherits documentation from base class */
QSize QCPTextElement::minimumOuterSizeHint() const
{
  QFontMetrics metrics(mFont);
  QSize result(metrics.boundingRect(0, 0, 0, 0, Qt::AlignCenter, mText).size());
  result.rwidth() += mMargins.left()+mMargins.right();
  result.rheight() += mMargins.top()+mMargins.bottom();
  return result;
}

/* inherits documentation from base class */
QSize QCPTextElement::maximumOuterSizeHint() const
{
  QFontMetrics metrics(mFont);
  QSize result(metrics.boundingRect(0, 0, 0, 0, Qt::AlignCenter, mText).size());
  result.setWidth(QWIDGETSIZE_MAX);
  result.rheight() += mMargins.top()+mMargins.bottom();
  return result;
}

/* inherits documentation from base class */
void QCPTextElement::selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged)
{
  Q_UNUSED(event)
  Q_UNUSED(details)
  if (mSelectable)
  {
    bool selBefore = mSelected;
    setSelected(additive ? !mSelected : true);
    if (selectionStateChanged)
      *selectionStateChanged = mSelected != selBefore;
  }
}

/* inherits documentation from base class */
void QCPTextElement::deselectEvent(bool *selectionStateChanged)
{
  if (mSelectable)
  {
    bool selBefore = mSelected;
    setSelected(false);
    if (selectionStateChanged)
      *selectionStateChanged = mSelected != selBefore;
  }
}

/*!
  Returns 0.99*selectionTolerance (see \ref QCustomPlot::setSelectionTolerance) when \a pos is
  within the bounding box of the text element's text. Note that this bounding box is updated in the
  draw call.

  If \a pos is outside the text's bounding box or if \a onlySelectable is true and this text
  element is not selectable (\ref setSelectable), returns -1.

  \seebaseclassmethod
*/
double QCPTextElement::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  if (mTextBoundingRect.contains(pos.toPoint()))
    return mParentPlot->selectionTolerance()*0.99;
  else
    return -1;
}

/*!
  Accepts the mouse event in order to emit the according click signal in the \ref
  mouseReleaseEvent.

  \seebaseclassmethod
*/
void QCPTextElement::mousePressEvent(QMouseEvent *event, const QVariant &details)
{
  Q_UNUSED(details)
  event->accept();
}

/*!
  Emits the \ref clicked signal if the cursor hasn't moved by more than a few pixels since the \ref
  mousePressEvent.

  \seebaseclassmethod
*/
void QCPTextElement::mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos)
{
  if ((QPointF(event->pos())-startPos).manhattanLength() <= 3)
    emit clicked(event);
}

/*!
  Emits the \ref doubleClicked signal.

  \seebaseclassmethod
*/
void QCPTextElement::mouseDoubleClickEvent(QMouseEvent *event, const QVariant &details)
{
  Q_UNUSED(details)
  emit doubleClicked(event);
}

/*! \internal

  Returns the main font to be used. This is mSelectedFont if \ref setSelected is set to
  <tt>true</tt>, else mFont is returned.
*/
QFont QCPTextElement::mainFont() const
{
  return mSelected ? mSelectedFont : mFont;
}

/*! \internal

  Returns the main color to be used. This is mSelectedTextColor if \ref setSelected is set to
  <tt>true</tt>, else mTextColor is returned.
*/
QColor QCPTextElement::mainTextColor() const
{
  return mSelected ? mSelectedTextColor : mTextColor;
}
/* end of 'src/layoutelements/layoutelement-textelement.cpp' */


/* including file 'src/layoutelements/layoutelement-colorscale.cpp', size 26246 */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200    */


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPColorScale
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPColorScale
  \brief A color scale for use with color coding data such as QCPColorMap

  This layout element can be placed on the plot to correlate a color gradient with data values. It
  is usually used in combination with one or multiple \ref QCPColorMap "QCPColorMaps".

  \image html QCPColorScale.png

  The color scale can be either horizontal or vertical, as shown in the image above. The
  orientation and the side where the numbers appear is controlled with \ref setType.

  Use \ref QCPColorMap::setColorScale to connect a color map with a color scale. Once they are
  connected, they share their gradient, data range and data scale type (\ref setGradient, \ref
  setDataRange, \ref setDataScaleType). Multiple color maps may be associated with a single color
  scale, to make them all synchronize these properties.

  To have finer control over the number display and axis behaviour, you can directly access the
  \ref axis. See the documentation of QCPAxis for details about configuring axes. For example, if
  you want to change the number of automatically generated ticks, call
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolorscale-tickcount

  Placing a color scale next to the main axis rect works like with any other layout element:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolorscale-creation
  In this case we have placed it to the right of the default axis rect, so it wasn't necessary to
  call \ref setType, since \ref QCPAxis::atRight is already the default. The text next to the color
  scale can be set with \ref setLabel.

  For optimum appearance (like in the image above), it may be desirable to line up the axis rect and
  the borders of the color scale. Use a \ref QCPMarginGroup to achieve this:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolorscale-margingroup

  Color scales are initialized with a non-zero minimum top and bottom margin (\ref
  setMinimumMargins), because vertical color scales are most common and the minimum top/bottom
  margin makes sure it keeps some distance to the top/bottom widget border. So if you change to a
  horizontal color scale by setting \ref setType to \ref QCPAxis::atBottom or \ref QCPAxis::atTop, you
  might want to also change the minimum margins accordingly, e.g. <tt>setMinimumMargins(QMargins(6, 0, 6, 0))</tt>.
*/

/* start documentation of inline functions */

/*! \fn QCPAxis *QCPColorScale::axis() const

  Returns the internal \ref QCPAxis instance of this color scale. You can access it to alter the
  appearance and behaviour of the axis. \ref QCPColorScale duplicates some properties in its
  interface for convenience. Those are \ref setDataRange (\ref QCPAxis::setRange), \ref
  setDataScaleType (\ref QCPAxis::setScaleType), and the method \ref setLabel (\ref
  QCPAxis::setLabel). As they each are connected, it does not matter whether you use the method on
  the QCPColorScale or on its QCPAxis.

  If the type of the color scale is changed with \ref setType, the axis returned by this method
  will change, too, to either the left, right, bottom or top axis, depending on which type was set.
*/

/* end documentation of signals */
/* start documentation of signals */

/*! \fn void QCPColorScale::dataRangeChanged(const QCPRange &newRange);

  This signal is emitted when the data range changes.

  \see setDataRange
*/

/*! \fn void QCPColorScale::dataScaleTypeChanged(QCPAxis::ScaleType scaleType);

  This signal is emitted when the data scale type changes.

  \see setDataScaleType
*/

/*! \fn void QCPColorScale::gradientChanged(const QCPColorGradient &newGradient);

  This signal is emitted when the gradient changes.

  \see setGradient
*/

/* end documentation of signals */

/*!
  Constructs a new QCPColorScale.
*/
QCPColorScale::QCPColorScale(QCustomPlot *parentPlot) :
  QCPLayoutElement(parentPlot),
  mType(QCPAxis::atTop), // set to atTop such that setType(QCPAxis::atRight) below doesn't skip work because it thinks it's already atRight
  mDataScaleType(QCPAxis::stLinear),
  mBarWidth(20),
  mAxisRect(new QCPColorScaleAxisRectPrivate(this))
{
  setMinimumMargins(QMargins(0, 6, 0, 6)); // for default right color scale types, keep some room at bottom and top (important if no margin group is used)
  setType(QCPAxis::atRight);
  setDataRange(QCPRange(0, 6));
}

QCPColorScale::~QCPColorScale()
{
  delete mAxisRect;
}

/* undocumented getter */
QString QCPColorScale::label() const
{
  if (!mColorAxis)
  {
    qDebug() << Q_FUNC_INFO << "internal color axis undefined";
    return QString();
  }

  return mColorAxis.data()->label();
}

/* undocumented getter */
bool QCPColorScale::rangeDrag() const
{
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return false;
  }

  return mAxisRect.data()->rangeDrag().testFlag(QCPAxis::orientation(mType)) &&
      mAxisRect.data()->rangeDragAxis(QCPAxis::orientation(mType)) &&
      mAxisRect.data()->rangeDragAxis(QCPAxis::orientation(mType))->orientation() == QCPAxis::orientation(mType);
}

/* undocumented getter */
bool QCPColorScale::rangeZoom() const
{
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return false;
  }

  return mAxisRect.data()->rangeZoom().testFlag(QCPAxis::orientation(mType)) &&
      mAxisRect.data()->rangeZoomAxis(QCPAxis::orientation(mType)) &&
      mAxisRect.data()->rangeZoomAxis(QCPAxis::orientation(mType))->orientation() == QCPAxis::orientation(mType);
}

/*!
  Sets at which side of the color scale the axis is placed, and thus also its orientation.

  Note that after setting \a type to a different value, the axis returned by \ref axis() will
  be a different one. The new axis will adopt the following properties from the previous axis: The
  range, scale type, label and ticker (the latter will be shared and not copied).
*/
void QCPColorScale::setType(QCPAxis::AxisType type)
{
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return;
  }
  if (mType != type)
  {
    mType = type;
    QCPRange rangeTransfer(0, 6);
    QString labelTransfer;
    QSharedPointer<QCPAxisTicker> tickerTransfer;
    // transfer/revert some settings on old axis if it exists:
    bool doTransfer = (bool)mColorAxis;
    if (doTransfer)
    {
      rangeTransfer = mColorAxis.data()->range();
      labelTransfer = mColorAxis.data()->label();
      tickerTransfer = mColorAxis.data()->ticker();
      mColorAxis.data()->setLabel(QString());
      disconnect(mColorAxis.data(), SIGNAL(rangeChanged(QCPRange)), this, SLOT(setDataRange(QCPRange)));
      disconnect(mColorAxis.data(), SIGNAL(scaleTypeChanged(QCPAxis::ScaleType)), this, SLOT(setDataScaleType(QCPAxis::ScaleType)));
    }
    QList<QCPAxis::AxisType> allAxisTypes = QList<QCPAxis::AxisType>() << QCPAxis::atLeft << QCPAxis::atRight << QCPAxis::atBottom << QCPAxis::atTop;
    foreach (QCPAxis::AxisType atype, allAxisTypes)
    {
      mAxisRect.data()->axis(atype)->setTicks(atype == mType);
      mAxisRect.data()->axis(atype)->setTickLabels(atype== mType);
    }
    // set new mColorAxis pointer:
    mColorAxis = mAxisRect.data()->axis(mType);
    // transfer settings to new axis:
    if (doTransfer)
    {
      mColorAxis.data()->setRange(rangeTransfer); // range transfer necessary if axis changes from vertical to horizontal or vice versa (axes with same orientation are synchronized via signals)
      mColorAxis.data()->setLabel(labelTransfer);
      mColorAxis.data()->setTicker(tickerTransfer);
    }
    connect(mColorAxis.data(), SIGNAL(rangeChanged(QCPRange)), this, SLOT(setDataRange(QCPRange)));
    connect(mColorAxis.data(), SIGNAL(scaleTypeChanged(QCPAxis::ScaleType)), this, SLOT(setDataScaleType(QCPAxis::ScaleType)));
    mAxisRect.data()->setRangeDragAxes(QList<QCPAxis*>() << mColorAxis.data());
  }
}

/*!
  Sets the range spanned by the color gradient and that is shown by the axis in the color scale.

  It is equivalent to calling QCPColorMap::setDataRange on any of the connected color maps. It is
  also equivalent to directly accessing the \ref axis and setting its range with \ref
  QCPAxis::setRange.

  \see setDataScaleType, setGradient, rescaleDataRange
*/
void QCPColorScale::setDataRange(const QCPRange &dataRange)
{
  if (mDataRange.lower != dataRange.lower || mDataRange.upper != dataRange.upper)
  {
    mDataRange = dataRange;
    if (mColorAxis)
      mColorAxis.data()->setRange(mDataRange);
    emit dataRangeChanged(mDataRange);
  }
}

/*!
  Sets the scale type of the color scale, i.e. whether values are associated with colors linearly
  or logarithmically.

  It is equivalent to calling QCPColorMap::setDataScaleType on any of the connected color maps. It is
  also equivalent to directly accessing the \ref axis and setting its scale type with \ref
  QCPAxis::setScaleType.

  Note that this method controls the coordinate transformation. For logarithmic scales, you will
  likely also want to use a logarithmic tick spacing and labeling, which can be achieved by setting
  the color scale's \ref axis ticker to an instance of \ref QCPAxisTickerLog :

  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpaxisticker-log-colorscale

  See the documentation of \ref QCPAxisTickerLog about the details of logarithmic axis tick
  creation.

  \see setDataRange, setGradient
*/
void QCPColorScale::setDataScaleType(QCPAxis::ScaleType scaleType)
{
  if (mDataScaleType != scaleType)
  {
    mDataScaleType = scaleType;
    if (mColorAxis)
      mColorAxis.data()->setScaleType(mDataScaleType);
    if (mDataScaleType == QCPAxis::stLogarithmic)
      setDataRange(mDataRange.sanitizedForLogScale());
    emit dataScaleTypeChanged(mDataScaleType);
  }
}

/*!
  Sets the color gradient that will be used to represent data values.

  It is equivalent to calling QCPColorMap::setGradient on any of the connected color maps.

  \see setDataRange, setDataScaleType
*/
void QCPColorScale::setGradient(const QCPColorGradient &gradient)
{
  if (mGradient != gradient)
  {
    mGradient = gradient;
    if (mAxisRect)
      mAxisRect.data()->mGradientImageInvalidated = true;
    emit gradientChanged(mGradient);
  }
}

/*!
  Sets the axis label of the color scale. This is equivalent to calling \ref QCPAxis::setLabel on
  the internal \ref axis.
*/
void QCPColorScale::setLabel(const QString &str)
{
  if (!mColorAxis)
  {
    qDebug() << Q_FUNC_INFO << "internal color axis undefined";
    return;
  }

  mColorAxis.data()->setLabel(str);
}

/*!
  Sets the width (or height, for horizontal color scales) the bar where the gradient is displayed
  will have.
*/
void QCPColorScale::setBarWidth(int width)
{
  mBarWidth = width;
}

/*!
  Sets whether the user can drag the data range (\ref setDataRange).

  Note that \ref QCP::iRangeDrag must be in the QCustomPlot's interactions (\ref
  QCustomPlot::setInteractions) to allow range dragging.
*/
void QCPColorScale::setRangeDrag(bool enabled)
{
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return;
  }

  if (enabled)
    mAxisRect.data()->setRangeDrag(QCPAxis::orientation(mType));
  else
    mAxisRect.data()->setRangeDrag(0);
}

/*!
  Sets whether the user can zoom the data range (\ref setDataRange) by scrolling the mouse wheel.

  Note that \ref QCP::iRangeZoom must be in the QCustomPlot's interactions (\ref
  QCustomPlot::setInteractions) to allow range dragging.
*/
void QCPColorScale::setRangeZoom(bool enabled)
{
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return;
  }

  if (enabled)
    mAxisRect.data()->setRangeZoom(QCPAxis::orientation(mType));
  else
    mAxisRect.data()->setRangeZoom(0);
}

/*!
  Returns a list of all the color maps associated with this color scale.
*/
QList<QCPColorMap*> QCPColorScale::colorMaps() const
{
  QList<QCPColorMap*> result;
  for (int i=0; i<mParentPlot->plottableCount(); ++i)
  {
    if (QCPColorMap *cm = qobject_cast<QCPColorMap*>(mParentPlot->plottable(i)))
      if (cm->colorScale() == this)
        result.append(cm);
  }
  return result;
}

/*!
  Changes the data range such that all color maps associated with this color scale are fully mapped
  to the gradient in the data dimension.

  \see setDataRange
*/
void QCPColorScale::rescaleDataRange(bool onlyVisibleMaps)
{
  QList<QCPColorMap*> maps = colorMaps();
  QCPRange newRange;
  bool haveRange = false;
  QCP::SignDomain sign = QCP::sdBoth;
  if (mDataScaleType == QCPAxis::stLogarithmic)
    sign = (mDataRange.upper < 0 ? QCP::sdNegative : QCP::sdPositive);
  for (int i=0; i<maps.size(); ++i)
  {
    if (!maps.at(i)->realVisibility() && onlyVisibleMaps)
      continue;
    QCPRange mapRange;
    if (maps.at(i)->colorScale() == this)
    {
      bool currentFoundRange = true;
      mapRange = maps.at(i)->data()->dataBounds();
      if (sign == QCP::sdPositive)
      {
        if (mapRange.lower <= 0 && mapRange.upper > 0)
          mapRange.lower = mapRange.upper*1e-3;
        else if (mapRange.lower <= 0 && mapRange.upper <= 0)
          currentFoundRange = false;
      } else if (sign == QCP::sdNegative)
      {
        if (mapRange.upper >= 0 && mapRange.lower < 0)
          mapRange.upper = mapRange.lower*1e-3;
        else if (mapRange.upper >= 0 && mapRange.lower >= 0)
          currentFoundRange = false;
      }
      if (currentFoundRange)
      {
        if (!haveRange)
          newRange = mapRange;
        else
          newRange.expand(mapRange);
        haveRange = true;
      }
    }
  }
  if (haveRange)
  {
    if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this dimension), shift current range to at least center the data
    {
      double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
      if (mDataScaleType == QCPAxis::stLinear)
      {
        newRange.lower = center-mDataRange.size()/2.0;
        newRange.upper = center+mDataRange.size()/2.0;
      } else // mScaleType == stLogarithmic
      {
        newRange.lower = center/qSqrt(mDataRange.upper/mDataRange.lower);
        newRange.upper = center*qSqrt(mDataRange.upper/mDataRange.lower);
      }
    }
    setDataRange(newRange);
  }
}

/* inherits documentation from base class */
void QCPColorScale::update(UpdatePhase phase)
{
  QCPLayoutElement::update(phase);
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return;
  }

  mAxisRect.data()->update(phase);

  switch (phase)
  {
    case upMargins:
    {
      if (mType == QCPAxis::atBottom || mType == QCPAxis::atTop)
      {
        setMaximumSize(QWIDGETSIZE_MAX, mBarWidth+mAxisRect.data()->margins().top()+mAxisRect.data()->margins().bottom());
        setMinimumSize(0,               mBarWidth+mAxisRect.data()->margins().top()+mAxisRect.data()->margins().bottom());
      } else
      {
        setMaximumSize(mBarWidth+mAxisRect.data()->margins().left()+mAxisRect.data()->margins().right(), QWIDGETSIZE_MAX);
        setMinimumSize(mBarWidth+mAxisRect.data()->margins().left()+mAxisRect.data()->margins().right(), 0);
      }
      break;
    }
    case upLayout:
    {
      mAxisRect.data()->setOuterRect(rect());
      break;
    }
    default: break;
  }
}

/* inherits documentation from base class */
void QCPColorScale::applyDefaultAntialiasingHint(QCPPainter *painter) const
{
  painter->setAntialiasing(false);
}

/* inherits documentation from base class */
void QCPColorScale::mousePressEvent(QMouseEvent *event, const QVariant &details)
{
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return;
  }
  mAxisRect.data()->mousePressEvent(event, details);
}

/* inherits documentation from base class */
void QCPColorScale::mouseMoveEvent(QMouseEvent *event, const QPointF &startPos)
{
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return;
  }
  mAxisRect.data()->mouseMoveEvent(event, startPos);
}

/* inherits documentation from base class */
void QCPColorScale::mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos)
{
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return;
  }
  mAxisRect.data()->mouseReleaseEvent(event, startPos);
}

/* inherits documentation from base class */
void QCPColorScale::wheelEvent(QWheelEvent *event)
{
  if (!mAxisRect)
  {
    qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
    return;
  }
  mAxisRect.data()->wheelEvent(event);
}

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPColorScaleAxisRectPrivate
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPColorScaleAxisRectPrivate

  \internal
  \brief An axis rect subclass for use in a QCPColorScale

  This is a private class and not part of the public QCustomPlot interface.

  It provides the axis rect functionality for the QCPColorScale class.
*/


/*!
  Creates a new instance, as a child of \a parentColorScale.
*/
QCPColorScaleAxisRectPrivate::QCPColorScaleAxisRectPrivate(QCPColorScale *parentColorScale) :
  QCPAxisRect(parentColorScale->parentPlot(), true),
  mParentColorScale(parentColorScale),
  mGradientImageInvalidated(true)
{
  setParentLayerable(parentColorScale);
  setMinimumMargins(QMargins(0, 0, 0, 0));
  QList<QCPAxis::AxisType> allAxisTypes = QList<QCPAxis::AxisType>() << QCPAxis::atBottom << QCPAxis::atTop << QCPAxis::atLeft << QCPAxis::atRight;
  foreach (QCPAxis::AxisType type, allAxisTypes)
  {
    axis(type)->setVisible(true);
    axis(type)->grid()->setVisible(false);
    axis(type)->setPadding(0);
    connect(axis(type), SIGNAL(selectionChanged(QCPAxis::SelectableParts)), this, SLOT(axisSelectionChanged(QCPAxis::SelectableParts)));
    connect(axis(type), SIGNAL(selectableChanged(QCPAxis::SelectableParts)), this, SLOT(axisSelectableChanged(QCPAxis::SelectableParts)));
  }

  connect(axis(QCPAxis::atLeft), SIGNAL(rangeChanged(QCPRange)), axis(QCPAxis::atRight), SLOT(setRange(QCPRange)));
  connect(axis(QCPAxis::atRight), SIGNAL(rangeChanged(QCPRange)), axis(QCPAxis::atLeft), SLOT(setRange(QCPRange)));
  connect(axis(QCPAxis::atBottom), SIGNAL(rangeChanged(QCPRange)), axis(QCPAxis::atTop), SLOT(setRange(QCPRange)));
  connect(axis(QCPAxis::atTop), SIGNAL(rangeChanged(QCPRange)), axis(QCPAxis::atBottom), SLOT(setRange(QCPRange)));
  connect(axis(QCPAxis::atLeft), SIGNAL(scaleTypeChanged(QCPAxis::ScaleType)), axis(QCPAxis::atRight), SLOT(setScaleType(QCPAxis::ScaleType)));
  connect(axis(QCPAxis::atRight), SIGNAL(scaleTypeChanged(QCPAxis::ScaleType)), axis(QCPAxis::atLeft), SLOT(setScaleType(QCPAxis::ScaleType)));
  connect(axis(QCPAxis::atBottom), SIGNAL(scaleTypeChanged(QCPAxis::ScaleType)), axis(QCPAxis::atTop), SLOT(setScaleType(QCPAxis::ScaleType)));
  connect(axis(QCPAxis::atTop), SIGNAL(scaleTypeChanged(QCPAxis::ScaleType)), axis(QCPAxis::atBottom), SLOT(setScaleType(QCPAxis::ScaleType)));

  // make layer transfers of color scale transfer to axis rect and axes
  // the axes must be set after axis rect, such that they appear above color gradient drawn by axis rect:
  connect(parentColorScale, SIGNAL(layerChanged(QCPLayer*)), this, SLOT(setLayer(QCPLayer*)));
  foreach (QCPAxis::AxisType type, allAxisTypes)
    connect(parentColorScale, SIGNAL(layerChanged(QCPLayer*)), axis(type), SLOT(setLayer(QCPLayer*)));
}

/*! \internal

  Updates the color gradient image if necessary, by calling \ref updateGradientImage, then draws
  it. Then the axes are drawn by calling the \ref QCPAxisRect::draw base class implementation.

  \seebaseclassmethod
*/
void QCPColorScaleAxisRectPrivate::draw(QCPPainter *painter)
{
  if (mGradientImageInvalidated)
    updateGradientImage();

  bool mirrorHorz = false;
  bool mirrorVert = false;
  if (mParentColorScale->mColorAxis)
  {
    mirrorHorz = mParentColorScale->mColorAxis.data()->rangeReversed() && (mParentColorScale->type() == QCPAxis::atBottom || mParentColorScale->type() == QCPAxis::atTop);
    mirrorVert = mParentColorScale->mColorAxis.data()->rangeReversed() && (mParentColorScale->type() == QCPAxis::atLeft || mParentColorScale->type() == QCPAxis::atRight);
  }

  painter->drawImage(rect().adjusted(0, -1, 0, -1), mGradientImage.mirrored(mirrorHorz, mirrorVert));
  QCPAxisRect::draw(painter);
}

/*! \internal

  Uses the current gradient of the parent \ref QCPColorScale (specified in the constructor) to
  generate a gradient image. This gradient image will be used in the \ref draw method.
*/
void QCPColorScaleAxisRectPrivate::updateGradientImage()
{
  if (rect().isEmpty())
    return;

  const QImage::Format format = QImage::Format_ARGB32_Premultiplied;
  int n = mParentColorScale->mGradient.levelCount();
  int w, h;
  QVector<double> data(n);
  for (int i=0; i<n; ++i)
    data[i] = i;
  if (mParentColorScale->mType == QCPAxis::atBottom || mParentColorScale->mType == QCPAxis::atTop)
  {
    w = n;
    h = rect().height();
    mGradientImage = QImage(w, h, format);
    QVector<QRgb*> pixels;
    for (int y=0; y<h; ++y)
      pixels.append(reinterpret_cast<QRgb*>(mGradientImage.scanLine(y)));
    mParentColorScale->mGradient.colorize(data.constData(), QCPRange(0, n-1), pixels.first(), n);
    for (int y=1; y<h; ++y)
      memcpy(pixels.at(y), pixels.first(), n*sizeof(QRgb));
  } else
  {
    w = rect().width();
    h = n;
    mGradientImage = QImage(w, h, format);
    for (int y=0; y<h; ++y)
    {
      QRgb *pixels = reinterpret_cast<QRgb*>(mGradientImage.scanLine(y));
      const QRgb lineColor = mParentColorScale->mGradient.color(data[h-1-y], QCPRange(0, n-1));
      for (int x=0; x<w; ++x)
        pixels[x] = lineColor;
    }
  }
  mGradientImageInvalidated = false;
}

/*! \internal

  This slot is connected to the selectionChanged signals of the four axes in the constructor. It
  synchronizes the selection state of the axes.
*/
void QCPColorScaleAxisRectPrivate::axisSelectionChanged(QCPAxis::SelectableParts selectedParts)
{
  // axis bases of four axes shall always (de-)selected synchronously:
  QList<QCPAxis::AxisType> allAxisTypes = QList<QCPAxis::AxisType>() << QCPAxis::atBottom << QCPAxis::atTop << QCPAxis::atLeft << QCPAxis::atRight;
  foreach (QCPAxis::AxisType type, allAxisTypes)
  {
    if (QCPAxis *senderAxis = qobject_cast<QCPAxis*>(sender()))
      if (senderAxis->axisType() == type)
        continue;

    if (axis(type)->selectableParts().testFlag(QCPAxis::spAxis))
    {
      if (selectedParts.testFlag(QCPAxis::spAxis))
        axis(type)->setSelectedParts(axis(type)->selectedParts() | QCPAxis::spAxis);
      else
        axis(type)->setSelectedParts(axis(type)->selectedParts() & ~QCPAxis::spAxis);
    }
  }
}

/*! \internal

  This slot is connected to the selectableChanged signals of the four axes in the constructor. It
  synchronizes the selectability of the axes.
*/
void QCPColorScaleAxisRectPrivate::axisSelectableChanged(QCPAxis::SelectableParts selectableParts)
{
  // synchronize axis base selectability:
  QList<QCPAxis::AxisType> allAxisTypes = QList<QCPAxis::AxisType>() << QCPAxis::atBottom << QCPAxis::atTop << QCPAxis::atLeft << QCPAxis::atRight;
  foreach (QCPAxis::AxisType type, allAxisTypes)
  {
    if (QCPAxis *senderAxis = qobject_cast<QCPAxis*>(sender()))
      if (senderAxis->axisType() == type)
        continue;

    if (axis(type)->selectableParts().testFlag(QCPAxis::spAxis))
    {
      if (selectableParts.testFlag(QCPAxis::spAxis))
        axis(type)->setSelectableParts(axis(type)->selectableParts() | QCPAxis::spAxis);
      else
        axis(type)->setSelectableParts(axis(type)->selectableParts() & ~QCPAxis::spAxis);
    }
  }
}
/* end of 'src/layoutelements/layoutelement-colorscale.cpp' */


/* including file 'src/plottables/plottable-graph.cpp', size 74194           */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPGraphData
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPGraphData
  \brief Holds the data of one single data point for QCPGraph.

  The stored data is:
  \li \a key: coordinate on the key axis of this data point (this is the \a mainKey and the \a sortKey)
  \li \a value: coordinate on the value axis of this data point (this is the \a mainValue)

  The container for storing multiple data points is \ref QCPGraphDataContainer. It is a typedef for
  \ref QCPDataContainer with \ref QCPGraphData as the DataType template parameter. See the
  documentation there for an explanation regarding the data type's generic methods.

  \see QCPGraphDataContainer
*/

/* start documentation of inline functions */

/*! \fn double QCPGraphData::sortKey() const

  Returns the \a key member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static QCPGraphData QCPGraphData::fromSortKey(double sortKey)

  Returns a data point with the specified \a sortKey. All other members are set to zero.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static static bool QCPGraphData::sortKeyIsMainKey()

  Since the member \a key is both the data point key coordinate and the data ordering parameter,
  this method returns true.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPGraphData::mainKey() const

  Returns the \a key member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPGraphData::mainValue() const

  Returns the \a value member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn QCPRange QCPGraphData::valueRange() const

  Returns a QCPRange with both lower and upper boundary set to \a value of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/* end documentation of inline functions */

/*!
  Constructs a data point with key and value set to zero.
*/
QCPGraphData::QCPGraphData() :
  key(0),
  value(0)
{
}

/*!
  Constructs a data point with the specified \a key and \a value.
*/
QCPGraphData::QCPGraphData(double key, double value) :
  key(key),
  value(value)
{
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPGraph
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPGraph
  \brief A plottable representing a graph in a plot.

  \image html QCPGraph.png

  Usually you create new graphs by calling QCustomPlot::addGraph. The resulting instance can be
  accessed via QCustomPlot::graph.

  To plot data, assign it with the \ref setData or \ref addData functions. Alternatively, you can
  also access and modify the data via the \ref data method, which returns a pointer to the internal
  \ref QCPGraphDataContainer.

  Graphs are used to display single-valued data. Single-valued means that there should only be one
  data point per unique key coordinate. In other words, the graph can't have \a loops. If you do
  want to plot non-single-valued curves, rather use the QCPCurve plottable.

  Gaps in the graph line can be created by adding data points with NaN as value
  (<tt>qQNaN()</tt> or <tt>std::numeric_limits<double>::quiet_NaN()</tt>) in between the two data points that shall be
  separated.

  \section qcpgraph-appearance Changing the appearance

  The appearance of the graph is mainly determined by the line style, scatter style, brush and pen
  of the graph (\ref setLineStyle, \ref setScatterStyle, \ref setBrush, \ref setPen).

  \subsection filling Filling under or between graphs

  QCPGraph knows two types of fills: Normal graph fills towards the zero-value-line parallel to
  the key axis of the graph, and fills between two graphs, called channel fills. To enable a fill,
  just set a brush with \ref setBrush which is neither Qt::NoBrush nor fully transparent.

  By default, a normal fill towards the zero-value-line will be drawn. To set up a channel fill
  between this graph and another one, call \ref setChannelFillGraph with the other graph as
  parameter.

  \see QCustomPlot::addGraph, QCustomPlot::graph
*/

/* start of documentation of inline functions */

/*! \fn QSharedPointer<QCPGraphDataContainer> QCPGraph::data() const

  Returns a shared pointer to the internal data storage of type \ref QCPGraphDataContainer. You may
  use it to directly manipulate the data, which may be more convenient and faster than using the
  regular \ref setData or \ref addData methods.
*/

/* end of documentation of inline functions */

/*!
  Constructs a graph which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
  axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
  the same orientation. If either of these restrictions is violated, a corresponding message is
  printed to the debug output (qDebug), the construction is not aborted, though.

  The created QCPGraph is automatically registered with the QCustomPlot instance inferred from \a
  keyAxis. This QCustomPlot instance takes ownership of the QCPGraph, so do not delete it manually
  but use QCustomPlot::removePlottable() instead.

  To directly create a graph inside a plot, you can also use the simpler QCustomPlot::addGraph function.
*/
QCPGraph::QCPGraph(QCPAxis *keyAxis, QCPAxis *valueAxis) :
  QCPAbstractPlottable1D<QCPGraphData>(keyAxis, valueAxis)
{
  // special handling for QCPGraphs to maintain the simple graph interface:
  mParentPlot->registerGraph(this);

  setPen(QPen(Qt::blue, 0));
  setBrush(Qt::NoBrush);

  setLineStyle(lsLine);
  setScatterSkip(0);
  setChannelFillGraph(0);
  setAdaptiveSampling(true);
}

QCPGraph::~QCPGraph()
{
}

/*! \overload

  Replaces the current data container with the provided \a data container.

  Since a QSharedPointer is used, multiple QCPGraphs may share the same data container safely.
  Modifying the data in the container will then affect all graphs that share the container. Sharing
  can be achieved by simply exchanging the data containers wrapped in shared pointers:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpgraph-datasharing-1

  If you do not wish to share containers, but create a copy from an existing container, rather use
  the \ref QCPDataContainer<DataType>::set method on the graph's data container directly:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpgraph-datasharing-2

  \see addData
*/
void QCPGraph::setData(QSharedPointer<QCPGraphDataContainer> data)
{
  mDataContainer = data;
}

/*! \overload

  Replaces the current data with the provided points in \a keys and \a values. The provided
  vectors should have equal length. Else, the number of added points will be the size of the
  smallest vector.

  If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
  can set \a alreadySorted to true, to improve performance by saving a sorting run.

  \see addData
*/
void QCPGraph::setData(const QVector<double> &keys, const QVector<double> &values, bool alreadySorted)
{
  mDataContainer->clear();
  addData(keys, values, alreadySorted);
}

/*!
  Sets how the single data points are connected in the plot. For scatter-only plots, set \a ls to
  \ref lsNone and \ref setScatterStyle to the desired scatter style.

  \see setScatterStyle
*/
void QCPGraph::setLineStyle(LineStyle ls)
{
  mLineStyle = ls;
}

/*!
  Sets the visual appearance of single data points in the plot. If set to \ref QCPScatterStyle::ssNone, no scatter points
  are drawn (e.g. for line-only-plots with appropriate line style).

  \see QCPScatterStyle, setLineStyle
*/
void QCPGraph::setScatterStyle(const QCPScatterStyle &style)
{
  mScatterStyle = style;
}

/*!
  If scatters are displayed (scatter style not \ref QCPScatterStyle::ssNone), \a skip number of
  scatter points are skipped/not drawn after every drawn scatter point.

  This can be used to make the data appear sparser while for example still having a smooth line,
  and to improve performance for very high density plots.

  If \a skip is set to 0 (default), all scatter points are drawn.

  \see setScatterStyle
*/
void QCPGraph::setScatterSkip(int skip)
{
  mScatterSkip = qMax(0, skip);
}

/*!
  Sets the target graph for filling the area between this graph and \a targetGraph with the current
  brush (\ref setBrush).

  When \a targetGraph is set to 0, a normal graph fill to the zero-value-line will be shown. To
  disable any filling, set the brush to Qt::NoBrush.

  \see setBrush
*/
void QCPGraph::setChannelFillGraph(QCPGraph *targetGraph)
{
  // prevent setting channel target to this graph itself:
  if (targetGraph == this)
  {
    qDebug() << Q_FUNC_INFO << "targetGraph is this graph itself";
    mChannelFillGraph = 0;
    return;
  }
  // prevent setting channel target to a graph not in the plot:
  if (targetGraph && targetGraph->mParentPlot != mParentPlot)
  {
    qDebug() << Q_FUNC_INFO << "targetGraph not in same plot";
    mChannelFillGraph = 0;
    return;
  }

  mChannelFillGraph = targetGraph;
}

/*!
  Sets whether adaptive sampling shall be used when plotting this graph. QCustomPlot's adaptive
  sampling technique can drastically improve the replot performance for graphs with a larger number
  of points (e.g. above 10,000), without notably changing the appearance of the graph.

  By default, adaptive sampling is enabled. Even if enabled, QCustomPlot decides whether adaptive
  sampling shall actually be used on a per-graph basis. So leaving adaptive sampling enabled has no
  disadvantage in almost all cases.

  \image html adaptive-sampling-line.png "A line plot of 500,000 points without and with adaptive sampling"

  As can be seen, line plots experience no visual degradation from adaptive sampling. Outliers are
  reproduced reliably, as well as the overall shape of the data set. The replot time reduces
  dramatically though. This allows QCustomPlot to display large amounts of data in realtime.

  \image html adaptive-sampling-scatter.png "A scatter plot of 100,000 points without and with adaptive sampling"

  Care must be taken when using high-density scatter plots in combination with adaptive sampling.
  The adaptive sampling algorithm treats scatter plots more carefully than line plots which still
  gives a significant reduction of replot times, but not quite as much as for line plots. This is
  because scatter plots inherently need more data points to be preserved in order to still resemble
  the original, non-adaptive-sampling plot. As shown above, the results still aren't quite
  identical, as banding occurs for the outer data points. This is in fact intentional, such that
  the boundaries of the data cloud stay visible to the viewer. How strong the banding appears,
  depends on the point density, i.e. the number of points in the plot.

  For some situations with scatter plots it might thus be desirable to manually turn adaptive
  sampling off. For example, when saving the plot to disk. This can be achieved by setting \a
  enabled to false before issuing a command like \ref QCustomPlot::savePng, and setting \a enabled
  back to true afterwards.
*/
void QCPGraph::setAdaptiveSampling(bool enabled)
{
  mAdaptiveSampling = enabled;
}

/*! \overload

  Adds the provided points in \a keys and \a values to the current data. The provided vectors
  should have equal length. Else, the number of added points will be the size of the smallest
  vector.

  If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
  can set \a alreadySorted to true, to improve performance by saving a sorting run.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPGraph::addData(const QVector<double> &keys, const QVector<double> &values, bool alreadySorted)
{
  if (keys.size() != values.size())
    qDebug() << Q_FUNC_INFO << "keys and values have different sizes:" << keys.size() << values.size();
  const int n = qMin(keys.size(), values.size());
  QVector<QCPGraphData> tempData(n);
  QVector<QCPGraphData>::iterator it = tempData.begin();
  const QVector<QCPGraphData>::iterator itEnd = tempData.end();
  int i = 0;
  while (it != itEnd)
  {
    it->key = keys[i];
    it->value = values[i];
    ++it;
    ++i;
  }
  mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
}

/*! \overload

  Adds the provided data point as \a key and \a value to the current data.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPGraph::addData(double key, double value)
{
  mDataContainer->add(QCPGraphData(key, value));
}

/*!
  Implements a selectTest specific to this plottable's point geometry.

  If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
  point to \a pos.

  \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
*/
double QCPGraph::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return -1;
  if (!mKeyAxis || !mValueAxis)
    return -1;

  if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()))
  {
    QCPGraphDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
    double result = pointDistance(pos, closestDataPoint);
    if (details)
    {
      int pointIndex = int(closestDataPoint-mDataContainer->constBegin());
      details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
    }
    return result;
  } else
    return -1;
}

/* inherits documentation from base class */
QCPRange QCPGraph::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const
{
  return mDataContainer->keyRange(foundRange, inSignDomain);
}

/* inherits documentation from base class */
QCPRange QCPGraph::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const
{
  return mDataContainer->valueRange(foundRange, inSignDomain, inKeyRange);
}

/* inherits documentation from base class */
void QCPGraph::draw(QCPPainter *painter)
{
  if (!mKeyAxis || !mValueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
  if (mKeyAxis.data()->range().size() <= 0 || mDataContainer->isEmpty()) return;
  if (mLineStyle == lsNone && mScatterStyle.isNone()) return;

  QVector<QPointF> lines, scatters; // line and (if necessary) scatter pixel coordinates will be stored here while iterating over segments

  // loop over and draw segments of unselected/selected data:
  QList<QCPDataRange> selectedSegments, unselectedSegments, allSegments;
  getDataSegments(selectedSegments, unselectedSegments);
  allSegments << unselectedSegments << selectedSegments;
  for (int i=0; i<allSegments.size(); ++i)
  {
    bool isSelectedSegment = i >= unselectedSegments.size();
    // get line pixel points appropriate to line style:
    QCPDataRange lineDataRange = isSelectedSegment ? allSegments.at(i) : allSegments.at(i).adjusted(-1, 1); // unselected segments extend lines to bordering selected data point (safe to exceed total data bounds in first/last segment, getLines takes care)
    getLines(&lines, lineDataRange);

    // check data validity if flag set:
#ifdef QCUSTOMPLOT_CHECK_DATA
    QCPGraphDataContainer::const_iterator it;
    for (it = mDataContainer->constBegin(); it != mDataContainer->constEnd(); ++it)
    {
      if (QCP::isInvalidData(it->key, it->value))
        qDebug() << Q_FUNC_INFO << "Data point at" << it->key << "invalid." << "Plottable name:" << name();
    }
#endif

    // draw fill of graph:
    if (isSelectedSegment && mSelectionDecorator)
      mSelectionDecorator->applyBrush(painter);
    else
      painter->setBrush(mBrush);
    painter->setPen(Qt::NoPen);
    drawFill(painter, &lines);

    // draw line:
    if (mLineStyle != lsNone)
    {
      if (isSelectedSegment && mSelectionDecorator)
        mSelectionDecorator->applyPen(painter);
      else
        painter->setPen(mPen);
      painter->setBrush(Qt::NoBrush);
      if (mLineStyle == lsImpulse)
        drawImpulsePlot(painter, lines);
      else
        drawLinePlot(painter, lines); // also step plots can be drawn as a line plot
    }

    // draw scatters:
    QCPScatterStyle finalScatterStyle = mScatterStyle;
    if (isSelectedSegment && mSelectionDecorator)
      finalScatterStyle = mSelectionDecorator->getFinalScatterStyle(mScatterStyle);
    if (!finalScatterStyle.isNone())
    {
      getScatters(&scatters, allSegments.at(i));
      drawScatterPlot(painter, scatters, finalScatterStyle);
    }
  }

  // draw other selection decoration that isn't just line/scatter pens and brushes:
  if (mSelectionDecorator)
    mSelectionDecorator->drawDecoration(painter, selection());
}

/* inherits documentation from base class */
void QCPGraph::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
{
  // draw fill:
  if (mBrush.style() != Qt::NoBrush)
  {
    applyFillAntialiasingHint(painter);
    painter->fillRect(QRectF(rect.left(), rect.top()+rect.height()/2.0, rect.width(), rect.height()/3.0), mBrush);
  }
  // draw line vertically centered:
  if (mLineStyle != lsNone)
  {
    applyDefaultAntialiasingHint(painter);
    painter->setPen(mPen);
    painter->drawLine(QLineF(rect.left(), rect.top()+rect.height()/2.0, rect.right()+5, rect.top()+rect.height()/2.0)); // +5 on x2 else last segment is missing from dashed/dotted pens
  }
  // draw scatter symbol:
  if (!mScatterStyle.isNone())
  {
    applyScattersAntialiasingHint(painter);
    // scale scatter pixmap if it's too large to fit in legend icon rect:
    if (mScatterStyle.shape() == QCPScatterStyle::ssPixmap && (mScatterStyle.pixmap().size().width() > rect.width() || mScatterStyle.pixmap().size().height() > rect.height()))
    {
      QCPScatterStyle scaledStyle(mScatterStyle);
      scaledStyle.setPixmap(scaledStyle.pixmap().scaled(rect.size().toSize(), Qt::KeepAspectRatio, Qt::SmoothTransformation));
      scaledStyle.applyTo(painter, mPen);
      scaledStyle.drawShape(painter, QRectF(rect).center());
    } else
    {
      mScatterStyle.applyTo(painter, mPen);
      mScatterStyle.drawShape(painter, QRectF(rect).center());
    }
  }
}

/*! \internal

  This method retrieves an optimized set of data points via \ref getOptimizedLineData, an branches
  out to the line style specific functions such as \ref dataToLines, \ref dataToStepLeftLines, etc.
  according to the line style of the graph.

  \a lines will be filled with points in pixel coordinates, that can be drawn with the according
  draw functions like \ref drawLinePlot and \ref drawImpulsePlot. The points returned in \a lines
  aren't necessarily the original data points. For example, step line styles require additional
  points to form the steps when drawn. If the line style of the graph is \ref lsNone, the \a
  lines vector will be empty.

  \a dataRange specifies the beginning and ending data indices that will be taken into account for
  conversion. In this function, the specified range may exceed the total data bounds without harm:
  a correspondingly trimmed data range will be used. This takes the burden off the user of this
  function to check for valid indices in \a dataRange, e.g. when extending ranges coming from \ref
  getDataSegments.

  \see getScatters
*/
void QCPGraph::getLines(QVector<QPointF> *lines, const QCPDataRange &dataRange) const
{
  if (!lines) return;
  QCPGraphDataContainer::const_iterator begin, end;
  getVisibleDataBounds(begin, end, dataRange);
  if (begin == end)
  {
    lines->clear();
    return;
  }

  QVector<QCPGraphData> lineData;
  if (mLineStyle != lsNone)
    getOptimizedLineData(&lineData, begin, end);

  if (mKeyAxis->rangeReversed() != (mKeyAxis->orientation() == Qt::Vertical)) // make sure key pixels are sorted ascending in lineData (significantly simplifies following processing)
    std::reverse(lineData.begin(), lineData.end());

  switch (mLineStyle)
  {
    case lsNone: lines->clear(); break;
    case lsLine: *lines = dataToLines(lineData); break;
    case lsStepLeft: *lines = dataToStepLeftLines(lineData); break;
    case lsStepRight: *lines = dataToStepRightLines(lineData); break;
    case lsStepCenter: *lines = dataToStepCenterLines(lineData); break;
    case lsImpulse: *lines = dataToImpulseLines(lineData); break;
  }
}

/*! \internal

  This method retrieves an optimized set of data points via \ref getOptimizedScatterData and then
  converts them to pixel coordinates. The resulting points are returned in \a scatters, and can be
  passed to \ref drawScatterPlot.

  \a dataRange specifies the beginning and ending data indices that will be taken into account for
  conversion. In this function, the specified range may exceed the total data bounds without harm:
  a correspondingly trimmed data range will be used. This takes the burden off the user of this
  function to check for valid indices in \a dataRange, e.g. when extending ranges coming from \ref
  getDataSegments.
*/
void QCPGraph::getScatters(QVector<QPointF> *scatters, const QCPDataRange &dataRange) const
{
  if (!scatters) return;
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; scatters->clear(); return; }

  QCPGraphDataContainer::const_iterator begin, end;
  getVisibleDataBounds(begin, end, dataRange);
  if (begin == end)
  {
    scatters->clear();
    return;
  }

  QVector<QCPGraphData> data;
  getOptimizedScatterData(&data, begin, end);

  if (mKeyAxis->rangeReversed() != (mKeyAxis->orientation() == Qt::Vertical)) // make sure key pixels are sorted ascending in data (significantly simplifies following processing)
    std::reverse(data.begin(), data.end());

  scatters->resize(data.size());
  if (keyAxis->orientation() == Qt::Vertical)
  {
    for (int i=0; i<data.size(); ++i)
    {
      if (!qIsNaN(data.at(i).value))
      {
        (*scatters)[i].setX(valueAxis->coordToPixel(data.at(i).value));
        (*scatters)[i].setY(keyAxis->coordToPixel(data.at(i).key));
      }
    }
  } else
  {
    for (int i=0; i<data.size(); ++i)
    {
      if (!qIsNaN(data.at(i).value))
      {
        (*scatters)[i].setX(keyAxis->coordToPixel(data.at(i).key));
        (*scatters)[i].setY(valueAxis->coordToPixel(data.at(i).value));
      }
    }
  }
}

/*! \internal

  Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
  coordinate points which are suitable for drawing the line style \ref lsLine.

  The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
  getLines if the line style is set accordingly.

  \see dataToStepLeftLines, dataToStepRightLines, dataToStepCenterLines, dataToImpulseLines, getLines, drawLinePlot
*/
QVector<QPointF> QCPGraph::dataToLines(const QVector<QCPGraphData> &data) const
{
  QVector<QPointF> result;
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }

  result.resize(data.size());

  // transform data points to pixels:
  if (keyAxis->orientation() == Qt::Vertical)
  {
    for (int i=0; i<data.size(); ++i)
    {
      result[i].setX(valueAxis->coordToPixel(data.at(i).value));
      result[i].setY(keyAxis->coordToPixel(data.at(i).key));
    }
  } else // key axis is horizontal
  {
    for (int i=0; i<data.size(); ++i)
    {
      result[i].setX(keyAxis->coordToPixel(data.at(i).key));
      result[i].setY(valueAxis->coordToPixel(data.at(i).value));
    }
  }
  return result;
}

/*! \internal

  Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
  coordinate points which are suitable for drawing the line style \ref lsStepLeft.

  The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
  getLines if the line style is set accordingly.

  \see dataToLines, dataToStepRightLines, dataToStepCenterLines, dataToImpulseLines, getLines, drawLinePlot
*/
QVector<QPointF> QCPGraph::dataToStepLeftLines(const QVector<QCPGraphData> &data) const
{
  QVector<QPointF> result;
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }

  result.resize(data.size()*2);

  // calculate steps from data and transform to pixel coordinates:
  if (keyAxis->orientation() == Qt::Vertical)
  {
    double lastValue = valueAxis->coordToPixel(data.first().value);
    for (int i=0; i<data.size(); ++i)
    {
      const double key = keyAxis->coordToPixel(data.at(i).key);
      result[i*2+0].setX(lastValue);
      result[i*2+0].setY(key);
      lastValue = valueAxis->coordToPixel(data.at(i).value);
      result[i*2+1].setX(lastValue);
      result[i*2+1].setY(key);
    }
  } else // key axis is horizontal
  {
    double lastValue = valueAxis->coordToPixel(data.first().value);
    for (int i=0; i<data.size(); ++i)
    {
      const double key = keyAxis->coordToPixel(data.at(i).key);
      result[i*2+0].setX(key);
      result[i*2+0].setY(lastValue);
      lastValue = valueAxis->coordToPixel(data.at(i).value);
      result[i*2+1].setX(key);
      result[i*2+1].setY(lastValue);
    }
  }
  return result;
}

/*! \internal

  Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
  coordinate points which are suitable for drawing the line style \ref lsStepRight.

  The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
  getLines if the line style is set accordingly.

  \see dataToLines, dataToStepLeftLines, dataToStepCenterLines, dataToImpulseLines, getLines, drawLinePlot
*/
QVector<QPointF> QCPGraph::dataToStepRightLines(const QVector<QCPGraphData> &data) const
{
  QVector<QPointF> result;
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }

  result.resize(data.size()*2);

  // calculate steps from data and transform to pixel coordinates:
  if (keyAxis->orientation() == Qt::Vertical)
  {
    double lastKey = keyAxis->coordToPixel(data.first().key);
    for (int i=0; i<data.size(); ++i)
    {
      const double value = valueAxis->coordToPixel(data.at(i).value);
      result[i*2+0].setX(value);
      result[i*2+0].setY(lastKey);
      lastKey = keyAxis->coordToPixel(data.at(i).key);
      result[i*2+1].setX(value);
      result[i*2+1].setY(lastKey);
    }
  } else // key axis is horizontal
  {
    double lastKey = keyAxis->coordToPixel(data.first().key);
    for (int i=0; i<data.size(); ++i)
    {
      const double value = valueAxis->coordToPixel(data.at(i).value);
      result[i*2+0].setX(lastKey);
      result[i*2+0].setY(value);
      lastKey = keyAxis->coordToPixel(data.at(i).key);
      result[i*2+1].setX(lastKey);
      result[i*2+1].setY(value);
    }
  }
  return result;
}

/*! \internal

  Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
  coordinate points which are suitable for drawing the line style \ref lsStepCenter.

  The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
  getLines if the line style is set accordingly.

  \see dataToLines, dataToStepLeftLines, dataToStepRightLines, dataToImpulseLines, getLines, drawLinePlot
*/
QVector<QPointF> QCPGraph::dataToStepCenterLines(const QVector<QCPGraphData> &data) const
{
  QVector<QPointF> result;
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }

  result.resize(data.size()*2);

  // calculate steps from data and transform to pixel coordinates:
  if (keyAxis->orientation() == Qt::Vertical)
  {
    double lastKey = keyAxis->coordToPixel(data.first().key);
    double lastValue = valueAxis->coordToPixel(data.first().value);
    result[0].setX(lastValue);
    result[0].setY(lastKey);
    for (int i=1; i<data.size(); ++i)
    {
      const double key = (keyAxis->coordToPixel(data.at(i).key)+lastKey)*0.5;
      result[i*2-1].setX(lastValue);
      result[i*2-1].setY(key);
      lastValue = valueAxis->coordToPixel(data.at(i).value);
      lastKey = keyAxis->coordToPixel(data.at(i).key);
      result[i*2+0].setX(lastValue);
      result[i*2+0].setY(key);
    }
    result[data.size()*2-1].setX(lastValue);
    result[data.size()*2-1].setY(lastKey);
  } else // key axis is horizontal
  {
    double lastKey = keyAxis->coordToPixel(data.first().key);
    double lastValue = valueAxis->coordToPixel(data.first().value);
    result[0].setX(lastKey);
    result[0].setY(lastValue);
    for (int i=1; i<data.size(); ++i)
    {
      const double key = (keyAxis->coordToPixel(data.at(i).key)+lastKey)*0.5;
      result[i*2-1].setX(key);
      result[i*2-1].setY(lastValue);
      lastValue = valueAxis->coordToPixel(data.at(i).value);
      lastKey = keyAxis->coordToPixel(data.at(i).key);
      result[i*2+0].setX(key);
      result[i*2+0].setY(lastValue);
    }
    result[data.size()*2-1].setX(lastKey);
    result[data.size()*2-1].setY(lastValue);
  }
  return result;
}

/*! \internal

  Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
  coordinate points which are suitable for drawing the line style \ref lsImpulse.

  The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
  getLines if the line style is set accordingly.

  \see dataToLines, dataToStepLeftLines, dataToStepRightLines, dataToStepCenterLines, getLines, drawImpulsePlot
*/
QVector<QPointF> QCPGraph::dataToImpulseLines(const QVector<QCPGraphData> &data) const
{
  QVector<QPointF> result;
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }

  result.resize(data.size()*2);

  // transform data points to pixels:
  if (keyAxis->orientation() == Qt::Vertical)
  {
    for (int i=0; i<data.size(); ++i)
    {
      const double key = keyAxis->coordToPixel(data.at(i).key);
      result[i*2+0].setX(valueAxis->coordToPixel(0));
      result[i*2+0].setY(key);
      result[i*2+1].setX(valueAxis->coordToPixel(data.at(i).value));
      result[i*2+1].setY(key);
    }
  } else // key axis is horizontal
  {
    for (int i=0; i<data.size(); ++i)
    {
      const double key = keyAxis->coordToPixel(data.at(i).key);
      result[i*2+0].setX(key);
      result[i*2+0].setY(valueAxis->coordToPixel(0));
      result[i*2+1].setX(key);
      result[i*2+1].setY(valueAxis->coordToPixel(data.at(i).value));
    }
  }
  return result;
}

/*! \internal

  Draws the fill of the graph using the specified \a painter, with the currently set brush.

  Depending on whether a normal fill or a channel fill (\ref setChannelFillGraph) is needed, \ref
  getFillPolygon or \ref getChannelFillPolygon are used to find the according fill polygons.

  In order to handle NaN Data points correctly (the fill needs to be split into disjoint areas),
  this method first determines a list of non-NaN segments with \ref getNonNanSegments, on which to
  operate. In the channel fill case, \ref getOverlappingSegments is used to consolidate the non-NaN
  segments of the two involved graphs, before passing the overlapping pairs to \ref
  getChannelFillPolygon.

  Pass the points of this graph's line as \a lines, in pixel coordinates.

  \see drawLinePlot, drawImpulsePlot, drawScatterPlot
*/
void QCPGraph::drawFill(QCPPainter *painter, QVector<QPointF> *lines) const
{
  if (mLineStyle == lsImpulse) return; // fill doesn't make sense for impulse plot
  if (painter->brush().style() == Qt::NoBrush || painter->brush().color().alpha() == 0) return;

  applyFillAntialiasingHint(painter);
  QVector<QCPDataRange> segments = getNonNanSegments(lines, keyAxis()->orientation());
  if (!mChannelFillGraph)
  {
    // draw base fill under graph, fill goes all the way to the zero-value-line:
    for (int i=0; i<segments.size(); ++i)
      painter->drawPolygon(getFillPolygon(lines, segments.at(i)));
  } else
  {
    // draw fill between this graph and mChannelFillGraph:
    QVector<QPointF> otherLines;
    mChannelFillGraph->getLines(&otherLines, QCPDataRange(0, mChannelFillGraph->dataCount()));
    if (!otherLines.isEmpty())
    {
      QVector<QCPDataRange> otherSegments = getNonNanSegments(&otherLines, mChannelFillGraph->keyAxis()->orientation());
      QVector<QPair<QCPDataRange, QCPDataRange> > segmentPairs = getOverlappingSegments(segments, lines, otherSegments, &otherLines);
      for (int i=0; i<segmentPairs.size(); ++i)
        painter->drawPolygon(getChannelFillPolygon(lines, segmentPairs.at(i).first, &otherLines, segmentPairs.at(i).second));
    }
  }
}

/*! \internal

  Draws scatter symbols at every point passed in \a scatters, given in pixel coordinates. The
  scatters will be drawn with \a painter and have the appearance as specified in \a style.

  \see drawLinePlot, drawImpulsePlot
*/
void QCPGraph::drawScatterPlot(QCPPainter *painter, const QVector<QPointF> &scatters, const QCPScatterStyle &style) const
{
  applyScattersAntialiasingHint(painter);
  style.applyTo(painter, mPen);
  for (int i=0; i<scatters.size(); ++i)
    style.drawShape(painter, scatters.at(i).x(), scatters.at(i).y());
}

/*!  \internal

  Draws lines between the points in \a lines, given in pixel coordinates.

  \see drawScatterPlot, drawImpulsePlot, QCPAbstractPlottable1D::drawPolyline
*/
void QCPGraph::drawLinePlot(QCPPainter *painter, const QVector<QPointF> &lines) const
{
  if (painter->pen().style() != Qt::NoPen && painter->pen().color().alpha() != 0)
  {
    applyDefaultAntialiasingHint(painter);
    drawPolyline(painter, lines);
  }
}

/*! \internal

  Draws impulses from the provided data, i.e. it connects all line pairs in \a lines, given in
  pixel coordinates. The \a lines necessary for impulses are generated by \ref dataToImpulseLines
  from the regular graph data points.

  \see drawLinePlot, drawScatterPlot
*/
void QCPGraph::drawImpulsePlot(QCPPainter *painter, const QVector<QPointF> &lines) const
{
  if (painter->pen().style() != Qt::NoPen && painter->pen().color().alpha() != 0)
  {
    applyDefaultAntialiasingHint(painter);
    QPen oldPen = painter->pen();
    QPen newPen = painter->pen();
    newPen.setCapStyle(Qt::FlatCap); // so impulse line doesn't reach beyond zero-line
    painter->setPen(newPen);
    painter->drawLines(lines);
    painter->setPen(oldPen);
  }
}

/*! \internal

  Returns via \a lineData the data points that need to be visualized for this graph when plotting
  graph lines, taking into consideration the currently visible axis ranges and, if \ref
  setAdaptiveSampling is enabled, local point densities. The considered data can be restricted
  further by \a begin and \a end, e.g. to only plot a certain segment of the data (see \ref
  getDataSegments).

  This method is used by \ref getLines to retrieve the basic working set of data.

  \see getOptimizedScatterData
*/
void QCPGraph::getOptimizedLineData(QVector<QCPGraphData> *lineData, const QCPGraphDataContainer::const_iterator &begin, const QCPGraphDataContainer::const_iterator &end) const
{
  if (!lineData) return;
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
  if (begin == end) return;

  int dataCount = int(end-begin);
  int maxCount = (std::numeric_limits<int>::max)();
  if (mAdaptiveSampling)
  {
    double keyPixelSpan = qAbs(keyAxis->coordToPixel(begin->key)-keyAxis->coordToPixel((end-1)->key));
    if (2*keyPixelSpan+2 < static_cast<double>((std::numeric_limits<int>::max)()))
      maxCount = 2*keyPixelSpan+2;
  }

  if (mAdaptiveSampling && dataCount >= maxCount) // use adaptive sampling only if there are at least two points per pixel on average
  {
    QCPGraphDataContainer::const_iterator it = begin;
    double minValue = it->value;
    double maxValue = it->value;
    QCPGraphDataContainer::const_iterator currentIntervalFirstPoint = it;
    int reversedFactor = keyAxis->pixelOrientation(); // is used to calculate keyEpsilon pixel into the correct direction
    int reversedRound = reversedFactor==-1 ? 1 : 0; // is used to switch between floor (normal) and ceil (reversed) rounding of currentIntervalStartKey
    double currentIntervalStartKey = keyAxis->pixelToCoord((int)(keyAxis->coordToPixel(begin->key)+reversedRound));
    double lastIntervalEndKey = currentIntervalStartKey;
    double keyEpsilon = qAbs(currentIntervalStartKey-keyAxis->pixelToCoord(keyAxis->coordToPixel(currentIntervalStartKey)+1.0*reversedFactor)); // interval of one pixel on screen when mapped to plot key coordinates
    bool keyEpsilonVariable = keyAxis->scaleType() == QCPAxis::stLogarithmic; // indicates whether keyEpsilon needs to be updated after every interval (for log axes)
    int intervalDataCount = 1;
    ++it; // advance iterator to second data point because adaptive sampling works in 1 point retrospect
    while (it != end)
    {
      if (it->key < currentIntervalStartKey+keyEpsilon) // data point is still within same pixel, so skip it and expand value span of this cluster if necessary
      {
        if (it->value < minValue)
          minValue = it->value;
        else if (it->value > maxValue)
          maxValue = it->value;
        ++intervalDataCount;
      } else // new pixel interval started
      {
        if (intervalDataCount >= 2) // last pixel had multiple data points, consolidate them to a cluster
        {
          if (lastIntervalEndKey < currentIntervalStartKey-keyEpsilon) // last point is further away, so first point of this cluster must be at a real data point
            lineData->append(QCPGraphData(currentIntervalStartKey+keyEpsilon*0.2, currentIntervalFirstPoint->value));
          lineData->append(QCPGraphData(currentIntervalStartKey+keyEpsilon*0.25, minValue));
          lineData->append(QCPGraphData(currentIntervalStartKey+keyEpsilon*0.75, maxValue));
          if (it->key > currentIntervalStartKey+keyEpsilon*2) // new pixel started further away from previous cluster, so make sure the last point of the cluster is at a real data point
            lineData->append(QCPGraphData(currentIntervalStartKey+keyEpsilon*0.8, (it-1)->value));
        } else
          lineData->append(QCPGraphData(currentIntervalFirstPoint->key, currentIntervalFirstPoint->value));
        lastIntervalEndKey = (it-1)->key;
        minValue = it->value;
        maxValue = it->value;
        currentIntervalFirstPoint = it;
        currentIntervalStartKey = keyAxis->pixelToCoord((int)(keyAxis->coordToPixel(it->key)+reversedRound));
        if (keyEpsilonVariable)
          keyEpsilon = qAbs(currentIntervalStartKey-keyAxis->pixelToCoord(keyAxis->coordToPixel(currentIntervalStartKey)+1.0*reversedFactor));
        intervalDataCount = 1;
      }
      ++it;
    }
    // handle last interval:
    if (intervalDataCount >= 2) // last pixel had multiple data points, consolidate them to a cluster
    {
      if (lastIntervalEndKey < currentIntervalStartKey-keyEpsilon) // last point wasn't a cluster, so first point of this cluster must be at a real data point
        lineData->append(QCPGraphData(currentIntervalStartKey+keyEpsilon*0.2, currentIntervalFirstPoint->value));
      lineData->append(QCPGraphData(currentIntervalStartKey+keyEpsilon*0.25, minValue));
      lineData->append(QCPGraphData(currentIntervalStartKey+keyEpsilon*0.75, maxValue));
    } else
      lineData->append(QCPGraphData(currentIntervalFirstPoint->key, currentIntervalFirstPoint->value));

  } else // don't use adaptive sampling algorithm, transfer points one-to-one from the data container into the output
  {
    lineData->resize(dataCount);
    std::copy(begin, end, lineData->begin());
  }
}

/*! \internal

  Returns via \a scatterData the data points that need to be visualized for this graph when
  plotting scatter points, taking into consideration the currently visible axis ranges and, if \ref
  setAdaptiveSampling is enabled, local point densities. The considered data can be restricted
  further by \a begin and \a end, e.g. to only plot a certain segment of the data (see \ref
  getDataSegments).

  This method is used by \ref getScatters to retrieve the basic working set of data.

  \see getOptimizedLineData
*/
void QCPGraph::getOptimizedScatterData(QVector<QCPGraphData> *scatterData, QCPGraphDataContainer::const_iterator begin, QCPGraphDataContainer::const_iterator end) const
{
  if (!scatterData) return;
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }

  const int scatterModulo = mScatterSkip+1;
  const bool doScatterSkip = mScatterSkip > 0;
  int beginIndex = int(begin-mDataContainer->constBegin());
  int endIndex = int(end-mDataContainer->constBegin());
  while (doScatterSkip && begin != end && beginIndex % scatterModulo != 0) // advance begin iterator to first non-skipped scatter
  {
    ++beginIndex;
    ++begin;
  }
  if (begin == end) return;
  int dataCount = int(end-begin);
  int maxCount = (std::numeric_limits<int>::max)();
  if (mAdaptiveSampling)
  {
    int keyPixelSpan = qAbs(keyAxis->coordToPixel(begin->key)-keyAxis->coordToPixel((end-1)->key));
    maxCount = 2*keyPixelSpan+2;
  }

  if (mAdaptiveSampling && dataCount >= maxCount) // use adaptive sampling only if there are at least two points per pixel on average
  {
    double valueMaxRange = valueAxis->range().upper;
    double valueMinRange = valueAxis->range().lower;
    QCPGraphDataContainer::const_iterator it = begin;
    int itIndex = beginIndex;
    double minValue = it->value;
    double maxValue = it->value;
    QCPGraphDataContainer::const_iterator minValueIt = it;
    QCPGraphDataContainer::const_iterator maxValueIt = it;
    QCPGraphDataContainer::const_iterator currentIntervalStart = it;
    int reversedFactor = keyAxis->pixelOrientation(); // is used to calculate keyEpsilon pixel into the correct direction
    int reversedRound = reversedFactor==-1 ? 1 : 0; // is used to switch between floor (normal) and ceil (reversed) rounding of currentIntervalStartKey
    double currentIntervalStartKey = keyAxis->pixelToCoord((int)(keyAxis->coordToPixel(begin->key)+reversedRound));
    double keyEpsilon = qAbs(currentIntervalStartKey-keyAxis->pixelToCoord(keyAxis->coordToPixel(currentIntervalStartKey)+1.0*reversedFactor)); // interval of one pixel on screen when mapped to plot key coordinates
    bool keyEpsilonVariable = keyAxis->scaleType() == QCPAxis::stLogarithmic; // indicates whether keyEpsilon needs to be updated after every interval (for log axes)
    int intervalDataCount = 1;
    // advance iterator to second (non-skipped) data point because adaptive sampling works in 1 point retrospect:
    if (!doScatterSkip)
      ++it;
    else
    {
      itIndex += scatterModulo;
      if (itIndex < endIndex) // make sure we didn't jump over end
        it += scatterModulo;
      else
      {
        it = end;
        itIndex = endIndex;
      }
    }
    // main loop over data points:
    while (it != end)
    {
      if (it->key < currentIntervalStartKey+keyEpsilon) // data point is still within same pixel, so skip it and expand value span of this pixel if necessary
      {
        if (it->value < minValue && it->value > valueMinRange && it->value < valueMaxRange)
        {
          minValue = it->value;
          minValueIt = it;
        } else if (it->value > maxValue && it->value > valueMinRange && it->value < valueMaxRange)
        {
          maxValue = it->value;
          maxValueIt = it;
        }
        ++intervalDataCount;
      } else // new pixel started
      {
        if (intervalDataCount >= 2) // last pixel had multiple data points, consolidate them
        {
          // determine value pixel span and add as many points in interval to maintain certain vertical data density (this is specific to scatter plot):
          double valuePixelSpan = qAbs(valueAxis->coordToPixel(minValue)-valueAxis->coordToPixel(maxValue));
          int dataModulo = qMax(1, qRound(intervalDataCount/(valuePixelSpan/4.0))); // approximately every 4 value pixels one data point on average
          QCPGraphDataContainer::const_iterator intervalIt = currentIntervalStart;
          int c = 0;
          while (intervalIt != it)
          {
            if ((c % dataModulo == 0 || intervalIt == minValueIt || intervalIt == maxValueIt) && intervalIt->value > valueMinRange && intervalIt->value < valueMaxRange)
              scatterData->append(*intervalIt);
            ++c;
            if (!doScatterSkip)
              ++intervalIt;
            else
              intervalIt += scatterModulo; // since we know indices of "currentIntervalStart", "intervalIt" and "it" are multiples of scatterModulo, we can't accidentally jump over "it" here
          }
        } else if (currentIntervalStart->value > valueMinRange && currentIntervalStart->value < valueMaxRange)
          scatterData->append(*currentIntervalStart);
        minValue = it->value;
        maxValue = it->value;
        currentIntervalStart = it;
        currentIntervalStartKey = keyAxis->pixelToCoord((int)(keyAxis->coordToPixel(it->key)+reversedRound));
        if (keyEpsilonVariable)
          keyEpsilon = qAbs(currentIntervalStartKey-keyAxis->pixelToCoord(keyAxis->coordToPixel(currentIntervalStartKey)+1.0*reversedFactor));
        intervalDataCount = 1;
      }
      // advance to next data point:
      if (!doScatterSkip)
        ++it;
      else
      {
        itIndex += scatterModulo;
        if (itIndex < endIndex) // make sure we didn't jump over end
          it += scatterModulo;
        else
        {
          it = end;
          itIndex = endIndex;
        }
      }
    }
    // handle last interval:
    if (intervalDataCount >= 2) // last pixel had multiple data points, consolidate them
    {
      // determine value pixel span and add as many points in interval to maintain certain vertical data density (this is specific to scatter plot):
      double valuePixelSpan = qAbs(valueAxis->coordToPixel(minValue)-valueAxis->coordToPixel(maxValue));
      int dataModulo = qMax(1, qRound(intervalDataCount/(valuePixelSpan/4.0))); // approximately every 4 value pixels one data point on average
      QCPGraphDataContainer::const_iterator intervalIt = currentIntervalStart;
      int intervalItIndex = int(intervalIt-mDataContainer->constBegin());
      int c = 0;
      while (intervalIt != it)
      {
        if ((c % dataModulo == 0 || intervalIt == minValueIt || intervalIt == maxValueIt) && intervalIt->value > valueMinRange && intervalIt->value < valueMaxRange)
          scatterData->append(*intervalIt);
        ++c;
        if (!doScatterSkip)
          ++intervalIt;
        else // here we can't guarantee that adding scatterModulo doesn't exceed "it" (because "it" is equal to "end" here, and "end" isn't scatterModulo-aligned), so check via index comparison:
        {
          intervalItIndex += scatterModulo;
          if (intervalItIndex < itIndex)
            intervalIt += scatterModulo;
          else
          {
            intervalIt = it;
            intervalItIndex = itIndex;
          }
        }
      }
    } else if (currentIntervalStart->value > valueMinRange && currentIntervalStart->value < valueMaxRange)
      scatterData->append(*currentIntervalStart);

  } else // don't use adaptive sampling algorithm, transfer points one-to-one from the data container into the output
  {
    QCPGraphDataContainer::const_iterator it = begin;
    int itIndex = beginIndex;
    scatterData->reserve(dataCount);
    while (it != end)
    {
      scatterData->append(*it);
      // advance to next data point:
      if (!doScatterSkip)
        ++it;
      else
      {
        itIndex += scatterModulo;
        if (itIndex < endIndex)
          it += scatterModulo;
        else
        {
          it = end;
          itIndex = endIndex;
        }
      }
    }
  }
}

/*!
  This method outputs the currently visible data range via \a begin and \a end. The returned range
  will also never exceed \a rangeRestriction.

  This method takes into account that the drawing of data lines at the axis rect border always
  requires the points just outside the visible axis range. So \a begin and \a end may actually
  indicate a range that contains one additional data point to the left and right of the visible
  axis range.
*/
void QCPGraph::getVisibleDataBounds(QCPGraphDataContainer::const_iterator &begin, QCPGraphDataContainer::const_iterator &end, const QCPDataRange &rangeRestriction) const
{
  if (rangeRestriction.isEmpty())
  {
    end = mDataContainer->constEnd();
    begin = end;
  } else
  {
    QCPAxis *keyAxis = mKeyAxis.data();
    QCPAxis *valueAxis = mValueAxis.data();
    if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
    // get visible data range:
    begin = mDataContainer->findBegin(keyAxis->range().lower);
    end = mDataContainer->findEnd(keyAxis->range().upper);
    // limit lower/upperEnd to rangeRestriction:
    mDataContainer->limitIteratorsToDataRange(begin, end, rangeRestriction); // this also ensures rangeRestriction outside data bounds doesn't break anything
  }
}

/*!  \internal

  This method goes through the passed points in \a lineData and returns a list of the segments
  which don't contain NaN data points.

  \a keyOrientation defines whether the \a x or \a y member of the passed QPointF is used to check
  for NaN. If \a keyOrientation is \c Qt::Horizontal, the \a y member is checked, if it is \c
  Qt::Vertical, the \a x member is checked.

  \see getOverlappingSegments, drawFill
*/
QVector<QCPDataRange> QCPGraph::getNonNanSegments(const QVector<QPointF> *lineData, Qt::Orientation keyOrientation) const
{
  QVector<QCPDataRange> result;
  const int n = lineData->size();

  QCPDataRange currentSegment(-1, -1);
  int i = 0;

  if (keyOrientation == Qt::Horizontal)
  {
    while (i < n)
    {
      while (i < n && qIsNaN(lineData->at(i).y())) // seek next non-NaN data point
        ++i;
      if (i == n)
        break;
      currentSegment.setBegin(i++);
      while (i < n && !qIsNaN(lineData->at(i).y())) // seek next NaN data point or end of data
        ++i;
      currentSegment.setEnd(i++);
      result.append(currentSegment);
    }
  } else // keyOrientation == Qt::Vertical
  {
    while (i < n)
    {
      while (i < n && qIsNaN(lineData->at(i).x())) // seek next non-NaN data point
        ++i;
      if (i == n)
        break;
      currentSegment.setBegin(i++);
      while (i < n && !qIsNaN(lineData->at(i).x())) // seek next NaN data point or end of data
        ++i;
      currentSegment.setEnd(i++);
      result.append(currentSegment);
    }
  }
  return result;
}

/*!  \internal

  This method takes two segment lists (e.g. created by \ref getNonNanSegments) \a thisSegments and
  \a otherSegments, and their associated point data \a thisData and \a otherData.

  It returns all pairs of segments (the first from \a thisSegments, the second from \a
  otherSegments), which overlap in plot coordinates.

  This method is useful in the case of a channel fill between two graphs, when only those non-NaN
  segments which actually overlap in their key coordinate shall be considered for drawing a channel
  fill polygon.

  It is assumed that the passed segments in \a thisSegments are ordered ascending by index, and
  that the segments don't overlap themselves. The same is assumed for the segments in \a
  otherSegments. This is fulfilled when the segments are obtained via \ref getNonNanSegments.

  \see getNonNanSegments, segmentsIntersect, drawFill, getChannelFillPolygon
*/
QVector<QPair<QCPDataRange, QCPDataRange> > QCPGraph::getOverlappingSegments(QVector<QCPDataRange> thisSegments, const QVector<QPointF> *thisData, QVector<QCPDataRange> otherSegments, const QVector<QPointF> *otherData) const
{
  QVector<QPair<QCPDataRange, QCPDataRange> > result;
  if (thisData->isEmpty() || otherData->isEmpty() || thisSegments.isEmpty() || otherSegments.isEmpty())
    return result;

  int thisIndex = 0;
  int otherIndex = 0;
  const bool verticalKey = mKeyAxis->orientation() == Qt::Vertical;
  while (thisIndex < thisSegments.size() && otherIndex < otherSegments.size())
  {
    if (thisSegments.at(thisIndex).size() < 2) // segments with fewer than two points won't have a fill anyhow
    {
      ++thisIndex;
      continue;
    }
    if (otherSegments.at(otherIndex).size() < 2) // segments with fewer than two points won't have a fill anyhow
    {
      ++otherIndex;
      continue;
    }
    double thisLower, thisUpper, otherLower, otherUpper;
    if (!verticalKey)
    {
      thisLower = thisData->at(thisSegments.at(thisIndex).begin()).x();
      thisUpper = thisData->at(thisSegments.at(thisIndex).end()-1).x();
      otherLower = otherData->at(otherSegments.at(otherIndex).begin()).x();
      otherUpper = otherData->at(otherSegments.at(otherIndex).end()-1).x();
    } else
    {
      thisLower = thisData->at(thisSegments.at(thisIndex).begin()).y();
      thisUpper = thisData->at(thisSegments.at(thisIndex).end()-1).y();
      otherLower = otherData->at(otherSegments.at(otherIndex).begin()).y();
      otherUpper = otherData->at(otherSegments.at(otherIndex).end()-1).y();
    }

    int bPrecedence;
    if (segmentsIntersect(thisLower, thisUpper, otherLower, otherUpper, bPrecedence))
      result.append(QPair<QCPDataRange, QCPDataRange>(thisSegments.at(thisIndex), otherSegments.at(otherIndex)));

    if (bPrecedence <= 0) // otherSegment doesn't reach as far as thisSegment, so continue with next otherSegment, keeping current thisSegment
      ++otherIndex;
    else // otherSegment reaches further than thisSegment, so continue with next thisSegment, keeping current otherSegment
      ++thisIndex;
  }

  return result;
}

/*!  \internal

  Returns whether the segments defined by the coordinates (aLower, aUpper) and (bLower, bUpper)
  have overlap.

  The output parameter \a bPrecedence indicates whether the \a b segment reaches farther than the
  \a a segment or not. If \a bPrecedence returns 1, segment \a b reaches the farthest to higher
  coordinates (i.e. bUpper > aUpper). If it returns -1, segment \a a reaches the farthest. Only if
  both segment's upper bounds are identical, 0 is returned as \a bPrecedence.

  It is assumed that the lower bounds always have smaller or equal values than the upper bounds.

  \see getOverlappingSegments
*/
bool QCPGraph::segmentsIntersect(double aLower, double aUpper, double bLower, double bUpper, int &bPrecedence) const
{
  bPrecedence = 0;
  if (aLower > bUpper)
  {
    bPrecedence = -1;
    return false;
  } else if (bLower > aUpper)
  {
    bPrecedence = 1;
    return false;
  } else
  {
    if (aUpper > bUpper)
      bPrecedence = -1;
    else if (aUpper < bUpper)
      bPrecedence = 1;

    return true;
  }
}

/*! \internal

  Returns the point which closes the fill polygon on the zero-value-line parallel to the key axis.
  The logarithmic axis scale case is a bit special, since the zero-value-line in pixel coordinates
  is in positive or negative infinity. So this case is handled separately by just closing the fill
  polygon on the axis which lies in the direction towards the zero value.

  \a matchingDataPoint will provide the key (in pixels) of the returned point. Depending on whether
  the key axis of this graph is horizontal or vertical, \a matchingDataPoint will provide the x or
  y value of the returned point, respectively.
*/
QPointF QCPGraph::getFillBasePoint(QPointF matchingDataPoint) const
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return QPointF(); }

  QPointF result;
  if (valueAxis->scaleType() == QCPAxis::stLinear)
  {
    if (keyAxis->orientation() == Qt::Horizontal)
    {
      result.setX(matchingDataPoint.x());
      result.setY(valueAxis->coordToPixel(0));
    } else // keyAxis->orientation() == Qt::Vertical
    {
      result.setX(valueAxis->coordToPixel(0));
      result.setY(matchingDataPoint.y());
    }
  } else // valueAxis->mScaleType == QCPAxis::stLogarithmic
  {
    // In logarithmic scaling we can't just draw to value 0 so we just fill all the way
    // to the axis which is in the direction towards 0
    if (keyAxis->orientation() == Qt::Vertical)
    {
      if ((valueAxis->range().upper < 0 && !valueAxis->rangeReversed()) ||
          (valueAxis->range().upper > 0 && valueAxis->rangeReversed())) // if range is negative, zero is on opposite side of key axis
        result.setX(keyAxis->axisRect()->right());
      else
        result.setX(keyAxis->axisRect()->left());
      result.setY(matchingDataPoint.y());
    } else if (keyAxis->axisType() == QCPAxis::atTop || keyAxis->axisType() == QCPAxis::atBottom)
    {
      result.setX(matchingDataPoint.x());
      if ((valueAxis->range().upper < 0 && !valueAxis->rangeReversed()) ||
          (valueAxis->range().upper > 0 && valueAxis->rangeReversed())) // if range is negative, zero is on opposite side of key axis
        result.setY(keyAxis->axisRect()->top());
      else
        result.setY(keyAxis->axisRect()->bottom());
    }
  }
  return result;
}

/*! \internal

  Returns the polygon needed for drawing normal fills between this graph and the key axis.

  Pass the graph's data points (in pixel coordinates) as \a lineData, and specify the \a segment
  which shall be used for the fill. The collection of \a lineData points described by \a segment
  must not contain NaN data points (see \ref getNonNanSegments).

  The returned fill polygon will be closed at the key axis (the zero-value line) for linear value
  axes. For logarithmic value axes the polygon will reach just beyond the corresponding axis rect
  side (see \ref getFillBasePoint).

  For increased performance (due to implicit sharing), keep the returned QPolygonF const.

  \see drawFill, getNonNanSegments
*/
const QPolygonF QCPGraph::getFillPolygon(const QVector<QPointF> *lineData, QCPDataRange segment) const
{
  if (segment.size() < 2)
    return QPolygonF();
  QPolygonF result(segment.size()+2);

  result[0] = getFillBasePoint(lineData->at(segment.begin()));
  std::copy(lineData->constBegin()+segment.begin(), lineData->constBegin()+segment.end(), result.begin()+1);
  result[result.size()-1] = getFillBasePoint(lineData->at(segment.end()-1));

  return result;
}

/*! \internal

  Returns the polygon needed for drawing (partial) channel fills between this graph and the graph
  specified by \ref setChannelFillGraph.

  The data points of this graph are passed as pixel coordinates via \a thisData, the data of the
  other graph as \a otherData. The returned polygon will be calculated for the specified data
  segments \a thisSegment and \a otherSegment, pertaining to the respective \a thisData and \a
  otherData, respectively.

  The passed \a thisSegment and \a otherSegment should correspond to the segment pairs returned by
  \ref getOverlappingSegments, to make sure only segments that actually have key coordinate overlap
  need to be processed here.

  For increased performance due to implicit sharing, keep the returned QPolygonF const.

  \see drawFill, getOverlappingSegments, getNonNanSegments
*/
const QPolygonF QCPGraph::getChannelFillPolygon(const QVector<QPointF> *thisData, QCPDataRange thisSegment, const QVector<QPointF> *otherData, QCPDataRange otherSegment) const
{
  if (!mChannelFillGraph)
    return QPolygonF();

  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return QPolygonF(); }
  if (!mChannelFillGraph.data()->mKeyAxis) { qDebug() << Q_FUNC_INFO << "channel fill target key axis invalid"; return QPolygonF(); }

  if (mChannelFillGraph.data()->mKeyAxis.data()->orientation() != keyAxis->orientation())
    return QPolygonF(); // don't have same axis orientation, can't fill that (Note: if keyAxis fits, valueAxis will fit too, because it's always orthogonal to keyAxis)

  if (thisData->isEmpty()) return QPolygonF();
  QVector<QPointF> thisSegmentData(thisSegment.size());
  QVector<QPointF> otherSegmentData(otherSegment.size());
  std::copy(thisData->constBegin()+thisSegment.begin(), thisData->constBegin()+thisSegment.end(), thisSegmentData.begin());
  std::copy(otherData->constBegin()+otherSegment.begin(), otherData->constBegin()+otherSegment.end(), otherSegmentData.begin());
  // pointers to be able to swap them, depending which data range needs cropping:
  QVector<QPointF> *staticData = &thisSegmentData;
  QVector<QPointF> *croppedData = &otherSegmentData;

  // crop both vectors to ranges in which the keys overlap (which coord is key, depends on axisType):
  if (keyAxis->orientation() == Qt::Horizontal)
  {
    // x is key
    // crop lower bound:
    if (staticData->first().x() < croppedData->first().x()) // other one must be cropped
      qSwap(staticData, croppedData);
    const int lowBound = findIndexBelowX(croppedData, staticData->first().x());
    if (lowBound == -1) return QPolygonF(); // key ranges have no overlap
    croppedData->remove(0, lowBound);
    // set lowest point of cropped data to fit exactly key position of first static data point via linear interpolation:
    if (croppedData->size() < 2) return QPolygonF(); // need at least two points for interpolation
    double slope;
    if (!qFuzzyCompare(croppedData->at(1).x(), croppedData->at(0).x()))
      slope = (croppedData->at(1).y()-croppedData->at(0).y())/(croppedData->at(1).x()-croppedData->at(0).x());
    else
      slope = 0;
    (*croppedData)[0].setY(croppedData->at(0).y()+slope*(staticData->first().x()-croppedData->at(0).x()));
    (*croppedData)[0].setX(staticData->first().x());

    // crop upper bound:
    if (staticData->last().x() > croppedData->last().x()) // other one must be cropped
      qSwap(staticData, croppedData);
    int highBound = findIndexAboveX(croppedData, staticData->last().x());
    if (highBound == -1) return QPolygonF(); // key ranges have no overlap
    croppedData->remove(highBound+1, croppedData->size()-(highBound+1));
    // set highest point of cropped data to fit exactly key position of last static data point via linear interpolation:
    if (croppedData->size() < 2) return QPolygonF(); // need at least two points for interpolation
    const int li = croppedData->size()-1; // last index
    if (!qFuzzyCompare(croppedData->at(li).x(), croppedData->at(li-1).x()))
      slope = (croppedData->at(li).y()-croppedData->at(li-1).y())/(croppedData->at(li).x()-croppedData->at(li-1).x());
    else
      slope = 0;
    (*croppedData)[li].setY(croppedData->at(li-1).y()+slope*(staticData->last().x()-croppedData->at(li-1).x()));
    (*croppedData)[li].setX(staticData->last().x());
  } else // mKeyAxis->orientation() == Qt::Vertical
  {
    // y is key
    // crop lower bound:
    if (staticData->first().y() < croppedData->first().y()) // other one must be cropped
      qSwap(staticData, croppedData);
    int lowBound = findIndexBelowY(croppedData, staticData->first().y());
    if (lowBound == -1) return QPolygonF(); // key ranges have no overlap
    croppedData->remove(0, lowBound);
    // set lowest point of cropped data to fit exactly key position of first static data point via linear interpolation:
    if (croppedData->size() < 2) return QPolygonF(); // need at least two points for interpolation
    double slope;
    if (!qFuzzyCompare(croppedData->at(1).y(), croppedData->at(0).y())) // avoid division by zero in step plots
      slope = (croppedData->at(1).x()-croppedData->at(0).x())/(croppedData->at(1).y()-croppedData->at(0).y());
    else
      slope = 0;
    (*croppedData)[0].setX(croppedData->at(0).x()+slope*(staticData->first().y()-croppedData->at(0).y()));
    (*croppedData)[0].setY(staticData->first().y());

    // crop upper bound:
    if (staticData->last().y() > croppedData->last().y()) // other one must be cropped
      qSwap(staticData, croppedData);
    int highBound = findIndexAboveY(croppedData, staticData->last().y());
    if (highBound == -1) return QPolygonF(); // key ranges have no overlap
    croppedData->remove(highBound+1, croppedData->size()-(highBound+1));
    // set highest point of cropped data to fit exactly key position of last static data point via linear interpolation:
    if (croppedData->size() < 2) return QPolygonF(); // need at least two points for interpolation
    int li = croppedData->size()-1; // last index
    if (!qFuzzyCompare(croppedData->at(li).y(), croppedData->at(li-1).y())) // avoid division by zero in step plots
      slope = (croppedData->at(li).x()-croppedData->at(li-1).x())/(croppedData->at(li).y()-croppedData->at(li-1).y());
    else
      slope = 0;
    (*croppedData)[li].setX(croppedData->at(li-1).x()+slope*(staticData->last().y()-croppedData->at(li-1).y()));
    (*croppedData)[li].setY(staticData->last().y());
  }

  // return joined:
  for (int i=otherSegmentData.size()-1; i>=0; --i) // insert reversed, otherwise the polygon will be twisted
    thisSegmentData << otherSegmentData.at(i);
  return QPolygonF(thisSegmentData);
}

/*! \internal

  Finds the smallest index of \a data, whose points x value is just above \a x. Assumes x values in
  \a data points are ordered ascending, as is ensured by \ref getLines/\ref getScatters if the key
  axis is horizontal.

  Used to calculate the channel fill polygon, see \ref getChannelFillPolygon.
*/
int QCPGraph::findIndexAboveX(const QVector<QPointF> *data, double x) const
{
  for (int i=data->size()-1; i>=0; --i)
  {
    if (data->at(i).x() < x)
    {
      if (i<data->size()-1)
        return i+1;
      else
        return data->size()-1;
    }
  }
  return -1;
}

/*! \internal

  Finds the highest index of \a data, whose points x value is just below \a x. Assumes x values in
  \a data points are ordered ascending, as is ensured by \ref getLines/\ref getScatters if the key
  axis is horizontal.

  Used to calculate the channel fill polygon, see \ref getChannelFillPolygon.
*/
int QCPGraph::findIndexBelowX(const QVector<QPointF> *data, double x) const
{
  for (int i=0; i<data->size(); ++i)
  {
    if (data->at(i).x() > x)
    {
      if (i>0)
        return i-1;
      else
        return 0;
    }
  }
  return -1;
}

/*! \internal

  Finds the smallest index of \a data, whose points y value is just above \a y. Assumes y values in
  \a data points are ordered ascending, as is ensured by \ref getLines/\ref getScatters if the key
  axis is vertical.

  Used to calculate the channel fill polygon, see \ref getChannelFillPolygon.
*/
int QCPGraph::findIndexAboveY(const QVector<QPointF> *data, double y) const
{
  for (int i=data->size()-1; i>=0; --i)
  {
    if (data->at(i).y() < y)
    {
      if (i<data->size()-1)
        return i+1;
      else
        return data->size()-1;
    }
  }
  return -1;
}

/*! \internal

  Calculates the minimum distance in pixels the graph's representation has from the given \a
  pixelPoint. This is used to determine whether the graph was clicked or not, e.g. in \ref
  selectTest. The closest data point to \a pixelPoint is returned in \a closestData. Note that if
  the graph has a line representation, the returned distance may be smaller than the distance to
  the \a closestData point, since the distance to the graph line is also taken into account.

  If either the graph has no data or if the line style is \ref lsNone and the scatter style's shape
  is \ref QCPScatterStyle::ssNone (i.e. there is no visual representation of the graph), returns -1.0.
*/
double QCPGraph::pointDistance(const QPointF &pixelPoint, QCPGraphDataContainer::const_iterator &closestData) const
{
  closestData = mDataContainer->constEnd();
  if (mDataContainer->isEmpty())
    return -1.0;
  if (mLineStyle == lsNone && mScatterStyle.isNone())
    return -1.0;

  // calculate minimum distances to graph data points and find closestData iterator:
  double minDistSqr = (std::numeric_limits<double>::max)();
  // determine which key range comes into question, taking selection tolerance around pos into account:
  double posKeyMin, posKeyMax, dummy;
  pixelsToCoords(pixelPoint-QPointF(mParentPlot->selectionTolerance(), mParentPlot->selectionTolerance()), posKeyMin, dummy);
  pixelsToCoords(pixelPoint+QPointF(mParentPlot->selectionTolerance(), mParentPlot->selectionTolerance()), posKeyMax, dummy);
  if (posKeyMin > posKeyMax)
    qSwap(posKeyMin, posKeyMax);
  // iterate over found data points and then choose the one with the shortest distance to pos:
  QCPGraphDataContainer::const_iterator begin = mDataContainer->findBegin(posKeyMin, true);
  QCPGraphDataContainer::const_iterator end = mDataContainer->findEnd(posKeyMax, true);
  for (QCPGraphDataContainer::const_iterator it=begin; it!=end; ++it)
  {
    const double currentDistSqr = QCPVector2D(coordsToPixels(it->key, it->value)-pixelPoint).lengthSquared();
    if (currentDistSqr < minDistSqr)
    {
      minDistSqr = currentDistSqr;
      closestData = it;
    }
  }

  // calculate distance to graph line if there is one (if so, will probably be smaller than distance to closest data point):
  if (mLineStyle != lsNone)
  {
    // line displayed, calculate distance to line segments:
    QVector<QPointF> lineData;
    getLines(&lineData, QCPDataRange(0, dataCount()));
    QCPVector2D p(pixelPoint);
    const int step = mLineStyle==lsImpulse ? 2 : 1; // impulse plot differs from other line styles in that the lineData points are only pairwise connected
    for (int i=0; i<lineData.size()-1; i+=step)
    {
      const double currentDistSqr = p.distanceSquaredToLine(lineData.at(i), lineData.at(i+1));
      if (currentDistSqr < minDistSqr)
        minDistSqr = currentDistSqr;
    }
  }

  return qSqrt(minDistSqr);
}

/*! \internal

  Finds the highest index of \a data, whose points y value is just below \a y. Assumes y values in
  \a data points are ordered ascending, as is ensured by \ref getLines/\ref getScatters if the key
  axis is vertical.

  Used to calculate the channel fill polygon, see \ref getChannelFillPolygon.
*/
int QCPGraph::findIndexBelowY(const QVector<QPointF> *data, double y) const
{
  for (int i=0; i<data->size(); ++i)
  {
    if (data->at(i).y() > y)
    {
      if (i>0)
        return i-1;
      else
        return 0;
    }
  }
  return -1;
}
/* end of 'src/plottables/plottable-graph.cpp' */


/* including file 'src/plottables/plottable-curve.cpp', size 63742           */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPCurveData
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPCurveData
  \brief Holds the data of one single data point for QCPCurve.

  The stored data is:
  \li \a t: the free ordering parameter of this curve point, like in the mathematical vector <em>(x(t), y(t))</em>. (This is the \a sortKey)
  \li \a key: coordinate on the key axis of this curve point (this is the \a mainKey)
  \li \a value: coordinate on the value axis of this curve point (this is the \a mainValue)

  The container for storing multiple data points is \ref QCPCurveDataContainer. It is a typedef for
  \ref QCPDataContainer with \ref QCPCurveData as the DataType template parameter. See the
  documentation there for an explanation regarding the data type's generic methods.

  \see QCPCurveDataContainer
*/

/* start documentation of inline functions */

/*! \fn double QCPCurveData::sortKey() const

  Returns the \a t member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static QCPCurveData QCPCurveData::fromSortKey(double sortKey)

  Returns a data point with the specified \a sortKey (assigned to the data point's \a t member).
  All other members are set to zero.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static static bool QCPCurveData::sortKeyIsMainKey()

  Since the member \a key is the data point key coordinate and the member \a t is the data ordering
  parameter, this method returns false.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPCurveData::mainKey() const

  Returns the \a key member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPCurveData::mainValue() const

  Returns the \a value member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn QCPRange QCPCurveData::valueRange() const

  Returns a QCPRange with both lower and upper boundary set to \a value of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/* end documentation of inline functions */

/*!
  Constructs a curve data point with t, key and value set to zero.
*/
QCPCurveData::QCPCurveData() :
  t(0),
  key(0),
  value(0)
{
}

/*!
  Constructs a curve data point with the specified \a t, \a key and \a value.
*/
QCPCurveData::QCPCurveData(double t, double key, double value) :
  t(t),
  key(key),
  value(value)
{
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPCurve
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPCurve
  \brief A plottable representing a parametric curve in a plot.

  \image html QCPCurve.png

  Unlike QCPGraph, plottables of this type may have multiple points with the same key coordinate,
  so their visual representation can have \a loops. This is realized by introducing a third
  coordinate \a t, which defines the order of the points described by the other two coordinates \a
  x and \a y.

  To plot data, assign it with the \ref setData or \ref addData functions. Alternatively, you can
  also access and modify the curve's data via the \ref data method, which returns a pointer to the
  internal \ref QCPCurveDataContainer.

  Gaps in the curve can be created by adding data points with NaN as key and value
  (<tt>qQNaN()</tt> or <tt>std::numeric_limits<double>::quiet_NaN()</tt>) in between the two data points that shall be
  separated.

  \section qcpcurve-appearance Changing the appearance

  The appearance of the curve is determined by the pen and the brush (\ref setPen, \ref setBrush).

  \section qcpcurve-usage Usage

  Like all data representing objects in QCustomPlot, the QCPCurve is a plottable
  (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
  (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)

  Usually, you first create an instance:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcurve-creation-1
  which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot instance takes
  ownership of the plottable, so do not delete it manually but use QCustomPlot::removePlottable() instead.
  The newly created plottable can be modified, e.g.:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcurve-creation-2
*/

/* start of documentation of inline functions */

/*! \fn QSharedPointer<QCPCurveDataContainer> QCPCurve::data() const

  Returns a shared pointer to the internal data storage of type \ref QCPCurveDataContainer. You may
  use it to directly manipulate the data, which may be more convenient and faster than using the
  regular \ref setData or \ref addData methods.
*/

/* end of documentation of inline functions */

/*!
  Constructs a curve which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
  axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
  the same orientation. If either of these restrictions is violated, a corresponding message is
  printed to the debug output (qDebug), the construction is not aborted, though.

  The created QCPCurve is automatically registered with the QCustomPlot instance inferred from \a
  keyAxis. This QCustomPlot instance takes ownership of the QCPCurve, so do not delete it manually
  but use QCustomPlot::removePlottable() instead.
*/
QCPCurve::QCPCurve(QCPAxis *keyAxis, QCPAxis *valueAxis) :
  QCPAbstractPlottable1D<QCPCurveData>(keyAxis, valueAxis)
{
  // modify inherited properties from abstract plottable:
  setPen(QPen(Qt::blue, 0));
  setBrush(Qt::NoBrush);

  setScatterStyle(QCPScatterStyle());
  setLineStyle(lsLine);
  setScatterSkip(0);
}

QCPCurve::~QCPCurve()
{
}

/*! \overload

  Replaces the current data container with the provided \a data container.

  Since a QSharedPointer is used, multiple QCPCurves may share the same data container safely.
  Modifying the data in the container will then affect all curves that share the container. Sharing
  can be achieved by simply exchanging the data containers wrapped in shared pointers:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcurve-datasharing-1

  If you do not wish to share containers, but create a copy from an existing container, rather use
  the \ref QCPDataContainer<DataType>::set method on the curve's data container directly:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcurve-datasharing-2

  \see addData
*/
void QCPCurve::setData(QSharedPointer<QCPCurveDataContainer> data)
{
  mDataContainer = data;
}

/*! \overload

  Replaces the current data with the provided points in \a t, \a keys and \a values. The provided
  vectors should have equal length. Else, the number of added points will be the size of the
  smallest vector.

  If you can guarantee that the passed data points are sorted by \a t in ascending order, you can
  set \a alreadySorted to true, to improve performance by saving a sorting run.

  \see addData
*/
void QCPCurve::setData(const QVector<double> &t, const QVector<double> &keys, const QVector<double> &values, bool alreadySorted)
{
  mDataContainer->clear();
  addData(t, keys, values, alreadySorted);
}


/*! \overload

  Replaces the current data with the provided points in \a keys and \a values. The provided vectors
  should have equal length. Else, the number of added points will be the size of the smallest
  vector.

  The t parameter of each data point will be set to the integer index of the respective key/value
  pair.

  \see addData
*/
void QCPCurve::setData(const QVector<double> &keys, const QVector<double> &values)
{
  mDataContainer->clear();
  addData(keys, values);
}

/*!
  Sets the visual appearance of single data points in the plot. If set to \ref
  QCPScatterStyle::ssNone, no scatter points are drawn (e.g. for line-only plots with appropriate
  line style).

  \see QCPScatterStyle, setLineStyle
*/
void QCPCurve::setScatterStyle(const QCPScatterStyle &style)
{
  mScatterStyle = style;
}

/*!
  If scatters are displayed (scatter style not \ref QCPScatterStyle::ssNone), \a skip number of
  scatter points are skipped/not drawn after every drawn scatter point.

  This can be used to make the data appear sparser while for example still having a smooth line,
  and to improve performance for very high density plots.

  If \a skip is set to 0 (default), all scatter points are drawn.

  \see setScatterStyle
*/
void QCPCurve::setScatterSkip(int skip)
{
  mScatterSkip = qMax(0, skip);
}

/*!
  Sets how the single data points are connected in the plot or how they are represented visually
  apart from the scatter symbol. For scatter-only plots, set \a style to \ref lsNone and \ref
  setScatterStyle to the desired scatter style.

  \see setScatterStyle
*/
void QCPCurve::setLineStyle(QCPCurve::LineStyle style)
{
  mLineStyle = style;
}

/*! \overload

  Adds the provided points in \a t, \a keys and \a values to the current data. The provided vectors
  should have equal length. Else, the number of added points will be the size of the smallest
  vector.

  If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
  can set \a alreadySorted to true, to improve performance by saving a sorting run.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPCurve::addData(const QVector<double> &t, const QVector<double> &keys, const QVector<double> &values, bool alreadySorted)
{
  if (t.size() != keys.size() || t.size() != values.size())
    qDebug() << Q_FUNC_INFO << "ts, keys and values have different sizes:" << t.size() << keys.size() << values.size();
  const int n = qMin(qMin(t.size(), keys.size()), values.size());
  QVector<QCPCurveData> tempData(n);
  QVector<QCPCurveData>::iterator it = tempData.begin();
  const QVector<QCPCurveData>::iterator itEnd = tempData.end();
  int i = 0;
  while (it != itEnd)
  {
    it->t = t[i];
    it->key = keys[i];
    it->value = values[i];
    ++it;
    ++i;
  }
  mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
}

/*! \overload

  Adds the provided points in \a keys and \a values to the current data. The provided vectors
  should have equal length. Else, the number of added points will be the size of the smallest
  vector.

  The t parameter of each data point will be set to the integer index of the respective key/value
  pair.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPCurve::addData(const QVector<double> &keys, const QVector<double> &values)
{
  if (keys.size() != values.size())
    qDebug() << Q_FUNC_INFO << "keys and values have different sizes:" << keys.size() << values.size();
  const int n = qMin(keys.size(), values.size());
  double tStart;
  if (!mDataContainer->isEmpty())
    tStart = (mDataContainer->constEnd()-1)->t + 1.0;
  else
    tStart = 0;
  QVector<QCPCurveData> tempData(n);
  QVector<QCPCurveData>::iterator it = tempData.begin();
  const QVector<QCPCurveData>::iterator itEnd = tempData.end();
  int i = 0;
  while (it != itEnd)
  {
    it->t = tStart + i;
    it->key = keys[i];
    it->value = values[i];
    ++it;
    ++i;
  }
  mDataContainer->add(tempData, true); // don't modify tempData beyond this to prevent copy on write
}

/*! \overload
  Adds the provided data point as \a t, \a key and \a value to the current data.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPCurve::addData(double t, double key, double value)
{
  mDataContainer->add(QCPCurveData(t, key, value));
}

/*! \overload

  Adds the provided data point as \a key and \a value to the current data.

  The t parameter is generated automatically by increments of 1 for each point, starting at the
  highest t of previously existing data or 0, if the curve data is empty.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPCurve::addData(double key, double value)
{
  if (!mDataContainer->isEmpty())
    mDataContainer->add(QCPCurveData((mDataContainer->constEnd()-1)->t + 1.0, key, value));
  else
    mDataContainer->add(QCPCurveData(0.0, key, value));
}

/*!
  Implements a selectTest specific to this plottable's point geometry.

  If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
  point to \a pos.

  \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
*/
double QCPCurve::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return -1;
  if (!mKeyAxis || !mValueAxis)
    return -1;

  if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()))
  {
    QCPCurveDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
    double result = pointDistance(pos, closestDataPoint);
    if (details)
    {
      int pointIndex = int(closestDataPoint-mDataContainer->constBegin());
      details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
    }
    return result;
  } else
    return -1;
}

/* inherits documentation from base class */
QCPRange QCPCurve::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const
{
  return mDataContainer->keyRange(foundRange, inSignDomain);
}

/* inherits documentation from base class */
QCPRange QCPCurve::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const
{
  return mDataContainer->valueRange(foundRange, inSignDomain, inKeyRange);
}

/* inherits documentation from base class */
void QCPCurve::draw(QCPPainter *painter)
{
  if (mDataContainer->isEmpty()) return;

  // allocate line vector:
  QVector<QPointF> lines, scatters;

  // loop over and draw segments of unselected/selected data:
  QList<QCPDataRange> selectedSegments, unselectedSegments, allSegments;
  getDataSegments(selectedSegments, unselectedSegments);
  allSegments << unselectedSegments << selectedSegments;
  for (int i=0; i<allSegments.size(); ++i)
  {
    bool isSelectedSegment = i >= unselectedSegments.size();

    // fill with curve data:
    QPen finalCurvePen = mPen; // determine the final pen already here, because the line optimization depends on its stroke width
    if (isSelectedSegment && mSelectionDecorator)
      finalCurvePen = mSelectionDecorator->pen();

    QCPDataRange lineDataRange = isSelectedSegment ? allSegments.at(i) : allSegments.at(i).adjusted(-1, 1); // unselected segments extend lines to bordering selected data point (safe to exceed total data bounds in first/last segment, getCurveLines takes care)
    getCurveLines(&lines, lineDataRange, finalCurvePen.widthF());

    // check data validity if flag set:
  #ifdef QCUSTOMPLOT_CHECK_DATA
    for (QCPCurveDataContainer::const_iterator it = mDataContainer->constBegin(); it != mDataContainer->constEnd(); ++it)
    {
      if (QCP::isInvalidData(it->t) ||
          QCP::isInvalidData(it->key, it->value))
        qDebug() << Q_FUNC_INFO << "Data point at" << it->key << "invalid." << "Plottable name:" << name();
    }
  #endif

    // draw curve fill:
    applyFillAntialiasingHint(painter);
    if (isSelectedSegment && mSelectionDecorator)
      mSelectionDecorator->applyBrush(painter);
    else
      painter->setBrush(mBrush);
    painter->setPen(Qt::NoPen);
    if (painter->brush().style() != Qt::NoBrush && painter->brush().color().alpha() != 0)
      painter->drawPolygon(QPolygonF(lines));

    // draw curve line:
    if (mLineStyle != lsNone)
    {
      painter->setPen(finalCurvePen);
      painter->setBrush(Qt::NoBrush);
      drawCurveLine(painter, lines);
    }

    // draw scatters:
    QCPScatterStyle finalScatterStyle = mScatterStyle;
    if (isSelectedSegment && mSelectionDecorator)
      finalScatterStyle = mSelectionDecorator->getFinalScatterStyle(mScatterStyle);
    if (!finalScatterStyle.isNone())
    {
      getScatters(&scatters, allSegments.at(i), finalScatterStyle.size());
      drawScatterPlot(painter, scatters, finalScatterStyle);
    }
  }

  // draw other selection decoration that isn't just line/scatter pens and brushes:
  if (mSelectionDecorator)
    mSelectionDecorator->drawDecoration(painter, selection());
}

/* inherits documentation from base class */
void QCPCurve::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
{
  // draw fill:
  if (mBrush.style() != Qt::NoBrush)
  {
    applyFillAntialiasingHint(painter);
    painter->fillRect(QRectF(rect.left(), rect.top()+rect.height()/2.0, rect.width(), rect.height()/3.0), mBrush);
  }
  // draw line vertically centered:
  if (mLineStyle != lsNone)
  {
    applyDefaultAntialiasingHint(painter);
    painter->setPen(mPen);
    painter->drawLine(QLineF(rect.left(), rect.top()+rect.height()/2.0, rect.right()+5, rect.top()+rect.height()/2.0)); // +5 on x2 else last segment is missing from dashed/dotted pens
  }
  // draw scatter symbol:
  if (!mScatterStyle.isNone())
  {
    applyScattersAntialiasingHint(painter);
    // scale scatter pixmap if it's too large to fit in legend icon rect:
    if (mScatterStyle.shape() == QCPScatterStyle::ssPixmap && (mScatterStyle.pixmap().size().width() > rect.width() || mScatterStyle.pixmap().size().height() > rect.height()))
    {
      QCPScatterStyle scaledStyle(mScatterStyle);
      scaledStyle.setPixmap(scaledStyle.pixmap().scaled(rect.size().toSize(), Qt::KeepAspectRatio, Qt::SmoothTransformation));
      scaledStyle.applyTo(painter, mPen);
      scaledStyle.drawShape(painter, QRectF(rect).center());
    } else
    {
      mScatterStyle.applyTo(painter, mPen);
      mScatterStyle.drawShape(painter, QRectF(rect).center());
    }
  }
}

/*!  \internal

  Draws lines between the points in \a lines, given in pixel coordinates.

  \see drawScatterPlot, getCurveLines
*/
void QCPCurve::drawCurveLine(QCPPainter *painter, const QVector<QPointF> &lines) const
{
  if (painter->pen().style() != Qt::NoPen && painter->pen().color().alpha() != 0)
  {
    applyDefaultAntialiasingHint(painter);
    drawPolyline(painter, lines);
  }
}

/*! \internal

  Draws scatter symbols at every point passed in \a points, given in pixel coordinates. The
  scatters will be drawn with \a painter and have the appearance as specified in \a style.

  \see drawCurveLine, getCurveLines
*/
void QCPCurve::drawScatterPlot(QCPPainter *painter, const QVector<QPointF> &points, const QCPScatterStyle &style) const
{
  // draw scatter point symbols:
  applyScattersAntialiasingHint(painter);
  style.applyTo(painter, mPen);
  for (int i=0; i<points.size(); ++i)
    if (!qIsNaN(points.at(i).x()) && !qIsNaN(points.at(i).y()))
      style.drawShape(painter,  points.at(i));
}

/*! \internal

  Called by \ref draw to generate points in pixel coordinates which represent the line of the
  curve.

  Line segments that aren't visible in the current axis rect are handled in an optimized way. They
  are projected onto a rectangle slightly larger than the visible axis rect and simplified
  regarding point count. The algorithm makes sure to preserve appearance of lines and fills inside
  the visible axis rect by generating new temporary points on the outer rect if necessary.

  \a lines will be filled with points in pixel coordinates, that can be drawn with \ref
  drawCurveLine.

  \a dataRange specifies the beginning and ending data indices that will be taken into account for
  conversion. In this function, the specified range may exceed the total data bounds without harm:
  a correspondingly trimmed data range will be used. This takes the burden off the user of this
  function to check for valid indices in \a dataRange, e.g. when extending ranges coming from \ref
  getDataSegments.

  \a penWidth specifies the pen width that will be used to later draw the lines generated by this
  function. This is needed here to calculate an accordingly wider margin around the axis rect when
  performing the line optimization.

  Methods that are also involved in the algorithm are: \ref getRegion, \ref getOptimizedPoint, \ref
  getOptimizedCornerPoints \ref mayTraverse, \ref getTraverse, \ref getTraverseCornerPoints.

  \see drawCurveLine, drawScatterPlot
*/
void QCPCurve::getCurveLines(QVector<QPointF> *lines, const QCPDataRange &dataRange, double penWidth) const
{
  if (!lines) return;
  lines->clear();
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }

  // add margins to rect to compensate for stroke width
  const double strokeMargin = qMax(qreal(1.0), qreal(penWidth*0.75)); // stroke radius + 50% safety
  const double keyMin = keyAxis->pixelToCoord(keyAxis->coordToPixel(keyAxis->range().lower)-strokeMargin*keyAxis->pixelOrientation());
  const double keyMax = keyAxis->pixelToCoord(keyAxis->coordToPixel(keyAxis->range().upper)+strokeMargin*keyAxis->pixelOrientation());
  const double valueMin = valueAxis->pixelToCoord(valueAxis->coordToPixel(valueAxis->range().lower)-strokeMargin*valueAxis->pixelOrientation());
  const double valueMax = valueAxis->pixelToCoord(valueAxis->coordToPixel(valueAxis->range().upper)+strokeMargin*valueAxis->pixelOrientation());
  QCPCurveDataContainer::const_iterator itBegin = mDataContainer->constBegin();
  QCPCurveDataContainer::const_iterator itEnd = mDataContainer->constEnd();
  mDataContainer->limitIteratorsToDataRange(itBegin, itEnd, dataRange);
  if (itBegin == itEnd)
    return;
  QCPCurveDataContainer::const_iterator it = itBegin;
  QCPCurveDataContainer::const_iterator prevIt = itEnd-1;
  int prevRegion = getRegion(prevIt->key, prevIt->value, keyMin, valueMax, keyMax, valueMin);
  QVector<QPointF> trailingPoints; // points that must be applied after all other points (are generated only when handling first point to get virtual segment between last and first point right)
  while (it != itEnd)
  {
    const int currentRegion = getRegion(it->key, it->value, keyMin, valueMax, keyMax, valueMin);
    if (currentRegion != prevRegion) // changed region, possibly need to add some optimized edge points or original points if entering R
    {
      if (currentRegion != 5) // segment doesn't end in R, so it's a candidate for removal
      {
        QPointF crossA, crossB;
        if (prevRegion == 5) // we're coming from R, so add this point optimized
        {
          lines->append(getOptimizedPoint(currentRegion, it->key, it->value, prevIt->key, prevIt->value, keyMin, valueMax, keyMax, valueMin));
          // in the situations 5->1/7/9/3 the segment may leave R and directly cross through two outer regions. In these cases we need to add an additional corner point
          *lines << getOptimizedCornerPoints(prevRegion, currentRegion, prevIt->key, prevIt->value, it->key, it->value, keyMin, valueMax, keyMax, valueMin);
        } else if (mayTraverse(prevRegion, currentRegion) &&
                   getTraverse(prevIt->key, prevIt->value, it->key, it->value, keyMin, valueMax, keyMax, valueMin, crossA, crossB))
        {
          // add the two cross points optimized if segment crosses R and if segment isn't virtual zeroth segment between last and first curve point:
          QVector<QPointF> beforeTraverseCornerPoints, afterTraverseCornerPoints;
          getTraverseCornerPoints(prevRegion, currentRegion, keyMin, valueMax, keyMax, valueMin, beforeTraverseCornerPoints, afterTraverseCornerPoints);
          if (it != itBegin)
          {
            *lines << beforeTraverseCornerPoints;
            lines->append(crossA);
            lines->append(crossB);
            *lines << afterTraverseCornerPoints;
          } else
          {
            lines->append(crossB);
            *lines << afterTraverseCornerPoints;
            trailingPoints << beforeTraverseCornerPoints << crossA ;
          }
        } else // doesn't cross R, line is just moving around in outside regions, so only need to add optimized point(s) at the boundary corner(s)
        {
          *lines << getOptimizedCornerPoints(prevRegion, currentRegion, prevIt->key, prevIt->value, it->key, it->value, keyMin, valueMax, keyMax, valueMin);
        }
      } else // segment does end in R, so we add previous point optimized and this point at original position
      {
        if (it == itBegin) // it is first point in curve and prevIt is last one. So save optimized point for adding it to the lineData in the end
          trailingPoints << getOptimizedPoint(prevRegion, prevIt->key, prevIt->value, it->key, it->value, keyMin, valueMax, keyMax, valueMin);
        else
          lines->append(getOptimizedPoint(prevRegion, prevIt->key, prevIt->value, it->key, it->value, keyMin, valueMax, keyMax, valueMin));
        lines->append(coordsToPixels(it->key, it->value));
      }
    } else // region didn't change
    {
      if (currentRegion == 5) // still in R, keep adding original points
      {
        lines->append(coordsToPixels(it->key, it->value));
      } else // still outside R, no need to add anything
      {
        // see how this is not doing anything? That's the main optimization...
      }
    }
    prevIt = it;
    prevRegion = currentRegion;
    ++it;
  }
  *lines << trailingPoints;
}

/*! \internal

  Called by \ref draw to generate points in pixel coordinates which represent the scatters of the
  curve. If a scatter skip is configured (\ref setScatterSkip), the returned points are accordingly
  sparser.

  Scatters that aren't visible in the current axis rect are optimized away.

  \a scatters will be filled with points in pixel coordinates, that can be drawn with \ref
  drawScatterPlot.

  \a dataRange specifies the beginning and ending data indices that will be taken into account for
  conversion.

  \a scatterWidth specifies the scatter width that will be used to later draw the scatters at pixel
  coordinates generated by this function. This is needed here to calculate an accordingly wider
  margin around the axis rect when performing the data point reduction.

  \see draw, drawScatterPlot
*/
void QCPCurve::getScatters(QVector<QPointF> *scatters, const QCPDataRange &dataRange, double scatterWidth) const
{
  if (!scatters) return;
  scatters->clear();
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }

  QCPCurveDataContainer::const_iterator begin = mDataContainer->constBegin();
  QCPCurveDataContainer::const_iterator end = mDataContainer->constEnd();
  mDataContainer->limitIteratorsToDataRange(begin, end, dataRange);
  if (begin == end)
    return;
  const int scatterModulo = mScatterSkip+1;
  const bool doScatterSkip = mScatterSkip > 0;
  int endIndex = int(end-mDataContainer->constBegin());

  QCPRange keyRange = keyAxis->range();
  QCPRange valueRange = valueAxis->range();
  // extend range to include width of scatter symbols:
  keyRange.lower = keyAxis->pixelToCoord(keyAxis->coordToPixel(keyRange.lower)-scatterWidth*keyAxis->pixelOrientation());
  keyRange.upper = keyAxis->pixelToCoord(keyAxis->coordToPixel(keyRange.upper)+scatterWidth*keyAxis->pixelOrientation());
  valueRange.lower = valueAxis->pixelToCoord(valueAxis->coordToPixel(valueRange.lower)-scatterWidth*valueAxis->pixelOrientation());
  valueRange.upper = valueAxis->pixelToCoord(valueAxis->coordToPixel(valueRange.upper)+scatterWidth*valueAxis->pixelOrientation());

  QCPCurveDataContainer::const_iterator it = begin;
  int itIndex = int(begin-mDataContainer->constBegin());
  while (doScatterSkip && it != end && itIndex % scatterModulo != 0) // advance begin iterator to first non-skipped scatter
  {
    ++itIndex;
    ++it;
  }
  if (keyAxis->orientation() == Qt::Vertical)
  {
    while (it != end)
    {
      if (!qIsNaN(it->value) && keyRange.contains(it->key) && valueRange.contains(it->value))
        scatters->append(QPointF(valueAxis->coordToPixel(it->value), keyAxis->coordToPixel(it->key)));

      // advance iterator to next (non-skipped) data point:
      if (!doScatterSkip)
        ++it;
      else
      {
        itIndex += scatterModulo;
        if (itIndex < endIndex) // make sure we didn't jump over end
          it += scatterModulo;
        else
        {
          it = end;
          itIndex = endIndex;
        }
      }
    }
  } else
  {
    while (it != end)
    {
      if (!qIsNaN(it->value) && keyRange.contains(it->key) && valueRange.contains(it->value))
        scatters->append(QPointF(keyAxis->coordToPixel(it->key), valueAxis->coordToPixel(it->value)));

      // advance iterator to next (non-skipped) data point:
      if (!doScatterSkip)
        ++it;
      else
      {
        itIndex += scatterModulo;
        if (itIndex < endIndex) // make sure we didn't jump over end
          it += scatterModulo;
        else
        {
          it = end;
          itIndex = endIndex;
        }
      }
    }
  }
}

/*! \internal

  This function is part of the curve optimization algorithm of \ref getCurveLines.

  It returns the region of the given point (\a key, \a value) with respect to a rectangle defined
  by \a keyMin, \a keyMax, \a valueMin, and \a valueMax.

  The regions are enumerated from top to bottom (\a valueMin to \a valueMax) and left to right (\a
  keyMin to \a keyMax):

  <table style="width:10em; text-align:center">
    <tr><td>1</td><td>4</td><td>7</td></tr>
    <tr><td>2</td><td style="border:1px solid black">5</td><td>8</td></tr>
    <tr><td>3</td><td>6</td><td>9</td></tr>
  </table>

  With the rectangle being region 5, and the outer regions extending infinitely outwards. In the
  curve optimization algorithm, region 5 is considered to be the visible portion of the plot.
*/
int QCPCurve::getRegion(double key, double value, double keyMin, double valueMax, double keyMax, double valueMin) const
{
  if (key < keyMin) // region 123
  {
    if (value > valueMax)
      return 1;
    else if (value < valueMin)
      return 3;
    else
      return 2;
  } else if (key > keyMax) // region 789
  {
    if (value > valueMax)
      return 7;
    else if (value < valueMin)
      return 9;
    else
      return 8;
  } else // region 456
  {
    if (value > valueMax)
      return 4;
    else if (value < valueMin)
      return 6;
    else
      return 5;
  }
}

/*! \internal

  This function is part of the curve optimization algorithm of \ref getCurveLines.

  This method is used in case the current segment passes from inside the visible rect (region 5,
  see \ref getRegion) to any of the outer regions (\a otherRegion). The current segment is given by
  the line connecting (\a key, \a value) with (\a otherKey, \a otherValue).

  It returns the intersection point of the segment with the border of region 5.

  For this function it doesn't matter whether (\a key, \a value) is the point inside region 5 or
  whether it's (\a otherKey, \a otherValue), i.e. whether the segment is coming from region 5 or
  leaving it. It is important though that \a otherRegion correctly identifies the other region not
  equal to 5.
*/
QPointF QCPCurve::getOptimizedPoint(int otherRegion, double otherKey, double otherValue, double key, double value, double keyMin, double valueMax, double keyMax, double valueMin) const
{
  // The intersection point interpolation here is done in pixel coordinates, so we don't need to
  // differentiate between different axis scale types. Note that the nomenclature
  // top/left/bottom/right/min/max is with respect to the rect in plot coordinates, wich may be
  // different in pixel coordinates (horz/vert key axes, reversed ranges)

  const double keyMinPx = mKeyAxis->coordToPixel(keyMin);
  const double keyMaxPx = mKeyAxis->coordToPixel(keyMax);
  const double valueMinPx = mValueAxis->coordToPixel(valueMin);
  const double valueMaxPx = mValueAxis->coordToPixel(valueMax);
  const double otherValuePx = mValueAxis->coordToPixel(otherValue);
  const double valuePx = mValueAxis->coordToPixel(value);
  const double otherKeyPx = mKeyAxis->coordToPixel(otherKey);
  const double keyPx = mKeyAxis->coordToPixel(key);
  double intersectKeyPx = keyMinPx; // initial key just a fail-safe
  double intersectValuePx = valueMinPx; // initial value just a fail-safe
  switch (otherRegion)
  {
    case 1: // top and left edge
    {
      intersectValuePx = valueMaxPx;
      intersectKeyPx = otherKeyPx + (keyPx-otherKeyPx)/(valuePx-otherValuePx)*(intersectValuePx-otherValuePx);
      if (intersectKeyPx < qMin(keyMinPx, keyMaxPx) || intersectKeyPx > qMax(keyMinPx, keyMaxPx)) // check whether top edge is not intersected, then it must be left edge (qMin/qMax necessary since axes may be reversed)
      {
        intersectKeyPx = keyMinPx;
        intersectValuePx = otherValuePx + (valuePx-otherValuePx)/(keyPx-otherKeyPx)*(intersectKeyPx-otherKeyPx);
      }
      break;
    }
    case 2: // left edge
    {
      intersectKeyPx = keyMinPx;
      intersectValuePx = otherValuePx + (valuePx-otherValuePx)/(keyPx-otherKeyPx)*(intersectKeyPx-otherKeyPx);
      break;
    }
    case 3: // bottom and left edge
    {
      intersectValuePx = valueMinPx;
      intersectKeyPx = otherKeyPx + (keyPx-otherKeyPx)/(valuePx-otherValuePx)*(intersectValuePx-otherValuePx);
      if (intersectKeyPx < qMin(keyMinPx, keyMaxPx) || intersectKeyPx > qMax(keyMinPx, keyMaxPx)) // check whether bottom edge is not intersected, then it must be left edge (qMin/qMax necessary since axes may be reversed)
      {
        intersectKeyPx = keyMinPx;
        intersectValuePx = otherValuePx + (valuePx-otherValuePx)/(keyPx-otherKeyPx)*(intersectKeyPx-otherKeyPx);
      }
      break;
    }
    case 4: // top edge
    {
      intersectValuePx = valueMaxPx;
      intersectKeyPx = otherKeyPx + (keyPx-otherKeyPx)/(valuePx-otherValuePx)*(intersectValuePx-otherValuePx);
      break;
    }
    case 5:
    {
      break; // case 5 shouldn't happen for this function but we add it anyway to prevent potential discontinuity in branch table
    }
    case 6: // bottom edge
    {
      intersectValuePx = valueMinPx;
      intersectKeyPx = otherKeyPx + (keyPx-otherKeyPx)/(valuePx-otherValuePx)*(intersectValuePx-otherValuePx);
      break;
    }
    case 7: // top and right edge
    {
      intersectValuePx = valueMaxPx;
      intersectKeyPx = otherKeyPx + (keyPx-otherKeyPx)/(valuePx-otherValuePx)*(intersectValuePx-otherValuePx);
      if (intersectKeyPx < qMin(keyMinPx, keyMaxPx) || intersectKeyPx > qMax(keyMinPx, keyMaxPx)) // check whether top edge is not intersected, then it must be right edge (qMin/qMax necessary since axes may be reversed)
      {
        intersectKeyPx = keyMaxPx;
        intersectValuePx = otherValuePx + (valuePx-otherValuePx)/(keyPx-otherKeyPx)*(intersectKeyPx-otherKeyPx);
      }
      break;
    }
    case 8: // right edge
    {
      intersectKeyPx = keyMaxPx;
      intersectValuePx = otherValuePx + (valuePx-otherValuePx)/(keyPx-otherKeyPx)*(intersectKeyPx-otherKeyPx);
      break;
    }
    case 9: // bottom and right edge
    {
      intersectValuePx = valueMinPx;
      intersectKeyPx = otherKeyPx + (keyPx-otherKeyPx)/(valuePx-otherValuePx)*(intersectValuePx-otherValuePx);
      if (intersectKeyPx < qMin(keyMinPx, keyMaxPx) || intersectKeyPx > qMax(keyMinPx, keyMaxPx)) // check whether bottom edge is not intersected, then it must be right edge (qMin/qMax necessary since axes may be reversed)
      {
        intersectKeyPx = keyMaxPx;
        intersectValuePx = otherValuePx + (valuePx-otherValuePx)/(keyPx-otherKeyPx)*(intersectKeyPx-otherKeyPx);
      }
      break;
    }
  }
  if (mKeyAxis->orientation() == Qt::Horizontal)
    return QPointF(intersectKeyPx, intersectValuePx);
  else
    return QPointF(intersectValuePx, intersectKeyPx);
}

/*! \internal

  This function is part of the curve optimization algorithm of \ref getCurveLines.

  In situations where a single segment skips over multiple regions it might become necessary to add
  extra points at the corners of region 5 (see \ref getRegion) such that the optimized segment
  doesn't unintentionally cut through the visible area of the axis rect and create plot artifacts.
  This method provides these points that must be added, assuming the original segment doesn't
  start, end, or traverse region 5. (Corner points where region 5 is traversed are calculated by
  \ref getTraverseCornerPoints.)

  For example, consider a segment which directly goes from region 4 to 2 but originally is far out
  to the top left such that it doesn't cross region 5. Naively optimizing these points by
  projecting them on the top and left borders of region 5 will create a segment that surely crosses
  5, creating a visual artifact in the plot. This method prevents this by providing extra points at
  the top left corner, making the optimized curve correctly pass from region 4 to 1 to 2 without
  traversing 5.
*/
QVector<QPointF> QCPCurve::getOptimizedCornerPoints(int prevRegion, int currentRegion, double prevKey, double prevValue, double key, double value, double keyMin, double valueMax, double keyMax, double valueMin) const
{
  QVector<QPointF> result;
  switch (prevRegion)
  {
    case 1:
    {
      switch (currentRegion)
      {
        case 2: { result << coordsToPixels(keyMin, valueMax); break; }
        case 4: { result << coordsToPixels(keyMin, valueMax); break; }
        case 3: { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMin, valueMin); break; }
        case 7: { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMax, valueMax); break; }
        case 6: { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMin, valueMin); result.append(result.last()); break; }
        case 8: { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMax, valueMax); result.append(result.last()); break; }
        case 9: { // in this case we need another distinction of cases: segment may pass below or above rect, requiring either bottom right or top left corner points
          if ((value-prevValue)/(key-prevKey)*(keyMin-key)+value < valueMin) // segment passes below R
          { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMin, valueMin); result.append(result.last()); result << coordsToPixels(keyMax, valueMin); }
          else
          { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMax, valueMax); result.append(result.last()); result << coordsToPixels(keyMax, valueMin); }
          break;
        }
      }
      break;
    }
    case 2:
    {
      switch (currentRegion)
      {
        case 1: { result << coordsToPixels(keyMin, valueMax); break; }
        case 3: { result << coordsToPixels(keyMin, valueMin); break; }
        case 4: { result << coordsToPixels(keyMin, valueMax); result.append(result.last()); break; }
        case 6: { result << coordsToPixels(keyMin, valueMin); result.append(result.last()); break; }
        case 7: { result << coordsToPixels(keyMin, valueMax); result.append(result.last()); result << coordsToPixels(keyMax, valueMax); break; }
        case 9: { result << coordsToPixels(keyMin, valueMin); result.append(result.last()); result << coordsToPixels(keyMax, valueMin); break; }
      }
      break;
    }
    case 3:
    {
      switch (currentRegion)
      {
        case 2: { result << coordsToPixels(keyMin, valueMin); break; }
        case 6: { result << coordsToPixels(keyMin, valueMin); break; }
        case 1: { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMin, valueMax); break; }
        case 9: { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMax, valueMin); break; }
        case 4: { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMin, valueMax); result.append(result.last()); break; }
        case 8: { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMax, valueMin); result.append(result.last()); break; }
        case 7: { // in this case we need another distinction of cases: segment may pass below or above rect, requiring either bottom right or top left corner points
          if ((value-prevValue)/(key-prevKey)*(keyMax-key)+value < valueMin) // segment passes below R
          { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMax, valueMin); result.append(result.last()); result << coordsToPixels(keyMax, valueMax); }
          else
          { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMin, valueMax); result.append(result.last()); result << coordsToPixels(keyMax, valueMax); }
          break;
        }
      }
      break;
    }
    case 4:
    {
      switch (currentRegion)
      {
        case 1: { result << coordsToPixels(keyMin, valueMax); break; }
        case 7: { result << coordsToPixels(keyMax, valueMax); break; }
        case 2: { result << coordsToPixels(keyMin, valueMax); result.append(result.last()); break; }
        case 8: { result << coordsToPixels(keyMax, valueMax); result.append(result.last()); break; }
        case 3: { result << coordsToPixels(keyMin, valueMax); result.append(result.last()); result << coordsToPixels(keyMin, valueMin); break; }
        case 9: { result << coordsToPixels(keyMax, valueMax); result.append(result.last()); result << coordsToPixels(keyMax, valueMin); break; }
      }
      break;
    }
    case 5:
    {
      switch (currentRegion)
      {
        case 1: { result << coordsToPixels(keyMin, valueMax); break; }
        case 7: { result << coordsToPixels(keyMax, valueMax); break; }
        case 9: { result << coordsToPixels(keyMax, valueMin); break; }
        case 3: { result << coordsToPixels(keyMin, valueMin); break; }
      }
      break;
    }
    case 6:
    {
      switch (currentRegion)
      {
        case 3: { result << coordsToPixels(keyMin, valueMin); break; }
        case 9: { result << coordsToPixels(keyMax, valueMin); break; }
        case 2: { result << coordsToPixels(keyMin, valueMin); result.append(result.last()); break; }
        case 8: { result << coordsToPixels(keyMax, valueMin); result.append(result.last()); break; }
        case 1: { result << coordsToPixels(keyMin, valueMin); result.append(result.last()); result << coordsToPixels(keyMin, valueMax); break; }
        case 7: { result << coordsToPixels(keyMax, valueMin); result.append(result.last()); result << coordsToPixels(keyMax, valueMax); break; }
      }
      break;
    }
    case 7:
    {
      switch (currentRegion)
      {
        case 4: { result << coordsToPixels(keyMax, valueMax); break; }
        case 8: { result << coordsToPixels(keyMax, valueMax); break; }
        case 1: { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMin, valueMax); break; }
        case 9: { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMax, valueMin); break; }
        case 2: { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMin, valueMax); result.append(result.last()); break; }
        case 6: { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMax, valueMin); result.append(result.last()); break; }
        case 3: { // in this case we need another distinction of cases: segment may pass below or above rect, requiring either bottom right or top left corner points
          if ((value-prevValue)/(key-prevKey)*(keyMax-key)+value < valueMin) // segment passes below R
          { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMax, valueMin); result.append(result.last()); result << coordsToPixels(keyMin, valueMin); }
          else
          { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMin, valueMax); result.append(result.last()); result << coordsToPixels(keyMin, valueMin); }
          break;
        }
      }
      break;
    }
    case 8:
    {
      switch (currentRegion)
      {
        case 7: { result << coordsToPixels(keyMax, valueMax); break; }
        case 9: { result << coordsToPixels(keyMax, valueMin); break; }
        case 4: { result << coordsToPixels(keyMax, valueMax); result.append(result.last()); break; }
        case 6: { result << coordsToPixels(keyMax, valueMin); result.append(result.last()); break; }
        case 1: { result << coordsToPixels(keyMax, valueMax); result.append(result.last()); result << coordsToPixels(keyMin, valueMax); break; }
        case 3: { result << coordsToPixels(keyMax, valueMin); result.append(result.last()); result << coordsToPixels(keyMin, valueMin); break; }
      }
      break;
    }
    case 9:
    {
      switch (currentRegion)
      {
        case 6: { result << coordsToPixels(keyMax, valueMin); break; }
        case 8: { result << coordsToPixels(keyMax, valueMin); break; }
        case 3: { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMin, valueMin); break; }
        case 7: { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMax, valueMax); break; }
        case 2: { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMin, valueMin); result.append(result.last()); break; }
        case 4: { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMax, valueMax); result.append(result.last()); break; }
        case 1: { // in this case we need another distinction of cases: segment may pass below or above rect, requiring either bottom right or top left corner points
          if ((value-prevValue)/(key-prevKey)*(keyMin-key)+value < valueMin) // segment passes below R
          { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMin, valueMin); result.append(result.last()); result << coordsToPixels(keyMin, valueMax); }
          else
          { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMax, valueMax); result.append(result.last()); result << coordsToPixels(keyMin, valueMax); }
          break;
        }
      }
      break;
    }
  }
  return result;
}

/*! \internal

  This function is part of the curve optimization algorithm of \ref getCurveLines.

  This method returns whether a segment going from \a prevRegion to \a currentRegion (see \ref
  getRegion) may traverse the visible region 5. This function assumes that neither \a prevRegion
  nor \a currentRegion is 5 itself.

  If this method returns false, the segment for sure doesn't pass region 5. If it returns true, the
  segment may or may not pass region 5 and a more fine-grained calculation must be used (\ref
  getTraverse).
*/
bool QCPCurve::mayTraverse(int prevRegion, int currentRegion) const
{
  switch (prevRegion)
  {
    case 1:
    {
      switch (currentRegion)
      {
        case 4:
        case 7:
        case 2:
        case 3: return false;
        default: return true;
      }
    }
    case 2:
    {
      switch (currentRegion)
      {
        case 1:
        case 3: return false;
        default: return true;
      }
    }
    case 3:
    {
      switch (currentRegion)
      {
        case 1:
        case 2:
        case 6:
        case 9: return false;
        default: return true;
      }
    }
    case 4:
    {
      switch (currentRegion)
      {
        case 1:
        case 7: return false;
        default: return true;
      }
    }
    case 5: return false; // should never occur
    case 6:
    {
      switch (currentRegion)
      {
        case 3:
        case 9: return false;
        default: return true;
      }
    }
    case 7:
    {
      switch (currentRegion)
      {
        case 1:
        case 4:
        case 8:
        case 9: return false;
        default: return true;
      }
    }
    case 8:
    {
      switch (currentRegion)
      {
        case 7:
        case 9: return false;
        default: return true;
      }
    }
    case 9:
    {
      switch (currentRegion)
      {
        case 3:
        case 6:
        case 8:
        case 7: return false;
        default: return true;
      }
    }
    default: return true;
  }
}


/*! \internal

  This function is part of the curve optimization algorithm of \ref getCurveLines.

  This method assumes that the \ref mayTraverse test has returned true, so there is a chance the
  segment defined by (\a prevKey, \a prevValue) and (\a key, \a value) goes through the visible
  region 5.

  The return value of this method indicates whether the segment actually traverses region 5 or not.

  If the segment traverses 5, the output parameters \a crossA and \a crossB indicate the entry and
  exit points of region 5. They will become the optimized points for that segment.
*/
bool QCPCurve::getTraverse(double prevKey, double prevValue, double key, double value, double keyMin, double valueMax, double keyMax, double valueMin, QPointF &crossA, QPointF &crossB) const
{
  // The intersection point interpolation here is done in pixel coordinates, so we don't need to
  // differentiate between different axis scale types. Note that the nomenclature
  // top/left/bottom/right/min/max is with respect to the rect in plot coordinates, wich may be
  // different in pixel coordinates (horz/vert key axes, reversed ranges)

  QList<QPointF> intersections;
  const double valueMinPx = mValueAxis->coordToPixel(valueMin);
  const double valueMaxPx = mValueAxis->coordToPixel(valueMax);
  const double keyMinPx = mKeyAxis->coordToPixel(keyMin);
  const double keyMaxPx = mKeyAxis->coordToPixel(keyMax);
  const double keyPx = mKeyAxis->coordToPixel(key);
  const double valuePx = mValueAxis->coordToPixel(value);
  const double prevKeyPx = mKeyAxis->coordToPixel(prevKey);
  const double prevValuePx = mValueAxis->coordToPixel(prevValue);
  if (qFuzzyIsNull(key-prevKey)) // line is parallel to value axis
  {
    // due to region filter in mayTraverse(), if line is parallel to value or key axis, region 5 is traversed here
    intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyPx, valueMinPx) : QPointF(valueMinPx, keyPx)); // direction will be taken care of at end of method
    intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyPx, valueMaxPx) : QPointF(valueMaxPx, keyPx));
  } else if (qFuzzyIsNull(value-prevValue)) // line is parallel to key axis
  {
    // due to region filter in mayTraverse(), if line is parallel to value or key axis, region 5 is traversed here
    intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyMinPx, valuePx) : QPointF(valuePx, keyMinPx)); // direction will be taken care of at end of method
    intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyMaxPx, valuePx) : QPointF(valuePx, keyMaxPx));
  } else // line is skewed
  {
    double gamma;
    double keyPerValuePx = (keyPx-prevKeyPx)/(valuePx-prevValuePx);
    // check top of rect:
    gamma = prevKeyPx + (valueMaxPx-prevValuePx)*keyPerValuePx;
    if (gamma >= qMin(keyMinPx, keyMaxPx) && gamma <= qMax(keyMinPx, keyMaxPx)) // qMin/qMax necessary since axes may be reversed
      intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(gamma, valueMaxPx) : QPointF(valueMaxPx, gamma));
    // check bottom of rect:
    gamma = prevKeyPx + (valueMinPx-prevValuePx)*keyPerValuePx;
    if (gamma >= qMin(keyMinPx, keyMaxPx) && gamma <= qMax(keyMinPx, keyMaxPx)) // qMin/qMax necessary since axes may be reversed
      intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(gamma, valueMinPx) : QPointF(valueMinPx, gamma));
    const double valuePerKeyPx = 1.0/keyPerValuePx;
    // check left of rect:
    gamma = prevValuePx + (keyMinPx-prevKeyPx)*valuePerKeyPx;
    if (gamma >= qMin(valueMinPx, valueMaxPx) && gamma <= qMax(valueMinPx, valueMaxPx)) // qMin/qMax necessary since axes may be reversed
      intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyMinPx, gamma) : QPointF(gamma, keyMinPx));
    // check right of rect:
    gamma = prevValuePx + (keyMaxPx-prevKeyPx)*valuePerKeyPx;
    if (gamma >= qMin(valueMinPx, valueMaxPx) && gamma <= qMax(valueMinPx, valueMaxPx)) // qMin/qMax necessary since axes may be reversed
      intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyMaxPx, gamma) : QPointF(gamma, keyMaxPx));
  }

  // handle cases where found points isn't exactly 2:
  if (intersections.size() > 2)
  {
    // line probably goes through corner of rect, and we got duplicate points there. single out the point pair with greatest distance in between:
    double distSqrMax = 0;
    QPointF pv1, pv2;
    for (int i=0; i<intersections.size()-1; ++i)
    {
      for (int k=i+1; k<intersections.size(); ++k)
      {
        QPointF distPoint = intersections.at(i)-intersections.at(k);
        double distSqr = distPoint.x()*distPoint.x()+distPoint.y()+distPoint.y();
        if (distSqr > distSqrMax)
        {
          pv1 = intersections.at(i);
          pv2 = intersections.at(k);
          distSqrMax = distSqr;
        }
      }
    }
    intersections = QList<QPointF>() << pv1 << pv2;
  } else if (intersections.size() != 2)
  {
    // one or even zero points found (shouldn't happen unless line perfectly tangent to corner), no need to draw segment
    return false;
  }

  // possibly re-sort points so optimized point segment has same direction as original segment:
  double xDelta = keyPx-prevKeyPx;
  double yDelta = valuePx-prevValuePx;
  if (mKeyAxis->orientation() != Qt::Horizontal)
    qSwap(xDelta, yDelta);
  if (xDelta*(intersections.at(1).x()-intersections.at(0).x()) + yDelta*(intersections.at(1).y()-intersections.at(0).y()) < 0) // scalar product of both segments < 0 -> opposite direction
    intersections.move(0, 1);
  crossA = intersections.at(0);
  crossB = intersections.at(1);
  return true;
}

/*! \internal

  This function is part of the curve optimization algorithm of \ref getCurveLines.

  This method assumes that the \ref getTraverse test has returned true, so the segment definitely
  traverses the visible region 5 when going from \a prevRegion to \a currentRegion.

  In certain situations it is not sufficient to merely generate the entry and exit points of the
  segment into/out of region 5, as \ref getTraverse provides. It may happen that a single segment, in
  addition to traversing region 5, skips another region outside of region 5, which makes it
  necessary to add an optimized corner point there (very similar to the job \ref
  getOptimizedCornerPoints does for segments that are completely in outside regions and don't
  traverse 5).

  As an example, consider a segment going from region 1 to region 6, traversing the lower left
  corner of region 5. In this configuration, the segment additionally crosses the border between
  region 1 and 2 before entering region 5. This makes it necessary to add an additional point in
  the top left corner, before adding the optimized traverse points. So in this case, the output
  parameter \a beforeTraverse will contain the top left corner point, and \a afterTraverse will be
  empty.

  In some cases, such as when going from region 1 to 9, it may even be necessary to add additional
  corner points before and after the traverse. Then both \a beforeTraverse and \a afterTraverse
  return the respective corner points.
*/
void QCPCurve::getTraverseCornerPoints(int prevRegion, int currentRegion, double keyMin, double valueMax, double keyMax, double valueMin, QVector<QPointF> &beforeTraverse, QVector<QPointF> &afterTraverse) const
{
  switch (prevRegion)
  {
    case 1:
    {
      switch (currentRegion)
      {
        case 6: { beforeTraverse << coordsToPixels(keyMin, valueMax); break; }
        case 9: { beforeTraverse << coordsToPixels(keyMin, valueMax); afterTraverse << coordsToPixels(keyMax, valueMin); break; }
        case 8: { beforeTraverse << coordsToPixels(keyMin, valueMax); break; }
      }
      break;
    }
    case 2:
    {
      switch (currentRegion)
      {
        case 7: { afterTraverse << coordsToPixels(keyMax, valueMax); break; }
        case 9: { afterTraverse << coordsToPixels(keyMax, valueMin); break; }
      }
      break;
    }
    case 3:
    {
      switch (currentRegion)
      {
        case 4: { beforeTraverse << coordsToPixels(keyMin, valueMin); break; }
        case 7: { beforeTraverse << coordsToPixels(keyMin, valueMin); afterTraverse << coordsToPixels(keyMax, valueMax); break; }
        case 8: { beforeTraverse << coordsToPixels(keyMin, valueMin); break; }
      }
      break;
    }
    case 4:
    {
      switch (currentRegion)
      {
        case 3: { afterTraverse << coordsToPixels(keyMin, valueMin); break; }
        case 9: { afterTraverse << coordsToPixels(keyMax, valueMin); break; }
      }
      break;
    }
    case 5: { break; } // shouldn't happen because this method only handles full traverses
    case 6:
    {
      switch (currentRegion)
      {
        case 1: { afterTraverse << coordsToPixels(keyMin, valueMax); break; }
        case 7: { afterTraverse << coordsToPixels(keyMax, valueMax); break; }
      }
      break;
    }
    case 7:
    {
      switch (currentRegion)
      {
        case 2: { beforeTraverse << coordsToPixels(keyMax, valueMax); break; }
        case 3: { beforeTraverse << coordsToPixels(keyMax, valueMax); afterTraverse << coordsToPixels(keyMin, valueMin); break; }
        case 6: { beforeTraverse << coordsToPixels(keyMax, valueMax); break; }
      }
      break;
    }
    case 8:
    {
      switch (currentRegion)
      {
        case 1: { afterTraverse << coordsToPixels(keyMin, valueMax); break; }
        case 3: { afterTraverse << coordsToPixels(keyMin, valueMin); break; }
      }
      break;
    }
    case 9:
    {
      switch (currentRegion)
      {
        case 2: { beforeTraverse << coordsToPixels(keyMax, valueMin); break; }
        case 1: { beforeTraverse << coordsToPixels(keyMax, valueMin); afterTraverse << coordsToPixels(keyMin, valueMax); break; }
        case 4: { beforeTraverse << coordsToPixels(keyMax, valueMin); break; }
      }
      break;
    }
  }
}

/*! \internal

  Calculates the (minimum) distance (in pixels) the curve's representation has from the given \a
  pixelPoint in pixels. This is used to determine whether the curve was clicked or not, e.g. in
  \ref selectTest. The closest data point to \a pixelPoint is returned in \a closestData. Note that
  if the curve has a line representation, the returned distance may be smaller than the distance to
  the \a closestData point, since the distance to the curve line is also taken into account.

  If either the curve has no data or if the line style is \ref lsNone and the scatter style's shape
  is \ref QCPScatterStyle::ssNone (i.e. there is no visual representation of the curve), returns
  -1.0.
*/
double QCPCurve::pointDistance(const QPointF &pixelPoint, QCPCurveDataContainer::const_iterator &closestData) const
{
  closestData = mDataContainer->constEnd();
  if (mDataContainer->isEmpty())
    return -1.0;
  if (mLineStyle == lsNone && mScatterStyle.isNone())
    return -1.0;

  if (mDataContainer->size() == 1)
  {
    QPointF dataPoint = coordsToPixels(mDataContainer->constBegin()->key, mDataContainer->constBegin()->value);
    closestData = mDataContainer->constBegin();
    return QCPVector2D(dataPoint-pixelPoint).length();
  }

  // calculate minimum distances to curve data points and find closestData iterator:
  double minDistSqr = (std::numeric_limits<double>::max)();
  // iterate over found data points and then choose the one with the shortest distance to pos:
  QCPCurveDataContainer::const_iterator begin = mDataContainer->constBegin();
  QCPCurveDataContainer::const_iterator end = mDataContainer->constEnd();
  for (QCPCurveDataContainer::const_iterator it=begin; it!=end; ++it)
  {
    const double currentDistSqr = QCPVector2D(coordsToPixels(it->key, it->value)-pixelPoint).lengthSquared();
    if (currentDistSqr < minDistSqr)
    {
      minDistSqr = currentDistSqr;
      closestData = it;
    }
  }

  // calculate distance to line if there is one (if so, will probably be smaller than distance to closest data point):
  if (mLineStyle != lsNone)
  {
    QVector<QPointF> lines;
    getCurveLines(&lines, QCPDataRange(0, dataCount()), mParentPlot->selectionTolerance()*1.2); // optimized lines outside axis rect shouldn't respond to clicks at the edge, so use 1.2*tolerance as pen width
    for (int i=0; i<lines.size()-1; ++i)
    {
      double currentDistSqr = QCPVector2D(pixelPoint).distanceSquaredToLine(lines.at(i), lines.at(i+1));
      if (currentDistSqr < minDistSqr)
        minDistSqr = currentDistSqr;
    }
  }

  return qSqrt(minDistSqr);
}
/* end of 'src/plottables/plottable-curve.cpp' */


/* including file 'src/plottables/plottable-bars.cpp', size 43725            */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPBarsGroup
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPBarsGroup
  \brief Groups multiple QCPBars together so they appear side by side

  \image html QCPBarsGroup.png

  When showing multiple QCPBars in one plot which have bars at identical keys, it may be desirable
  to have them appearing next to each other at each key. This is what adding the respective QCPBars
  plottables to a QCPBarsGroup achieves. (An alternative approach is to stack them on top of each
  other, see \ref QCPBars::moveAbove.)

  \section qcpbarsgroup-usage Usage

  To add a QCPBars plottable to the group, create a new group and then add the respective bars
  intances:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbarsgroup-creation
  Alternatively to appending to the group like shown above, you can also set the group on the
  QCPBars plottable via \ref QCPBars::setBarsGroup.

  The spacing between the bars can be configured via \ref setSpacingType and \ref setSpacing. The
  bars in this group appear in the plot in the order they were appended. To insert a bars plottable
  at a certain index position, or to reposition a bars plottable which is already in the group, use
  \ref insert.

  To remove specific bars from the group, use either \ref remove or call \ref
  QCPBars::setBarsGroup "QCPBars::setBarsGroup(0)" on the respective bars plottable.

  To clear the entire group, call \ref clear, or simply delete the group.

  \section qcpbarsgroup-example Example

  The image above is generated with the following code:
  \snippet documentation/doc-image-generator/mainwindow.cpp qcpbarsgroup-example
*/

/* start of documentation of inline functions */

/*! \fn QList<QCPBars*> QCPBarsGroup::bars() const

  Returns all bars currently in this group.

  \see bars(int index)
*/

/*! \fn int QCPBarsGroup::size() const

  Returns the number of QCPBars plottables that are part of this group.

*/

/*! \fn bool QCPBarsGroup::isEmpty() const

  Returns whether this bars group is empty.

  \see size
*/

/*! \fn bool QCPBarsGroup::contains(QCPBars *bars)

  Returns whether the specified \a bars plottable is part of this group.

*/

/* end of documentation of inline functions */

/*!
  Constructs a new bars group for the specified QCustomPlot instance.
*/
QCPBarsGroup::QCPBarsGroup(QCustomPlot *parentPlot) :
  QObject(parentPlot),
  mParentPlot(parentPlot),
  mSpacingType(stAbsolute),
  mSpacing(4)
{
}

QCPBarsGroup::~QCPBarsGroup()
{
  clear();
}

/*!
  Sets how the spacing between adjacent bars is interpreted. See \ref SpacingType.

  The actual spacing can then be specified with \ref setSpacing.

  \see setSpacing
*/
void QCPBarsGroup::setSpacingType(SpacingType spacingType)
{
  mSpacingType = spacingType;
}

/*!
  Sets the spacing between adjacent bars. What the number passed as \a spacing actually means, is
  defined by the current \ref SpacingType, which can be set with \ref setSpacingType.

  \see setSpacingType
*/
void QCPBarsGroup::setSpacing(double spacing)
{
  mSpacing = spacing;
}

/*!
  Returns the QCPBars instance with the specified \a index in this group. If no such QCPBars
  exists, returns 0.

  \see bars(), size
*/
QCPBars *QCPBarsGroup::bars(int index) const
{
  if (index >= 0 && index < mBars.size())
  {
    return mBars.at(index);
  } else
  {
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
    return 0;
  }
}

/*!
  Removes all QCPBars plottables from this group.

  \see isEmpty
*/
void QCPBarsGroup::clear()
{
  foreach (QCPBars *bars, mBars) // since foreach takes a copy, removing bars in the loop is okay
    bars->setBarsGroup(0); // removes itself via removeBars
}

/*!
  Adds the specified \a bars plottable to this group. Alternatively, you can also use \ref
  QCPBars::setBarsGroup on the \a bars instance.

  \see insert, remove
*/
void QCPBarsGroup::append(QCPBars *bars)
{
  if (!bars)
  {
    qDebug() << Q_FUNC_INFO << "bars is 0";
    return;
  }

  if (!mBars.contains(bars))
    bars->setBarsGroup(this);
  else
    qDebug() << Q_FUNC_INFO << "bars plottable is already in this bars group:" << reinterpret_cast<quintptr>(bars);
}

/*!
  Inserts the specified \a bars plottable into this group at the specified index position \a i.
  This gives you full control over the ordering of the bars.

  \a bars may already be part of this group. In that case, \a bars is just moved to the new index
  position.

  \see append, remove
*/
void QCPBarsGroup::insert(int i, QCPBars *bars)
{
  if (!bars)
  {
    qDebug() << Q_FUNC_INFO << "bars is 0";
    return;
  }

  // first append to bars list normally:
  if (!mBars.contains(bars))
    bars->setBarsGroup(this);
  // then move to according position:
  mBars.move(mBars.indexOf(bars), qBound(0, i, mBars.size()-1));
}

/*!
  Removes the specified \a bars plottable from this group.

  \see contains, clear
*/
void QCPBarsGroup::remove(QCPBars *bars)
{
  if (!bars)
  {
    qDebug() << Q_FUNC_INFO << "bars is 0";
    return;
  }

  if (mBars.contains(bars))
    bars->setBarsGroup(0);
  else
    qDebug() << Q_FUNC_INFO << "bars plottable is not in this bars group:" << reinterpret_cast<quintptr>(bars);
}

/*! \internal

  Adds the specified \a bars to the internal mBars list of bars. This method does not change the
  barsGroup property on \a bars.

  \see unregisterBars
*/
void QCPBarsGroup::registerBars(QCPBars *bars)
{
  if (!mBars.contains(bars))
    mBars.append(bars);
}

/*! \internal

  Removes the specified \a bars from the internal mBars list of bars. This method does not change
  the barsGroup property on \a bars.

  \see registerBars
*/
void QCPBarsGroup::unregisterBars(QCPBars *bars)
{
  mBars.removeOne(bars);
}

/*! \internal

  Returns the pixel offset in the key dimension the specified \a bars plottable should have at the
  given key coordinate \a keyCoord. The offset is relative to the pixel position of the key
  coordinate \a keyCoord.
*/
double QCPBarsGroup::keyPixelOffset(const QCPBars *bars, double keyCoord)
{
  // find list of all base bars in case some mBars are stacked:
  QList<const QCPBars*> baseBars;
  foreach (const QCPBars *b, mBars)
  {
    while (b->barBelow())
      b = b->barBelow();
    if (!baseBars.contains(b))
      baseBars.append(b);
  }
  // find base bar this "bars" is stacked on:
  const QCPBars *thisBase = bars;
  while (thisBase->barBelow())
    thisBase = thisBase->barBelow();

  // determine key pixel offset of this base bars considering all other base bars in this barsgroup:
  double result = 0;
  int index = baseBars.indexOf(thisBase);
  if (index >= 0)
  {
    if (baseBars.size() % 2 == 1 && index == (baseBars.size()-1)/2) // is center bar (int division on purpose)
    {
      return result;
    } else
    {
      double lowerPixelWidth, upperPixelWidth;
      int startIndex;
      int dir = (index <= (baseBars.size()-1)/2) ? -1 : 1; // if bar is to lower keys of center, dir is negative
      if (baseBars.size() % 2 == 0) // even number of bars
      {
        startIndex = baseBars.size()/2 + (dir < 0 ? -1 : 0);
        result += getPixelSpacing(baseBars.at(startIndex), keyCoord)*0.5; // half of middle spacing
      } else // uneven number of bars
      {
        startIndex = (baseBars.size()-1)/2+dir;
        baseBars.at((baseBars.size()-1)/2)->getPixelWidth(keyCoord, lowerPixelWidth, upperPixelWidth);
        result += qAbs(upperPixelWidth-lowerPixelWidth)*0.5; // half of center bar
        result += getPixelSpacing(baseBars.at((baseBars.size()-1)/2), keyCoord); // center bar spacing
      }
      for (int i = startIndex; i != index; i += dir) // add widths and spacings of bars in between center and our bars
      {
        baseBars.at(i)->getPixelWidth(keyCoord, lowerPixelWidth, upperPixelWidth);
        result += qAbs(upperPixelWidth-lowerPixelWidth);
        result += getPixelSpacing(baseBars.at(i), keyCoord);
      }
      // finally half of our bars width:
      baseBars.at(index)->getPixelWidth(keyCoord, lowerPixelWidth, upperPixelWidth);
      result += qAbs(upperPixelWidth-lowerPixelWidth)*0.5;
      // correct sign of result depending on orientation and direction of key axis:
      result *= dir*thisBase->keyAxis()->pixelOrientation();
    }
  }
  return result;
}

/*! \internal

  Returns the spacing in pixels which is between this \a bars and the following one, both at the
  key coordinate \a keyCoord.

  \note Typically the returned value doesn't depend on \a bars or \a keyCoord. \a bars is only
  needed to get access to the key axis transformation and axis rect for the modes \ref
  stAxisRectRatio and \ref stPlotCoords. The \a keyCoord is only relevant for spacings given in
  \ref stPlotCoords on a logarithmic axis.
*/
double QCPBarsGroup::getPixelSpacing(const QCPBars *bars, double keyCoord)
{
  switch (mSpacingType)
  {
    case stAbsolute:
    {
      return mSpacing;
    }
    case stAxisRectRatio:
    {
      if (bars->keyAxis()->orientation() == Qt::Horizontal)
        return bars->keyAxis()->axisRect()->width()*mSpacing;
      else
        return bars->keyAxis()->axisRect()->height()*mSpacing;
    }
    case stPlotCoords:
    {
      double keyPixel = bars->keyAxis()->coordToPixel(keyCoord);
      return qAbs(bars->keyAxis()->coordToPixel(keyCoord+mSpacing)-keyPixel);
    }
  }
  return 0;
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPBarsData
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPBarsData
  \brief Holds the data of one single data point (one bar) for QCPBars.

  The stored data is:
  \li \a key: coordinate on the key axis of this bar (this is the \a mainKey and the \a sortKey)
  \li \a value: height coordinate on the value axis of this bar (this is the \a mainValue)

  The container for storing multiple data points is \ref QCPBarsDataContainer. It is a typedef for
  \ref QCPDataContainer with \ref QCPBarsData as the DataType template parameter. See the
  documentation there for an explanation regarding the data type's generic methods.

  \see QCPBarsDataContainer
*/

/* start documentation of inline functions */

/*! \fn double QCPBarsData::sortKey() const

  Returns the \a key member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static QCPBarsData QCPBarsData::fromSortKey(double sortKey)

  Returns a data point with the specified \a sortKey. All other members are set to zero.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static static bool QCPBarsData::sortKeyIsMainKey()

  Since the member \a key is both the data point key coordinate and the data ordering parameter,
  this method returns true.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPBarsData::mainKey() const

  Returns the \a key member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPBarsData::mainValue() const

  Returns the \a value member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn QCPRange QCPBarsData::valueRange() const

  Returns a QCPRange with both lower and upper boundary set to \a value of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/* end documentation of inline functions */

/*!
  Constructs a bar data point with key and value set to zero.
*/
QCPBarsData::QCPBarsData() :
  key(0),
  value(0)
{
}

/*!
  Constructs a bar data point with the specified \a key and \a value.
*/
QCPBarsData::QCPBarsData(double key, double value) :
  key(key),
  value(value)
{
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPBars
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPBars
  \brief A plottable representing a bar chart in a plot.

  \image html QCPBars.png

  To plot data, assign it with the \ref setData or \ref addData functions.

  \section qcpbars-appearance Changing the appearance

  The appearance of the bars is determined by the pen and the brush (\ref setPen, \ref setBrush).
  The width of the individual bars can be controlled with \ref setWidthType and \ref setWidth.

  Bar charts are stackable. This means, two QCPBars plottables can be placed on top of each other
  (see \ref QCPBars::moveAbove). So when two bars are at the same key position, they will appear
  stacked.

  If you would like to group multiple QCPBars plottables together so they appear side by side as
  shown below, use QCPBarsGroup.

  \image html QCPBarsGroup.png

  \section qcpbars-usage Usage

  Like all data representing objects in QCustomPlot, the QCPBars is a plottable
  (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
  (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)

  Usually, you first create an instance:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbars-creation-1
  which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot instance takes
  ownership of the plottable, so do not delete it manually but use QCustomPlot::removePlottable() instead.
  The newly created plottable can be modified, e.g.:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbars-creation-2
*/

/* start of documentation of inline functions */

/*! \fn QSharedPointer<QCPBarsDataContainer> QCPBars::data() const

  Returns a shared pointer to the internal data storage of type \ref QCPBarsDataContainer. You may
  use it to directly manipulate the data, which may be more convenient and faster than using the
  regular \ref setData or \ref addData methods.
*/

/*! \fn QCPBars *QCPBars::barBelow() const
  Returns the bars plottable that is directly below this bars plottable.
  If there is no such plottable, returns 0.

  \see barAbove, moveBelow, moveAbove
*/

/*! \fn QCPBars *QCPBars::barAbove() const
  Returns the bars plottable that is directly above this bars plottable.
  If there is no such plottable, returns 0.

  \see barBelow, moveBelow, moveAbove
*/

/* end of documentation of inline functions */

/*!
  Constructs a bar chart which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
  axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
  the same orientation. If either of these restrictions is violated, a corresponding message is
  printed to the debug output (qDebug), the construction is not aborted, though.

  The created QCPBars is automatically registered with the QCustomPlot instance inferred from \a
  keyAxis. This QCustomPlot instance takes ownership of the QCPBars, so do not delete it manually
  but use QCustomPlot::removePlottable() instead.
*/
QCPBars::QCPBars(QCPAxis *keyAxis, QCPAxis *valueAxis) :
  QCPAbstractPlottable1D<QCPBarsData>(keyAxis, valueAxis),
  mWidth(0.75),
  mWidthType(wtPlotCoords),
  mBarsGroup(0),
  mBaseValue(0),
  mStackingGap(0)
{
  // modify inherited properties from abstract plottable:
  mPen.setColor(Qt::blue);
  mPen.setStyle(Qt::SolidLine);
  mBrush.setColor(QColor(40, 50, 255, 30));
  mBrush.setStyle(Qt::SolidPattern);
  mSelectionDecorator->setBrush(QBrush(QColor(160, 160, 255)));
}

QCPBars::~QCPBars()
{
  setBarsGroup(0);
  if (mBarBelow || mBarAbove)
    connectBars(mBarBelow.data(), mBarAbove.data()); // take this bar out of any stacking
}

/*! \overload

  Replaces the current data container with the provided \a data container.

  Since a QSharedPointer is used, multiple QCPBars may share the same data container safely.
  Modifying the data in the container will then affect all bars that share the container. Sharing
  can be achieved by simply exchanging the data containers wrapped in shared pointers:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbars-datasharing-1

  If you do not wish to share containers, but create a copy from an existing container, rather use
  the \ref QCPDataContainer<DataType>::set method on the bar's data container directly:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbars-datasharing-2

  \see addData
*/
void QCPBars::setData(QSharedPointer<QCPBarsDataContainer> data)
{
  mDataContainer = data;
}

/*! \overload

  Replaces the current data with the provided points in \a keys and \a values. The provided
  vectors should have equal length. Else, the number of added points will be the size of the
  smallest vector.

  If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
  can set \a alreadySorted to true, to improve performance by saving a sorting run.

  \see addData
*/
void QCPBars::setData(const QVector<double> &keys, const QVector<double> &values, bool alreadySorted)
{
  mDataContainer->clear();
  addData(keys, values, alreadySorted);
}

/*!
  Sets the width of the bars.

  How the number passed as \a width is interpreted (e.g. screen pixels, plot coordinates,...),
  depends on the currently set width type, see \ref setWidthType and \ref WidthType.
*/
void QCPBars::setWidth(double width)
{
  mWidth = width;
}

/*!
  Sets how the width of the bars is defined. See the documentation of \ref WidthType for an
  explanation of the possible values for \a widthType.

  The default value is \ref wtPlotCoords.

  \see setWidth
*/
void QCPBars::setWidthType(QCPBars::WidthType widthType)
{
  mWidthType = widthType;
}

/*!
  Sets to which QCPBarsGroup this QCPBars instance belongs to. Alternatively, you can also use \ref
  QCPBarsGroup::append.

  To remove this QCPBars from any group, set \a barsGroup to 0.
*/
void QCPBars::setBarsGroup(QCPBarsGroup *barsGroup)
{
  // deregister at old group:
  if (mBarsGroup)
    mBarsGroup->unregisterBars(this);
  mBarsGroup = barsGroup;
  // register at new group:
  if (mBarsGroup)
    mBarsGroup->registerBars(this);
}

/*!
  Sets the base value of this bars plottable.

  The base value defines where on the value coordinate the bars start. How far the bars extend from
  the base value is given by their individual value data. For example, if the base value is set to
  1, a bar with data value 2 will have its lowest point at value coordinate 1 and highest point at
  3.

  For stacked bars, only the base value of the bottom-most QCPBars has meaning.

  The default base value is 0.
*/
void QCPBars::setBaseValue(double baseValue)
{
  mBaseValue = baseValue;
}

/*!
  If this bars plottable is stacked on top of another bars plottable (\ref moveAbove), this method
  allows specifying a distance in \a pixels, by which the drawn bar rectangles will be separated by
  the bars below it.
*/
void QCPBars::setStackingGap(double pixels)
{
  mStackingGap = pixels;
}

/*! \overload

  Adds the provided points in \a keys and \a values to the current data. The provided vectors
  should have equal length. Else, the number of added points will be the size of the smallest
  vector.

  If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
  can set \a alreadySorted to true, to improve performance by saving a sorting run.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPBars::addData(const QVector<double> &keys, const QVector<double> &values, bool alreadySorted)
{
  if (keys.size() != values.size())
    qDebug() << Q_FUNC_INFO << "keys and values have different sizes:" << keys.size() << values.size();
  const int n = qMin(keys.size(), values.size());
  QVector<QCPBarsData> tempData(n);
  QVector<QCPBarsData>::iterator it = tempData.begin();
  const QVector<QCPBarsData>::iterator itEnd = tempData.end();
  int i = 0;
  while (it != itEnd)
  {
    it->key = keys[i];
    it->value = values[i];
    ++it;
    ++i;
  }
  mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
}

/*! \overload
  Adds the provided data point as \a key and \a value to the current data.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPBars::addData(double key, double value)
{
  mDataContainer->add(QCPBarsData(key, value));
}

/*!
  Moves this bars plottable below \a bars. In other words, the bars of this plottable will appear
  below the bars of \a bars. The move target \a bars must use the same key and value axis as this
  plottable.

  Inserting into and removing from existing bar stacking is handled gracefully. If \a bars already
  has a bars object below itself, this bars object is inserted between the two. If this bars object
  is already between two other bars, the two other bars will be stacked on top of each other after
  the operation.

  To remove this bars plottable from any stacking, set \a bars to 0.

  \see moveBelow, barAbove, barBelow
*/
void QCPBars::moveBelow(QCPBars *bars)
{
  if (bars == this) return;
  if (bars && (bars->keyAxis() != mKeyAxis.data() || bars->valueAxis() != mValueAxis.data()))
  {
    qDebug() << Q_FUNC_INFO << "passed QCPBars* doesn't have same key and value axis as this QCPBars";
    return;
  }
  // remove from stacking:
  connectBars(mBarBelow.data(), mBarAbove.data()); // Note: also works if one (or both) of them is 0
  // if new bar given, insert this bar below it:
  if (bars)
  {
    if (bars->mBarBelow)
      connectBars(bars->mBarBelow.data(), this);
    connectBars(this, bars);
  }
}

/*!
  Moves this bars plottable above \a bars. In other words, the bars of this plottable will appear
  above the bars of \a bars. The move target \a bars must use the same key and value axis as this
  plottable.

  Inserting into and removing from existing bar stacking is handled gracefully. If \a bars already
  has a bars object above itself, this bars object is inserted between the two. If this bars object
  is already between two other bars, the two other bars will be stacked on top of each other after
  the operation.

  To remove this bars plottable from any stacking, set \a bars to 0.

  \see moveBelow, barBelow, barAbove
*/
void QCPBars::moveAbove(QCPBars *bars)
{
  if (bars == this) return;
  if (bars && (bars->keyAxis() != mKeyAxis.data() || bars->valueAxis() != mValueAxis.data()))
  {
    qDebug() << Q_FUNC_INFO << "passed QCPBars* doesn't have same key and value axis as this QCPBars";
    return;
  }
  // remove from stacking:
  connectBars(mBarBelow.data(), mBarAbove.data()); // Note: also works if one (or both) of them is 0
  // if new bar given, insert this bar above it:
  if (bars)
  {
    if (bars->mBarAbove)
      connectBars(this, bars->mBarAbove.data());
    connectBars(bars, this);
  }
}

/*!
  \copydoc QCPPlottableInterface1D::selectTestRect
*/
QCPDataSelection QCPBars::selectTestRect(const QRectF &rect, bool onlySelectable) const
{
  QCPDataSelection result;
  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return result;
  if (!mKeyAxis || !mValueAxis)
    return result;

  QCPBarsDataContainer::const_iterator visibleBegin, visibleEnd;
  getVisibleDataBounds(visibleBegin, visibleEnd);

  for (QCPBarsDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
  {
    if (rect.intersects(getBarRect(it->key, it->value)))
      result.addDataRange(QCPDataRange(int(it-mDataContainer->constBegin()), int(it-mDataContainer->constBegin())+1), false);
  }
  result.simplify();
  return result;
}

/*!
  Implements a selectTest specific to this plottable's point geometry.

  If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
  point to \a pos.

  \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
*/
double QCPBars::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return -1;
  if (!mKeyAxis || !mValueAxis)
    return -1;

  if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()))
  {
    // get visible data range:
    QCPBarsDataContainer::const_iterator visibleBegin, visibleEnd;
    getVisibleDataBounds(visibleBegin, visibleEnd);
    for (QCPBarsDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
    {
      if (getBarRect(it->key, it->value).contains(pos))
      {
        if (details)
        {
          int pointIndex = int(it-mDataContainer->constBegin());
          details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
        }
        return mParentPlot->selectionTolerance()*0.99;
      }
    }
  }
  return -1;
}

/* inherits documentation from base class */
QCPRange QCPBars::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const
{
  /* Note: If this QCPBars uses absolute pixels as width (or is in a QCPBarsGroup with spacing in
  absolute pixels), using this method to adapt the key axis range to fit the bars into the
  currently visible axis range will not work perfectly. Because in the moment the axis range is
  changed to the new range, the fixed pixel widths/spacings will represent different coordinate
  spans than before, which in turn would require a different key range to perfectly fit, and so on.
  The only solution would be to iteratively approach the perfect fitting axis range, but the
  mismatch isn't large enough in most applications, to warrant this here. If a user does need a
  better fit, he should call the corresponding axis rescale multiple times in a row.
  */
  QCPRange range;
  range = mDataContainer->keyRange(foundRange, inSignDomain);

  // determine exact range of bars by including bar width and barsgroup offset:
  if (foundRange && mKeyAxis)
  {
    double lowerPixelWidth, upperPixelWidth, keyPixel;
    // lower range bound:
    getPixelWidth(range.lower, lowerPixelWidth, upperPixelWidth);
    keyPixel = mKeyAxis.data()->coordToPixel(range.lower) + lowerPixelWidth;
    if (mBarsGroup)
      keyPixel += mBarsGroup->keyPixelOffset(this, range.lower);
    const double lowerCorrected = mKeyAxis.data()->pixelToCoord(keyPixel);
    if (!qIsNaN(lowerCorrected) && qIsFinite(lowerCorrected) && range.lower > lowerCorrected)
      range.lower = lowerCorrected;
    // upper range bound:
    getPixelWidth(range.upper, lowerPixelWidth, upperPixelWidth);
    keyPixel = mKeyAxis.data()->coordToPixel(range.upper) + upperPixelWidth;
    if (mBarsGroup)
      keyPixel += mBarsGroup->keyPixelOffset(this, range.upper);
    const double upperCorrected = mKeyAxis.data()->pixelToCoord(keyPixel);
    if (!qIsNaN(upperCorrected) && qIsFinite(upperCorrected) && range.upper < upperCorrected)
      range.upper = upperCorrected;
  }
  return range;
}

/* inherits documentation from base class */
QCPRange QCPBars::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const
{
  // Note: can't simply use mDataContainer->valueRange here because we need to
  // take into account bar base value and possible stacking of multiple bars
  QCPRange range;
  range.lower = mBaseValue;
  range.upper = mBaseValue;
  bool haveLower = true; // set to true, because baseValue should always be visible in bar charts
  bool haveUpper = true; // set to true, because baseValue should always be visible in bar charts
  QCPBarsDataContainer::const_iterator itBegin = mDataContainer->constBegin();
  QCPBarsDataContainer::const_iterator itEnd = mDataContainer->constEnd();
  if (inKeyRange != QCPRange())
  {
    itBegin = mDataContainer->findBegin(inKeyRange.lower);
    itEnd = mDataContainer->findEnd(inKeyRange.upper);
  }
  for (QCPBarsDataContainer::const_iterator it = itBegin; it != itEnd; ++it)
  {
    const double current = it->value + getStackedBaseValue(it->key, it->value >= 0);
    if (qIsNaN(current)) continue;
    if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
    {
      if (current < range.lower || !haveLower)
      {
        range.lower = current;
        haveLower = true;
      }
      if (current > range.upper || !haveUpper)
      {
        range.upper = current;
        haveUpper = true;
      }
    }
  }

  foundRange = true; // return true because bar charts always have the 0-line visible
  return range;
}

/* inherits documentation from base class */
QPointF QCPBars::dataPixelPosition(int index) const
{
  if (index >= 0 && index < mDataContainer->size())
  {
    QCPAxis *keyAxis = mKeyAxis.data();
    QCPAxis *valueAxis = mValueAxis.data();
    if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return QPointF(); }

    const QCPDataContainer<QCPBarsData>::const_iterator it = mDataContainer->constBegin()+index;
    const double valuePixel = valueAxis->coordToPixel(getStackedBaseValue(it->key, it->value >= 0) + it->value);
    const double keyPixel = keyAxis->coordToPixel(it->key) + (mBarsGroup ? mBarsGroup->keyPixelOffset(this, it->key) : 0);
    if (keyAxis->orientation() == Qt::Horizontal)
      return QPointF(keyPixel, valuePixel);
    else
      return QPointF(valuePixel, keyPixel);
  } else
  {
    qDebug() << Q_FUNC_INFO << "Index out of bounds" << index;
    return QPointF();
  }
}

/* inherits documentation from base class */
void QCPBars::draw(QCPPainter *painter)
{
  if (!mKeyAxis || !mValueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
  if (mDataContainer->isEmpty()) return;

  QCPBarsDataContainer::const_iterator visibleBegin, visibleEnd;
  getVisibleDataBounds(visibleBegin, visibleEnd);

  // loop over and draw segments of unselected/selected data:
  QList<QCPDataRange> selectedSegments, unselectedSegments, allSegments;
  getDataSegments(selectedSegments, unselectedSegments);
  allSegments << unselectedSegments << selectedSegments;
  for (int i=0; i<allSegments.size(); ++i)
  {
    bool isSelectedSegment = i >= unselectedSegments.size();
    QCPBarsDataContainer::const_iterator begin = visibleBegin;
    QCPBarsDataContainer::const_iterator end = visibleEnd;
    mDataContainer->limitIteratorsToDataRange(begin, end, allSegments.at(i));
    if (begin == end)
      continue;

    for (QCPBarsDataContainer::const_iterator it=begin; it!=end; ++it)
    {
      // check data validity if flag set:
#ifdef QCUSTOMPLOT_CHECK_DATA
      if (QCP::isInvalidData(it->key, it->value))
        qDebug() << Q_FUNC_INFO << "Data point at" << it->key << "of drawn range invalid." << "Plottable name:" << name();
#endif
      // draw bar:
      if (isSelectedSegment && mSelectionDecorator)
      {
        mSelectionDecorator->applyBrush(painter);
        mSelectionDecorator->applyPen(painter);
      } else
      {
        painter->setBrush(mBrush);
        painter->setPen(mPen);
      }
      applyDefaultAntialiasingHint(painter);
      painter->drawPolygon(getBarRect(it->key, it->value));
    }
  }

  // draw other selection decoration that isn't just line/scatter pens and brushes:
  if (mSelectionDecorator)
    mSelectionDecorator->drawDecoration(painter, selection());
}

/* inherits documentation from base class */
void QCPBars::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
{
  // draw filled rect:
  applyDefaultAntialiasingHint(painter);
  painter->setBrush(mBrush);
  painter->setPen(mPen);
  QRectF r = QRectF(0, 0, rect.width()*0.67, rect.height()*0.67);
  r.moveCenter(rect.center());
  painter->drawRect(r);
}

/*!  \internal

  called by \ref draw to determine which data (key) range is visible at the current key axis range
  setting, so only that needs to be processed. It also takes into account the bar width.

  \a begin returns an iterator to the lowest data point that needs to be taken into account when
  plotting. Note that in order to get a clean plot all the way to the edge of the axis rect, \a
  lower may still be just outside the visible range.

  \a end returns an iterator one higher than the highest visible data point. Same as before, \a end
  may also lie just outside of the visible range.

  if the plottable contains no data, both \a begin and \a end point to constEnd.
*/
void QCPBars::getVisibleDataBounds(QCPBarsDataContainer::const_iterator &begin, QCPBarsDataContainer::const_iterator &end) const
{
  if (!mKeyAxis)
  {
    qDebug() << Q_FUNC_INFO << "invalid key axis";
    begin = mDataContainer->constEnd();
    end = mDataContainer->constEnd();
    return;
  }
  if (mDataContainer->isEmpty())
  {
    begin = mDataContainer->constEnd();
    end = mDataContainer->constEnd();
    return;
  }

  // get visible data range as QMap iterators
  begin = mDataContainer->findBegin(mKeyAxis.data()->range().lower);
  end = mDataContainer->findEnd(mKeyAxis.data()->range().upper);
  double lowerPixelBound = mKeyAxis.data()->coordToPixel(mKeyAxis.data()->range().lower);
  double upperPixelBound = mKeyAxis.data()->coordToPixel(mKeyAxis.data()->range().upper);
  bool isVisible = false;
  // walk left from begin to find lower bar that actually is completely outside visible pixel range:
  QCPBarsDataContainer::const_iterator it = begin;
  while (it != mDataContainer->constBegin())
  {
    --it;
    const QRectF barRect = getBarRect(it->key, it->value);
    if (mKeyAxis.data()->orientation() == Qt::Horizontal)
      isVisible = ((!mKeyAxis.data()->rangeReversed() && barRect.right() >= lowerPixelBound) || (mKeyAxis.data()->rangeReversed() && barRect.left() <= lowerPixelBound));
    else // keyaxis is vertical
      isVisible = ((!mKeyAxis.data()->rangeReversed() && barRect.top() <= lowerPixelBound) || (mKeyAxis.data()->rangeReversed() && barRect.bottom() >= lowerPixelBound));
    if (isVisible)
      begin = it;
    else
      break;
  }
  // walk right from ubound to find upper bar that actually is completely outside visible pixel range:
  it = end;
  while (it != mDataContainer->constEnd())
  {
    const QRectF barRect = getBarRect(it->key, it->value);
    if (mKeyAxis.data()->orientation() == Qt::Horizontal)
      isVisible = ((!mKeyAxis.data()->rangeReversed() && barRect.left() <= upperPixelBound) || (mKeyAxis.data()->rangeReversed() && barRect.right() >= upperPixelBound));
    else // keyaxis is vertical
      isVisible = ((!mKeyAxis.data()->rangeReversed() && barRect.bottom() >= upperPixelBound) || (mKeyAxis.data()->rangeReversed() && barRect.top() <= upperPixelBound));
    if (isVisible)
      end = it+1;
    else
      break;
    ++it;
  }
}

/*! \internal

  Returns the rect in pixel coordinates of a single bar with the specified \a key and \a value. The
  rect is shifted according to the bar stacking (see \ref moveAbove) and base value (see \ref
  setBaseValue), and to have non-overlapping border lines with the bars stacked below.
*/
QRectF QCPBars::getBarRect(double key, double value) const
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return QRectF(); }

  double lowerPixelWidth, upperPixelWidth;
  getPixelWidth(key, lowerPixelWidth, upperPixelWidth);
  double base = getStackedBaseValue(key, value >= 0);
  double basePixel = valueAxis->coordToPixel(base);
  double valuePixel = valueAxis->coordToPixel(base+value);
  double keyPixel = keyAxis->coordToPixel(key);
  if (mBarsGroup)
    keyPixel += mBarsGroup->keyPixelOffset(this, key);
  double bottomOffset = (mBarBelow && mPen != Qt::NoPen ? 1 : 0)*(mPen.isCosmetic() ? 1 : mPen.widthF());
  bottomOffset += mBarBelow ? mStackingGap : 0;
  bottomOffset *= (value<0 ? -1 : 1)*valueAxis->pixelOrientation();
  if (qAbs(valuePixel-basePixel) <= qAbs(bottomOffset))
    bottomOffset = valuePixel-basePixel;
  if (keyAxis->orientation() == Qt::Horizontal)
  {
    return QRectF(QPointF(keyPixel+lowerPixelWidth, valuePixel), QPointF(keyPixel+upperPixelWidth, basePixel+bottomOffset)).normalized();
  } else
  {
    return QRectF(QPointF(basePixel+bottomOffset, keyPixel+lowerPixelWidth), QPointF(valuePixel, keyPixel+upperPixelWidth)).normalized();
  }
}

/*! \internal

  This function is used to determine the width of the bar at coordinate \a key, according to the
  specified width (\ref setWidth) and width type (\ref setWidthType).

  The output parameters \a lower and \a upper return the number of pixels the bar extends to lower
  and higher keys, relative to the \a key coordinate (so with a non-reversed horizontal axis, \a
  lower is negative and \a upper positive).
*/
void QCPBars::getPixelWidth(double key, double &lower, double &upper) const
{
  lower = 0;
  upper = 0;
  switch (mWidthType)
  {
    case wtAbsolute:
    {
      upper = mWidth*0.5*mKeyAxis.data()->pixelOrientation();
      lower = -upper;
      break;
    }
    case wtAxisRectRatio:
    {
      if (mKeyAxis && mKeyAxis.data()->axisRect())
      {
        if (mKeyAxis.data()->orientation() == Qt::Horizontal)
          upper = mKeyAxis.data()->axisRect()->width()*mWidth*0.5*mKeyAxis.data()->pixelOrientation();
        else
          upper = mKeyAxis.data()->axisRect()->height()*mWidth*0.5*mKeyAxis.data()->pixelOrientation();
        lower = -upper;
      } else
        qDebug() << Q_FUNC_INFO << "No key axis or axis rect defined";
      break;
    }
    case wtPlotCoords:
    {
      if (mKeyAxis)
      {
        double keyPixel = mKeyAxis.data()->coordToPixel(key);
        upper = mKeyAxis.data()->coordToPixel(key+mWidth*0.5)-keyPixel;
        lower = mKeyAxis.data()->coordToPixel(key-mWidth*0.5)-keyPixel;
        // no need to qSwap(lower, higher) when range reversed, because higher/lower are gained by
        // coordinate transform which includes range direction
      } else
        qDebug() << Q_FUNC_INFO << "No key axis defined";
      break;
    }
  }
}

/*! \internal

  This function is called to find at which value to start drawing the base of a bar at \a key, when
  it is stacked on top of another QCPBars (e.g. with \ref moveAbove).

  positive and negative bars are separated per stack (positive are stacked above baseValue upwards,
  negative are stacked below baseValue downwards). This can be indicated with \a positive. So if the
  bar for which we need the base value is negative, set \a positive to false.
*/
double QCPBars::getStackedBaseValue(double key, bool positive) const
{
  if (mBarBelow)
  {
    double max = 0; // don't initialize with mBaseValue here because only base value of bottom-most bar has meaning in a bar stack
    // find bars of mBarBelow that are approximately at key and find largest one:
    double epsilon = qAbs(key)*(sizeof(key)==4 ? 1e-6 : 1e-14); // should be safe even when changed to use float at some point
    if (key == 0)
      epsilon = (sizeof(key)==4 ? 1e-6 : 1e-14);
    QCPBarsDataContainer::const_iterator it = mBarBelow.data()->mDataContainer->findBegin(key-epsilon);
    QCPBarsDataContainer::const_iterator itEnd = mBarBelow.data()->mDataContainer->findEnd(key+epsilon);
    while (it != itEnd)
    {
      if (it->key > key-epsilon && it->key < key+epsilon)
      {
        if ((positive && it->value > max) ||
            (!positive && it->value < max))
          max = it->value;
      }
      ++it;
    }
    // recurse down the bar-stack to find the total height:
    return max + mBarBelow.data()->getStackedBaseValue(key, positive);
  } else
    return mBaseValue;
}

/*! \internal

  Connects \a below and \a above to each other via their mBarAbove/mBarBelow properties. The bar(s)
  currently above lower and below upper will become disconnected to lower/upper.

  If lower is zero, upper will be disconnected at the bottom.
  If upper is zero, lower will be disconnected at the top.
*/
void QCPBars::connectBars(QCPBars *lower, QCPBars *upper)
{
  if (!lower && !upper) return;

  if (!lower) // disconnect upper at bottom
  {
    // disconnect old bar below upper:
    if (upper->mBarBelow && upper->mBarBelow.data()->mBarAbove.data() == upper)
      upper->mBarBelow.data()->mBarAbove = 0;
    upper->mBarBelow = 0;
  } else if (!upper) // disconnect lower at top
  {
    // disconnect old bar above lower:
    if (lower->mBarAbove && lower->mBarAbove.data()->mBarBelow.data() == lower)
      lower->mBarAbove.data()->mBarBelow = 0;
    lower->mBarAbove = 0;
  } else // connect lower and upper
  {
    // disconnect old bar above lower:
    if (lower->mBarAbove && lower->mBarAbove.data()->mBarBelow.data() == lower)
      lower->mBarAbove.data()->mBarBelow = 0;
    // disconnect old bar below upper:
    if (upper->mBarBelow && upper->mBarBelow.data()->mBarAbove.data() == upper)
      upper->mBarBelow.data()->mBarAbove = 0;
    lower->mBarAbove = upper;
    upper->mBarBelow = lower;
  }
}
/* end of 'src/plottables/plottable-bars.cpp' */


/* including file 'src/plottables/plottable-statisticalbox.cpp', size 28837  */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPStatisticalBoxData
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPStatisticalBoxData
  \brief Holds the data of one single data point for QCPStatisticalBox.

  The stored data is:

  \li \a key: coordinate on the key axis of this data point (this is the \a mainKey and the \a sortKey)

  \li \a minimum: the position of the lower whisker, typically the minimum measurement of the
  sample that's not considered an outlier.

  \li \a lowerQuartile: the lower end of the box. The lower and the upper quartiles are the two
  statistical quartiles around the median of the sample, they should contain 50% of the sample
  data.

  \li \a median: the value of the median mark inside the quartile box. The median separates the
  sample data in half (50% of the sample data is below/above the median). (This is the \a mainValue)

  \li \a upperQuartile: the upper end of the box. The lower and the upper quartiles are the two
  statistical quartiles around the median of the sample, they should contain 50% of the sample
  data.

  \li \a maximum: the position of the upper whisker, typically the maximum measurement of the
  sample that's not considered an outlier.

  \li \a outliers: a QVector of outlier values that will be drawn as scatter points at the \a key
  coordinate of this data point (see \ref QCPStatisticalBox::setOutlierStyle)

  The container for storing multiple data points is \ref QCPStatisticalBoxDataContainer. It is a
  typedef for \ref QCPDataContainer with \ref QCPStatisticalBoxData as the DataType template
  parameter. See the documentation there for an explanation regarding the data type's generic
  methods.

  \see QCPStatisticalBoxDataContainer
*/

/* start documentation of inline functions */

/*! \fn double QCPStatisticalBoxData::sortKey() const

  Returns the \a key member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static QCPStatisticalBoxData QCPStatisticalBoxData::fromSortKey(double sortKey)

  Returns a data point with the specified \a sortKey. All other members are set to zero.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static static bool QCPStatisticalBoxData::sortKeyIsMainKey()

  Since the member \a key is both the data point key coordinate and the data ordering parameter,
  this method returns true.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPStatisticalBoxData::mainKey() const

  Returns the \a key member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPStatisticalBoxData::mainValue() const

  Returns the \a median member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn QCPRange QCPStatisticalBoxData::valueRange() const

  Returns a QCPRange spanning from the \a minimum to the \a maximum member of this statistical box
  data point, possibly further expanded by outliers.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/* end documentation of inline functions */

/*!
  Constructs a data point with key and all values set to zero.
*/
QCPStatisticalBoxData::QCPStatisticalBoxData() :
  key(0),
  minimum(0),
  lowerQuartile(0),
  median(0),
  upperQuartile(0),
  maximum(0)
{
}

/*!
  Constructs a data point with the specified \a key, \a minimum, \a lowerQuartile, \a median, \a
  upperQuartile, \a maximum and optionally a number of \a outliers.
*/
QCPStatisticalBoxData::QCPStatisticalBoxData(double key, double minimum, double lowerQuartile, double median, double upperQuartile, double maximum, const QVector<double> &outliers) :
  key(key),
  minimum(minimum),
  lowerQuartile(lowerQuartile),
  median(median),
  upperQuartile(upperQuartile),
  maximum(maximum),
  outliers(outliers)
{
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPStatisticalBox
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPStatisticalBox
  \brief A plottable representing a single statistical box in a plot.

  \image html QCPStatisticalBox.png

  To plot data, assign it with the \ref setData or \ref addData functions. Alternatively, you can
  also access and modify the data via the \ref data method, which returns a pointer to the internal
  \ref QCPStatisticalBoxDataContainer.

  Additionally each data point can itself have a list of outliers, drawn as scatter points at the
  key coordinate of the respective statistical box data point. They can either be set by using the
  respective \ref addData(double,double,double,double,double,double,const QVector<double>&)
  "addData" method or accessing the individual data points through \ref data, and setting the
  <tt>QVector<double> outliers</tt> of the data points directly.

  \section qcpstatisticalbox-appearance Changing the appearance

  The appearance of each data point box, ranging from the lower to the upper quartile, is
  controlled via \ref setPen and \ref setBrush. You may change the width of the boxes with \ref
  setWidth in plot coordinates.

  Each data point's visual representation also consists of two whiskers. Whiskers are the lines
  which reach from the upper quartile to the maximum, and from the lower quartile to the minimum.
  The appearance of the whiskers can be modified with: \ref setWhiskerPen, \ref setWhiskerBarPen,
  \ref setWhiskerWidth. The whisker width is the width of the bar perpendicular to the whisker at
  the top (for maximum) and bottom (for minimum). If the whisker pen is changed, make sure to set
  the \c capStyle to \c Qt::FlatCap. Otherwise the backbone line might exceed the whisker bars by a
  few pixels due to the pen cap being not perfectly flat.

  The median indicator line inside the box has its own pen, \ref setMedianPen.

  The outlier data points are drawn as normal scatter points. Their look can be controlled with
  \ref setOutlierStyle

  \section qcpstatisticalbox-usage Usage

  Like all data representing objects in QCustomPlot, the QCPStatisticalBox is a plottable
  (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
  (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)

  Usually, you first create an instance:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpstatisticalbox-creation-1
  which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot instance takes
  ownership of the plottable, so do not delete it manually but use QCustomPlot::removePlottable() instead.
  The newly created plottable can be modified, e.g.:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpstatisticalbox-creation-2
*/

/* start documentation of inline functions */

/*! \fn QSharedPointer<QCPStatisticalBoxDataContainer> QCPStatisticalBox::data() const

  Returns a shared pointer to the internal data storage of type \ref
  QCPStatisticalBoxDataContainer. You may use it to directly manipulate the data, which may be more
  convenient and faster than using the regular \ref setData or \ref addData methods.
*/

/* end documentation of inline functions */

/*!
  Constructs a statistical box which uses \a keyAxis as its key axis ("x") and \a valueAxis as its
  value axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and
  not have the same orientation. If either of these restrictions is violated, a corresponding
  message is printed to the debug output (qDebug), the construction is not aborted, though.

  The created QCPStatisticalBox is automatically registered with the QCustomPlot instance inferred
  from \a keyAxis. This QCustomPlot instance takes ownership of the QCPStatisticalBox, so do not
  delete it manually but use QCustomPlot::removePlottable() instead.
*/
QCPStatisticalBox::QCPStatisticalBox(QCPAxis *keyAxis, QCPAxis *valueAxis) :
  QCPAbstractPlottable1D<QCPStatisticalBoxData>(keyAxis, valueAxis),
  mWidth(0.5),
  mWhiskerWidth(0.2),
  mWhiskerPen(Qt::black, 0, Qt::DashLine, Qt::FlatCap),
  mWhiskerBarPen(Qt::black),
  mWhiskerAntialiased(false),
  mMedianPen(Qt::black, 3, Qt::SolidLine, Qt::FlatCap),
  mOutlierStyle(QCPScatterStyle::ssCircle, Qt::blue, 6)
{
  setPen(QPen(Qt::black));
  setBrush(Qt::NoBrush);
}

/*! \overload

  Replaces the current data container with the provided \a data container.

  Since a QSharedPointer is used, multiple QCPStatisticalBoxes may share the same data container
  safely. Modifying the data in the container will then affect all statistical boxes that share the
  container. Sharing can be achieved by simply exchanging the data containers wrapped in shared
  pointers:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpstatisticalbox-datasharing-1

  If you do not wish to share containers, but create a copy from an existing container, rather use
  the \ref QCPDataContainer<DataType>::set method on the statistical box data container directly:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpstatisticalbox-datasharing-2

  \see addData
*/
void QCPStatisticalBox::setData(QSharedPointer<QCPStatisticalBoxDataContainer> data)
{
  mDataContainer = data;
}
/*! \overload

  Replaces the current data with the provided points in \a keys, \a minimum, \a lowerQuartile, \a
  median, \a upperQuartile and \a maximum. The provided vectors should have equal length. Else, the
  number of added points will be the size of the smallest vector.

  If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
  can set \a alreadySorted to true, to improve performance by saving a sorting run.

  \see addData
*/
void QCPStatisticalBox::setData(const QVector<double> &keys, const QVector<double> &minimum, const QVector<double> &lowerQuartile, const QVector<double> &median, const QVector<double> &upperQuartile, const QVector<double> &maximum, bool alreadySorted)
{
  mDataContainer->clear();
  addData(keys, minimum, lowerQuartile, median, upperQuartile, maximum, alreadySorted);
}

/*!
  Sets the width of the boxes in key coordinates.

  \see setWhiskerWidth
*/
void QCPStatisticalBox::setWidth(double width)
{
  mWidth = width;
}

/*!
  Sets the width of the whiskers in key coordinates.

  Whiskers are the lines which reach from the upper quartile to the maximum, and from the lower
  quartile to the minimum.

  \see setWidth
*/
void QCPStatisticalBox::setWhiskerWidth(double width)
{
  mWhiskerWidth = width;
}

/*!
  Sets the pen used for drawing the whisker backbone.

  Whiskers are the lines which reach from the upper quartile to the maximum, and from the lower
  quartile to the minimum.

  Make sure to set the \c capStyle of the passed \a pen to \c Qt::FlatCap. Otherwise the backbone
  line might exceed the whisker bars by a few pixels due to the pen cap being not perfectly flat.

  \see setWhiskerBarPen
*/
void QCPStatisticalBox::setWhiskerPen(const QPen &pen)
{
  mWhiskerPen = pen;
}

/*!
  Sets the pen used for drawing the whisker bars. Those are the lines parallel to the key axis at
  each end of the whisker backbone.

  Whiskers are the lines which reach from the upper quartile to the maximum, and from the lower
  quartile to the minimum.

  \see setWhiskerPen
*/
void QCPStatisticalBox::setWhiskerBarPen(const QPen &pen)
{
  mWhiskerBarPen = pen;
}

/*!
  Sets whether the statistical boxes whiskers are drawn with antialiasing or not.

  Note that antialiasing settings may be overridden by QCustomPlot::setAntialiasedElements and
  QCustomPlot::setNotAntialiasedElements.
*/
void QCPStatisticalBox::setWhiskerAntialiased(bool enabled)
{
  mWhiskerAntialiased = enabled;
}

/*!
  Sets the pen used for drawing the median indicator line inside the statistical boxes.
*/
void QCPStatisticalBox::setMedianPen(const QPen &pen)
{
  mMedianPen = pen;
}

/*!
  Sets the appearance of the outlier data points.

  Outliers can be specified with the method
  \ref addData(double key, double minimum, double lowerQuartile, double median, double upperQuartile, double maximum, const QVector<double> &outliers)
*/
void QCPStatisticalBox::setOutlierStyle(const QCPScatterStyle &style)
{
  mOutlierStyle = style;
}

/*! \overload

  Adds the provided points in \a keys, \a minimum, \a lowerQuartile, \a median, \a upperQuartile and
  \a maximum to the current data. The provided vectors should have equal length. Else, the number
  of added points will be the size of the smallest vector.

  If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
  can set \a alreadySorted to true, to improve performance by saving a sorting run.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPStatisticalBox::addData(const QVector<double> &keys, const QVector<double> &minimum, const QVector<double> &lowerQuartile, const QVector<double> &median, const QVector<double> &upperQuartile, const QVector<double> &maximum, bool alreadySorted)
{
  if (keys.size() != minimum.size() || minimum.size() != lowerQuartile.size() || lowerQuartile.size() != median.size() ||
      median.size() != upperQuartile.size() || upperQuartile.size() != maximum.size() || maximum.size() != keys.size())
    qDebug() << Q_FUNC_INFO << "keys, minimum, lowerQuartile, median, upperQuartile, maximum have different sizes:"
             << keys.size() << minimum.size() << lowerQuartile.size() << median.size() << upperQuartile.size() << maximum.size();
  const int n = qMin(keys.size(), qMin(minimum.size(), qMin(lowerQuartile.size(), qMin(median.size(), qMin(upperQuartile.size(), maximum.size())))));
  QVector<QCPStatisticalBoxData> tempData(n);
  QVector<QCPStatisticalBoxData>::iterator it = tempData.begin();
  const QVector<QCPStatisticalBoxData>::iterator itEnd = tempData.end();
  int i = 0;
  while (it != itEnd)
  {
    it->key = keys[i];
    it->minimum = minimum[i];
    it->lowerQuartile = lowerQuartile[i];
    it->median = median[i];
    it->upperQuartile = upperQuartile[i];
    it->maximum = maximum[i];
    ++it;
    ++i;
  }
  mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
}

/*! \overload

  Adds the provided data point as \a key, \a minimum, \a lowerQuartile, \a median, \a upperQuartile
  and \a maximum to the current data.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.
*/
void QCPStatisticalBox::addData(double key, double minimum, double lowerQuartile, double median, double upperQuartile, double maximum, const QVector<double> &outliers)
{
  mDataContainer->add(QCPStatisticalBoxData(key, minimum, lowerQuartile, median, upperQuartile, maximum, outliers));
}

/*!
  \copydoc QCPPlottableInterface1D::selectTestRect
*/
QCPDataSelection QCPStatisticalBox::selectTestRect(const QRectF &rect, bool onlySelectable) const
{
  QCPDataSelection result;
  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return result;
  if (!mKeyAxis || !mValueAxis)
    return result;

  QCPStatisticalBoxDataContainer::const_iterator visibleBegin, visibleEnd;
  getVisibleDataBounds(visibleBegin, visibleEnd);

  for (QCPStatisticalBoxDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
  {
    if (rect.intersects(getQuartileBox(it)))
      result.addDataRange(QCPDataRange(int(it-mDataContainer->constBegin()), int(it-mDataContainer->constBegin())+1), false);
  }
  result.simplify();
  return result;
}

/*!
  Implements a selectTest specific to this plottable's point geometry.

  If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
  point to \a pos.

  \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
*/
double QCPStatisticalBox::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return -1;
  if (!mKeyAxis || !mValueAxis)
    return -1;

  if (mKeyAxis->axisRect()->rect().contains(pos.toPoint()))
  {
    // get visible data range:
    QCPStatisticalBoxDataContainer::const_iterator visibleBegin, visibleEnd;
    QCPStatisticalBoxDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
    getVisibleDataBounds(visibleBegin, visibleEnd);
    double minDistSqr = (std::numeric_limits<double>::max)();
    for (QCPStatisticalBoxDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
    {
      if (getQuartileBox(it).contains(pos)) // quartile box
      {
        double currentDistSqr = mParentPlot->selectionTolerance()*0.99 * mParentPlot->selectionTolerance()*0.99;
        if (currentDistSqr < minDistSqr)
        {
          minDistSqr = currentDistSqr;
          closestDataPoint = it;
        }
      } else // whiskers
      {
        const QVector<QLineF> whiskerBackbones(getWhiskerBackboneLines(it));
        for (int i=0; i<whiskerBackbones.size(); ++i)
        {
          double currentDistSqr = QCPVector2D(pos).distanceSquaredToLine(whiskerBackbones.at(i));
          if (currentDistSqr < minDistSqr)
          {
            minDistSqr = currentDistSqr;
            closestDataPoint = it;
          }
        }
      }
    }
    if (details)
    {
      int pointIndex = int(closestDataPoint-mDataContainer->constBegin());
      details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
    }
    return qSqrt(minDistSqr);
  }
  return -1;
}

/* inherits documentation from base class */
QCPRange QCPStatisticalBox::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const
{
  QCPRange range = mDataContainer->keyRange(foundRange, inSignDomain);
  // determine exact range by including width of bars/flags:
  if (foundRange)
  {
    if (inSignDomain != QCP::sdPositive || range.lower-mWidth*0.5 > 0)
      range.lower -= mWidth*0.5;
    if (inSignDomain != QCP::sdNegative || range.upper+mWidth*0.5 < 0)
      range.upper += mWidth*0.5;
  }
  return range;
}

/* inherits documentation from base class */
QCPRange QCPStatisticalBox::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const
{
  return mDataContainer->valueRange(foundRange, inSignDomain, inKeyRange);
}

/* inherits documentation from base class */
void QCPStatisticalBox::draw(QCPPainter *painter)
{
  if (mDataContainer->isEmpty()) return;
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }

  QCPStatisticalBoxDataContainer::const_iterator visibleBegin, visibleEnd;
  getVisibleDataBounds(visibleBegin, visibleEnd);

  // loop over and draw segments of unselected/selected data:
  QList<QCPDataRange> selectedSegments, unselectedSegments, allSegments;
  getDataSegments(selectedSegments, unselectedSegments);
  allSegments << unselectedSegments << selectedSegments;
  for (int i=0; i<allSegments.size(); ++i)
  {
    bool isSelectedSegment = i >= unselectedSegments.size();
    QCPStatisticalBoxDataContainer::const_iterator begin = visibleBegin;
    QCPStatisticalBoxDataContainer::const_iterator end = visibleEnd;
    mDataContainer->limitIteratorsToDataRange(begin, end, allSegments.at(i));
    if (begin == end)
      continue;

    for (QCPStatisticalBoxDataContainer::const_iterator it=begin; it!=end; ++it)
    {
      // check data validity if flag set:
# ifdef QCUSTOMPLOT_CHECK_DATA
      if (QCP::isInvalidData(it->key, it->minimum) ||
          QCP::isInvalidData(it->lowerQuartile, it->median) ||
          QCP::isInvalidData(it->upperQuartile, it->maximum))
        qDebug() << Q_FUNC_INFO << "Data point at" << it->key << "of drawn range has invalid data." << "Plottable name:" << name();
      for (int i=0; i<it->outliers.size(); ++i)
        if (QCP::isInvalidData(it->outliers.at(i)))
          qDebug() << Q_FUNC_INFO << "Data point outlier at" << it->key << "of drawn range invalid." << "Plottable name:" << name();
# endif

      if (isSelectedSegment && mSelectionDecorator)
      {
        mSelectionDecorator->applyPen(painter);
        mSelectionDecorator->applyBrush(painter);
      } else
      {
        painter->setPen(mPen);
        painter->setBrush(mBrush);
      }
      QCPScatterStyle finalOutlierStyle = mOutlierStyle;
      if (isSelectedSegment && mSelectionDecorator)
        finalOutlierStyle = mSelectionDecorator->getFinalScatterStyle(mOutlierStyle);
      drawStatisticalBox(painter, it, finalOutlierStyle);
    }
  }

  // draw other selection decoration that isn't just line/scatter pens and brushes:
  if (mSelectionDecorator)
    mSelectionDecorator->drawDecoration(painter, selection());
}

/* inherits documentation from base class */
void QCPStatisticalBox::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
{
  // draw filled rect:
  applyDefaultAntialiasingHint(painter);
  painter->setPen(mPen);
  painter->setBrush(mBrush);
  QRectF r = QRectF(0, 0, rect.width()*0.67, rect.height()*0.67);
  r.moveCenter(rect.center());
  painter->drawRect(r);
}

/*!
  Draws the graphical representation of a single statistical box with the data given by the
  iterator \a it with the provided \a painter.

  If the statistical box has a set of outlier data points, they are drawn with \a outlierStyle.

  \see getQuartileBox, getWhiskerBackboneLines, getWhiskerBarLines
*/
void QCPStatisticalBox::drawStatisticalBox(QCPPainter *painter, QCPStatisticalBoxDataContainer::const_iterator it, const QCPScatterStyle &outlierStyle) const
{
  // draw quartile box:
  applyDefaultAntialiasingHint(painter);
  const QRectF quartileBox = getQuartileBox(it);
  painter->drawRect(quartileBox);
  // draw median line with cliprect set to quartile box:
  painter->save();
  painter->setClipRect(quartileBox, Qt::IntersectClip);
  painter->setPen(mMedianPen);
  painter->drawLine(QLineF(coordsToPixels(it->key-mWidth*0.5, it->median), coordsToPixels(it->key+mWidth*0.5, it->median)));
  painter->restore();
  // draw whisker lines:
  applyAntialiasingHint(painter, mWhiskerAntialiased, QCP::aePlottables);
  painter->setPen(mWhiskerPen);
  painter->drawLines(getWhiskerBackboneLines(it));
  painter->setPen(mWhiskerBarPen);
  painter->drawLines(getWhiskerBarLines(it));
  // draw outliers:
  applyScattersAntialiasingHint(painter);
  outlierStyle.applyTo(painter, mPen);
  for (int i=0; i<it->outliers.size(); ++i)
    outlierStyle.drawShape(painter, coordsToPixels(it->key, it->outliers.at(i)));
}

/*!  \internal

  called by \ref draw to determine which data (key) range is visible at the current key axis range
  setting, so only that needs to be processed. It also takes into account the bar width.

  \a begin returns an iterator to the lowest data point that needs to be taken into account when
  plotting. Note that in order to get a clean plot all the way to the edge of the axis rect, \a
  lower may still be just outside the visible range.

  \a end returns an iterator one higher than the highest visible data point. Same as before, \a end
  may also lie just outside of the visible range.

  if the plottable contains no data, both \a begin and \a end point to constEnd.
*/
void QCPStatisticalBox::getVisibleDataBounds(QCPStatisticalBoxDataContainer::const_iterator &begin, QCPStatisticalBoxDataContainer::const_iterator &end) const
{
  if (!mKeyAxis)
  {
    qDebug() << Q_FUNC_INFO << "invalid key axis";
    begin = mDataContainer->constEnd();
    end = mDataContainer->constEnd();
    return;
  }
  begin = mDataContainer->findBegin(mKeyAxis.data()->range().lower-mWidth*0.5); // subtract half width of box to include partially visible data points
  end = mDataContainer->findEnd(mKeyAxis.data()->range().upper+mWidth*0.5); // add half width of box to include partially visible data points
}

/*!  \internal

  Returns the box in plot coordinates (keys in x, values in y of the returned rect) that covers the
  value range from the lower to the upper quartile, of the data given by \a it.

  \see drawStatisticalBox, getWhiskerBackboneLines, getWhiskerBarLines
*/
QRectF QCPStatisticalBox::getQuartileBox(QCPStatisticalBoxDataContainer::const_iterator it) const
{
  QRectF result;
  result.setTopLeft(coordsToPixels(it->key-mWidth*0.5, it->upperQuartile));
  result.setBottomRight(coordsToPixels(it->key+mWidth*0.5, it->lowerQuartile));
  return result;
}

/*!  \internal

  Returns the whisker backbones (keys in x, values in y of the returned lines) that cover the value
  range from the minimum to the lower quartile, and from the upper quartile to the maximum of the
  data given by \a it.

  \see drawStatisticalBox, getQuartileBox, getWhiskerBarLines
*/
QVector<QLineF> QCPStatisticalBox::getWhiskerBackboneLines(QCPStatisticalBoxDataContainer::const_iterator it) const
{
  QVector<QLineF> result(2);
  result[0].setPoints(coordsToPixels(it->key, it->lowerQuartile), coordsToPixels(it->key, it->minimum)); // min backbone
  result[1].setPoints(coordsToPixels(it->key, it->upperQuartile), coordsToPixels(it->key, it->maximum)); // max backbone
  return result;
}

/*!  \internal

  Returns the whisker bars (keys in x, values in y of the returned lines) that are placed at the
  end of the whisker backbones, at the minimum and maximum of the data given by \a it.

  \see drawStatisticalBox, getQuartileBox, getWhiskerBackboneLines
*/
QVector<QLineF> QCPStatisticalBox::getWhiskerBarLines(QCPStatisticalBoxDataContainer::const_iterator it) const
{
  QVector<QLineF> result(2);
  result[0].setPoints(coordsToPixels(it->key-mWhiskerWidth*0.5, it->minimum), coordsToPixels(it->key+mWhiskerWidth*0.5, it->minimum)); // min bar
  result[1].setPoints(coordsToPixels(it->key-mWhiskerWidth*0.5, it->maximum), coordsToPixels(it->key+mWhiskerWidth*0.5, it->maximum)); // max bar
  return result;
}
/* end of 'src/plottables/plottable-statisticalbox.cpp' */


/* including file 'src/plottables/plottable-colormap.cpp', size 47881        */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPColorMapData
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPColorMapData
  \brief Holds the two-dimensional data of a QCPColorMap plottable.

  This class is a data storage for \ref QCPColorMap. It holds a two-dimensional array, which \ref
  QCPColorMap then displays as a 2D image in the plot, where the array values are represented by a
  color, depending on the value.

  The size of the array can be controlled via \ref setSize (or \ref setKeySize, \ref setValueSize).
  Which plot coordinates these cells correspond to can be configured with \ref setRange (or \ref
  setKeyRange, \ref setValueRange).

  The data cells can be accessed in two ways: They can be directly addressed by an integer index
  with \ref setCell. This is the fastest method. Alternatively, they can be addressed by their plot
  coordinate with \ref setData. plot coordinate to cell index transformations and vice versa are
  provided by the functions \ref coordToCell and \ref cellToCoord.

  A \ref QCPColorMapData also holds an on-demand two-dimensional array of alpha values which (if
  allocated) has the same size as the data map. It can be accessed via \ref setAlpha, \ref
  fillAlpha and \ref clearAlpha. The memory for the alpha map is only allocated if needed, i.e. on
  the first call of \ref setAlpha. \ref clearAlpha restores full opacity and frees the alpha map.

  This class also buffers the minimum and maximum values that are in the data set, to provide
  QCPColorMap::rescaleDataRange with the necessary information quickly. Setting a cell to a value
  that is greater than the current maximum increases this maximum to the new value. However,
  setting the cell that currently holds the maximum value to a smaller value doesn't decrease the
  maximum again, because finding the true new maximum would require going through the entire data
  array, which might be time consuming. The same holds for the data minimum. This functionality is
  given by \ref recalculateDataBounds, such that you can decide when it is sensible to find the
  true current minimum and maximum. The method QCPColorMap::rescaleDataRange offers a convenience
  parameter \a recalculateDataBounds which may be set to true to automatically call \ref
  recalculateDataBounds internally.
*/

/* start of documentation of inline functions */

/*! \fn bool QCPColorMapData::isEmpty() const

  Returns whether this instance carries no data. This is equivalent to having a size where at least
  one of the dimensions is 0 (see \ref setSize).
*/

/* end of documentation of inline functions */

/*!
  Constructs a new QCPColorMapData instance. The instance has \a keySize cells in the key direction
  and \a valueSize cells in the value direction. These cells will be displayed by the \ref QCPColorMap
  at the coordinates \a keyRange and \a valueRange.

  \see setSize, setKeySize, setValueSize, setRange, setKeyRange, setValueRange
*/
QCPColorMapData::QCPColorMapData(int keySize, int valueSize, const QCPRange &keyRange, const QCPRange &valueRange) :
  mKeySize(0),
  mValueSize(0),
  mKeyRange(keyRange),
  mValueRange(valueRange),
  mIsEmpty(true),
  mData(0),
  mAlpha(0),
  mDataModified(true)
{
  setSize(keySize, valueSize);
  fill(0);
}

QCPColorMapData::~QCPColorMapData()
{
  if (mData)
    delete[] mData;
  if (mAlpha)
    delete[] mAlpha;
}

/*!
  Constructs a new QCPColorMapData instance copying the data and range of \a other.
*/
QCPColorMapData::QCPColorMapData(const QCPColorMapData &other) :
  mKeySize(0),
  mValueSize(0),
  mIsEmpty(true),
  mData(0),
  mAlpha(0),
  mDataModified(true)
{
  *this = other;
}

/*!
  Overwrites this color map data instance with the data stored in \a other. The alpha map state is
  transferred, too.
*/
QCPColorMapData &QCPColorMapData::operator=(const QCPColorMapData &other)
{
  if (&other != this)
  {
    const int keySize = other.keySize();
    const int valueSize = other.valueSize();
    if (!other.mAlpha && mAlpha)
      clearAlpha();
    setSize(keySize, valueSize);
    if (other.mAlpha && !mAlpha)
      createAlpha(false);
    setRange(other.keyRange(), other.valueRange());
    if (!isEmpty())
    {
      memcpy(mData, other.mData, sizeof(mData[0])*keySize*valueSize);
      if (mAlpha)
        memcpy(mAlpha, other.mAlpha, sizeof(mAlpha[0])*keySize*valueSize);
    }
    mDataBounds = other.mDataBounds;
    mDataModified = true;
  }
  return *this;
}

/* undocumented getter */
double QCPColorMapData::data(double key, double value)
{
  int keyCell = (key-mKeyRange.lower)/(mKeyRange.upper-mKeyRange.lower)*(mKeySize-1)+0.5;
  int valueCell = (value-mValueRange.lower)/(mValueRange.upper-mValueRange.lower)*(mValueSize-1)+0.5;
  if (keyCell >= 0 && keyCell < mKeySize && valueCell >= 0 && valueCell < mValueSize)
    return mData[valueCell*mKeySize + keyCell];
  else
    return 0;
}

/* undocumented getter */
double QCPColorMapData::cell(int keyIndex, int valueIndex)
{
  if (keyIndex >= 0 && keyIndex < mKeySize && valueIndex >= 0 && valueIndex < mValueSize)
    return mData[valueIndex*mKeySize + keyIndex];
  else
    return 0;
}

/*!
  Returns the alpha map value of the cell with the indices \a keyIndex and \a valueIndex.

  If this color map data doesn't have an alpha map (because \ref setAlpha was never called after
  creation or after a call to \ref clearAlpha), returns 255, which corresponds to full opacity.

  \see setAlpha
*/
unsigned char QCPColorMapData::alpha(int keyIndex, int valueIndex)
{
  if (mAlpha && keyIndex >= 0 && keyIndex < mKeySize && valueIndex >= 0 && valueIndex < mValueSize)
    return mAlpha[valueIndex*mKeySize + keyIndex];
  else
    return 255;
}

/*!
  Resizes the data array to have \a keySize cells in the key dimension and \a valueSize cells in
  the value dimension.

  The current data is discarded and the map cells are set to 0, unless the map had already the
  requested size.

  Setting at least one of \a keySize or \a valueSize to zero frees the internal data array and \ref
  isEmpty returns true.

  \see setRange, setKeySize, setValueSize
*/
void QCPColorMapData::setSize(int keySize, int valueSize)
{
  if (keySize != mKeySize || valueSize != mValueSize)
  {
    mKeySize = keySize;
    mValueSize = valueSize;
    if (mData)
      delete[] mData;
    mIsEmpty = mKeySize == 0 || mValueSize == 0;
    if (!mIsEmpty)
    {
#ifdef __EXCEPTIONS
      try { // 2D arrays get memory intensive fast. So if the allocation fails, at least output debug message
#endif
      mData = new double[mKeySize*mValueSize];
#ifdef __EXCEPTIONS
      } catch (...) { mData = 0; }
#endif
      if (mData)
        fill(0);
      else
        qDebug() << Q_FUNC_INFO << "out of memory for data dimensions "<< mKeySize << "*" << mValueSize;
    } else
      mData = 0;

    if (mAlpha) // if we had an alpha map, recreate it with new size
      createAlpha();

    mDataModified = true;
  }
}

/*!
  Resizes the data array to have \a keySize cells in the key dimension.

  The current data is discarded and the map cells are set to 0, unless the map had already the
  requested size.

  Setting \a keySize to zero frees the internal data array and \ref isEmpty returns true.

  \see setKeyRange, setSize, setValueSize
*/
void QCPColorMapData::setKeySize(int keySize)
{
  setSize(keySize, mValueSize);
}

/*!
  Resizes the data array to have \a valueSize cells in the value dimension.

  The current data is discarded and the map cells are set to 0, unless the map had already the
  requested size.

  Setting \a valueSize to zero frees the internal data array and \ref isEmpty returns true.

  \see setValueRange, setSize, setKeySize
*/
void QCPColorMapData::setValueSize(int valueSize)
{
  setSize(mKeySize, valueSize);
}

/*!
  Sets the coordinate ranges the data shall be distributed over. This defines the rectangular area
  covered by the color map in plot coordinates.

  The outer cells will be centered on the range boundaries given to this function. For example, if
  the key size (\ref setKeySize) is 3 and \a keyRange is set to <tt>QCPRange(2, 3)</tt> there will
  be cells centered on the key coordinates 2, 2.5 and 3.

  \see setSize
*/
void QCPColorMapData::setRange(const QCPRange &keyRange, const QCPRange &valueRange)
{
  setKeyRange(keyRange);
  setValueRange(valueRange);
}

/*!
  Sets the coordinate range the data shall be distributed over in the key dimension. Together with
  the value range, This defines the rectangular area covered by the color map in plot coordinates.

  The outer cells will be centered on the range boundaries given to this function. For example, if
  the key size (\ref setKeySize) is 3 and \a keyRange is set to <tt>QCPRange(2, 3)</tt> there will
  be cells centered on the key coordinates 2, 2.5 and 3.

  \see setRange, setValueRange, setSize
*/
void QCPColorMapData::setKeyRange(const QCPRange &keyRange)
{
  mKeyRange = keyRange;
}

/*!
  Sets the coordinate range the data shall be distributed over in the value dimension. Together with
  the key range, This defines the rectangular area covered by the color map in plot coordinates.

  The outer cells will be centered on the range boundaries given to this function. For example, if
  the value size (\ref setValueSize) is 3 and \a valueRange is set to <tt>QCPRange(2, 3)</tt> there
  will be cells centered on the value coordinates 2, 2.5 and 3.

  \see setRange, setKeyRange, setSize
*/
void QCPColorMapData::setValueRange(const QCPRange &valueRange)
{
  mValueRange = valueRange;
}

/*!
  Sets the data of the cell, which lies at the plot coordinates given by \a key and \a value, to \a
  z.

  \note The QCPColorMap always displays the data at equal key/value intervals, even if the key or
  value axis is set to a logarithmic scaling. If you want to use QCPColorMap with logarithmic axes,
  you shouldn't use the \ref QCPColorMapData::setData method as it uses a linear transformation to
  determine the cell index. Rather directly access the cell index with \ref
  QCPColorMapData::setCell.

  \see setCell, setRange
*/
void QCPColorMapData::setData(double key, double value, double z)
{
  int keyCell = (key-mKeyRange.lower)/(mKeyRange.upper-mKeyRange.lower)*(mKeySize-1)+0.5;
  int valueCell = (value-mValueRange.lower)/(mValueRange.upper-mValueRange.lower)*(mValueSize-1)+0.5;
  if (keyCell >= 0 && keyCell < mKeySize && valueCell >= 0 && valueCell < mValueSize)
  {
    mData[valueCell*mKeySize + keyCell] = z;
    if (z < mDataBounds.lower)
      mDataBounds.lower = z;
    if (z > mDataBounds.upper)
      mDataBounds.upper = z;
     mDataModified = true;
  }
}

/*!
  Sets the data of the cell with indices \a keyIndex and \a valueIndex to \a z. The indices
  enumerate the cells starting from zero, up to the map's size-1 in the respective dimension (see
  \ref setSize).

  In the standard plot configuration (horizontal key axis and vertical value axis, both not
  range-reversed), the cell with indices (0, 0) is in the bottom left corner and the cell with
  indices (keySize-1, valueSize-1) is in the top right corner of the color map.

  \see setData, setSize
*/
void QCPColorMapData::setCell(int keyIndex, int valueIndex, double z)
{
  if (keyIndex >= 0 && keyIndex < mKeySize && valueIndex >= 0 && valueIndex < mValueSize)
  {
    mData[valueIndex*mKeySize + keyIndex] = z;
    if (z < mDataBounds.lower)
      mDataBounds.lower = z;
    if (z > mDataBounds.upper)
      mDataBounds.upper = z;
     mDataModified = true;
  } else
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << keyIndex << valueIndex;
}

/*!
  Sets the alpha of the color map cell given by \a keyIndex and \a valueIndex to \a alpha. A value
  of 0 for \a alpha results in a fully transparent cell, and a value of 255 results in a fully
  opaque cell.

  If an alpha map doesn't exist yet for this color map data, it will be created here. If you wish
  to restore full opacity and free any allocated memory of the alpha map, call \ref clearAlpha.

  Note that the cell-wise alpha which can be configured here is independent of any alpha configured
  in the color map's gradient (\ref QCPColorGradient). If a cell is affected both by the cell-wise
  and gradient alpha, the alpha values will be blended accordingly during rendering of the color
  map.

  \see fillAlpha, clearAlpha
*/
void QCPColorMapData::setAlpha(int keyIndex, int valueIndex, unsigned char alpha)
{
  if (keyIndex >= 0 && keyIndex < mKeySize && valueIndex >= 0 && valueIndex < mValueSize)
  {
    if (mAlpha || createAlpha())
    {
      mAlpha[valueIndex*mKeySize + keyIndex] = alpha;
      mDataModified = true;
    }
  } else
    qDebug() << Q_FUNC_INFO << "index out of bounds:" << keyIndex << valueIndex;
}

/*!
  Goes through the data and updates the buffered minimum and maximum data values.

  Calling this method is only advised if you are about to call \ref QCPColorMap::rescaleDataRange
  and can not guarantee that the cells holding the maximum or minimum data haven't been overwritten
  with a smaller or larger value respectively, since the buffered maximum/minimum values have been
  updated the last time. Why this is the case is explained in the class description (\ref
  QCPColorMapData).

  Note that the method \ref QCPColorMap::rescaleDataRange provides a parameter \a
  recalculateDataBounds for convenience. Setting this to true will call this method for you, before
  doing the rescale.
*/
void QCPColorMapData::recalculateDataBounds()
{
  if (mKeySize > 0 && mValueSize > 0)
  {
    double minHeight = mData[0];
    double maxHeight = mData[0];
    const int dataCount = mValueSize*mKeySize;
    for (int i=0; i<dataCount; ++i)
    {
      if (mData[i] > maxHeight)
        maxHeight = mData[i];
      if (mData[i] < minHeight)
        minHeight = mData[i];
    }
    mDataBounds.lower = minHeight;
    mDataBounds.upper = maxHeight;
  }
}

/*!
  Frees the internal data memory.

  This is equivalent to calling \ref setSize "setSize(0, 0)".
*/
void QCPColorMapData::clear()
{
  setSize(0, 0);
}

/*!
  Frees the internal alpha map. The color map will have full opacity again.
*/
void QCPColorMapData::clearAlpha()
{
  if (mAlpha)
  {
    delete[] mAlpha;
    mAlpha = 0;
    mDataModified = true;
  }
}

/*!
  Sets all cells to the value \a z.
*/
void QCPColorMapData::fill(double z)
{
  const int dataCount = mValueSize*mKeySize;
  for (int i=0; i<dataCount; ++i)
    mData[i] = z;
  mDataBounds = QCPRange(z, z);
  mDataModified = true;
}

/*!
  Sets the opacity of all color map cells to \a alpha. A value of 0 for \a alpha results in a fully
  transparent color map, and a value of 255 results in a fully opaque color map.

  If you wish to restore opacity to 100% and free any used memory for the alpha map, rather use
  \ref clearAlpha.

  \see setAlpha
*/
void QCPColorMapData::fillAlpha(unsigned char alpha)
{
  if (mAlpha || createAlpha(false))
  {
    const int dataCount = mValueSize*mKeySize;
    for (int i=0; i<dataCount; ++i)
      mAlpha[i] = alpha;
    mDataModified = true;
  }
}

/*!
  Transforms plot coordinates given by \a key and \a value to cell indices of this QCPColorMapData
  instance. The resulting cell indices are returned via the output parameters \a keyIndex and \a
  valueIndex.

  The retrieved key/value cell indices can then be used for example with \ref setCell.

  If you are only interested in a key or value index, you may pass 0 as \a valueIndex or \a
  keyIndex.

  \note The QCPColorMap always displays the data at equal key/value intervals, even if the key or
  value axis is set to a logarithmic scaling. If you want to use QCPColorMap with logarithmic axes,
  you shouldn't use the \ref QCPColorMapData::coordToCell method as it uses a linear transformation to
  determine the cell index.

  \see cellToCoord, QCPAxis::coordToPixel
*/
void QCPColorMapData::coordToCell(double key, double value, int *keyIndex, int *valueIndex) const
{
  if (keyIndex)
    *keyIndex = (key-mKeyRange.lower)/(mKeyRange.upper-mKeyRange.lower)*(mKeySize-1)+0.5;
  if (valueIndex)
    *valueIndex = (value-mValueRange.lower)/(mValueRange.upper-mValueRange.lower)*(mValueSize-1)+0.5;
}

/*!
  Transforms cell indices given by \a keyIndex and \a valueIndex to cell indices of this QCPColorMapData
  instance. The resulting coordinates are returned via the output parameters \a key and \a
  value.

  If you are only interested in a key or value coordinate, you may pass 0 as \a key or \a
  value.

  \note The QCPColorMap always displays the data at equal key/value intervals, even if the key or
  value axis is set to a logarithmic scaling. If you want to use QCPColorMap with logarithmic axes,
  you shouldn't use the \ref QCPColorMapData::cellToCoord method as it uses a linear transformation to
  determine the cell index.

  \see coordToCell, QCPAxis::pixelToCoord
*/
void QCPColorMapData::cellToCoord(int keyIndex, int valueIndex, double *key, double *value) const
{
  if (key)
    *key = keyIndex/(double)(mKeySize-1)*(mKeyRange.upper-mKeyRange.lower)+mKeyRange.lower;
  if (value)
    *value = valueIndex/(double)(mValueSize-1)*(mValueRange.upper-mValueRange.lower)+mValueRange.lower;
}

/*! \internal

  Allocates the internal alpha map with the current data map key/value size and, if \a
  initializeOpaque is true, initializes all values to 255. If \a initializeOpaque is false, the
  values are not initialized at all. In this case, the alpha map should be initialized manually,
  e.g. with \ref fillAlpha.

  If an alpha map exists already, it is deleted first. If this color map is empty (has either key
  or value size zero, see \ref isEmpty), the alpha map is cleared.

  The return value indicates the existence of the alpha map after the call. So this method returns
  true if the data map isn't empty and an alpha map was successfully allocated.
*/
bool QCPColorMapData::createAlpha(bool initializeOpaque)
{
  clearAlpha();
  if (isEmpty())
    return false;

#ifdef __EXCEPTIONS
  try { // 2D arrays get memory intensive fast. So if the allocation fails, at least output debug message
#endif
    mAlpha = new unsigned char[mKeySize*mValueSize];
#ifdef __EXCEPTIONS
  } catch (...) { mAlpha = 0; }
#endif
  if (mAlpha)
  {
    if (initializeOpaque)
      fillAlpha(255);
    return true;
  } else
  {
    qDebug() << Q_FUNC_INFO << "out of memory for data dimensions "<< mKeySize << "*" << mValueSize;
    return false;
  }
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPColorMap
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPColorMap
  \brief A plottable representing a two-dimensional color map in a plot.

  \image html QCPColorMap.png

  The data is stored in the class \ref QCPColorMapData, which can be accessed via the data()
  method.

  A color map has three dimensions to represent a data point: The \a key dimension, the \a value
  dimension and the \a data dimension. As with other plottables such as graphs, \a key and \a value
  correspond to two orthogonal axes on the QCustomPlot surface that you specify in the QCPColorMap
  constructor. The \a data dimension however is encoded as the color of the point at (\a key, \a
  value).

  Set the number of points (or \a cells) in the key/value dimension via \ref
  QCPColorMapData::setSize. The plot coordinate range over which these points will be displayed is
  specified via \ref QCPColorMapData::setRange. The first cell will be centered on the lower range
  boundary and the last cell will be centered on the upper range boundary. The data can be set by
  either accessing the cells directly with QCPColorMapData::setCell or by addressing the cells via
  their plot coordinates with \ref QCPColorMapData::setData. If possible, you should prefer
  setCell, since it doesn't need to do any coordinate transformation and thus performs a bit
  better.

  The cell with index (0, 0) is at the bottom left, if the color map uses normal (i.e. not reversed)
  key and value axes.

  To show the user which colors correspond to which \a data values, a \ref QCPColorScale is
  typically placed to the right of the axis rect. See the documentation there for details on how to
  add and use a color scale.

  \section qcpcolormap-appearance Changing the appearance

  The central part of the appearance is the color gradient, which can be specified via \ref
  setGradient. See the documentation of \ref QCPColorGradient for details on configuring a color
  gradient.

  The \a data range that is mapped to the colors of the gradient can be specified with \ref
  setDataRange. To make the data range encompass the whole data set minimum to maximum, call \ref
  rescaleDataRange.

  \section qcpcolormap-transparency Transparency

  Transparency in color maps can be achieved by two mechanisms. On one hand, you can specify alpha
  values for color stops of the \ref QCPColorGradient, via the regular QColor interface. This will
  cause the color map data which gets mapped to colors around those color stops to appear with the
  accordingly interpolated transparency.

  On the other hand you can also directly apply an alpha value to each cell independent of its
  data, by using the alpha map feature of \ref QCPColorMapData. The relevant methods are \ref
  QCPColorMapData::setAlpha, QCPColorMapData::fillAlpha and \ref QCPColorMapData::clearAlpha().

  The two transparencies will be joined together in the plot and otherwise not interfere with each
  other. They are mixed in a multiplicative matter, so an alpha of e.g. 50% (128/255) in both modes
  simultaneously, will result in a total transparency of 25% (64/255).

  \section qcpcolormap-usage Usage

  Like all data representing objects in QCustomPlot, the QCPColorMap is a plottable
  (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
  (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)

  Usually, you first create an instance:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolormap-creation-1
  which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot instance takes
  ownership of the plottable, so do not delete it manually but use QCustomPlot::removePlottable() instead.
  The newly created plottable can be modified, e.g.:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolormap-creation-2

  \note The QCPColorMap always displays the data at equal key/value intervals, even if the key or
  value axis is set to a logarithmic scaling. If you want to use QCPColorMap with logarithmic axes,
  you shouldn't use the \ref QCPColorMapData::setData method as it uses a linear transformation to
  determine the cell index. Rather directly access the cell index with \ref
  QCPColorMapData::setCell.
*/

/* start documentation of inline functions */

/*! \fn QCPColorMapData *QCPColorMap::data() const

  Returns a pointer to the internal data storage of type \ref QCPColorMapData. Access this to
  modify data points (cells) and the color map key/value range.

  \see setData
*/

/* end documentation of inline functions */

/* start documentation of signals */

/*! \fn void QCPColorMap::dataRangeChanged(const QCPRange &newRange);

  This signal is emitted when the data range changes.

  \see setDataRange
*/

/*! \fn void QCPColorMap::dataScaleTypeChanged(QCPAxis::ScaleType scaleType);

  This signal is emitted when the data scale type changes.

  \see setDataScaleType
*/

/*! \fn void QCPColorMap::gradientChanged(const QCPColorGradient &newGradient);

  This signal is emitted when the gradient changes.

  \see setGradient
*/

/* end documentation of signals */

/*!
  Constructs a color map with the specified \a keyAxis and \a valueAxis.

  The created QCPColorMap is automatically registered with the QCustomPlot instance inferred from
  \a keyAxis. This QCustomPlot instance takes ownership of the QCPColorMap, so do not delete it
  manually but use QCustomPlot::removePlottable() instead.
*/
QCPColorMap::QCPColorMap(QCPAxis *keyAxis, QCPAxis *valueAxis) :
  QCPAbstractPlottable(keyAxis, valueAxis),
  mDataScaleType(QCPAxis::stLinear),
  mMapData(new QCPColorMapData(10, 10, QCPRange(0, 5), QCPRange(0, 5))),
  mGradient(QCPColorGradient::gpCold),
  mInterpolate(true),
  mTightBoundary(false),
  mMapImageInvalidated(true)
{
}

QCPColorMap::~QCPColorMap()
{
  delete mMapData;
}

/*!
  Replaces the current \ref data with the provided \a data.

  If \a copy is set to true, the \a data object will only be copied. if false, the color map
  takes ownership of the passed data and replaces the internal data pointer with it. This is
  significantly faster than copying for large datasets.
*/
void QCPColorMap::setData(QCPColorMapData *data, bool copy)
{
  if (mMapData == data)
  {
    qDebug() << Q_FUNC_INFO << "The data pointer is already in (and owned by) this plottable" << reinterpret_cast<quintptr>(data);
    return;
  }
  if (copy)
  {
    *mMapData = *data;
  } else
  {
    delete mMapData;
    mMapData = data;
  }
  mMapImageInvalidated = true;
}

/*!
  Sets the data range of this color map to \a dataRange. The data range defines which data values
  are mapped to the color gradient.

  To make the data range span the full range of the data set, use \ref rescaleDataRange.

  \see QCPColorScale::setDataRange
*/
void QCPColorMap::setDataRange(const QCPRange &dataRange)
{
  if (!QCPRange::validRange(dataRange)) return;
  if (mDataRange.lower != dataRange.lower || mDataRange.upper != dataRange.upper)
  {
    if (mDataScaleType == QCPAxis::stLogarithmic)
      mDataRange = dataRange.sanitizedForLogScale();
    else
      mDataRange = dataRange.sanitizedForLinScale();
    mMapImageInvalidated = true;
    emit dataRangeChanged(mDataRange);
  }
}

/*!
  Sets whether the data is correlated with the color gradient linearly or logarithmically.

  \see QCPColorScale::setDataScaleType
*/
void QCPColorMap::setDataScaleType(QCPAxis::ScaleType scaleType)
{
  if (mDataScaleType != scaleType)
  {
    mDataScaleType = scaleType;
    mMapImageInvalidated = true;
    emit dataScaleTypeChanged(mDataScaleType);
    if (mDataScaleType == QCPAxis::stLogarithmic)
      setDataRange(mDataRange.sanitizedForLogScale());
  }
}

/*!
  Sets the color gradient that is used to represent the data. For more details on how to create an
  own gradient or use one of the preset gradients, see \ref QCPColorGradient.

  The colors defined by the gradient will be used to represent data values in the currently set
  data range, see \ref setDataRange. Data points that are outside this data range will either be
  colored uniformly with the respective gradient boundary color, or the gradient will repeat,
  depending on \ref QCPColorGradient::setPeriodic.

  \see QCPColorScale::setGradient
*/
void QCPColorMap::setGradient(const QCPColorGradient &gradient)
{
  if (mGradient != gradient)
  {
    mGradient = gradient;
    mMapImageInvalidated = true;
    emit gradientChanged(mGradient);
  }
}

/*!
  Sets whether the color map image shall use bicubic interpolation when displaying the color map
  shrinked or expanded, and not at a 1:1 pixel-to-data scale.

  \image html QCPColorMap-interpolate.png "A 10*10 color map, with interpolation and without interpolation enabled"
*/
void QCPColorMap::setInterpolate(bool enabled)
{
  mInterpolate = enabled;
  mMapImageInvalidated = true; // because oversampling factors might need to change
}

/*!
  Sets whether the outer most data rows and columns are clipped to the specified key and value
  range (see \ref QCPColorMapData::setKeyRange, \ref QCPColorMapData::setValueRange).

  if \a enabled is set to false, the data points at the border of the color map are drawn with the
  same width and height as all other data points. Since the data points are represented by
  rectangles of one color centered on the data coordinate, this means that the shown color map
  extends by half a data point over the specified key/value range in each direction.

  \image html QCPColorMap-tightboundary.png "A color map, with tight boundary enabled and disabled"
*/
void QCPColorMap::setTightBoundary(bool enabled)
{
  mTightBoundary = enabled;
}

/*!
  Associates the color scale \a colorScale with this color map.

  This means that both the color scale and the color map synchronize their gradient, data range and
  data scale type (\ref setGradient, \ref setDataRange, \ref setDataScaleType). Multiple color maps
  can be associated with one single color scale. This causes the color maps to also synchronize
  those properties, via the mutual color scale.

  This function causes the color map to adopt the current color gradient, data range and data scale
  type of \a colorScale. After this call, you may change these properties at either the color map
  or the color scale, and the setting will be applied to both.

  Pass 0 as \a colorScale to disconnect the color scale from this color map again.
*/
void QCPColorMap::setColorScale(QCPColorScale *colorScale)
{
  if (mColorScale) // unconnect signals from old color scale
  {
    disconnect(this, SIGNAL(dataRangeChanged(QCPRange)), mColorScale.data(), SLOT(setDataRange(QCPRange)));
    disconnect(this, SIGNAL(dataScaleTypeChanged(QCPAxis::ScaleType)), mColorScale.data(), SLOT(setDataScaleType(QCPAxis::ScaleType)));
    disconnect(this, SIGNAL(gradientChanged(QCPColorGradient)), mColorScale.data(), SLOT(setGradient(QCPColorGradient)));
    disconnect(mColorScale.data(), SIGNAL(dataRangeChanged(QCPRange)), this, SLOT(setDataRange(QCPRange)));
    disconnect(mColorScale.data(), SIGNAL(gradientChanged(QCPColorGradient)), this, SLOT(setGradient(QCPColorGradient)));
    disconnect(mColorScale.data(), SIGNAL(dataScaleTypeChanged(QCPAxis::ScaleType)), this, SLOT(setDataScaleType(QCPAxis::ScaleType)));
  }
  mColorScale = colorScale;
  if (mColorScale) // connect signals to new color scale
  {
    setGradient(mColorScale.data()->gradient());
    setDataRange(mColorScale.data()->dataRange());
    setDataScaleType(mColorScale.data()->dataScaleType());
    connect(this, SIGNAL(dataRangeChanged(QCPRange)), mColorScale.data(), SLOT(setDataRange(QCPRange)));
    connect(this, SIGNAL(dataScaleTypeChanged(QCPAxis::ScaleType)), mColorScale.data(), SLOT(setDataScaleType(QCPAxis::ScaleType)));
    connect(this, SIGNAL(gradientChanged(QCPColorGradient)), mColorScale.data(), SLOT(setGradient(QCPColorGradient)));
    connect(mColorScale.data(), SIGNAL(dataRangeChanged(QCPRange)), this, SLOT(setDataRange(QCPRange)));
    connect(mColorScale.data(), SIGNAL(gradientChanged(QCPColorGradient)), this, SLOT(setGradient(QCPColorGradient)));
    connect(mColorScale.data(), SIGNAL(dataScaleTypeChanged(QCPAxis::ScaleType)), this, SLOT(setDataScaleType(QCPAxis::ScaleType)));
  }
}

/*!
  Sets the data range (\ref setDataRange) to span the minimum and maximum values that occur in the
  current data set. This corresponds to the \ref rescaleKeyAxis or \ref rescaleValueAxis methods,
  only for the third data dimension of the color map.

  The minimum and maximum values of the data set are buffered in the internal QCPColorMapData
  instance (\ref data). As data is updated via its \ref QCPColorMapData::setCell or \ref
  QCPColorMapData::setData, the buffered minimum and maximum values are updated, too. For
  performance reasons, however, they are only updated in an expanding fashion. So the buffered
  maximum can only increase and the buffered minimum can only decrease. In consequence, changes to
  the data that actually lower the maximum of the data set (by overwriting the cell holding the
  current maximum with a smaller value), aren't recognized and the buffered maximum overestimates
  the true maximum of the data set. The same happens for the buffered minimum. To recalculate the
  true minimum and maximum by explicitly looking at each cell, the method
  QCPColorMapData::recalculateDataBounds can be used. For convenience, setting the parameter \a
  recalculateDataBounds calls this method before setting the data range to the buffered minimum and
  maximum.

  \see setDataRange
*/
void QCPColorMap::rescaleDataRange(bool recalculateDataBounds)
{
  if (recalculateDataBounds)
    mMapData->recalculateDataBounds();
  setDataRange(mMapData->dataBounds());
}

/*!
  Takes the current appearance of the color map and updates the legend icon, which is used to
  represent this color map in the legend (see \ref QCPLegend).

  The \a transformMode specifies whether the rescaling is done by a faster, low quality image
  scaling algorithm (Qt::FastTransformation) or by a slower, higher quality algorithm
  (Qt::SmoothTransformation).

  The current color map appearance is scaled down to \a thumbSize. Ideally, this should be equal to
  the size of the legend icon (see \ref QCPLegend::setIconSize). If it isn't exactly the configured
  legend icon size, the thumb will be rescaled during drawing of the legend item.

  \see setDataRange
*/
void QCPColorMap::updateLegendIcon(Qt::TransformationMode transformMode, const QSize &thumbSize)
{
  if (mMapImage.isNull() && !data()->isEmpty())
    updateMapImage(); // try to update map image if it's null (happens if no draw has happened yet)

  if (!mMapImage.isNull()) // might still be null, e.g. if data is empty, so check here again
  {
    bool mirrorX = (keyAxis()->orientation() == Qt::Horizontal ? keyAxis() : valueAxis())->rangeReversed();
    bool mirrorY = (valueAxis()->orientation() == Qt::Vertical ? valueAxis() : keyAxis())->rangeReversed();
    mLegendIcon = QPixmap::fromImage(mMapImage.mirrored(mirrorX, mirrorY)).scaled(thumbSize, Qt::KeepAspectRatio, transformMode);
  }
}

/* inherits documentation from base class */
double QCPColorMap::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if ((onlySelectable && mSelectable == QCP::stNone) || mMapData->isEmpty())
    return -1;
  if (!mKeyAxis || !mValueAxis)
    return -1;

  if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()))
  {
    double posKey, posValue;
    pixelsToCoords(pos, posKey, posValue);
    if (mMapData->keyRange().contains(posKey) && mMapData->valueRange().contains(posValue))
    {
      if (details)
        details->setValue(QCPDataSelection(QCPDataRange(0, 1))); // temporary solution, to facilitate whole-plottable selection. Replace in future version with segmented 2D selection.
      return mParentPlot->selectionTolerance()*0.99;
    }
  }
  return -1;
}

/* inherits documentation from base class */
QCPRange QCPColorMap::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const
{
  foundRange = true;
  QCPRange result = mMapData->keyRange();
  result.normalize();
  if (inSignDomain == QCP::sdPositive)
  {
    if (result.lower <= 0 && result.upper > 0)
      result.lower = result.upper*1e-3;
    else if (result.lower <= 0 && result.upper <= 0)
      foundRange = false;
  } else if (inSignDomain == QCP::sdNegative)
  {
    if (result.upper >= 0 && result.lower < 0)
      result.upper = result.lower*1e-3;
    else if (result.upper >= 0 && result.lower >= 0)
      foundRange = false;
  }
  return result;
}

/* inherits documentation from base class */
QCPRange QCPColorMap::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const
{
  if (inKeyRange != QCPRange())
  {
    if (mMapData->keyRange().upper < inKeyRange.lower || mMapData->keyRange().lower > inKeyRange.upper)
    {
      foundRange = false;
      return QCPRange();
    }
  }

  foundRange = true;
  QCPRange result = mMapData->valueRange();
  result.normalize();
  if (inSignDomain == QCP::sdPositive)
  {
    if (result.lower <= 0 && result.upper > 0)
      result.lower = result.upper*1e-3;
    else if (result.lower <= 0 && result.upper <= 0)
      foundRange = false;
  } else if (inSignDomain == QCP::sdNegative)
  {
    if (result.upper >= 0 && result.lower < 0)
      result.upper = result.lower*1e-3;
    else if (result.upper >= 0 && result.lower >= 0)
      foundRange = false;
  }
  return result;
}

/*! \internal

  Updates the internal map image buffer by going through the internal \ref QCPColorMapData and
  turning the data values into color pixels with \ref QCPColorGradient::colorize.

  This method is called by \ref QCPColorMap::draw if either the data has been modified or the map image
  has been invalidated for a different reason (e.g. a change of the data range with \ref
  setDataRange).

  If the map cell count is low, the image created will be oversampled in order to avoid a
  QPainter::drawImage bug which makes inner pixel boundaries jitter when stretch-drawing images
  without smooth transform enabled. Accordingly, oversampling isn't performed if \ref
  setInterpolate is true.
*/
void QCPColorMap::updateMapImage()
{
  QCPAxis *keyAxis = mKeyAxis.data();
  if (!keyAxis) return;
  if (mMapData->isEmpty()) return;

  const QImage::Format format = QImage::Format_ARGB32_Premultiplied;
  const int keySize = mMapData->keySize();
  const int valueSize = mMapData->valueSize();
  int keyOversamplingFactor = mInterpolate ? 1 : (int)(1.0+100.0/(double)keySize); // make mMapImage have at least size 100, factor becomes 1 if size > 200 or interpolation is on
  int valueOversamplingFactor = mInterpolate ? 1 : (int)(1.0+100.0/(double)valueSize); // make mMapImage have at least size 100, factor becomes 1 if size > 200 or interpolation is on

  // resize mMapImage to correct dimensions including possible oversampling factors, according to key/value axes orientation:
  if (keyAxis->orientation() == Qt::Horizontal && (mMapImage.width() != keySize*keyOversamplingFactor || mMapImage.height() != valueSize*valueOversamplingFactor))
    mMapImage = QImage(QSize(keySize*keyOversamplingFactor, valueSize*valueOversamplingFactor), format);
  else if (keyAxis->orientation() == Qt::Vertical && (mMapImage.width() != valueSize*valueOversamplingFactor || mMapImage.height() != keySize*keyOversamplingFactor))
    mMapImage = QImage(QSize(valueSize*valueOversamplingFactor, keySize*keyOversamplingFactor), format);

  if (mMapImage.isNull())
  {
    qDebug() << Q_FUNC_INFO << "Couldn't create map image (possibly too large for memory)";
    mMapImage = QImage(QSize(10, 10), format);
    mMapImage.fill(Qt::black);
  } else
  {
    QImage *localMapImage = &mMapImage; // this is the image on which the colorization operates. Either the final mMapImage, or if we need oversampling, mUndersampledMapImage
    if (keyOversamplingFactor > 1 || valueOversamplingFactor > 1)
    {
      // resize undersampled map image to actual key/value cell sizes:
      if (keyAxis->orientation() == Qt::Horizontal && (mUndersampledMapImage.width() != keySize || mUndersampledMapImage.height() != valueSize))
        mUndersampledMapImage = QImage(QSize(keySize, valueSize), format);
      else if (keyAxis->orientation() == Qt::Vertical && (mUndersampledMapImage.width() != valueSize || mUndersampledMapImage.height() != keySize))
        mUndersampledMapImage = QImage(QSize(valueSize, keySize), format);
      localMapImage = &mUndersampledMapImage; // make the colorization run on the undersampled image
    } else if (!mUndersampledMapImage.isNull())
      mUndersampledMapImage = QImage(); // don't need oversampling mechanism anymore (map size has changed) but mUndersampledMapImage still has nonzero size, free it

    const double *rawData = mMapData->mData;
    const unsigned char *rawAlpha = mMapData->mAlpha;
    if (keyAxis->orientation() == Qt::Horizontal)
    {
      const int lineCount = valueSize;
      const int rowCount = keySize;
      for (int line=0; line<lineCount; ++line)
      {
        QRgb* pixels = reinterpret_cast<QRgb*>(localMapImage->scanLine(lineCount-1-line)); // invert scanline index because QImage counts scanlines from top, but our vertical index counts from bottom (mathematical coordinate system)
        if (rawAlpha)
          mGradient.colorize(rawData+line*rowCount, rawAlpha+line*rowCount, mDataRange, pixels, rowCount, 1, mDataScaleType==QCPAxis::stLogarithmic);
        else
          mGradient.colorize(rawData+line*rowCount, mDataRange, pixels, rowCount, 1, mDataScaleType==QCPAxis::stLogarithmic);
      }
    } else // keyAxis->orientation() == Qt::Vertical
    {
      const int lineCount = keySize;
      const int rowCount = valueSize;
      for (int line=0; line<lineCount; ++line)
      {
        QRgb* pixels = reinterpret_cast<QRgb*>(localMapImage->scanLine(lineCount-1-line)); // invert scanline index because QImage counts scanlines from top, but our vertical index counts from bottom (mathematical coordinate system)
        if (rawAlpha)
          mGradient.colorize(rawData+line, rawAlpha+line, mDataRange, pixels, rowCount, lineCount, mDataScaleType==QCPAxis::stLogarithmic);
        else
          mGradient.colorize(rawData+line, mDataRange, pixels, rowCount, lineCount, mDataScaleType==QCPAxis::stLogarithmic);
      }
    }

    if (keyOversamplingFactor > 1 || valueOversamplingFactor > 1)
    {
      if (keyAxis->orientation() == Qt::Horizontal)
        mMapImage = mUndersampledMapImage.scaled(keySize*keyOversamplingFactor, valueSize*valueOversamplingFactor, Qt::IgnoreAspectRatio, Qt::FastTransformation);
      else
        mMapImage = mUndersampledMapImage.scaled(valueSize*valueOversamplingFactor, keySize*keyOversamplingFactor, Qt::IgnoreAspectRatio, Qt::FastTransformation);
    }
  }
  mMapData->mDataModified = false;
  mMapImageInvalidated = false;
}

/* inherits documentation from base class */
void QCPColorMap::draw(QCPPainter *painter)
{
  if (mMapData->isEmpty()) return;
  if (!mKeyAxis || !mValueAxis) return;
  applyDefaultAntialiasingHint(painter);

  if (mMapData->mDataModified || mMapImageInvalidated)
    updateMapImage();

  // use buffer if painting vectorized (PDF):
  const bool useBuffer = painter->modes().testFlag(QCPPainter::pmVectorized);
  QCPPainter *localPainter = painter; // will be redirected to paint on mapBuffer if painting vectorized
  QRectF mapBufferTarget; // the rect in absolute widget coordinates where the visible map portion/buffer will end up in
  QPixmap mapBuffer;
  if (useBuffer)
  {
    const double mapBufferPixelRatio = 3; // factor by which DPI is increased in embedded bitmaps
    mapBufferTarget = painter->clipRegion().boundingRect();
    mapBuffer = QPixmap((mapBufferTarget.size()*mapBufferPixelRatio).toSize());
    mapBuffer.fill(Qt::transparent);
    localPainter = new QCPPainter(&mapBuffer);
    localPainter->scale(mapBufferPixelRatio, mapBufferPixelRatio);
    localPainter->translate(-mapBufferTarget.topLeft());
  }

  QRectF imageRect = QRectF(coordsToPixels(mMapData->keyRange().lower, mMapData->valueRange().lower),
                            coordsToPixels(mMapData->keyRange().upper, mMapData->valueRange().upper)).normalized();
  // extend imageRect to contain outer halves/quarters of bordering/cornering pixels (cells are centered on map range boundary):
  double halfCellWidth = 0; // in pixels
  double halfCellHeight = 0; // in pixels
  if (keyAxis()->orientation() == Qt::Horizontal)
  {
    if (mMapData->keySize() > 1)
      halfCellWidth = 0.5*imageRect.width()/(double)(mMapData->keySize()-1);
    if (mMapData->valueSize() > 1)
      halfCellHeight = 0.5*imageRect.height()/(double)(mMapData->valueSize()-1);
  } else // keyAxis orientation is Qt::Vertical
  {
    if (mMapData->keySize() > 1)
      halfCellHeight = 0.5*imageRect.height()/(double)(mMapData->keySize()-1);
    if (mMapData->valueSize() > 1)
      halfCellWidth = 0.5*imageRect.width()/(double)(mMapData->valueSize()-1);
  }
  imageRect.adjust(-halfCellWidth, -halfCellHeight, halfCellWidth, halfCellHeight);
  const bool mirrorX = (keyAxis()->orientation() == Qt::Horizontal ? keyAxis() : valueAxis())->rangeReversed();
  const bool mirrorY = (valueAxis()->orientation() == Qt::Vertical ? valueAxis() : keyAxis())->rangeReversed();
  const bool smoothBackup = localPainter->renderHints().testFlag(QPainter::SmoothPixmapTransform);
  localPainter->setRenderHint(QPainter::SmoothPixmapTransform, mInterpolate);
  QRegion clipBackup;
  if (mTightBoundary)
  {
    clipBackup = localPainter->clipRegion();
    QRectF tightClipRect = QRectF(coordsToPixels(mMapData->keyRange().lower, mMapData->valueRange().lower),
                                  coordsToPixels(mMapData->keyRange().upper, mMapData->valueRange().upper)).normalized();
    localPainter->setClipRect(tightClipRect, Qt::IntersectClip);
  }
  localPainter->drawImage(imageRect, mMapImage.mirrored(mirrorX, mirrorY));
  if (mTightBoundary)
    localPainter->setClipRegion(clipBackup);
  localPainter->setRenderHint(QPainter::SmoothPixmapTransform, smoothBackup);

  if (useBuffer) // localPainter painted to mapBuffer, so now draw buffer with original painter
  {
    delete localPainter;
    painter->drawPixmap(mapBufferTarget.toRect(), mapBuffer);
  }
}

/* inherits documentation from base class */
void QCPColorMap::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
{
  applyDefaultAntialiasingHint(painter);
  // draw map thumbnail:
  if (!mLegendIcon.isNull())
  {
    QPixmap scaledIcon = mLegendIcon.scaled(rect.size().toSize(), Qt::KeepAspectRatio, Qt::FastTransformation);
    QRectF iconRect = QRectF(0, 0, scaledIcon.width(), scaledIcon.height());
    iconRect.moveCenter(rect.center());
    painter->drawPixmap(iconRect.topLeft(), scaledIcon);
  }
  /*
  // draw frame:
  painter->setBrush(Qt::NoBrush);
  painter->setPen(Qt::black);
  painter->drawRect(rect.adjusted(1, 1, 0, 0));
  */
}
/* end of 'src/plottables/plottable-colormap.cpp' */


/* including file 'src/plottables/plottable-financial.cpp', size 42827       */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPFinancialData
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPFinancialData
  \brief Holds the data of one single data point for QCPFinancial.

  The stored data is:
  \li \a key: coordinate on the key axis of this data point (this is the \a mainKey and the \a sortKey)
  \li \a open: The opening value at the data point (this is the \a mainValue)
  \li \a high: The high/maximum value at the data point
  \li \a low: The low/minimum value at the data point
  \li \a close: The closing value at the data point

  The container for storing multiple data points is \ref QCPFinancialDataContainer. It is a typedef
  for \ref QCPDataContainer with \ref QCPFinancialData as the DataType template parameter. See the
  documentation there for an explanation regarding the data type's generic methods.

  \see QCPFinancialDataContainer
*/

/* start documentation of inline functions */

/*! \fn double QCPFinancialData::sortKey() const

  Returns the \a key member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static QCPFinancialData QCPFinancialData::fromSortKey(double sortKey)

  Returns a data point with the specified \a sortKey. All other members are set to zero.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn static static bool QCPFinancialData::sortKeyIsMainKey()

  Since the member \a key is both the data point key coordinate and the data ordering parameter,
  this method returns true.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPFinancialData::mainKey() const

  Returns the \a key member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn double QCPFinancialData::mainValue() const

  Returns the \a open member of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/*! \fn QCPRange QCPFinancialData::valueRange() const

  Returns a QCPRange spanning from the \a low to the \a high value of this data point.

  For a general explanation of what this method is good for in the context of the data container,
  see the documentation of \ref QCPDataContainer.
*/

/* end documentation of inline functions */

/*!
  Constructs a data point with key and all values set to zero.
*/
QCPFinancialData::QCPFinancialData() :
  key(0),
  open(0),
  high(0),
  low(0),
  close(0)
{
}

/*!
  Constructs a data point with the specified \a key and OHLC values.
*/
QCPFinancialData::QCPFinancialData(double key, double open, double high, double low, double close) :
  key(key),
  open(open),
  high(high),
  low(low),
  close(close)
{
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPFinancial
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPFinancial
  \brief A plottable representing a financial stock chart

  \image html QCPFinancial.png

  This plottable represents time series data binned to certain intervals, mainly used for stock
  charts. The two common representations OHLC (Open-High-Low-Close) bars and Candlesticks can be
  set via \ref setChartStyle.

  The data is passed via \ref setData as a set of open/high/low/close values at certain keys
  (typically times). This means the data must be already binned appropriately. If data is only
  available as a series of values (e.g. \a price against \a time), you can use the static
  convenience function \ref timeSeriesToOhlc to generate binned OHLC-data which can then be passed
  to \ref setData.

  The width of the OHLC bars/candlesticks can be controlled with \ref setWidth and \ref
  setWidthType. A typical choice is to set the width type to \ref wtPlotCoords (the default) and
  the width to (or slightly less than) one time bin interval width.

  \section qcpfinancial-appearance Changing the appearance

  Charts can be either single- or two-colored (\ref setTwoColored). If set to be single-colored,
  lines are drawn with the plottable's pen (\ref setPen) and fills with the brush (\ref setBrush).

  If set to two-colored, positive changes of the value during an interval (\a close >= \a open) are
  represented with a different pen and brush than negative changes (\a close < \a open). These can
  be configured with \ref setPenPositive, \ref setPenNegative, \ref setBrushPositive, and \ref
  setBrushNegative. In two-colored mode, the normal plottable pen/brush is ignored. Upon selection
  however, the normal selected pen/brush (provided by the \ref selectionDecorator) is used,
  irrespective of whether the chart is single- or two-colored.

  \section qcpfinancial-usage Usage

  Like all data representing objects in QCustomPlot, the QCPFinancial is a plottable
  (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
  (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)

  Usually, you first create an instance:

  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpfinancial-creation-1
  which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot
  instance takes ownership of the plottable, so do not delete it manually but use
  QCustomPlot::removePlottable() instead. The newly created plottable can be modified, e.g.:

  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpfinancial-creation-2
  Here we have used the static helper method \ref timeSeriesToOhlc, to turn a time-price data
  series into a 24-hour binned open-high-low-close data series as QCPFinancial uses.
*/

/* start of documentation of inline functions */

/*! \fn QCPFinancialDataContainer *QCPFinancial::data() const

  Returns a pointer to the internal data storage of type \ref QCPFinancialDataContainer. You may
  use it to directly manipulate the data, which may be more convenient and faster than using the
  regular \ref setData or \ref addData methods, in certain situations.
*/

/* end of documentation of inline functions */

/*!
  Constructs a financial chart which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
  axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
  the same orientation. If either of these restrictions is violated, a corresponding message is
  printed to the debug output (qDebug), the construction is not aborted, though.

  The created QCPFinancial is automatically registered with the QCustomPlot instance inferred from \a
  keyAxis. This QCustomPlot instance takes ownership of the QCPFinancial, so do not delete it manually
  but use QCustomPlot::removePlottable() instead.
*/
QCPFinancial::QCPFinancial(QCPAxis *keyAxis, QCPAxis *valueAxis) :
  QCPAbstractPlottable1D<QCPFinancialData>(keyAxis, valueAxis),
  mChartStyle(csCandlestick),
  mWidth(0.5),
  mWidthType(wtPlotCoords),
  mTwoColored(true),
  mBrushPositive(QBrush(QColor(50, 160, 0))),
  mBrushNegative(QBrush(QColor(180, 0, 15))),
  mPenPositive(QPen(QColor(40, 150, 0))),
  mPenNegative(QPen(QColor(170, 5, 5)))
{
  mSelectionDecorator->setBrush(QBrush(QColor(160, 160, 255)));
}

QCPFinancial::~QCPFinancial()
{
}

/*! \overload

  Replaces the current data container with the provided \a data container.

  Since a QSharedPointer is used, multiple QCPFinancials may share the same data container safely.
  Modifying the data in the container will then affect all financials that share the container.
  Sharing can be achieved by simply exchanging the data containers wrapped in shared pointers:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpfinancial-datasharing-1

  If you do not wish to share containers, but create a copy from an existing container, rather use
  the \ref QCPDataContainer<DataType>::set method on the financial's data container directly:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcpfinancial-datasharing-2

  \see addData, timeSeriesToOhlc
*/
void QCPFinancial::setData(QSharedPointer<QCPFinancialDataContainer> data)
{
  mDataContainer = data;
}

/*! \overload

  Replaces the current data with the provided points in \a keys, \a open, \a high, \a low and \a
  close. The provided vectors should have equal length. Else, the number of added points will be
  the size of the smallest vector.

  If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
  can set \a alreadySorted to true, to improve performance by saving a sorting run.

  \see addData, timeSeriesToOhlc
*/
void QCPFinancial::setData(const QVector<double> &keys, const QVector<double> &open, const QVector<double> &high, const QVector<double> &low, const QVector<double> &close, bool alreadySorted)
{
  mDataContainer->clear();
  addData(keys, open, high, low, close, alreadySorted);
}

/*!
  Sets which representation style shall be used to display the OHLC data.
*/
void QCPFinancial::setChartStyle(QCPFinancial::ChartStyle style)
{
  mChartStyle = style;
}

/*!
  Sets the width of the individual bars/candlesticks to \a width in plot key coordinates.

  A typical choice is to set it to (or slightly less than) one bin interval width.
*/
void QCPFinancial::setWidth(double width)
{
  mWidth = width;
}

/*!
  Sets how the width of the financial bars is defined. See the documentation of \ref WidthType for
  an explanation of the possible values for \a widthType.

  The default value is \ref wtPlotCoords.

  \see setWidth
*/
void QCPFinancial::setWidthType(QCPFinancial::WidthType widthType)
{
  mWidthType = widthType;
}

/*!
  Sets whether this chart shall contrast positive from negative trends per data point by using two
  separate colors to draw the respective bars/candlesticks.

  If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
  setBrush).

  \see setPenPositive, setPenNegative, setBrushPositive, setBrushNegative
*/
void QCPFinancial::setTwoColored(bool twoColored)
{
  mTwoColored = twoColored;
}

/*!
  If \ref setTwoColored is set to true, this function controls the brush that is used to draw fills
  of data points with a positive trend (i.e. bars/candlesticks with close >= open).

  If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
  setBrush).

  \see setBrushNegative, setPenPositive, setPenNegative
*/
void QCPFinancial::setBrushPositive(const QBrush &brush)
{
  mBrushPositive = brush;
}

/*!
  If \ref setTwoColored is set to true, this function controls the brush that is used to draw fills
  of data points with a negative trend (i.e. bars/candlesticks with close < open).

  If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
  setBrush).

  \see setBrushPositive, setPenNegative, setPenPositive
*/
void QCPFinancial::setBrushNegative(const QBrush &brush)
{
  mBrushNegative = brush;
}

/*!
  If \ref setTwoColored is set to true, this function controls the pen that is used to draw
  outlines of data points with a positive trend (i.e. bars/candlesticks with close >= open).

  If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
  setBrush).

  \see setPenNegative, setBrushPositive, setBrushNegative
*/
void QCPFinancial::setPenPositive(const QPen &pen)
{
  mPenPositive = pen;
}

/*!
  If \ref setTwoColored is set to true, this function controls the pen that is used to draw
  outlines of data points with a negative trend (i.e. bars/candlesticks with close < open).

  If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
  setBrush).

  \see setPenPositive, setBrushNegative, setBrushPositive
*/
void QCPFinancial::setPenNegative(const QPen &pen)
{
  mPenNegative = pen;
}

/*! \overload

  Adds the provided points in \a keys, \a open, \a high, \a low and \a close to the current data.
  The provided vectors should have equal length. Else, the number of added points will be the size
  of the smallest vector.

  If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
  can set \a alreadySorted to true, to improve performance by saving a sorting run.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.

  \see timeSeriesToOhlc
*/
void QCPFinancial::addData(const QVector<double> &keys, const QVector<double> &open, const QVector<double> &high, const QVector<double> &low, const QVector<double> &close, bool alreadySorted)
{
  if (keys.size() != open.size() || open.size() != high.size() || high.size() != low.size() || low.size() != close.size() || close.size() != keys.size())
    qDebug() << Q_FUNC_INFO << "keys, open, high, low, close have different sizes:" << keys.size() << open.size() << high.size() << low.size() << close.size();
  const int n = qMin(keys.size(), qMin(open.size(), qMin(high.size(), qMin(low.size(), close.size()))));
  QVector<QCPFinancialData> tempData(n);
  QVector<QCPFinancialData>::iterator it = tempData.begin();
  const QVector<QCPFinancialData>::iterator itEnd = tempData.end();
  int i = 0;
  while (it != itEnd)
  {
    it->key = keys[i];
    it->open = open[i];
    it->high = high[i];
    it->low = low[i];
    it->close = close[i];
    ++it;
    ++i;
  }
  mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
}

/*! \overload

  Adds the provided data point as \a key, \a open, \a high, \a low and \a close to the current
  data.

  Alternatively, you can also access and modify the data directly via the \ref data method, which
  returns a pointer to the internal data container.

  \see timeSeriesToOhlc
*/
void QCPFinancial::addData(double key, double open, double high, double low, double close)
{
  mDataContainer->add(QCPFinancialData(key, open, high, low, close));
}

/*!
  \copydoc QCPPlottableInterface1D::selectTestRect
*/
QCPDataSelection QCPFinancial::selectTestRect(const QRectF &rect, bool onlySelectable) const
{
  QCPDataSelection result;
  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return result;
  if (!mKeyAxis || !mValueAxis)
    return result;

  QCPFinancialDataContainer::const_iterator visibleBegin, visibleEnd;
  getVisibleDataBounds(visibleBegin, visibleEnd);

  for (QCPFinancialDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
  {
    if (rect.intersects(selectionHitBox(it)))
      result.addDataRange(QCPDataRange(int(it-mDataContainer->constBegin()), int(it-mDataContainer->constBegin())+1), false);
  }
  result.simplify();
  return result;
}

/*!
  Implements a selectTest specific to this plottable's point geometry.

  If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
  point to \a pos.

  \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
*/
double QCPFinancial::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return -1;
  if (!mKeyAxis || !mValueAxis)
    return -1;

  if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()))
  {
    // get visible data range:
    QCPFinancialDataContainer::const_iterator visibleBegin, visibleEnd;
    QCPFinancialDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
    getVisibleDataBounds(visibleBegin, visibleEnd);
    // perform select test according to configured style:
    double result = -1;
    switch (mChartStyle)
    {
      case QCPFinancial::csOhlc:
        result = ohlcSelectTest(pos, visibleBegin, visibleEnd, closestDataPoint); break;
      case QCPFinancial::csCandlestick:
        result = candlestickSelectTest(pos, visibleBegin, visibleEnd, closestDataPoint); break;
    }
    if (details)
    {
      int pointIndex = int(closestDataPoint-mDataContainer->constBegin());
      details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
    }
    return result;
  }

  return -1;
}

/* inherits documentation from base class */
QCPRange QCPFinancial::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const
{
  QCPRange range = mDataContainer->keyRange(foundRange, inSignDomain);
  // determine exact range by including width of bars/flags:
  if (foundRange)
  {
    if (inSignDomain != QCP::sdPositive || range.lower-mWidth*0.5 > 0)
      range.lower -= mWidth*0.5;
    if (inSignDomain != QCP::sdNegative || range.upper+mWidth*0.5 < 0)
      range.upper += mWidth*0.5;
  }
  return range;
}

/* inherits documentation from base class */
QCPRange QCPFinancial::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const
{
  return mDataContainer->valueRange(foundRange, inSignDomain, inKeyRange);
}

/*!
  A convenience function that converts time series data (\a value against \a time) to OHLC binned
  data points. The return value can then be passed on to \ref QCPFinancialDataContainer::set(const
  QCPFinancialDataContainer&).

  The size of the bins can be controlled with \a timeBinSize in the same units as \a time is given.
  For example, if the unit of \a time is seconds and single OHLC/Candlesticks should span an hour
  each, set \a timeBinSize to 3600.

  \a timeBinOffset allows to control precisely at what \a time coordinate a bin should start. The
  value passed as \a timeBinOffset doesn't need to be in the range encompassed by the \a time keys.
  It merely defines the mathematical offset/phase of the bins that will be used to process the
  data.
*/
QCPFinancialDataContainer QCPFinancial::timeSeriesToOhlc(const QVector<double> &time, const QVector<double> &value, double timeBinSize, double timeBinOffset)
{
  QCPFinancialDataContainer data;
  int count = qMin(time.size(), value.size());
  if (count == 0)
    return QCPFinancialDataContainer();

  QCPFinancialData currentBinData(0, value.first(), value.first(), value.first(), value.first());
  int currentBinIndex = qFloor((time.first()-timeBinOffset)/timeBinSize+0.5);
  for (int i=0; i<count; ++i)
  {
    int index = qFloor((time.at(i)-timeBinOffset)/timeBinSize+0.5);
    if (currentBinIndex == index) // data point still in current bin, extend high/low:
    {
      if (value.at(i) < currentBinData.low) currentBinData.low = value.at(i);
      if (value.at(i) > currentBinData.high) currentBinData.high = value.at(i);
      if (i == count-1) // last data point is in current bin, finalize bin:
      {
        currentBinData.close = value.at(i);
        currentBinData.key = timeBinOffset+(index)*timeBinSize;
        data.add(currentBinData);
      }
    } else // data point not anymore in current bin, set close of old and open of new bin, and add old to map:
    {
      // finalize current bin:
      currentBinData.close = value.at(i-1);
      currentBinData.key = timeBinOffset+(index-1)*timeBinSize;
      data.add(currentBinData);
      // start next bin:
      currentBinIndex = index;
      currentBinData.open = value.at(i);
      currentBinData.high = value.at(i);
      currentBinData.low = value.at(i);
    }
  }

  return data;
}

/* inherits documentation from base class */
void QCPFinancial::draw(QCPPainter *painter)
{
  // get visible data range:
  QCPFinancialDataContainer::const_iterator visibleBegin, visibleEnd;
  getVisibleDataBounds(visibleBegin, visibleEnd);

  // loop over and draw segments of unselected/selected data:
  QList<QCPDataRange> selectedSegments, unselectedSegments, allSegments;
  getDataSegments(selectedSegments, unselectedSegments);
  allSegments << unselectedSegments << selectedSegments;
  for (int i=0; i<allSegments.size(); ++i)
  {
    bool isSelectedSegment = i >= unselectedSegments.size();
    QCPFinancialDataContainer::const_iterator begin = visibleBegin;
    QCPFinancialDataContainer::const_iterator end = visibleEnd;
    mDataContainer->limitIteratorsToDataRange(begin, end, allSegments.at(i));
    if (begin == end)
      continue;

    // draw data segment according to configured style:
    switch (mChartStyle)
    {
      case QCPFinancial::csOhlc:
        drawOhlcPlot(painter, begin, end, isSelectedSegment); break;
      case QCPFinancial::csCandlestick:
        drawCandlestickPlot(painter, begin, end, isSelectedSegment); break;
    }
  }

  // draw other selection decoration that isn't just line/scatter pens and brushes:
  if (mSelectionDecorator)
    mSelectionDecorator->drawDecoration(painter, selection());
}

/* inherits documentation from base class */
void QCPFinancial::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
{
  painter->setAntialiasing(false); // legend icon especially of csCandlestick looks better without antialiasing
  if (mChartStyle == csOhlc)
  {
    if (mTwoColored)
    {
      // draw upper left half icon with positive color:
      painter->setBrush(mBrushPositive);
      painter->setPen(mPenPositive);
      painter->setClipRegion(QRegion(QPolygon() << rect.bottomLeft().toPoint() << rect.topRight().toPoint() << rect.topLeft().toPoint()));
      painter->drawLine(QLineF(0, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
      painter->drawLine(QLineF(rect.width()*0.2, rect.height()*0.3, rect.width()*0.2, rect.height()*0.5).translated(rect.topLeft()));
      painter->drawLine(QLineF(rect.width()*0.8, rect.height()*0.5, rect.width()*0.8, rect.height()*0.7).translated(rect.topLeft()));
      // draw bottom right half icon with negative color:
      painter->setBrush(mBrushNegative);
      painter->setPen(mPenNegative);
      painter->setClipRegion(QRegion(QPolygon() << rect.bottomLeft().toPoint() << rect.topRight().toPoint() << rect.bottomRight().toPoint()));
      painter->drawLine(QLineF(0, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
      painter->drawLine(QLineF(rect.width()*0.2, rect.height()*0.3, rect.width()*0.2, rect.height()*0.5).translated(rect.topLeft()));
      painter->drawLine(QLineF(rect.width()*0.8, rect.height()*0.5, rect.width()*0.8, rect.height()*0.7).translated(rect.topLeft()));
    } else
    {
      painter->setBrush(mBrush);
      painter->setPen(mPen);
      painter->drawLine(QLineF(0, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
      painter->drawLine(QLineF(rect.width()*0.2, rect.height()*0.3, rect.width()*0.2, rect.height()*0.5).translated(rect.topLeft()));
      painter->drawLine(QLineF(rect.width()*0.8, rect.height()*0.5, rect.width()*0.8, rect.height()*0.7).translated(rect.topLeft()));
    }
  } else if (mChartStyle == csCandlestick)
  {
    if (mTwoColored)
    {
      // draw upper left half icon with positive color:
      painter->setBrush(mBrushPositive);
      painter->setPen(mPenPositive);
      painter->setClipRegion(QRegion(QPolygon() << rect.bottomLeft().toPoint() << rect.topRight().toPoint() << rect.topLeft().toPoint()));
      painter->drawLine(QLineF(0, rect.height()*0.5, rect.width()*0.25, rect.height()*0.5).translated(rect.topLeft()));
      painter->drawLine(QLineF(rect.width()*0.75, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
      painter->drawRect(QRectF(rect.width()*0.25, rect.height()*0.25, rect.width()*0.5, rect.height()*0.5).translated(rect.topLeft()));
      // draw bottom right half icon with negative color:
      painter->setBrush(mBrushNegative);
      painter->setPen(mPenNegative);
      painter->setClipRegion(QRegion(QPolygon() << rect.bottomLeft().toPoint() << rect.topRight().toPoint() << rect.bottomRight().toPoint()));
      painter->drawLine(QLineF(0, rect.height()*0.5, rect.width()*0.25, rect.height()*0.5).translated(rect.topLeft()));
      painter->drawLine(QLineF(rect.width()*0.75, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
      painter->drawRect(QRectF(rect.width()*0.25, rect.height()*0.25, rect.width()*0.5, rect.height()*0.5).translated(rect.topLeft()));
    } else
    {
      painter->setBrush(mBrush);
      painter->setPen(mPen);
      painter->drawLine(QLineF(0, rect.height()*0.5, rect.width()*0.25, rect.height()*0.5).translated(rect.topLeft()));
      painter->drawLine(QLineF(rect.width()*0.75, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
      painter->drawRect(QRectF(rect.width()*0.25, rect.height()*0.25, rect.width()*0.5, rect.height()*0.5).translated(rect.topLeft()));
    }
  }
}

/*! \internal

  Draws the data from \a begin to \a end-1 as OHLC bars with the provided \a painter.

  This method is a helper function for \ref draw. It is used when the chart style is \ref csOhlc.
*/
void QCPFinancial::drawOhlcPlot(QCPPainter *painter, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, bool isSelected)
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }

  if (keyAxis->orientation() == Qt::Horizontal)
  {
    for (QCPFinancialDataContainer::const_iterator it = begin; it != end; ++it)
    {
      if (isSelected && mSelectionDecorator)
        mSelectionDecorator->applyPen(painter);
      else if (mTwoColored)
        painter->setPen(it->close >= it->open ? mPenPositive : mPenNegative);
      else
        painter->setPen(mPen);
      double keyPixel = keyAxis->coordToPixel(it->key);
      double openPixel = valueAxis->coordToPixel(it->open);
      double closePixel = valueAxis->coordToPixel(it->close);
      // draw backbone:
      painter->drawLine(QPointF(keyPixel, valueAxis->coordToPixel(it->high)), QPointF(keyPixel, valueAxis->coordToPixel(it->low)));
      // draw open:
      double pixelWidth = getPixelWidth(it->key, keyPixel); // sign of this makes sure open/close are on correct sides
      painter->drawLine(QPointF(keyPixel-pixelWidth, openPixel), QPointF(keyPixel, openPixel));
      // draw close:
      painter->drawLine(QPointF(keyPixel, closePixel), QPointF(keyPixel+pixelWidth, closePixel));
    }
  } else
  {
    for (QCPFinancialDataContainer::const_iterator it = begin; it != end; ++it)
    {
      if (isSelected && mSelectionDecorator)
        mSelectionDecorator->applyPen(painter);
      else if (mTwoColored)
        painter->setPen(it->close >= it->open ? mPenPositive : mPenNegative);
      else
        painter->setPen(mPen);
      double keyPixel = keyAxis->coordToPixel(it->key);
      double openPixel = valueAxis->coordToPixel(it->open);
      double closePixel = valueAxis->coordToPixel(it->close);
      // draw backbone:
      painter->drawLine(QPointF(valueAxis->coordToPixel(it->high), keyPixel), QPointF(valueAxis->coordToPixel(it->low), keyPixel));
      // draw open:
      double pixelWidth = getPixelWidth(it->key, keyPixel); // sign of this makes sure open/close are on correct sides
      painter->drawLine(QPointF(openPixel, keyPixel-pixelWidth), QPointF(openPixel, keyPixel));
      // draw close:
      painter->drawLine(QPointF(closePixel, keyPixel), QPointF(closePixel, keyPixel+pixelWidth));
    }
  }
}

/*! \internal

  Draws the data from \a begin to \a end-1 as Candlesticks with the provided \a painter.

  This method is a helper function for \ref draw. It is used when the chart style is \ref csCandlestick.
*/
void QCPFinancial::drawCandlestickPlot(QCPPainter *painter, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, bool isSelected)
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }

  if (keyAxis->orientation() == Qt::Horizontal)
  {
    for (QCPFinancialDataContainer::const_iterator it = begin; it != end; ++it)
    {
      if (isSelected && mSelectionDecorator)
      {
        mSelectionDecorator->applyPen(painter);
        mSelectionDecorator->applyBrush(painter);
      } else if (mTwoColored)
      {
        painter->setPen(it->close >= it->open ? mPenPositive : mPenNegative);
        painter->setBrush(it->close >= it->open ? mBrushPositive : mBrushNegative);
      } else
      {
        painter->setPen(mPen);
        painter->setBrush(mBrush);
      }
      double keyPixel = keyAxis->coordToPixel(it->key);
      double openPixel = valueAxis->coordToPixel(it->open);
      double closePixel = valueAxis->coordToPixel(it->close);
      // draw high:
      painter->drawLine(QPointF(keyPixel, valueAxis->coordToPixel(it->high)), QPointF(keyPixel, valueAxis->coordToPixel(qMax(it->open, it->close))));
      // draw low:
      painter->drawLine(QPointF(keyPixel, valueAxis->coordToPixel(it->low)), QPointF(keyPixel, valueAxis->coordToPixel(qMin(it->open, it->close))));
      // draw open-close box:
      double pixelWidth = getPixelWidth(it->key, keyPixel);
      painter->drawRect(QRectF(QPointF(keyPixel-pixelWidth, closePixel), QPointF(keyPixel+pixelWidth, openPixel)));
    }
  } else // keyAxis->orientation() == Qt::Vertical
  {
    for (QCPFinancialDataContainer::const_iterator it = begin; it != end; ++it)
    {
      if (isSelected && mSelectionDecorator)
      {
        mSelectionDecorator->applyPen(painter);
        mSelectionDecorator->applyBrush(painter);
      } else if (mTwoColored)
      {
        painter->setPen(it->close >= it->open ? mPenPositive : mPenNegative);
        painter->setBrush(it->close >= it->open ? mBrushPositive : mBrushNegative);
      } else
      {
        painter->setPen(mPen);
        painter->setBrush(mBrush);
      }
      double keyPixel = keyAxis->coordToPixel(it->key);
      double openPixel = valueAxis->coordToPixel(it->open);
      double closePixel = valueAxis->coordToPixel(it->close);
      // draw high:
      painter->drawLine(QPointF(valueAxis->coordToPixel(it->high), keyPixel), QPointF(valueAxis->coordToPixel(qMax(it->open, it->close)), keyPixel));
      // draw low:
      painter->drawLine(QPointF(valueAxis->coordToPixel(it->low), keyPixel), QPointF(valueAxis->coordToPixel(qMin(it->open, it->close)), keyPixel));
      // draw open-close box:
      double pixelWidth = getPixelWidth(it->key, keyPixel);
      painter->drawRect(QRectF(QPointF(closePixel, keyPixel-pixelWidth), QPointF(openPixel, keyPixel+pixelWidth)));
    }
  }
}

/*! \internal

  This function is used to determine the width of the bar at coordinate \a key, according to the
  specified width (\ref setWidth) and width type (\ref setWidthType). Provide the pixel position of
  \a key in \a keyPixel (because usually this was already calculated via \ref QCPAxis::coordToPixel
  when this function is called).

  It returns the number of pixels the bar extends to higher keys, relative to the \a key
  coordinate. So with a non-reversed horizontal axis, the return value is positive. With a reversed
  horizontal axis, the return value is negative. This is important so the open/close flags on the
  \ref csOhlc bar are drawn to the correct side.
*/
double QCPFinancial::getPixelWidth(double key, double keyPixel) const
{
  double result = 0;
  switch (mWidthType)
  {
    case wtAbsolute:
    {
      if (mKeyAxis)
        result = mWidth*0.5*mKeyAxis.data()->pixelOrientation();
      break;
    }
    case wtAxisRectRatio:
    {
      if (mKeyAxis && mKeyAxis.data()->axisRect())
      {
        if (mKeyAxis.data()->orientation() == Qt::Horizontal)
          result = mKeyAxis.data()->axisRect()->width()*mWidth*0.5*mKeyAxis.data()->pixelOrientation();
        else
          result = mKeyAxis.data()->axisRect()->height()*mWidth*0.5*mKeyAxis.data()->pixelOrientation();
      } else
        qDebug() << Q_FUNC_INFO << "No key axis or axis rect defined";
      break;
    }
    case wtPlotCoords:
    {
      if (mKeyAxis)
        result = mKeyAxis.data()->coordToPixel(key+mWidth*0.5)-keyPixel;
      else
        qDebug() << Q_FUNC_INFO << "No key axis defined";
      break;
    }
  }
  return result;
}

/*! \internal

  This method is a helper function for \ref selectTest. It is used to test for selection when the
  chart style is \ref csOhlc. It only tests against the data points between \a begin and \a end.

  Like \ref selectTest, this method returns the shortest distance of \a pos to the graphical
  representation of the plottable, and \a closestDataPoint will point to the respective data point.
*/
double QCPFinancial::ohlcSelectTest(const QPointF &pos, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, QCPFinancialDataContainer::const_iterator &closestDataPoint) const
{
  closestDataPoint = mDataContainer->constEnd();
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return -1; }

  double minDistSqr = (std::numeric_limits<double>::max)();
  if (keyAxis->orientation() == Qt::Horizontal)
  {
    for (QCPFinancialDataContainer::const_iterator it=begin; it!=end; ++it)
    {
      double keyPixel = keyAxis->coordToPixel(it->key);
      // calculate distance to backbone:
      double currentDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(keyPixel, valueAxis->coordToPixel(it->high)), QCPVector2D(keyPixel, valueAxis->coordToPixel(it->low)));
      if (currentDistSqr < minDistSqr)
      {
        minDistSqr = currentDistSqr;
        closestDataPoint = it;
      }
    }
  } else // keyAxis->orientation() == Qt::Vertical
  {
    for (QCPFinancialDataContainer::const_iterator it=begin; it!=end; ++it)
    {
      double keyPixel = keyAxis->coordToPixel(it->key);
      // calculate distance to backbone:
      double currentDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(valueAxis->coordToPixel(it->high), keyPixel), QCPVector2D(valueAxis->coordToPixel(it->low), keyPixel));
      if (currentDistSqr < minDistSqr)
      {
        minDistSqr = currentDistSqr;
        closestDataPoint = it;
      }
    }
  }
  return qSqrt(minDistSqr);
}

/*! \internal

  This method is a helper function for \ref selectTest. It is used to test for selection when the
  chart style is \ref csCandlestick. It only tests against the data points between \a begin and \a
  end.

  Like \ref selectTest, this method returns the shortest distance of \a pos to the graphical
  representation of the plottable, and \a closestDataPoint will point to the respective data point.
*/
double QCPFinancial::candlestickSelectTest(const QPointF &pos, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, QCPFinancialDataContainer::const_iterator &closestDataPoint) const
{
  closestDataPoint = mDataContainer->constEnd();
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return -1; }

  double minDistSqr = (std::numeric_limits<double>::max)();
  if (keyAxis->orientation() == Qt::Horizontal)
  {
    for (QCPFinancialDataContainer::const_iterator it=begin; it!=end; ++it)
    {
      double currentDistSqr;
      // determine whether pos is in open-close-box:
      QCPRange boxKeyRange(it->key-mWidth*0.5, it->key+mWidth*0.5);
      QCPRange boxValueRange(it->close, it->open);
      double posKey, posValue;
      pixelsToCoords(pos, posKey, posValue);
      if (boxKeyRange.contains(posKey) && boxValueRange.contains(posValue)) // is in open-close-box
      {
        currentDistSqr = mParentPlot->selectionTolerance()*0.99 * mParentPlot->selectionTolerance()*0.99;
      } else
      {
        // calculate distance to high/low lines:
        double keyPixel = keyAxis->coordToPixel(it->key);
        double highLineDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(keyPixel, valueAxis->coordToPixel(it->high)), QCPVector2D(keyPixel, valueAxis->coordToPixel(qMax(it->open, it->close))));
        double lowLineDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(keyPixel, valueAxis->coordToPixel(it->low)), QCPVector2D(keyPixel, valueAxis->coordToPixel(qMin(it->open, it->close))));
        currentDistSqr = qMin(highLineDistSqr, lowLineDistSqr);
      }
      if (currentDistSqr < minDistSqr)
      {
        minDistSqr = currentDistSqr;
        closestDataPoint = it;
      }
    }
  } else // keyAxis->orientation() == Qt::Vertical
  {
    for (QCPFinancialDataContainer::const_iterator it=begin; it!=end; ++it)
    {
      double currentDistSqr;
      // determine whether pos is in open-close-box:
      QCPRange boxKeyRange(it->key-mWidth*0.5, it->key+mWidth*0.5);
      QCPRange boxValueRange(it->close, it->open);
      double posKey, posValue;
      pixelsToCoords(pos, posKey, posValue);
      if (boxKeyRange.contains(posKey) && boxValueRange.contains(posValue)) // is in open-close-box
      {
        currentDistSqr = mParentPlot->selectionTolerance()*0.99 * mParentPlot->selectionTolerance()*0.99;
      } else
      {
        // calculate distance to high/low lines:
        double keyPixel = keyAxis->coordToPixel(it->key);
        double highLineDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(valueAxis->coordToPixel(it->high), keyPixel), QCPVector2D(valueAxis->coordToPixel(qMax(it->open, it->close)), keyPixel));
        double lowLineDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(valueAxis->coordToPixel(it->low), keyPixel), QCPVector2D(valueAxis->coordToPixel(qMin(it->open, it->close)), keyPixel));
        currentDistSqr = qMin(highLineDistSqr, lowLineDistSqr);
      }
      if (currentDistSqr < minDistSqr)
      {
        minDistSqr = currentDistSqr;
        closestDataPoint = it;
      }
    }
  }
  return qSqrt(minDistSqr);
}

/*! \internal

  called by the drawing methods to determine which data (key) range is visible at the current key
  axis range setting, so only that needs to be processed.

  \a begin returns an iterator to the lowest data point that needs to be taken into account when
  plotting. Note that in order to get a clean plot all the way to the edge of the axis rect, \a
  begin may still be just outside the visible range.

  \a end returns the iterator just above the highest data point that needs to be taken into
  account. Same as before, \a end may also lie just outside of the visible range

  if the plottable contains no data, both \a begin and \a end point to \c constEnd.
*/
void QCPFinancial::getVisibleDataBounds(QCPFinancialDataContainer::const_iterator &begin, QCPFinancialDataContainer::const_iterator &end) const
{
  if (!mKeyAxis)
  {
    qDebug() << Q_FUNC_INFO << "invalid key axis";
    begin = mDataContainer->constEnd();
    end = mDataContainer->constEnd();
    return;
  }
  begin = mDataContainer->findBegin(mKeyAxis.data()->range().lower-mWidth*0.5); // subtract half width of ohlc/candlestick to include partially visible data points
  end = mDataContainer->findEnd(mKeyAxis.data()->range().upper+mWidth*0.5); // add half width of ohlc/candlestick to include partially visible data points
}

/*!  \internal

  Returns the hit box in pixel coordinates that will be used for data selection with the selection
  rect (\ref selectTestRect), of the data point given by \a it.
*/
QRectF QCPFinancial::selectionHitBox(QCPFinancialDataContainer::const_iterator it) const
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return QRectF(); }

  double keyPixel = keyAxis->coordToPixel(it->key);
  double highPixel = valueAxis->coordToPixel(it->high);
  double lowPixel = valueAxis->coordToPixel(it->low);
  double keyWidthPixels = keyPixel-keyAxis->coordToPixel(it->key-mWidth*0.5);
  if (keyAxis->orientation() == Qt::Horizontal)
    return QRectF(keyPixel-keyWidthPixels, highPixel, keyWidthPixels*2, lowPixel-highPixel).normalized();
  else
    return QRectF(highPixel, keyPixel-keyWidthPixels, lowPixel-highPixel, keyWidthPixels*2).normalized();
}
/* end of 'src/plottables/plottable-financial.cpp' */


/* including file 'src/plottables/plottable-errorbar.cpp', size 37570        */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPErrorBarsData
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPErrorBarsData
  \brief Holds the data of one single error bar for QCPErrorBars.

  The stored data is:
  \li \a errorMinus: how much the error bar extends towards negative coordinates from the data
  point position
  \li \a errorPlus: how much the error bar extends towards positive coordinates from the data point
  position

  The container for storing the error bar information is \ref QCPErrorBarsDataContainer. It is a
  typedef for <tt>QVector<\ref QCPErrorBarsData></tt>.

  \see QCPErrorBarsDataContainer
*/

/*!
  Constructs an error bar with errors set to zero.
*/
QCPErrorBarsData::QCPErrorBarsData() :
  errorMinus(0),
  errorPlus(0)
{
}

/*!
  Constructs an error bar with equal \a error in both negative and positive direction.
*/
QCPErrorBarsData::QCPErrorBarsData(double error) :
  errorMinus(error),
  errorPlus(error)
{
}

/*!
  Constructs an error bar with negative and positive errors set to \a errorMinus and \a errorPlus,
  respectively.
*/
QCPErrorBarsData::QCPErrorBarsData(double errorMinus, double errorPlus) :
  errorMinus(errorMinus),
  errorPlus(errorPlus)
{
}


////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPErrorBars
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPErrorBars
  \brief A plottable that adds a set of error bars to other plottables.

  \image html QCPErrorBars.png

  The \ref QCPErrorBars plottable can be attached to other one-dimensional plottables (e.g. \ref
  QCPGraph, \ref QCPCurve, \ref QCPBars, etc.) and equips them with error bars.

  Use \ref setDataPlottable to define for which plottable the \ref QCPErrorBars shall display the
  error bars. The orientation of the error bars can be controlled with \ref setErrorType.

  By using \ref setData, you can supply the actual error data, either as symmetric error or
  plus/minus asymmetric errors. \ref QCPErrorBars only stores the error data. The absolute
  key/value position of each error bar will be adopted from the configured data plottable. The
  error data of the \ref QCPErrorBars are associated one-to-one via their index to the data points
  of the data plottable. You can directly access and manipulate the error bar data via \ref data.

  Set either of the plus/minus errors to NaN (<tt>qQNaN()</tt> or
  <tt>std::numeric_limits<double>::quiet_NaN()</tt>) to not show the respective error bar on the data point at
  that index.

  \section qcperrorbars-appearance Changing the appearance

  The appearance of the error bars is defined by the pen (\ref setPen), and the width of the
  whiskers (\ref setWhiskerWidth). Further, the error bar backbones may leave a gap around the data
  point center to prevent that error bars are drawn too close to or even through scatter points.
  This gap size can be controlled via \ref setSymbolGap.
*/

/* start of documentation of inline functions */

/*! \fn QSharedPointer<QCPErrorBarsDataContainer> QCPErrorBars::data() const

  Returns a shared pointer to the internal data storage of type \ref QCPErrorBarsDataContainer. You
  may use it to directly manipulate the error values, which may be more convenient and faster than
  using the regular \ref setData methods.
*/

/* end of documentation of inline functions */

/*!
  Constructs an error bars plottable which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
  axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
  the same orientation. If either of these restrictions is violated, a corresponding message is
  printed to the debug output (qDebug), the construction is not aborted, though.

  It is also important that the \a keyAxis and \a valueAxis are the same for the error bars
  plottable and the data plottable that the error bars shall be drawn on (\ref setDataPlottable).

  The created \ref QCPErrorBars is automatically registered with the QCustomPlot instance inferred
  from \a keyAxis. This QCustomPlot instance takes ownership of the \ref QCPErrorBars, so do not
  delete it manually but use \ref QCustomPlot::removePlottable() instead.
*/
QCPErrorBars::QCPErrorBars(QCPAxis *keyAxis, QCPAxis *valueAxis) :
  QCPAbstractPlottable(keyAxis, valueAxis),
  mDataContainer(new QVector<QCPErrorBarsData>),
  mErrorType(etValueError),
  mWhiskerWidth(9),
  mSymbolGap(10)
{
  setPen(QPen(Qt::black, 0));
  setBrush(Qt::NoBrush);
}

QCPErrorBars::~QCPErrorBars()
{
}

/*! \overload

  Replaces the current data container with the provided \a data container.

  Since a QSharedPointer is used, multiple \ref QCPErrorBars instances may share the same data
  container safely. Modifying the data in the container will then affect all \ref QCPErrorBars
  instances that share the container. Sharing can be achieved by simply exchanging the data
  containers wrapped in shared pointers:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcperrorbars-datasharing-1

  If you do not wish to share containers, but create a copy from an existing container, assign the
  data containers directly:
  \snippet documentation/doc-code-snippets/mainwindow.cpp qcperrorbars-datasharing-2
  (This uses different notation compared with other plottables, because the \ref QCPErrorBars
  uses a \c QVector<QCPErrorBarsData> as its data container, instead of a \ref QCPDataContainer.)

  \see addData
*/
void QCPErrorBars::setData(QSharedPointer<QCPErrorBarsDataContainer> data)
{
  mDataContainer = data;
}

/*! \overload

  Sets symmetrical error values as specified in \a error. The errors will be associated one-to-one
  by the data point index to the associated data plottable (\ref setDataPlottable).

  You can directly access and manipulate the error bar data via \ref data.

  \see addData
*/
void QCPErrorBars::setData(const QVector<double> &error)
{
  mDataContainer->clear();
  addData(error);
}

/*! \overload

  Sets asymmetrical errors as specified in \a errorMinus and \a errorPlus. The errors will be
  associated one-to-one by the data point index to the associated data plottable (\ref
  setDataPlottable).

  You can directly access and manipulate the error bar data via \ref data.

  \see addData
*/
void QCPErrorBars::setData(const QVector<double> &errorMinus, const QVector<double> &errorPlus)
{
  mDataContainer->clear();
  addData(errorMinus, errorPlus);
}

/*!
  Sets the data plottable to which the error bars will be applied. The error values specified e.g.
  via \ref setData will be associated one-to-one by the data point index to the data points of \a
  plottable. This means that the error bars will adopt the key/value coordinates of the data point
  with the same index.

  The passed \a plottable must be a one-dimensional plottable, i.e. it must implement the \ref
  QCPPlottableInterface1D. Further, it must not be a \ref QCPErrorBars instance itself. If either
  of these restrictions is violated, a corresponding qDebug output is generated, and the data
  plottable of this \ref QCPErrorBars instance is set to zero.

  For proper display, care must also be taken that the key and value axes of the \a plottable match
  those configured for this \ref QCPErrorBars instance.
*/
void QCPErrorBars::setDataPlottable(QCPAbstractPlottable *plottable)
{
  if (plottable && qobject_cast<QCPErrorBars*>(plottable))
  {
    mDataPlottable = 0;
    qDebug() << Q_FUNC_INFO << "can't set another QCPErrorBars instance as data plottable";
    return;
  }
  if (plottable && !plottable->interface1D())
  {
    mDataPlottable = 0;
    qDebug() << Q_FUNC_INFO << "passed plottable doesn't implement 1d interface, can't associate with QCPErrorBars";
    return;
  }

  mDataPlottable = plottable;
}

/*!
  Sets in which orientation the error bars shall appear on the data points. If your data needs both
  error dimensions, create two \ref QCPErrorBars with different \a type.
*/
void QCPErrorBars::setErrorType(ErrorType type)
{
  mErrorType = type;
}

/*!
  Sets the width of the whiskers (the short bars at the end of the actual error bar backbones) to
  \a pixels.
*/
void QCPErrorBars::setWhiskerWidth(double pixels)
{
  mWhiskerWidth = pixels;
}

/*!
  Sets the gap diameter around the data points that will be left out when drawing the error bar
  backbones. This gap prevents that error bars are drawn too close to or even through scatter
  points.
*/
void QCPErrorBars::setSymbolGap(double pixels)
{
  mSymbolGap = pixels;
}

/*! \overload

  Adds symmetrical error values as specified in \a error. The errors will be associated one-to-one
  by the data point index to the associated data plottable (\ref setDataPlottable).

  You can directly access and manipulate the error bar data via \ref data.

  \see setData
*/
void QCPErrorBars::addData(const QVector<double> &error)
{
  addData(error, error);
}

/*! \overload

  Adds asymmetrical errors as specified in \a errorMinus and \a errorPlus. The errors will be
  associated one-to-one by the data point index to the associated data plottable (\ref
  setDataPlottable).

  You can directly access and manipulate the error bar data via \ref data.

  \see setData
*/
void QCPErrorBars::addData(const QVector<double> &errorMinus, const QVector<double> &errorPlus)
{
  if (errorMinus.size() != errorPlus.size())
    qDebug() << Q_FUNC_INFO << "minus and plus error vectors have different sizes:" << errorMinus.size() << errorPlus.size();
  const int n = qMin(errorMinus.size(), errorPlus.size());
  mDataContainer->reserve(n);
  for (int i=0; i<n; ++i)
    mDataContainer->append(QCPErrorBarsData(errorMinus.at(i), errorPlus.at(i)));
}

/*! \overload

  Adds a single symmetrical error bar as specified in \a error. The errors will be associated
  one-to-one by the data point index to the associated data plottable (\ref setDataPlottable).

  You can directly access and manipulate the error bar data via \ref data.

  \see setData
*/
void QCPErrorBars::addData(double error)
{
  mDataContainer->append(QCPErrorBarsData(error));
}

/*! \overload

  Adds a single asymmetrical error bar as specified in \a errorMinus and \a errorPlus. The errors
  will be associated one-to-one by the data point index to the associated data plottable (\ref
  setDataPlottable).

  You can directly access and manipulate the error bar data via \ref data.

  \see setData
*/
void QCPErrorBars::addData(double errorMinus, double errorPlus)
{
  mDataContainer->append(QCPErrorBarsData(errorMinus, errorPlus));
}

/* inherits documentation from base class */
int QCPErrorBars::dataCount() const
{
  return mDataContainer->size();
}

/* inherits documentation from base class */
double QCPErrorBars::dataMainKey(int index) const
{
  if (mDataPlottable)
    return mDataPlottable->interface1D()->dataMainKey(index);
  else
    qDebug() << Q_FUNC_INFO << "no data plottable set";
  return 0;
}

/* inherits documentation from base class */
double QCPErrorBars::dataSortKey(int index) const
{
  if (mDataPlottable)
    return mDataPlottable->interface1D()->dataSortKey(index);
  else
    qDebug() << Q_FUNC_INFO << "no data plottable set";
  return 0;
}

/* inherits documentation from base class */
double QCPErrorBars::dataMainValue(int index) const
{
  if (mDataPlottable)
    return mDataPlottable->interface1D()->dataMainValue(index);
  else
    qDebug() << Q_FUNC_INFO << "no data plottable set";
  return 0;
}

/* inherits documentation from base class */
QCPRange QCPErrorBars::dataValueRange(int index) const
{
  if (mDataPlottable)
  {
    const double value = mDataPlottable->interface1D()->dataMainValue(index);
    if (index >= 0 && index < mDataContainer->size() && mErrorType == etValueError)
      return QCPRange(value-mDataContainer->at(index).errorMinus, value+mDataContainer->at(index).errorPlus);
    else
      return QCPRange(value, value);
  } else
  {
    qDebug() << Q_FUNC_INFO << "no data plottable set";
    return QCPRange();
  }
}

/* inherits documentation from base class */
QPointF QCPErrorBars::dataPixelPosition(int index) const
{
  if (mDataPlottable)
    return mDataPlottable->interface1D()->dataPixelPosition(index);
  else
    qDebug() << Q_FUNC_INFO << "no data plottable set";
  return QPointF();
}

/* inherits documentation from base class */
bool QCPErrorBars::sortKeyIsMainKey() const
{
  if (mDataPlottable)
  {
    return mDataPlottable->interface1D()->sortKeyIsMainKey();
  } else
  {
    qDebug() << Q_FUNC_INFO << "no data plottable set";
    return true;
  }
}

/*!
  \copydoc QCPPlottableInterface1D::selectTestRect
*/
QCPDataSelection QCPErrorBars::selectTestRect(const QRectF &rect, bool onlySelectable) const
{
  QCPDataSelection result;
  if (!mDataPlottable)
    return result;
  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return result;
  if (!mKeyAxis || !mValueAxis)
    return result;

  QCPErrorBarsDataContainer::const_iterator visibleBegin, visibleEnd;
  getVisibleDataBounds(visibleBegin, visibleEnd, QCPDataRange(0, dataCount()));

  QVector<QLineF> backbones, whiskers;
  for (QCPErrorBarsDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
  {
    backbones.clear();
    whiskers.clear();
    getErrorBarLines(it, backbones, whiskers);
    for (int i=0; i<backbones.size(); ++i)
    {
      if (rectIntersectsLine(rect, backbones.at(i)))
      {
        result.addDataRange(QCPDataRange(int(it-mDataContainer->constBegin()), int(it-mDataContainer->constBegin())+1), false);
        break;
      }
    }
  }
  result.simplify();
  return result;
}

/* inherits documentation from base class */
int QCPErrorBars::findBegin(double sortKey, bool expandedRange) const
{
  if (mDataPlottable)
  {
    if (mDataContainer->isEmpty())
      return 0;
    int beginIndex = mDataPlottable->interface1D()->findBegin(sortKey, expandedRange);
    if (beginIndex >= mDataContainer->size())
      beginIndex = mDataContainer->size()-1;
    return beginIndex;
  } else
    qDebug() << Q_FUNC_INFO << "no data plottable set";
  return 0;
}

/* inherits documentation from base class */
int QCPErrorBars::findEnd(double sortKey, bool expandedRange) const
{
  if (mDataPlottable)
  {
    if (mDataContainer->isEmpty())
      return 0;
    int endIndex = mDataPlottable->interface1D()->findEnd(sortKey, expandedRange);
    if (endIndex > mDataContainer->size())
      endIndex = mDataContainer->size();
    return endIndex;
  } else
    qDebug() << Q_FUNC_INFO << "no data plottable set";
  return 0;
}

/*!
  Implements a selectTest specific to this plottable's point geometry.

  If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
  point to \a pos.

  \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
*/
double QCPErrorBars::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  if (!mDataPlottable) return -1;

  if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
    return -1;
  if (!mKeyAxis || !mValueAxis)
    return -1;

  if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()))
  {
    QCPErrorBarsDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
    double result = pointDistance(pos, closestDataPoint);
    if (details)
    {
      int pointIndex = int(closestDataPoint-mDataContainer->constBegin());
      details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
    }
    return result;
  } else
    return -1;
}

/* inherits documentation from base class */
void QCPErrorBars::draw(QCPPainter *painter)
{
  if (!mDataPlottable) return;
  if (!mKeyAxis || !mValueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
  if (mKeyAxis.data()->range().size() <= 0 || mDataContainer->isEmpty()) return;

  // if the sort key isn't the main key, we must check the visibility for each data point/error bar individually
  // (getVisibleDataBounds applies range restriction, but otherwise can only return full data range):
  bool checkPointVisibility = !mDataPlottable->interface1D()->sortKeyIsMainKey();

    // check data validity if flag set:
#ifdef QCUSTOMPLOT_CHECK_DATA
  QCPErrorBarsDataContainer::const_iterator it;
  for (it = mDataContainer->constBegin(); it != mDataContainer->constEnd(); ++it)
  {
    if (QCP::isInvalidData(it->errorMinus, it->errorPlus))
      qDebug() << Q_FUNC_INFO << "Data point at index" << it-mDataContainer->constBegin() << "invalid." << "Plottable name:" << name();
  }
#endif

  applyDefaultAntialiasingHint(painter);
  painter->setBrush(Qt::NoBrush);
  // loop over and draw segments of unselected/selected data:
  QList<QCPDataRange> selectedSegments, unselectedSegments, allSegments;
  getDataSegments(selectedSegments, unselectedSegments);
  allSegments << unselectedSegments << selectedSegments;
  QVector<QLineF> backbones, whiskers;
  for (int i=0; i<allSegments.size(); ++i)
  {
    QCPErrorBarsDataContainer::const_iterator begin, end;
    getVisibleDataBounds(begin, end, allSegments.at(i));
    if (begin == end)
      continue;

    bool isSelectedSegment = i >= unselectedSegments.size();
    if (isSelectedSegment && mSelectionDecorator)
      mSelectionDecorator->applyPen(painter);
    else
      painter->setPen(mPen);
    if (painter->pen().capStyle() == Qt::SquareCap)
    {
      QPen capFixPen(painter->pen());
      capFixPen.setCapStyle(Qt::FlatCap);
      painter->setPen(capFixPen);
    }
    backbones.clear();
    whiskers.clear();
    for (QCPErrorBarsDataContainer::const_iterator it=begin; it!=end; ++it)
    {
      if (!checkPointVisibility || errorBarVisible(int(it-mDataContainer->constBegin())))
        getErrorBarLines(it, backbones, whiskers);
    }
    painter->drawLines(backbones);
    painter->drawLines(whiskers);
  }

  // draw other selection decoration that isn't just line/scatter pens and brushes:
  if (mSelectionDecorator)
    mSelectionDecorator->drawDecoration(painter, selection());
}

/* inherits documentation from base class */
void QCPErrorBars::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
{
  applyDefaultAntialiasingHint(painter);
  painter->setPen(mPen);
  if (mErrorType == etValueError && mValueAxis && mValueAxis->orientation() == Qt::Vertical)
  {
    painter->drawLine(QLineF(rect.center().x(), rect.top()+2, rect.center().x(), rect.bottom()-1));
    painter->drawLine(QLineF(rect.center().x()-4, rect.top()+2, rect.center().x()+4, rect.top()+2));
    painter->drawLine(QLineF(rect.center().x()-4, rect.bottom()-1, rect.center().x()+4, rect.bottom()-1));
  } else
  {
    painter->drawLine(QLineF(rect.left()+2, rect.center().y(), rect.right()-2, rect.center().y()));
    painter->drawLine(QLineF(rect.left()+2, rect.center().y()-4, rect.left()+2, rect.center().y()+4));
    painter->drawLine(QLineF(rect.right()-2, rect.center().y()-4, rect.right()-2, rect.center().y()+4));
  }
}

/* inherits documentation from base class */
QCPRange QCPErrorBars::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const
{
  if (!mDataPlottable)
  {
    foundRange = false;
    return QCPRange();
  }

  QCPRange range;
  bool haveLower = false;
  bool haveUpper = false;
  QCPErrorBarsDataContainer::const_iterator it;
  for (it = mDataContainer->constBegin(); it != mDataContainer->constEnd(); ++it)
  {
    if (mErrorType == etValueError)
    {
      // error bar doesn't extend in key dimension (except whisker but we ignore that here), so only use data point center
      const double current = mDataPlottable->interface1D()->dataMainKey(int(it-mDataContainer->constBegin()));
      if (qIsNaN(current)) continue;
      if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
      {
        if (current < range.lower || !haveLower)
        {
          range.lower = current;
          haveLower = true;
        }
        if (current > range.upper || !haveUpper)
        {
          range.upper = current;
          haveUpper = true;
        }
      }
    } else // mErrorType == etKeyError
    {
      const double dataKey = mDataPlottable->interface1D()->dataMainKey(int(it-mDataContainer->constBegin()));
      if (qIsNaN(dataKey)) continue;
      // plus error:
      double current = dataKey + (qIsNaN(it->errorPlus) ? 0 : it->errorPlus);
      if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
      {
        if (current > range.upper || !haveUpper)
        {
          range.upper = current;
          haveUpper = true;
        }
      }
      // minus error:
      current = dataKey - (qIsNaN(it->errorMinus) ? 0 : it->errorMinus);
      if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
      {
        if (current < range.lower || !haveLower)
        {
          range.lower = current;
          haveLower = true;
        }
      }
    }
  }

  if (haveUpper && !haveLower)
  {
    range.lower = range.upper;
    haveLower = true;
  } else if (haveLower && !haveUpper)
  {
    range.upper = range.lower;
    haveUpper = true;
  }

  foundRange = haveLower && haveUpper;
  return range;
}

/* inherits documentation from base class */
QCPRange QCPErrorBars::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const
{
  if (!mDataPlottable)
  {
    foundRange = false;
    return QCPRange();
  }

  QCPRange range;
  const bool restrictKeyRange = inKeyRange != QCPRange();
  bool haveLower = false;
  bool haveUpper = false;
  QCPErrorBarsDataContainer::const_iterator itBegin = mDataContainer->constBegin();
  QCPErrorBarsDataContainer::const_iterator itEnd = mDataContainer->constEnd();
  if (mDataPlottable->interface1D()->sortKeyIsMainKey() && restrictKeyRange)
  {
    itBegin = mDataContainer->constBegin()+findBegin(inKeyRange.lower);
    itEnd = mDataContainer->constBegin()+findEnd(inKeyRange.upper);
  }
  for (QCPErrorBarsDataContainer::const_iterator it = itBegin; it != itEnd; ++it)
  {
    if (restrictKeyRange)
    {
      const double dataKey = mDataPlottable->interface1D()->dataMainKey(int(it-mDataContainer->constBegin()));
      if (dataKey < inKeyRange.lower || dataKey > inKeyRange.upper)
        continue;
    }
    if (mErrorType == etValueError)
    {
      const double dataValue = mDataPlottable->interface1D()->dataMainValue(int(it-mDataContainer->constBegin()));
      if (qIsNaN(dataValue)) continue;
      // plus error:
      double current = dataValue + (qIsNaN(it->errorPlus) ? 0 : it->errorPlus);
      if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
      {
        if (current > range.upper || !haveUpper)
        {
          range.upper = current;
          haveUpper = true;
        }
      }
      // minus error:
      current = dataValue - (qIsNaN(it->errorMinus) ? 0 : it->errorMinus);
      if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
      {
        if (current < range.lower || !haveLower)
        {
          range.lower = current;
          haveLower = true;
        }
      }
    } else // mErrorType == etKeyError
    {
      // error bar doesn't extend in value dimension (except whisker but we ignore that here), so only use data point center
      const double current = mDataPlottable->interface1D()->dataMainValue(int(it-mDataContainer->constBegin()));
      if (qIsNaN(current)) continue;
      if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
      {
        if (current < range.lower || !haveLower)
        {
          range.lower = current;
          haveLower = true;
        }
        if (current > range.upper || !haveUpper)
        {
          range.upper = current;
          haveUpper = true;
        }
      }
    }
  }

  if (haveUpper && !haveLower)
  {
    range.lower = range.upper;
    haveLower = true;
  } else if (haveLower && !haveUpper)
  {
    range.upper = range.lower;
    haveUpper = true;
  }

  foundRange = haveLower && haveUpper;
  return range;
}

/*! \internal

  Calculates the lines that make up the error bar belonging to the data point \a it.

  The resulting lines are added to \a backbones and \a whiskers. The vectors are not cleared, so
  calling this method with different \a it but the same \a backbones and \a whiskers allows to
  accumulate lines for multiple data points.

  This method assumes that \a it is a valid iterator within the bounds of this \ref QCPErrorBars
  instance and within the bounds of the associated data plottable.
*/
void QCPErrorBars::getErrorBarLines(QCPErrorBarsDataContainer::const_iterator it, QVector<QLineF> &backbones, QVector<QLineF> &whiskers) const
{
  if (!mDataPlottable) return;

  int index = int(it-mDataContainer->constBegin());
  QPointF centerPixel = mDataPlottable->interface1D()->dataPixelPosition(index);
  if (qIsNaN(centerPixel.x()) || qIsNaN(centerPixel.y()))
    return;
  QCPAxis *errorAxis = mErrorType == etValueError ? mValueAxis.data() : mKeyAxis.data();
  QCPAxis *orthoAxis = mErrorType == etValueError ? mKeyAxis.data() : mValueAxis.data();
  const double centerErrorAxisPixel = errorAxis->orientation() == Qt::Horizontal ? centerPixel.x() : centerPixel.y();
  const double centerOrthoAxisPixel = orthoAxis->orientation() == Qt::Horizontal ? centerPixel.x() : centerPixel.y();
  const double centerErrorAxisCoord = errorAxis->pixelToCoord(centerErrorAxisPixel); // depending on plottable, this might be different from just mDataPlottable->interface1D()->dataMainKey/Value
  const double symbolGap = mSymbolGap*0.5*errorAxis->pixelOrientation();
  // plus error:
  double errorStart, errorEnd;
  if (!qIsNaN(it->errorPlus))
  {
    errorStart = centerErrorAxisPixel+symbolGap;
    errorEnd = errorAxis->coordToPixel(centerErrorAxisCoord+it->errorPlus);
    if (errorAxis->orientation() == Qt::Vertical)
    {
      if ((errorStart > errorEnd) != errorAxis->rangeReversed())
        backbones.append(QLineF(centerOrthoAxisPixel, errorStart, centerOrthoAxisPixel, errorEnd));
      whiskers.append(QLineF(centerOrthoAxisPixel-mWhiskerWidth*0.5, errorEnd, centerOrthoAxisPixel+mWhiskerWidth*0.5, errorEnd));
    } else
    {
      if ((errorStart < errorEnd) != errorAxis->rangeReversed())
        backbones.append(QLineF(errorStart, centerOrthoAxisPixel, errorEnd, centerOrthoAxisPixel));
      whiskers.append(QLineF(errorEnd, centerOrthoAxisPixel-mWhiskerWidth*0.5, errorEnd, centerOrthoAxisPixel+mWhiskerWidth*0.5));
    }
  }
  // minus error:
  if (!qIsNaN(it->errorMinus))
  {
    errorStart = centerErrorAxisPixel-symbolGap;
    errorEnd = errorAxis->coordToPixel(centerErrorAxisCoord-it->errorMinus);
    if (errorAxis->orientation() == Qt::Vertical)
    {
      if ((errorStart < errorEnd) != errorAxis->rangeReversed())
        backbones.append(QLineF(centerOrthoAxisPixel, errorStart, centerOrthoAxisPixel, errorEnd));
      whiskers.append(QLineF(centerOrthoAxisPixel-mWhiskerWidth*0.5, errorEnd, centerOrthoAxisPixel+mWhiskerWidth*0.5, errorEnd));
    } else
    {
      if ((errorStart > errorEnd) != errorAxis->rangeReversed())
        backbones.append(QLineF(errorStart, centerOrthoAxisPixel, errorEnd, centerOrthoAxisPixel));
      whiskers.append(QLineF(errorEnd, centerOrthoAxisPixel-mWhiskerWidth*0.5, errorEnd, centerOrthoAxisPixel+mWhiskerWidth*0.5));
    }
  }
}

/*! \internal

  This method outputs the currently visible data range via \a begin and \a end. The returned range
  will also never exceed \a rangeRestriction.

  Since error bars with type \ref etKeyError may extend to arbitrarily positive and negative key
  coordinates relative to their data point key, this method checks all outer error bars whether
  they truly don't reach into the visible portion of the axis rect, by calling \ref
  errorBarVisible. On the other hand error bars with type \ref etValueError that are associated
  with data plottables whose sort key is equal to the main key (see \ref qcpdatacontainer-datatype
  "QCPDataContainer DataType") can be handled very efficiently by finding the visible range of
  error bars through binary search (\ref QCPPlottableInterface1D::findBegin and \ref
  QCPPlottableInterface1D::findEnd).

  If the plottable's sort key is not equal to the main key, this method returns the full data
  range, only restricted by \a rangeRestriction. Drawing optimization then has to be done on a
  point-by-point basis in the \ref draw method.
*/
void QCPErrorBars::getVisibleDataBounds(QCPErrorBarsDataContainer::const_iterator &begin, QCPErrorBarsDataContainer::const_iterator &end, const QCPDataRange &rangeRestriction) const
{
  QCPAxis *keyAxis = mKeyAxis.data();
  QCPAxis *valueAxis = mValueAxis.data();
  if (!keyAxis || !valueAxis)
  {
    qDebug() << Q_FUNC_INFO << "invalid key or value axis";
    end = mDataContainer->constEnd();
    begin = end;
    return;
  }
  if (!mDataPlottable || rangeRestriction.isEmpty())
  {
    end = mDataContainer->constEnd();
    begin = end;
    return;
  }
  if (!mDataPlottable->interface1D()->sortKeyIsMainKey())
  {
    // if the sort key isn't the main key, it's not possible to find a contiguous range of visible
    // data points, so this method then only applies the range restriction and otherwise returns
    // the full data range. Visibility checks must be done on a per-datapoin-basis during drawing
    QCPDataRange dataRange(0, mDataContainer->size());
    dataRange = dataRange.bounded(rangeRestriction);
    begin = mDataContainer->constBegin()+dataRange.begin();
    end = mDataContainer->constBegin()+dataRange.end();
    return;
  }

  // get visible data range via interface from data plottable, and then restrict to available error data points:
  const int n = qMin(mDataContainer->size(), mDataPlottable->interface1D()->dataCount());
  int beginIndex = mDataPlottable->interface1D()->findBegin(keyAxis->range().lower);
  int endIndex = mDataPlottable->interface1D()->findEnd(keyAxis->range().upper);
  int i = beginIndex;
  while (i > 0 && i < n && i > rangeRestriction.begin())
  {
    if (errorBarVisible(i))
      beginIndex = i;
    --i;
  }
  i = endIndex;
  while (i >= 0 && i < n && i < rangeRestriction.end())
  {
    if (errorBarVisible(i))
      endIndex = i+1;
    ++i;
  }
  QCPDataRange dataRange(beginIndex, endIndex);
  dataRange = dataRange.bounded(rangeRestriction.bounded(QCPDataRange(0, mDataContainer->size())));
  begin = mDataContainer->constBegin()+dataRange.begin();
  end = mDataContainer->constBegin()+dataRange.end();
}

/*! \internal

  Calculates the minimum distance in pixels the error bars' representation has from the given \a
  pixelPoint. This is used to determine whether the error bar was clicked or not, e.g. in \ref
  selectTest. The closest data point to \a pixelPoint is returned in \a closestData.
*/
double QCPErrorBars::pointDistance(const QPointF &pixelPoint, QCPErrorBarsDataContainer::const_iterator &closestData) const
{
  closestData = mDataContainer->constEnd();
  if (!mDataPlottable || mDataContainer->isEmpty())
    return -1.0;
  if (!mKeyAxis || !mValueAxis)
  {
    qDebug() << Q_FUNC_INFO << "invalid key or value axis";
    return -1.0;
  }

  QCPErrorBarsDataContainer::const_iterator begin, end;
  getVisibleDataBounds(begin, end, QCPDataRange(0, dataCount()));

  // calculate minimum distances to error backbones (whiskers are ignored for speed) and find closestData iterator:
  double minDistSqr = (std::numeric_limits<double>::max)();
  QVector<QLineF> backbones, whiskers;
  for (QCPErrorBarsDataContainer::const_iterator it=begin; it!=end; ++it)
  {
    getErrorBarLines(it, backbones, whiskers);
    for (int i=0; i<backbones.size(); ++i)
    {
      const double currentDistSqr = QCPVector2D(pixelPoint).distanceSquaredToLine(backbones.at(i));
      if (currentDistSqr < minDistSqr)
      {
        minDistSqr = currentDistSqr;
        closestData = it;
      }
    }
  }
  return qSqrt(minDistSqr);
}

/*! \internal

  \note This method is identical to \ref QCPAbstractPlottable1D::getDataSegments but needs to be
  reproduced here since the \ref QCPErrorBars plottable, as a special case that doesn't have its
  own key/value data coordinates, doesn't derive from \ref QCPAbstractPlottable1D. See the
  documentation there for details.
*/
void QCPErrorBars::getDataSegments(QList<QCPDataRange> &selectedSegments, QList<QCPDataRange> &unselectedSegments) const
{
  selectedSegments.clear();
  unselectedSegments.clear();
  if (mSelectable == QCP::stWhole) // stWhole selection type draws the entire plottable with selected style if mSelection isn't empty
  {
    if (selected())
      selectedSegments << QCPDataRange(0, dataCount());
    else
      unselectedSegments << QCPDataRange(0, dataCount());
  } else
  {
    QCPDataSelection sel(selection());
    sel.simplify();
    selectedSegments = sel.dataRanges();
    unselectedSegments = sel.inverse(QCPDataRange(0, dataCount())).dataRanges();
  }
}

/*! \internal

  Returns whether the error bar at the specified \a index is visible within the current key axis
  range.

  This method assumes for performance reasons without checking that the key axis, the value axis,
  and the data plottable (\ref setDataPlottable) are not zero and that \a index is within valid
  bounds of this \ref QCPErrorBars instance and the bounds of the data plottable.
*/
bool QCPErrorBars::errorBarVisible(int index) const
{
  QPointF centerPixel = mDataPlottable->interface1D()->dataPixelPosition(index);
  const double centerKeyPixel = mKeyAxis->orientation() == Qt::Horizontal ? centerPixel.x() : centerPixel.y();
  if (qIsNaN(centerKeyPixel))
    return false;

  double keyMin, keyMax;
  if (mErrorType == etKeyError)
  {
    const double centerKey = mKeyAxis->pixelToCoord(centerKeyPixel);
    const double errorPlus = mDataContainer->at(index).errorPlus;
    const double errorMinus = mDataContainer->at(index).errorMinus;
    keyMax = centerKey+(qIsNaN(errorPlus) ? 0 : errorPlus);
    keyMin = centerKey-(qIsNaN(errorMinus) ? 0 : errorMinus);
  } else // mErrorType == etValueError
  {
    keyMax = mKeyAxis->pixelToCoord(centerKeyPixel+mWhiskerWidth*0.5*mKeyAxis->pixelOrientation());
    keyMin = mKeyAxis->pixelToCoord(centerKeyPixel-mWhiskerWidth*0.5*mKeyAxis->pixelOrientation());
  }
  return ((keyMax > mKeyAxis->range().lower) && (keyMin < mKeyAxis->range().upper));
}

/*! \internal

  Returns whether \a line intersects (or is contained in) \a pixelRect.

  \a line is assumed to be either perfectly horizontal or perfectly vertical, as is the case for
  error bar lines.
*/
bool QCPErrorBars::rectIntersectsLine(const QRectF &pixelRect, const QLineF &line) const
{
  if (pixelRect.left() > line.x1() && pixelRect.left() > line.x2())
    return false;
  else if (pixelRect.right() < line.x1() && pixelRect.right() < line.x2())
    return false;
  else if (pixelRect.top() > line.y1() && pixelRect.top() > line.y2())
    return false;
  else if (pixelRect.bottom() < line.y1() && pixelRect.bottom() < line.y2())
    return false;
  else
    return true;
}
/* end of 'src/plottables/plottable-errorbar.cpp' */


/* including file 'src/items/item-straightline.cpp', size 7592               */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemStraightLine
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemStraightLine
  \brief A straight line that spans infinitely in both directions

  \image html QCPItemStraightLine.png "Straight line example. Blue dotted circles are anchors, solid blue discs are positions."

  It has two positions, \a point1 and \a point2, which define the straight line.
*/

/*!
  Creates a straight line item and sets default values.

  The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
  ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
*/
QCPItemStraightLine::QCPItemStraightLine(QCustomPlot *parentPlot) :
  QCPAbstractItem(parentPlot),
  point1(createPosition(QLatin1String("point1"))),
  point2(createPosition(QLatin1String("point2")))
{
  point1->setCoords(0, 0);
  point2->setCoords(1, 1);

  setPen(QPen(Qt::black));
  setSelectedPen(QPen(Qt::blue,2));
}

QCPItemStraightLine::~QCPItemStraightLine()
{
}

/*!
  Sets the pen that will be used to draw the line

  \see setSelectedPen
*/
void QCPItemStraightLine::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen that will be used to draw the line when selected

  \see setPen, setSelected
*/
void QCPItemStraightLine::setSelectedPen(const QPen &pen)
{
  mSelectedPen = pen;
}

/* inherits documentation from base class */
double QCPItemStraightLine::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  return QCPVector2D(pos).distanceToStraightLine(point1->pixelPosition(), point2->pixelPosition()-point1->pixelPosition());
}

/* inherits documentation from base class */
void QCPItemStraightLine::draw(QCPPainter *painter)
{
  QCPVector2D start(point1->pixelPosition());
  QCPVector2D end(point2->pixelPosition());
  // get visible segment of straight line inside clipRect:
  double clipPad = mainPen().widthF();
  QLineF line = getRectClippedStraightLine(start, end-start, clipRect().adjusted(-clipPad, -clipPad, clipPad, clipPad));
  // paint visible segment, if existent:
  if (!line.isNull())
  {
    painter->setPen(mainPen());
    painter->drawLine(line);
  }
}

/*! \internal

  Returns the section of the straight line defined by \a base and direction vector \a
  vec, that is visible in the specified \a rect.

  This is a helper function for \ref draw.
*/
QLineF QCPItemStraightLine::getRectClippedStraightLine(const QCPVector2D &base, const QCPVector2D &vec, const QRect &rect) const
{
  double bx, by;
  double gamma;
  QLineF result;
  if (vec.x() == 0 && vec.y() == 0)
    return result;
  if (qFuzzyIsNull(vec.x())) // line is vertical
  {
    // check top of rect:
    bx = rect.left();
    by = rect.top();
    gamma = base.x()-bx + (by-base.y())*vec.x()/vec.y();
    if (gamma >= 0 && gamma <= rect.width())
      result.setLine(bx+gamma, rect.top(), bx+gamma, rect.bottom()); // no need to check bottom because we know line is vertical
  } else if (qFuzzyIsNull(vec.y())) // line is horizontal
  {
    // check left of rect:
    bx = rect.left();
    by = rect.top();
    gamma = base.y()-by + (bx-base.x())*vec.y()/vec.x();
    if (gamma >= 0 && gamma <= rect.height())
      result.setLine(rect.left(), by+gamma, rect.right(), by+gamma); // no need to check right because we know line is horizontal
  } else // line is skewed
  {
    QList<QCPVector2D> pointVectors;
    // check top of rect:
    bx = rect.left();
    by = rect.top();
    gamma = base.x()-bx + (by-base.y())*vec.x()/vec.y();
    if (gamma >= 0 && gamma <= rect.width())
      pointVectors.append(QCPVector2D(bx+gamma, by));
    // check bottom of rect:
    bx = rect.left();
    by = rect.bottom();
    gamma = base.x()-bx + (by-base.y())*vec.x()/vec.y();
    if (gamma >= 0 && gamma <= rect.width())
      pointVectors.append(QCPVector2D(bx+gamma, by));
    // check left of rect:
    bx = rect.left();
    by = rect.top();
    gamma = base.y()-by + (bx-base.x())*vec.y()/vec.x();
    if (gamma >= 0 && gamma <= rect.height())
      pointVectors.append(QCPVector2D(bx, by+gamma));
    // check right of rect:
    bx = rect.right();
    by = rect.top();
    gamma = base.y()-by + (bx-base.x())*vec.y()/vec.x();
    if (gamma >= 0 && gamma <= rect.height())
      pointVectors.append(QCPVector2D(bx, by+gamma));

    // evaluate points:
    if (pointVectors.size() == 2)
    {
      result.setPoints(pointVectors.at(0).toPointF(), pointVectors.at(1).toPointF());
    } else if (pointVectors.size() > 2)
    {
      // line probably goes through corner of rect, and we got two points there. single out the point pair with greatest distance:
      double distSqrMax = 0;
      QCPVector2D pv1, pv2;
      for (int i=0; i<pointVectors.size()-1; ++i)
      {
        for (int k=i+1; k<pointVectors.size(); ++k)
        {
          double distSqr = (pointVectors.at(i)-pointVectors.at(k)).lengthSquared();
          if (distSqr > distSqrMax)
          {
            pv1 = pointVectors.at(i);
            pv2 = pointVectors.at(k);
            distSqrMax = distSqr;
          }
        }
      }
      result.setPoints(pv1.toPointF(), pv2.toPointF());
    }
  }
  return result;
}

/*! \internal

  Returns the pen that should be used for drawing lines. Returns mPen when the
  item is not selected and mSelectedPen when it is.
*/
QPen QCPItemStraightLine::mainPen() const
{
  return mSelected ? mSelectedPen : mPen;
}
/* end of 'src/items/item-straightline.cpp' */


/* including file 'src/items/item-line.cpp', size 8498                       */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemLine
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemLine
  \brief A line from one point to another

  \image html QCPItemLine.png "Line example. Blue dotted circles are anchors, solid blue discs are positions."

  It has two positions, \a start and \a end, which define the end points of the line.

  With \ref setHead and \ref setTail you may set different line ending styles, e.g. to create an arrow.
*/

/*!
  Creates a line item and sets default values.

  The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
  ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
*/
QCPItemLine::QCPItemLine(QCustomPlot *parentPlot) :
  QCPAbstractItem(parentPlot),
  start(createPosition(QLatin1String("start"))),
  end(createPosition(QLatin1String("end")))
{
  start->setCoords(0, 0);
  end->setCoords(1, 1);

  setPen(QPen(Qt::black));
  setSelectedPen(QPen(Qt::blue,2));
}

QCPItemLine::~QCPItemLine()
{
}

/*!
  Sets the pen that will be used to draw the line

  \see setSelectedPen
*/
void QCPItemLine::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen that will be used to draw the line when selected

  \see setPen, setSelected
*/
void QCPItemLine::setSelectedPen(const QPen &pen)
{
  mSelectedPen = pen;
}

/*!
  Sets the line ending style of the head. The head corresponds to the \a end position.

  Note that due to the overloaded QCPLineEnding constructor, you may directly specify
  a QCPLineEnding::EndingStyle here, e.g. \code setHead(QCPLineEnding::esSpikeArrow) \endcode

  \see setTail
*/
void QCPItemLine::setHead(const QCPLineEnding &head)
{
  mHead = head;
}

/*!
  Sets the line ending style of the tail. The tail corresponds to the \a start position.

  Note that due to the overloaded QCPLineEnding constructor, you may directly specify
  a QCPLineEnding::EndingStyle here, e.g. \code setTail(QCPLineEnding::esSpikeArrow) \endcode

  \see setHead
*/
void QCPItemLine::setTail(const QCPLineEnding &tail)
{
  mTail = tail;
}

/* inherits documentation from base class */
double QCPItemLine::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  return qSqrt(QCPVector2D(pos).distanceSquaredToLine(start->pixelPosition(), end->pixelPosition()));
}

/* inherits documentation from base class */
void QCPItemLine::draw(QCPPainter *painter)
{
  QCPVector2D startVec(start->pixelPosition());
  QCPVector2D endVec(end->pixelPosition());
  if (qFuzzyIsNull((startVec-endVec).lengthSquared()))
    return;
  // get visible segment of straight line inside clipRect:
  double clipPad = qMax(mHead.boundingDistance(), mTail.boundingDistance());
  clipPad = qMax(clipPad, (double)mainPen().widthF());
  QLineF line = getRectClippedLine(startVec, endVec, clipRect().adjusted(-clipPad, -clipPad, clipPad, clipPad));
  // paint visible segment, if existent:
  if (!line.isNull())
  {
    painter->setPen(mainPen());
    painter->drawLine(line);
    painter->setBrush(Qt::SolidPattern);
    if (mTail.style() != QCPLineEnding::esNone)
      mTail.draw(painter, startVec, startVec-endVec);
    if (mHead.style() != QCPLineEnding::esNone)
      mHead.draw(painter, endVec, endVec-startVec);
  }
}

/*! \internal

  Returns the section of the line defined by \a start and \a end, that is visible in the specified
  \a rect.

  This is a helper function for \ref draw.
*/
QLineF QCPItemLine::getRectClippedLine(const QCPVector2D &start, const QCPVector2D &end, const QRect &rect) const
{
  bool containsStart = rect.contains(start.x(), start.y());
  bool containsEnd = rect.contains(end.x(), end.y());
  if (containsStart && containsEnd)
    return QLineF(start.toPointF(), end.toPointF());

  QCPVector2D base = start;
  QCPVector2D vec = end-start;
  double bx, by;
  double gamma, mu;
  QLineF result;
  QList<QCPVector2D> pointVectors;

  if (!qFuzzyIsNull(vec.y())) // line is not horizontal
  {
    // check top of rect:
    bx = rect.left();
    by = rect.top();
    mu = (by-base.y())/vec.y();
    if (mu >= 0 && mu <= 1)
    {
      gamma = base.x()-bx + mu*vec.x();
      if (gamma >= 0 && gamma <= rect.width())
        pointVectors.append(QCPVector2D(bx+gamma, by));
    }
    // check bottom of rect:
    bx = rect.left();
    by = rect.bottom();
    mu = (by-base.y())/vec.y();
    if (mu >= 0 && mu <= 1)
    {
      gamma = base.x()-bx + mu*vec.x();
      if (gamma >= 0 && gamma <= rect.width())
        pointVectors.append(QCPVector2D(bx+gamma, by));
    }
  }
  if (!qFuzzyIsNull(vec.x())) // line is not vertical
  {
    // check left of rect:
    bx = rect.left();
    by = rect.top();
    mu = (bx-base.x())/vec.x();
    if (mu >= 0 && mu <= 1)
    {
      gamma = base.y()-by + mu*vec.y();
      if (gamma >= 0 && gamma <= rect.height())
        pointVectors.append(QCPVector2D(bx, by+gamma));
    }
    // check right of rect:
    bx = rect.right();
    by = rect.top();
    mu = (bx-base.x())/vec.x();
    if (mu >= 0 && mu <= 1)
    {
      gamma = base.y()-by + mu*vec.y();
      if (gamma >= 0 && gamma <= rect.height())
        pointVectors.append(QCPVector2D(bx, by+gamma));
    }
  }

  if (containsStart)
    pointVectors.append(start);
  if (containsEnd)
    pointVectors.append(end);

  // evaluate points:
  if (pointVectors.size() == 2)
  {
    result.setPoints(pointVectors.at(0).toPointF(), pointVectors.at(1).toPointF());
  } else if (pointVectors.size() > 2)
  {
    // line probably goes through corner of rect, and we got two points there. single out the point pair with greatest distance:
    double distSqrMax = 0;
    QCPVector2D pv1, pv2;
    for (int i=0; i<pointVectors.size()-1; ++i)
    {
      for (int k=i+1; k<pointVectors.size(); ++k)
      {
        double distSqr = (pointVectors.at(i)-pointVectors.at(k)).lengthSquared();
        if (distSqr > distSqrMax)
        {
          pv1 = pointVectors.at(i);
          pv2 = pointVectors.at(k);
          distSqrMax = distSqr;
        }
      }
    }
    result.setPoints(pv1.toPointF(), pv2.toPointF());
  }
  return result;
}

/*! \internal

  Returns the pen that should be used for drawing lines. Returns mPen when the
  item is not selected and mSelectedPen when it is.
*/
QPen QCPItemLine::mainPen() const
{
  return mSelected ? mSelectedPen : mPen;
}
/* end of 'src/items/item-line.cpp' */


/* including file 'src/items/item-curve.cpp', size 7248                      */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemCurve
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemCurve
  \brief A curved line from one point to another

  \image html QCPItemCurve.png "Curve example. Blue dotted circles are anchors, solid blue discs are positions."

  It has four positions, \a start and \a end, which define the end points of the line, and two
  control points which define the direction the line exits from the start and the direction from
  which it approaches the end: \a startDir and \a endDir.

  With \ref setHead and \ref setTail you may set different line ending styles, e.g. to create an
  arrow.

  Often it is desirable for the control points to stay at fixed relative positions to the start/end
  point. This can be achieved by setting the parent anchor e.g. of \a startDir simply to \a start,
  and then specify the desired pixel offset with QCPItemPosition::setCoords on \a startDir.
*/

/*!
  Creates a curve item and sets default values.

  The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
  ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
*/
QCPItemCurve::QCPItemCurve(QCustomPlot *parentPlot) :
  QCPAbstractItem(parentPlot),
  start(createPosition(QLatin1String("start"))),
  startDir(createPosition(QLatin1String("startDir"))),
  endDir(createPosition(QLatin1String("endDir"))),
  end(createPosition(QLatin1String("end")))
{
  start->setCoords(0, 0);
  startDir->setCoords(0.5, 0);
  endDir->setCoords(0, 0.5);
  end->setCoords(1, 1);

  setPen(QPen(Qt::black));
  setSelectedPen(QPen(Qt::blue,2));
}

QCPItemCurve::~QCPItemCurve()
{
}

/*!
  Sets the pen that will be used to draw the line

  \see setSelectedPen
*/
void QCPItemCurve::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen that will be used to draw the line when selected

  \see setPen, setSelected
*/
void QCPItemCurve::setSelectedPen(const QPen &pen)
{
  mSelectedPen = pen;
}

/*!
  Sets the line ending style of the head. The head corresponds to the \a end position.

  Note that due to the overloaded QCPLineEnding constructor, you may directly specify
  a QCPLineEnding::EndingStyle here, e.g. \code setHead(QCPLineEnding::esSpikeArrow) \endcode

  \see setTail
*/
void QCPItemCurve::setHead(const QCPLineEnding &head)
{
  mHead = head;
}

/*!
  Sets the line ending style of the tail. The tail corresponds to the \a start position.

  Note that due to the overloaded QCPLineEnding constructor, you may directly specify
  a QCPLineEnding::EndingStyle here, e.g. \code setTail(QCPLineEnding::esSpikeArrow) \endcode

  \see setHead
*/
void QCPItemCurve::setTail(const QCPLineEnding &tail)
{
  mTail = tail;
}

/* inherits documentation from base class */
double QCPItemCurve::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  QPointF startVec(start->pixelPosition());
  QPointF startDirVec(startDir->pixelPosition());
  QPointF endDirVec(endDir->pixelPosition());
  QPointF endVec(end->pixelPosition());

  QPainterPath cubicPath(startVec);
  cubicPath.cubicTo(startDirVec, endDirVec, endVec);

  QList<QPolygonF> polygons = cubicPath.toSubpathPolygons();
  if (polygons.isEmpty())
    return -1;
  const QPolygonF polygon = polygons.first();
  QCPVector2D p(pos);
  double minDistSqr = (std::numeric_limits<double>::max)();
  for (int i=1; i<polygon.size(); ++i)
  {
    double distSqr = p.distanceSquaredToLine(polygon.at(i-1), polygon.at(i));
    if (distSqr < minDistSqr)
      minDistSqr = distSqr;
  }
  return qSqrt(minDistSqr);
}

/* inherits documentation from base class */
void QCPItemCurve::draw(QCPPainter *painter)
{
  QCPVector2D startVec(start->pixelPosition());
  QCPVector2D startDirVec(startDir->pixelPosition());
  QCPVector2D endDirVec(endDir->pixelPosition());
  QCPVector2D endVec(end->pixelPosition());
  if ((endVec-startVec).length() > 1e10) // too large curves cause crash
    return;

  QPainterPath cubicPath(startVec.toPointF());
  cubicPath.cubicTo(startDirVec.toPointF(), endDirVec.toPointF(), endVec.toPointF());

  // paint visible segment, if existent:
  QRect clip = clipRect().adjusted(-mainPen().widthF(), -mainPen().widthF(), mainPen().widthF(), mainPen().widthF());
  QRect cubicRect = cubicPath.controlPointRect().toRect();
  if (cubicRect.isEmpty()) // may happen when start and end exactly on same x or y position
    cubicRect.adjust(0, 0, 1, 1);
  if (clip.intersects(cubicRect))
  {
    painter->setPen(mainPen());
    painter->drawPath(cubicPath);
    painter->setBrush(Qt::SolidPattern);
    if (mTail.style() != QCPLineEnding::esNone)
      mTail.draw(painter, startVec, M_PI-cubicPath.angleAtPercent(0)/180.0*M_PI);
    if (mHead.style() != QCPLineEnding::esNone)
      mHead.draw(painter, endVec, -cubicPath.angleAtPercent(1)/180.0*M_PI);
  }
}

/*! \internal

  Returns the pen that should be used for drawing lines. Returns mPen when the
  item is not selected and mSelectedPen when it is.
*/
QPen QCPItemCurve::mainPen() const
{
  return mSelected ? mSelectedPen : mPen;
}
/* end of 'src/items/item-curve.cpp' */


/* including file 'src/items/item-rect.cpp', size 6479                       */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemRect
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemRect
  \brief A rectangle

  \image html QCPItemRect.png "Rectangle example. Blue dotted circles are anchors, solid blue discs are positions."

  It has two positions, \a topLeft and \a bottomRight, which define the rectangle.
*/

/*!
  Creates a rectangle item and sets default values.

  The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
  ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
*/
QCPItemRect::QCPItemRect(QCustomPlot *parentPlot) :
  QCPAbstractItem(parentPlot),
  topLeft(createPosition(QLatin1String("topLeft"))),
  bottomRight(createPosition(QLatin1String("bottomRight"))),
  top(createAnchor(QLatin1String("top"), aiTop)),
  topRight(createAnchor(QLatin1String("topRight"), aiTopRight)),
  right(createAnchor(QLatin1String("right"), aiRight)),
  bottom(createAnchor(QLatin1String("bottom"), aiBottom)),
  bottomLeft(createAnchor(QLatin1String("bottomLeft"), aiBottomLeft)),
  left(createAnchor(QLatin1String("left"), aiLeft))
{
  topLeft->setCoords(0, 1);
  bottomRight->setCoords(1, 0);

  setPen(QPen(Qt::black));
  setSelectedPen(QPen(Qt::blue,2));
  setBrush(Qt::NoBrush);
  setSelectedBrush(Qt::NoBrush);
}

QCPItemRect::~QCPItemRect()
{
}

/*!
  Sets the pen that will be used to draw the line of the rectangle

  \see setSelectedPen, setBrush
*/
void QCPItemRect::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen that will be used to draw the line of the rectangle when selected

  \see setPen, setSelected
*/
void QCPItemRect::setSelectedPen(const QPen &pen)
{
  mSelectedPen = pen;
}

/*!
  Sets the brush that will be used to fill the rectangle. To disable filling, set \a brush to
  Qt::NoBrush.

  \see setSelectedBrush, setPen
*/
void QCPItemRect::setBrush(const QBrush &brush)
{
  mBrush = brush;
}

/*!
  Sets the brush that will be used to fill the rectangle when selected. To disable filling, set \a
  brush to Qt::NoBrush.

  \see setBrush
*/
void QCPItemRect::setSelectedBrush(const QBrush &brush)
{
  mSelectedBrush = brush;
}

/* inherits documentation from base class */
double QCPItemRect::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  QRectF rect = QRectF(topLeft->pixelPosition(), bottomRight->pixelPosition()).normalized();
  bool filledRect = mBrush.style() != Qt::NoBrush && mBrush.color().alpha() != 0;
  return rectDistance(rect, pos, filledRect);
}

/* inherits documentation from base class */
void QCPItemRect::draw(QCPPainter *painter)
{
  QPointF p1 = topLeft->pixelPosition();
  QPointF p2 = bottomRight->pixelPosition();
  if (p1.toPoint() == p2.toPoint())
    return;
  QRectF rect = QRectF(p1, p2).normalized();
  double clipPad = mainPen().widthF();
  QRectF boundingRect = rect.adjusted(-clipPad, -clipPad, clipPad, clipPad);
  if (boundingRect.intersects(clipRect())) // only draw if bounding rect of rect item is visible in cliprect
  {
    painter->setPen(mainPen());
    painter->setBrush(mainBrush());
    painter->drawRect(rect);
  }
}

/* inherits documentation from base class */
QPointF QCPItemRect::anchorPixelPosition(int anchorId) const
{
  QRectF rect = QRectF(topLeft->pixelPosition(), bottomRight->pixelPosition());
  switch (anchorId)
  {
    case aiTop:         return (rect.topLeft()+rect.topRight())*0.5;
    case aiTopRight:    return rect.topRight();
    case aiRight:       return (rect.topRight()+rect.bottomRight())*0.5;
    case aiBottom:      return (rect.bottomLeft()+rect.bottomRight())*0.5;
    case aiBottomLeft:  return rect.bottomLeft();
    case aiLeft:        return (rect.topLeft()+rect.bottomLeft())*0.5;
  }

  qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
  return QPointF();
}

/*! \internal

  Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
  and mSelectedPen when it is.
*/
QPen QCPItemRect::mainPen() const
{
  return mSelected ? mSelectedPen : mPen;
}

/*! \internal

  Returns the brush that should be used for drawing fills of the item. Returns mBrush when the item
  is not selected and mSelectedBrush when it is.
*/
QBrush QCPItemRect::mainBrush() const
{
  return mSelected ? mSelectedBrush : mBrush;
}
/* end of 'src/items/item-rect.cpp' */


/* including file 'src/items/item-text.cpp', size 13338                      */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemText
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemText
  \brief A text label

  \image html QCPItemText.png "Text example. Blue dotted circles are anchors, solid blue discs are positions."

  Its position is defined by the member \a position and the setting of \ref setPositionAlignment.
  The latter controls which part of the text rect shall be aligned with \a position.

  The text alignment itself (i.e. left, center, right) can be controlled with \ref
  setTextAlignment.

  The text may be rotated around the \a position point with \ref setRotation.
*/

/*!
  Creates a text item and sets default values.

  The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
  ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
*/
QCPItemText::QCPItemText(QCustomPlot *parentPlot) :
  QCPAbstractItem(parentPlot),
  position(createPosition(QLatin1String("position"))),
  topLeft(createAnchor(QLatin1String("topLeft"), aiTopLeft)),
  top(createAnchor(QLatin1String("top"), aiTop)),
  topRight(createAnchor(QLatin1String("topRight"), aiTopRight)),
  right(createAnchor(QLatin1String("right"), aiRight)),
  bottomRight(createAnchor(QLatin1String("bottomRight"), aiBottomRight)),
  bottom(createAnchor(QLatin1String("bottom"), aiBottom)),
  bottomLeft(createAnchor(QLatin1String("bottomLeft"), aiBottomLeft)),
  left(createAnchor(QLatin1String("left"), aiLeft)),
  mText(QLatin1String("text")),
  mPositionAlignment(Qt::AlignCenter),
  mTextAlignment(Qt::AlignTop|Qt::AlignHCenter),
  mRotation(0)
{
  position->setCoords(0, 0);

  setPen(Qt::NoPen);
  setSelectedPen(Qt::NoPen);
  setBrush(Qt::NoBrush);
  setSelectedBrush(Qt::NoBrush);
  setColor(Qt::black);
  setSelectedColor(Qt::blue);
}

QCPItemText::~QCPItemText()
{
}

/*!
  Sets the color of the text.
*/
void QCPItemText::setColor(const QColor &color)
{
  mColor = color;
}

/*!
  Sets the color of the text that will be used when the item is selected.
*/
void QCPItemText::setSelectedColor(const QColor &color)
{
  mSelectedColor = color;
}

/*!
  Sets the pen that will be used do draw a rectangular border around the text. To disable the
  border, set \a pen to Qt::NoPen.

  \see setSelectedPen, setBrush, setPadding
*/
void QCPItemText::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen that will be used do draw a rectangular border around the text, when the item is
  selected. To disable the border, set \a pen to Qt::NoPen.

  \see setPen
*/
void QCPItemText::setSelectedPen(const QPen &pen)
{
  mSelectedPen = pen;
}

/*!
  Sets the brush that will be used do fill the background of the text. To disable the
  background, set \a brush to Qt::NoBrush.

  \see setSelectedBrush, setPen, setPadding
*/
void QCPItemText::setBrush(const QBrush &brush)
{
  mBrush = brush;
}

/*!
  Sets the brush that will be used do fill the background of the text, when the item is selected. To disable the
  background, set \a brush to Qt::NoBrush.

  \see setBrush
*/
void QCPItemText::setSelectedBrush(const QBrush &brush)
{
  mSelectedBrush = brush;
}

/*!
  Sets the font of the text.

  \see setSelectedFont, setColor
*/
void QCPItemText::setFont(const QFont &font)
{
  mFont = font;
}

/*!
  Sets the font of the text that will be used when the item is selected.

  \see setFont
*/
void QCPItemText::setSelectedFont(const QFont &font)
{
  mSelectedFont = font;
}

/*!
  Sets the text that will be displayed. Multi-line texts are supported by inserting a line break
  character, e.g. '\n'.

  \see setFont, setColor, setTextAlignment
*/
void QCPItemText::setText(const QString &text)
{
  mText = text;
}

/*!
  Sets which point of the text rect shall be aligned with \a position.

  Examples:
  \li If \a alignment is <tt>Qt::AlignHCenter | Qt::AlignTop</tt>, the text will be positioned such
  that the top of the text rect will be horizontally centered on \a position.
  \li If \a alignment is <tt>Qt::AlignLeft | Qt::AlignBottom</tt>, \a position will indicate the
  bottom left corner of the text rect.

  If you want to control the alignment of (multi-lined) text within the text rect, use \ref
  setTextAlignment.
*/
void QCPItemText::setPositionAlignment(Qt::Alignment alignment)
{
  mPositionAlignment = alignment;
}

/*!
  Controls how (multi-lined) text is aligned inside the text rect (typically Qt::AlignLeft, Qt::AlignCenter or Qt::AlignRight).
*/
void QCPItemText::setTextAlignment(Qt::Alignment alignment)
{
  mTextAlignment = alignment;
}

/*!
  Sets the angle in degrees by which the text (and the text rectangle, if visible) will be rotated
  around \a position.
*/
void QCPItemText::setRotation(double degrees)
{
  mRotation = degrees;
}

/*!
  Sets the distance between the border of the text rectangle and the text. The appearance (and
  visibility) of the text rectangle can be controlled with \ref setPen and \ref setBrush.
*/
void QCPItemText::setPadding(const QMargins &padding)
{
  mPadding = padding;
}

/* inherits documentation from base class */
double QCPItemText::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  // The rect may be rotated, so we transform the actual clicked pos to the rotated
  // coordinate system, so we can use the normal rectDistance function for non-rotated rects:
  QPointF positionPixels(position->pixelPosition());
  QTransform inputTransform;
  inputTransform.translate(positionPixels.x(), positionPixels.y());
  inputTransform.rotate(-mRotation);
  inputTransform.translate(-positionPixels.x(), -positionPixels.y());
  QPointF rotatedPos = inputTransform.map(pos);
  QFontMetrics fontMetrics(mFont);
  QRect textRect = fontMetrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip|mTextAlignment, mText);
  QRect textBoxRect = textRect.adjusted(-mPadding.left(), -mPadding.top(), mPadding.right(), mPadding.bottom());
  QPointF textPos = getTextDrawPoint(positionPixels, textBoxRect, mPositionAlignment);
  textBoxRect.moveTopLeft(textPos.toPoint());

  return rectDistance(textBoxRect, rotatedPos, true);
}

/* inherits documentation from base class */
void QCPItemText::draw(QCPPainter *painter)
{
  QPointF pos(position->pixelPosition());
  QTransform transform = painter->transform();
  transform.translate(pos.x(), pos.y());
  if (!qFuzzyIsNull(mRotation))
    transform.rotate(mRotation);
  painter->setFont(mainFont());
  QRect textRect = painter->fontMetrics().boundingRect(0, 0, 0, 0, Qt::TextDontClip|mTextAlignment, mText);
  QRect textBoxRect = textRect.adjusted(-mPadding.left(), -mPadding.top(), mPadding.right(), mPadding.bottom());
  QPointF textPos = getTextDrawPoint(QPointF(0, 0), textBoxRect, mPositionAlignment); // 0, 0 because the transform does the translation
  textRect.moveTopLeft(textPos.toPoint()+QPoint(mPadding.left(), mPadding.top()));
  textBoxRect.moveTopLeft(textPos.toPoint());
  double clipPad = mainPen().widthF();
  QRect boundingRect = textBoxRect.adjusted(-clipPad, -clipPad, clipPad, clipPad);
  if (transform.mapRect(boundingRect).intersects(painter->transform().mapRect(clipRect())))
  {
    painter->setTransform(transform);
    if ((mainBrush().style() != Qt::NoBrush && mainBrush().color().alpha() != 0) ||
        (mainPen().style() != Qt::NoPen && mainPen().color().alpha() != 0))
    {
      painter->setPen(mainPen());
      painter->setBrush(mainBrush());
      painter->drawRect(textBoxRect);
    }
    painter->setBrush(Qt::NoBrush);
    painter->setPen(QPen(mainColor()));
    painter->drawText(textRect, Qt::TextDontClip|mTextAlignment, mText);
  }
}

/* inherits documentation from base class */
QPointF QCPItemText::anchorPixelPosition(int anchorId) const
{
  // get actual rect points (pretty much copied from draw function):
  QPointF pos(position->pixelPosition());
  QTransform transform;
  transform.translate(pos.x(), pos.y());
  if (!qFuzzyIsNull(mRotation))
    transform.rotate(mRotation);
  QFontMetrics fontMetrics(mainFont());
  QRect textRect = fontMetrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip|mTextAlignment, mText);
  QRectF textBoxRect = textRect.adjusted(-mPadding.left(), -mPadding.top(), mPadding.right(), mPadding.bottom());
  QPointF textPos = getTextDrawPoint(QPointF(0, 0), textBoxRect, mPositionAlignment); // 0, 0 because the transform does the translation
  textBoxRect.moveTopLeft(textPos.toPoint());
  QPolygonF rectPoly = transform.map(QPolygonF(textBoxRect));

  switch (anchorId)
  {
    case aiTopLeft:     return rectPoly.at(0);
    case aiTop:         return (rectPoly.at(0)+rectPoly.at(1))*0.5;
    case aiTopRight:    return rectPoly.at(1);
    case aiRight:       return (rectPoly.at(1)+rectPoly.at(2))*0.5;
    case aiBottomRight: return rectPoly.at(2);
    case aiBottom:      return (rectPoly.at(2)+rectPoly.at(3))*0.5;
    case aiBottomLeft:  return rectPoly.at(3);
    case aiLeft:        return (rectPoly.at(3)+rectPoly.at(0))*0.5;
  }

  qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
  return QPointF();
}

/*! \internal

  Returns the point that must be given to the QPainter::drawText function (which expects the top
  left point of the text rect), according to the position \a pos, the text bounding box \a rect and
  the requested \a positionAlignment.

  For example, if \a positionAlignment is <tt>Qt::AlignLeft | Qt::AlignBottom</tt> the returned point
  will be shifted upward by the height of \a rect, starting from \a pos. So if the text is finally
  drawn at that point, the lower left corner of the resulting text rect is at \a pos.
*/
QPointF QCPItemText::getTextDrawPoint(const QPointF &pos, const QRectF &rect, Qt::Alignment positionAlignment) const
{
  if (positionAlignment == 0 || positionAlignment == (Qt::AlignLeft|Qt::AlignTop))
    return pos;

  QPointF result = pos; // start at top left
  if (positionAlignment.testFlag(Qt::AlignHCenter))
    result.rx() -= rect.width()/2.0;
  else if (positionAlignment.testFlag(Qt::AlignRight))
    result.rx() -= rect.width();
  if (positionAlignment.testFlag(Qt::AlignVCenter))
    result.ry() -= rect.height()/2.0;
  else if (positionAlignment.testFlag(Qt::AlignBottom))
    result.ry() -= rect.height();
  return result;
}

/*! \internal

  Returns the font that should be used for drawing text. Returns mFont when the item is not selected
  and mSelectedFont when it is.
*/
QFont QCPItemText::mainFont() const
{
  return mSelected ? mSelectedFont : mFont;
}

/*! \internal

  Returns the color that should be used for drawing text. Returns mColor when the item is not
  selected and mSelectedColor when it is.
*/
QColor QCPItemText::mainColor() const
{
  return mSelected ? mSelectedColor : mColor;
}

/*! \internal

  Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
  and mSelectedPen when it is.
*/
QPen QCPItemText::mainPen() const
{
  return mSelected ? mSelectedPen : mPen;
}

/*! \internal

  Returns the brush that should be used for drawing fills of the item. Returns mBrush when the item
  is not selected and mSelectedBrush when it is.
*/
QBrush QCPItemText::mainBrush() const
{
  return mSelected ? mSelectedBrush : mBrush;
}
/* end of 'src/items/item-text.cpp' */


/* including file 'src/items/item-ellipse.cpp', size 7863                    */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemEllipse
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemEllipse
  \brief An ellipse

  \image html QCPItemEllipse.png "Ellipse example. Blue dotted circles are anchors, solid blue discs are positions."

  It has two positions, \a topLeft and \a bottomRight, which define the rect the ellipse will be drawn in.
*/

/*!
  Creates an ellipse item and sets default values.

  The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
  ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
*/
QCPItemEllipse::QCPItemEllipse(QCustomPlot *parentPlot) :
  QCPAbstractItem(parentPlot),
  topLeft(createPosition(QLatin1String("topLeft"))),
  bottomRight(createPosition(QLatin1String("bottomRight"))),
  topLeftRim(createAnchor(QLatin1String("topLeftRim"), aiTopLeftRim)),
  top(createAnchor(QLatin1String("top"), aiTop)),
  topRightRim(createAnchor(QLatin1String("topRightRim"), aiTopRightRim)),
  right(createAnchor(QLatin1String("right"), aiRight)),
  bottomRightRim(createAnchor(QLatin1String("bottomRightRim"), aiBottomRightRim)),
  bottom(createAnchor(QLatin1String("bottom"), aiBottom)),
  bottomLeftRim(createAnchor(QLatin1String("bottomLeftRim"), aiBottomLeftRim)),
  left(createAnchor(QLatin1String("left"), aiLeft)),
  center(createAnchor(QLatin1String("center"), aiCenter))
{
  topLeft->setCoords(0, 1);
  bottomRight->setCoords(1, 0);

  setPen(QPen(Qt::black));
  setSelectedPen(QPen(Qt::blue, 2));
  setBrush(Qt::NoBrush);
  setSelectedBrush(Qt::NoBrush);
}

QCPItemEllipse::~QCPItemEllipse()
{
}

/*!
  Sets the pen that will be used to draw the line of the ellipse

  \see setSelectedPen, setBrush
*/
void QCPItemEllipse::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen that will be used to draw the line of the ellipse when selected

  \see setPen, setSelected
*/
void QCPItemEllipse::setSelectedPen(const QPen &pen)
{
  mSelectedPen = pen;
}

/*!
  Sets the brush that will be used to fill the ellipse. To disable filling, set \a brush to
  Qt::NoBrush.

  \see setSelectedBrush, setPen
*/
void QCPItemEllipse::setBrush(const QBrush &brush)
{
  mBrush = brush;
}

/*!
  Sets the brush that will be used to fill the ellipse when selected. To disable filling, set \a
  brush to Qt::NoBrush.

  \see setBrush
*/
void QCPItemEllipse::setSelectedBrush(const QBrush &brush)
{
  mSelectedBrush = brush;
}

/* inherits documentation from base class */
double QCPItemEllipse::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  QPointF p1 = topLeft->pixelPosition();
  QPointF p2 = bottomRight->pixelPosition();
  QPointF center((p1+p2)/2.0);
  double a = qAbs(p1.x()-p2.x())/2.0;
  double b = qAbs(p1.y()-p2.y())/2.0;
  double x = pos.x()-center.x();
  double y = pos.y()-center.y();

  // distance to border:
  double c = 1.0/qSqrt(x*x/(a*a)+y*y/(b*b));
  double result = qAbs(c-1)*qSqrt(x*x+y*y);
  // filled ellipse, allow click inside to count as hit:
  if (result > mParentPlot->selectionTolerance()*0.99 && mBrush.style() != Qt::NoBrush && mBrush.color().alpha() != 0)
  {
    if (x*x/(a*a) + y*y/(b*b) <= 1)
      result = mParentPlot->selectionTolerance()*0.99;
  }
  return result;
}

/* inherits documentation from base class */
void QCPItemEllipse::draw(QCPPainter *painter)
{
  QPointF p1 = topLeft->pixelPosition();
  QPointF p2 = bottomRight->pixelPosition();
  if (p1.toPoint() == p2.toPoint())
    return;
  QRectF ellipseRect = QRectF(p1, p2).normalized();
  QRect clip = clipRect().adjusted(-mainPen().widthF(), -mainPen().widthF(), mainPen().widthF(), mainPen().widthF());
  if (ellipseRect.intersects(clip)) // only draw if bounding rect of ellipse is visible in cliprect
  {
    painter->setPen(mainPen());
    painter->setBrush(mainBrush());
#ifdef __EXCEPTIONS
    try // drawEllipse sometimes throws exceptions if ellipse is too big
    {
#endif
      painter->drawEllipse(ellipseRect);
#ifdef __EXCEPTIONS
    } catch (...)
    {
      qDebug() << Q_FUNC_INFO << "Item too large for memory, setting invisible";
      setVisible(false);
    }
#endif
  }
}

/* inherits documentation from base class */
QPointF QCPItemEllipse::anchorPixelPosition(int anchorId) const
{
  QRectF rect = QRectF(topLeft->pixelPosition(), bottomRight->pixelPosition());
  switch (anchorId)
  {
    case aiTopLeftRim:     return rect.center()+(rect.topLeft()-rect.center())*1/qSqrt(2);
    case aiTop:            return (rect.topLeft()+rect.topRight())*0.5;
    case aiTopRightRim:    return rect.center()+(rect.topRight()-rect.center())*1/qSqrt(2);
    case aiRight:          return (rect.topRight()+rect.bottomRight())*0.5;
    case aiBottomRightRim: return rect.center()+(rect.bottomRight()-rect.center())*1/qSqrt(2);
    case aiBottom:         return (rect.bottomLeft()+rect.bottomRight())*0.5;
    case aiBottomLeftRim:  return rect.center()+(rect.bottomLeft()-rect.center())*1/qSqrt(2);
    case aiLeft:           return (rect.topLeft()+rect.bottomLeft())*0.5;
    case aiCenter:         return (rect.topLeft()+rect.bottomRight())*0.5;
  }

  qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
  return QPointF();
}

/*! \internal

  Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
  and mSelectedPen when it is.
*/
QPen QCPItemEllipse::mainPen() const
{
  return mSelected ? mSelectedPen : mPen;
}

/*! \internal

  Returns the brush that should be used for drawing fills of the item. Returns mBrush when the item
  is not selected and mSelectedBrush when it is.
*/
QBrush QCPItemEllipse::mainBrush() const
{
  return mSelected ? mSelectedBrush : mBrush;
}
/* end of 'src/items/item-ellipse.cpp' */


/* including file 'src/items/item-pixmap.cpp', size 10615                    */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemPixmap
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemPixmap
  \brief An arbitrary pixmap

  \image html QCPItemPixmap.png "Pixmap example. Blue dotted circles are anchors, solid blue discs are positions."

  It has two positions, \a topLeft and \a bottomRight, which define the rectangle the pixmap will
  be drawn in. Depending on the scale setting (\ref setScaled), the pixmap will be either scaled to
  fit the rectangle or be drawn aligned to the topLeft position.

  If scaling is enabled and \a topLeft is further to the bottom/right than \a bottomRight (as shown
  on the right side of the example image), the pixmap will be flipped in the respective
  orientations.
*/

/*!
  Creates a rectangle item and sets default values.

  The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
  ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
*/
QCPItemPixmap::QCPItemPixmap(QCustomPlot *parentPlot) :
  QCPAbstractItem(parentPlot),
  topLeft(createPosition(QLatin1String("topLeft"))),
  bottomRight(createPosition(QLatin1String("bottomRight"))),
  top(createAnchor(QLatin1String("top"), aiTop)),
  topRight(createAnchor(QLatin1String("topRight"), aiTopRight)),
  right(createAnchor(QLatin1String("right"), aiRight)),
  bottom(createAnchor(QLatin1String("bottom"), aiBottom)),
  bottomLeft(createAnchor(QLatin1String("bottomLeft"), aiBottomLeft)),
  left(createAnchor(QLatin1String("left"), aiLeft)),
  mScaled(false),
  mScaledPixmapInvalidated(true),
  mAspectRatioMode(Qt::KeepAspectRatio),
  mTransformationMode(Qt::SmoothTransformation)
{
  topLeft->setCoords(0, 1);
  bottomRight->setCoords(1, 0);

  setPen(Qt::NoPen);
  setSelectedPen(QPen(Qt::blue));
}

QCPItemPixmap::~QCPItemPixmap()
{
}

/*!
  Sets the pixmap that will be displayed.
*/
void QCPItemPixmap::setPixmap(const QPixmap &pixmap)
{
  mPixmap = pixmap;
  mScaledPixmapInvalidated = true;
  if (mPixmap.isNull())
    qDebug() << Q_FUNC_INFO << "pixmap is null";
}

/*!
  Sets whether the pixmap will be scaled to fit the rectangle defined by the \a topLeft and \a
  bottomRight positions.
*/
void QCPItemPixmap::setScaled(bool scaled, Qt::AspectRatioMode aspectRatioMode, Qt::TransformationMode transformationMode)
{
  mScaled = scaled;
  mAspectRatioMode = aspectRatioMode;
  mTransformationMode = transformationMode;
  mScaledPixmapInvalidated = true;
}

/*!
  Sets the pen that will be used to draw a border around the pixmap.

  \see setSelectedPen, setBrush
*/
void QCPItemPixmap::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen that will be used to draw a border around the pixmap when selected

  \see setPen, setSelected
*/
void QCPItemPixmap::setSelectedPen(const QPen &pen)
{
  mSelectedPen = pen;
}

/* inherits documentation from base class */
double QCPItemPixmap::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  return rectDistance(getFinalRect(), pos, true);
}

/* inherits documentation from base class */
void QCPItemPixmap::draw(QCPPainter *painter)
{
  bool flipHorz = false;
  bool flipVert = false;
  QRect rect = getFinalRect(&flipHorz, &flipVert);
  double clipPad = mainPen().style() == Qt::NoPen ? 0 : mainPen().widthF();
  QRect boundingRect = rect.adjusted(-clipPad, -clipPad, clipPad, clipPad);
  if (boundingRect.intersects(clipRect()))
  {
    updateScaledPixmap(rect, flipHorz, flipVert);
    painter->drawPixmap(rect.topLeft(), mScaled ? mScaledPixmap : mPixmap);
    QPen pen = mainPen();
    if (pen.style() != Qt::NoPen)
    {
      painter->setPen(pen);
      painter->setBrush(Qt::NoBrush);
      painter->drawRect(rect);
    }
  }
}

/* inherits documentation from base class */
QPointF QCPItemPixmap::anchorPixelPosition(int anchorId) const
{
  bool flipHorz;
  bool flipVert;
  QRect rect = getFinalRect(&flipHorz, &flipVert);
  // we actually want denormal rects (negative width/height) here, so restore
  // the flipped state:
  if (flipHorz)
    rect.adjust(rect.width(), 0, -rect.width(), 0);
  if (flipVert)
    rect.adjust(0, rect.height(), 0, -rect.height());

  switch (anchorId)
  {
    case aiTop:         return (rect.topLeft()+rect.topRight())*0.5;
    case aiTopRight:    return rect.topRight();
    case aiRight:       return (rect.topRight()+rect.bottomRight())*0.5;
    case aiBottom:      return (rect.bottomLeft()+rect.bottomRight())*0.5;
    case aiBottomLeft:  return rect.bottomLeft();
    case aiLeft:        return (rect.topLeft()+rect.bottomLeft())*0.5;;
  }

  qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
  return QPointF();
}

/*! \internal

  Creates the buffered scaled image (\a mScaledPixmap) to fit the specified \a finalRect. The
  parameters \a flipHorz and \a flipVert control whether the resulting image shall be flipped
  horizontally or vertically. (This is used when \a topLeft is further to the bottom/right than \a
  bottomRight.)

  This function only creates the scaled pixmap when the buffered pixmap has a different size than
  the expected result, so calling this function repeatedly, e.g. in the \ref draw function, does
  not cause expensive rescaling every time.

  If scaling is disabled, sets mScaledPixmap to a null QPixmap.
*/
void QCPItemPixmap::updateScaledPixmap(QRect finalRect, bool flipHorz, bool flipVert)
{
  if (mPixmap.isNull())
    return;

  if (mScaled)
  {
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
    double devicePixelRatio = mPixmap.devicePixelRatio();
#else
    double devicePixelRatio = 1.0;
#endif
    if (finalRect.isNull())
      finalRect = getFinalRect(&flipHorz, &flipVert);
    if (mScaledPixmapInvalidated || finalRect.size() != mScaledPixmap.size()/devicePixelRatio)
    {
      mScaledPixmap = mPixmap.scaled(finalRect.size()*devicePixelRatio, mAspectRatioMode, mTransformationMode);
      if (flipHorz || flipVert)
        mScaledPixmap = QPixmap::fromImage(mScaledPixmap.toImage().mirrored(flipHorz, flipVert));
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
      mScaledPixmap.setDevicePixelRatio(devicePixelRatio);
#endif
    }
  } else if (!mScaledPixmap.isNull())
    mScaledPixmap = QPixmap();
  mScaledPixmapInvalidated = false;
}

/*! \internal

  Returns the final (tight) rect the pixmap is drawn in, depending on the current item positions
  and scaling settings.

  The output parameters \a flippedHorz and \a flippedVert return whether the pixmap should be drawn
  flipped horizontally or vertically in the returned rect. (The returned rect itself is always
  normalized, i.e. the top left corner of the rect is actually further to the top/left than the
  bottom right corner). This is the case when the item position \a topLeft is further to the
  bottom/right than \a bottomRight.

  If scaling is disabled, returns a rect with size of the original pixmap and the top left corner
  aligned with the item position \a topLeft. The position \a bottomRight is ignored.
*/
QRect QCPItemPixmap::getFinalRect(bool *flippedHorz, bool *flippedVert) const
{
  QRect result;
  bool flipHorz = false;
  bool flipVert = false;
  QPoint p1 = topLeft->pixelPosition().toPoint();
  QPoint p2 = bottomRight->pixelPosition().toPoint();
  if (p1 == p2)
    return QRect(p1, QSize(0, 0));
  if (mScaled)
  {
    QSize newSize = QSize(p2.x()-p1.x(), p2.y()-p1.y());
    QPoint topLeft = p1;
    if (newSize.width() < 0)
    {
      flipHorz = true;
      newSize.rwidth() *= -1;
      topLeft.setX(p2.x());
    }
    if (newSize.height() < 0)
    {
      flipVert = true;
      newSize.rheight() *= -1;
      topLeft.setY(p2.y());
    }
    QSize scaledSize = mPixmap.size();
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
    scaledSize /= mPixmap.devicePixelRatio();
    scaledSize.scale(newSize*mPixmap.devicePixelRatio(), mAspectRatioMode);
#else
    scaledSize.scale(newSize, mAspectRatioMode);
#endif
    result = QRect(topLeft, scaledSize);
  } else
  {
#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
    result = QRect(p1, mPixmap.size()/mPixmap.devicePixelRatio());
#else
    result = QRect(p1, mPixmap.size());
#endif
  }
  if (flippedHorz)
    *flippedHorz = flipHorz;
  if (flippedVert)
    *flippedVert = flipVert;
  return result;
}

/*! \internal

  Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
  and mSelectedPen when it is.
*/
QPen QCPItemPixmap::mainPen() const
{
  return mSelected ? mSelectedPen : mPen;
}
/* end of 'src/items/item-pixmap.cpp' */


/* including file 'src/items/item-tracer.cpp', size 14624                    */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemTracer
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemTracer
  \brief Item that sticks to QCPGraph data points

  \image html QCPItemTracer.png "Tracer example. Blue dotted circles are anchors, solid blue discs are positions."

  The tracer can be connected with a QCPGraph via \ref setGraph. Then it will automatically adopt
  the coordinate axes of the graph and update its \a position to be on the graph's data. This means
  the key stays controllable via \ref setGraphKey, but the value will follow the graph data. If a
  QCPGraph is connected, note that setting the coordinates of the tracer item directly via \a
  position will have no effect because they will be overriden in the next redraw (this is when the
  coordinate update happens).

  If the specified key in \ref setGraphKey is outside the key bounds of the graph, the tracer will
  stay at the corresponding end of the graph.

  With \ref setInterpolating you may specify whether the tracer may only stay exactly on data
  points or whether it interpolates data points linearly, if given a key that lies between two data
  points of the graph.

  The tracer has different visual styles, see \ref setStyle. It is also possible to make the tracer
  have no own visual appearance (set the style to \ref tsNone), and just connect other item
  positions to the tracer \a position (used as an anchor) via \ref
  QCPItemPosition::setParentAnchor.

  \note The tracer position is only automatically updated upon redraws. So when the data of the
  graph changes and immediately afterwards (without a redraw) the position coordinates of the
  tracer are retrieved, they will not reflect the updated data of the graph. In this case \ref
  updatePosition must be called manually, prior to reading the tracer coordinates.
*/

/*!
  Creates a tracer item and sets default values.

  The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
  ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
*/
QCPItemTracer::QCPItemTracer(QCustomPlot *parentPlot) :
  QCPAbstractItem(parentPlot),
  position(createPosition(QLatin1String("position"))),
  mSize(6),
  mStyle(tsCrosshair),
  mGraph(0),
  mGraphKey(0),
  mInterpolating(false)
{
  position->setCoords(0, 0);

  setBrush(Qt::NoBrush);
  setSelectedBrush(Qt::NoBrush);
  setPen(QPen(Qt::black));
  setSelectedPen(QPen(Qt::blue, 2));
}

QCPItemTracer::~QCPItemTracer()
{
}

/*!
  Sets the pen that will be used to draw the line of the tracer

  \see setSelectedPen, setBrush
*/
void QCPItemTracer::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen that will be used to draw the line of the tracer when selected

  \see setPen, setSelected
*/
void QCPItemTracer::setSelectedPen(const QPen &pen)
{
  mSelectedPen = pen;
}

/*!
  Sets the brush that will be used to draw any fills of the tracer

  \see setSelectedBrush, setPen
*/
void QCPItemTracer::setBrush(const QBrush &brush)
{
  mBrush = brush;
}

/*!
  Sets the brush that will be used to draw any fills of the tracer, when selected.

  \see setBrush, setSelected
*/
void QCPItemTracer::setSelectedBrush(const QBrush &brush)
{
  mSelectedBrush = brush;
}

/*!
  Sets the size of the tracer in pixels, if the style supports setting a size (e.g. \ref tsSquare
  does, \ref tsCrosshair does not).
*/
void QCPItemTracer::setSize(double size)
{
  mSize = size;
}

/*!
  Sets the style/visual appearance of the tracer.

  If you only want to use the tracer \a position as an anchor for other items, set \a style to
  \ref tsNone.
*/
void QCPItemTracer::setStyle(QCPItemTracer::TracerStyle style)
{
  mStyle = style;
}

/*!
  Sets the QCPGraph this tracer sticks to. The tracer \a position will be set to type
  QCPItemPosition::ptPlotCoords and the axes will be set to the axes of \a graph.

  To free the tracer from any graph, set \a graph to 0. The tracer \a position can then be placed
  freely like any other item position. This is the state the tracer will assume when its graph gets
  deleted while still attached to it.

  \see setGraphKey
*/
void QCPItemTracer::setGraph(QCPGraph *graph)
{
  if (graph)
  {
    if (graph->parentPlot() == mParentPlot)
    {
      position->setType(QCPItemPosition::ptPlotCoords);
      position->setAxes(graph->keyAxis(), graph->valueAxis());
      mGraph = graph;
      updatePosition();
    } else
      qDebug() << Q_FUNC_INFO << "graph isn't in same QCustomPlot instance as this item";
  } else
  {
    mGraph = 0;
  }
}

/*!
  Sets the key of the graph's data point the tracer will be positioned at. This is the only free
  coordinate of a tracer when attached to a graph.

  Depending on \ref setInterpolating, the tracer will be either positioned on the data point
  closest to \a key, or will stay exactly at \a key and interpolate the value linearly.

  \see setGraph, setInterpolating
*/
void QCPItemTracer::setGraphKey(double key)
{
  mGraphKey = key;
}

/*!
  Sets whether the value of the graph's data points shall be interpolated, when positioning the
  tracer.

  If \a enabled is set to false and a key is given with \ref setGraphKey, the tracer is placed on
  the data point of the graph which is closest to the key, but which is not necessarily exactly
  there. If \a enabled is true, the tracer will be positioned exactly at the specified key, and
  the appropriate value will be interpolated from the graph's data points linearly.

  \see setGraph, setGraphKey
*/
void QCPItemTracer::setInterpolating(bool enabled)
{
  mInterpolating = enabled;
}

/* inherits documentation from base class */
double QCPItemTracer::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  QPointF center(position->pixelPosition());
  double w = mSize/2.0;
  QRect clip = clipRect();
  switch (mStyle)
  {
    case tsNone: return -1;
    case tsPlus:
    {
      if (clipRect().intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
        return qSqrt(qMin(QCPVector2D(pos).distanceSquaredToLine(center+QPointF(-w, 0), center+QPointF(w, 0)),
                          QCPVector2D(pos).distanceSquaredToLine(center+QPointF(0, -w), center+QPointF(0, w))));
      break;
    }
    case tsCrosshair:
    {
      return qSqrt(qMin(QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(clip.left(), center.y()), QCPVector2D(clip.right(), center.y())),
                        QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(center.x(), clip.top()), QCPVector2D(center.x(), clip.bottom()))));
    }
    case tsCircle:
    {
      if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
      {
        // distance to border:
        double centerDist = QCPVector2D(center-pos).length();
        double circleLine = w;
        double result = qAbs(centerDist-circleLine);
        // filled ellipse, allow click inside to count as hit:
        if (result > mParentPlot->selectionTolerance()*0.99 && mBrush.style() != Qt::NoBrush && mBrush.color().alpha() != 0)
        {
          if (centerDist <= circleLine)
            result = mParentPlot->selectionTolerance()*0.99;
        }
        return result;
      }
      break;
    }
    case tsSquare:
    {
      if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
      {
        QRectF rect = QRectF(center-QPointF(w, w), center+QPointF(w, w));
        bool filledRect = mBrush.style() != Qt::NoBrush && mBrush.color().alpha() != 0;
        return rectDistance(rect, pos, filledRect);
      }
      break;
    }
  }
  return -1;
}

/* inherits documentation from base class */
void QCPItemTracer::draw(QCPPainter *painter)
{
  updatePosition();
  if (mStyle == tsNone)
    return;

  painter->setPen(mainPen());
  painter->setBrush(mainBrush());
  QPointF center(position->pixelPosition());
  double w = mSize/2.0;
  QRect clip = clipRect();
  switch (mStyle)
  {
    case tsNone: return;
    case tsPlus:
    {
      if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
      {
        painter->drawLine(QLineF(center+QPointF(-w, 0), center+QPointF(w, 0)));
        painter->drawLine(QLineF(center+QPointF(0, -w), center+QPointF(0, w)));
      }
      break;
    }
    case tsCrosshair:
    {
      if (center.y() > clip.top() && center.y() < clip.bottom())
        painter->drawLine(QLineF(clip.left(), center.y(), clip.right(), center.y()));
      if (center.x() > clip.left() && center.x() < clip.right())
        painter->drawLine(QLineF(center.x(), clip.top(), center.x(), clip.bottom()));
      break;
    }
    case tsCircle:
    {
      if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
        painter->drawEllipse(center, w, w);
      break;
    }
    case tsSquare:
    {
      if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
        painter->drawRect(QRectF(center-QPointF(w, w), center+QPointF(w, w)));
      break;
    }
  }
}

/*!
  If the tracer is connected with a graph (\ref setGraph), this function updates the tracer's \a
  position to reside on the graph data, depending on the configured key (\ref setGraphKey).

  It is called automatically on every redraw and normally doesn't need to be called manually. One
  exception is when you want to read the tracer coordinates via \a position and are not sure that
  the graph's data (or the tracer key with \ref setGraphKey) hasn't changed since the last redraw.
  In that situation, call this function before accessing \a position, to make sure you don't get
  out-of-date coordinates.

  If there is no graph set on this tracer, this function does nothing.
*/
void QCPItemTracer::updatePosition()
{
  if (mGraph)
  {
    if (mParentPlot->hasPlottable(mGraph))
    {
      if (mGraph->data()->size() > 1)
      {
        QCPGraphDataContainer::const_iterator first = mGraph->data()->constBegin();
        QCPGraphDataContainer::const_iterator last = mGraph->data()->constEnd()-1;
        if (mGraphKey <= first->key)
          position->setCoords(first->key, first->value);
        else if (mGraphKey >= last->key)
          position->setCoords(last->key, last->value);
        else
        {
          QCPGraphDataContainer::const_iterator it = mGraph->data()->findBegin(mGraphKey);
          if (it != mGraph->data()->constEnd()) // mGraphKey is not exactly on last iterator, but somewhere between iterators
          {
            QCPGraphDataContainer::const_iterator prevIt = it;
            ++it; // won't advance to constEnd because we handled that case (mGraphKey >= last->key) before
            if (mInterpolating)
            {
              // interpolate between iterators around mGraphKey:
              double slope = 0;
              if (!qFuzzyCompare((double)it->key, (double)prevIt->key))
                slope = (it->value-prevIt->value)/(it->key-prevIt->key);
              position->setCoords(mGraphKey, (mGraphKey-prevIt->key)*slope+prevIt->value);
            } else
            {
              // find iterator with key closest to mGraphKey:
              if (mGraphKey < (prevIt->key+it->key)*0.5)
                position->setCoords(prevIt->key, prevIt->value);
              else
                position->setCoords(it->key, it->value);
            }
          } else // mGraphKey is exactly on last iterator (should actually be caught when comparing first/last keys, but this is a failsafe for fp uncertainty)
            position->setCoords(it->key, it->value);
        }
      } else if (mGraph->data()->size() == 1)
      {
        QCPGraphDataContainer::const_iterator it = mGraph->data()->constBegin();
        position->setCoords(it->key, it->value);
      } else
        qDebug() << Q_FUNC_INFO << "graph has no data";
    } else
      qDebug() << Q_FUNC_INFO << "graph not contained in QCustomPlot instance (anymore)";
  }
}

/*! \internal

  Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
  and mSelectedPen when it is.
*/
QPen QCPItemTracer::mainPen() const
{
  return mSelected ? mSelectedPen : mPen;
}

/*! \internal

  Returns the brush that should be used for drawing fills of the item. Returns mBrush when the item
  is not selected and mSelectedBrush when it is.
*/
QBrush QCPItemTracer::mainBrush() const
{
  return mSelected ? mSelectedBrush : mBrush;
}
/* end of 'src/items/item-tracer.cpp' */


/* including file 'src/items/item-bracket.cpp', size 10687                   */
/* commit ce344b3f96a62e5f652585e55f1ae7c7883cd45b 2018-06-25 01:03:39 +0200 */

////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPItemBracket
////////////////////////////////////////////////////////////////////////////////////////////////////

/*! \class QCPItemBracket
  \brief A bracket for referencing/highlighting certain parts in the plot.

  \image html QCPItemBracket.png "Bracket example. Blue dotted circles are anchors, solid blue discs are positions."

  It has two positions, \a left and \a right, which define the span of the bracket. If \a left is
  actually farther to the left than \a right, the bracket is opened to the bottom, as shown in the
  example image.

  The bracket supports multiple styles via \ref setStyle. The length, i.e. how far the bracket
  stretches away from the embraced span, can be controlled with \ref setLength.

  \image html QCPItemBracket-length.png
  <center>Demonstrating the effect of different values for \ref setLength, for styles \ref
  bsCalligraphic and \ref bsSquare. Anchors and positions are displayed for reference.</center>

  It provides an anchor \a center, to allow connection of other items, e.g. an arrow (QCPItemLine
  or QCPItemCurve) or a text label (QCPItemText), to the bracket.
*/

/*!
  Creates a bracket item and sets default values.

  The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
  ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
*/
QCPItemBracket::QCPItemBracket(QCustomPlot *parentPlot) :
  QCPAbstractItem(parentPlot),
  left(createPosition(QLatin1String("left"))),
  right(createPosition(QLatin1String("right"))),
  center(createAnchor(QLatin1String("center"), aiCenter)),
  mLength(8),
  mStyle(bsCalligraphic)
{
  left->setCoords(0, 0);
  right->setCoords(1, 1);

  setPen(QPen(Qt::black));
  setSelectedPen(QPen(Qt::blue, 2));
}

QCPItemBracket::~QCPItemBracket()
{
}

/*!
  Sets the pen that will be used to draw the bracket.

  Note that when the style is \ref bsCalligraphic, only the color will be taken from the pen, the
  stroke and width are ignored. To change the apparent stroke width of a calligraphic bracket, use
  \ref setLength, which has a similar effect.

  \see setSelectedPen
*/
void QCPItemBracket::setPen(const QPen &pen)
{
  mPen = pen;
}

/*!
  Sets the pen that will be used to draw the bracket when selected

  \see setPen, setSelected
*/
void QCPItemBracket::setSelectedPen(const QPen &pen)
{
  mSelectedPen = pen;
}

/*!
  Sets the \a length in pixels how far the bracket extends in the direction towards the embraced
  span of the bracket (i.e. perpendicular to the <i>left</i>-<i>right</i>-direction)

  \image html QCPItemBracket-length.png
  <center>Demonstrating the effect of different values for \ref setLength, for styles \ref
  bsCalligraphic and \ref bsSquare. Anchors and positions are displayed for reference.</center>
*/
void QCPItemBracket::setLength(double length)
{
  mLength = length;
}

/*!
  Sets the style of the bracket, i.e. the shape/visual appearance.

  \see setPen
*/
void QCPItemBracket::setStyle(QCPItemBracket::BracketStyle style)
{
  mStyle = style;
}

/* inherits documentation from base class */
double QCPItemBracket::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
{
  Q_UNUSED(details)
  if (onlySelectable && !mSelectable)
    return -1;

  QCPVector2D p(pos);
  QCPVector2D leftVec(left->pixelPosition());
  QCPVector2D rightVec(right->pixelPosition());
  if (leftVec.toPoint() == rightVec.toPoint())
    return -1;

  QCPVector2D widthVec = (rightVec-leftVec)*0.5;
  QCPVector2D lengthVec = widthVec.perpendicular().normalized()*mLength;
  QCPVector2D centerVec = (rightVec+leftVec)*0.5-lengthVec;

  switch (mStyle)
  {
    case QCPItemBracket::bsSquare:
    case QCPItemBracket::bsRound:
    {
      double a = p.distanceSquaredToLine(centerVec-widthVec, centerVec+widthVec);
      double b = p.distanceSquaredToLine(centerVec-widthVec+lengthVec, centerVec-widthVec);
      double c = p.distanceSquaredToLine(centerVec+widthVec+lengthVec, centerVec+widthVec);
      return qSqrt(qMin(qMin(a, b), c));
    }
    case QCPItemBracket::bsCurly:
    case QCPItemBracket::bsCalligraphic:
    {
      double a = p.distanceSquaredToLine(centerVec-widthVec*0.75+lengthVec*0.15, centerVec+lengthVec*0.3);
      double b = p.distanceSquaredToLine(centerVec-widthVec+lengthVec*0.7, centerVec-widthVec*0.75+lengthVec*0.15);
      double c = p.distanceSquaredToLine(centerVec+widthVec*0.75+lengthVec*0.15, centerVec+lengthVec*0.3);
      double d = p.distanceSquaredToLine(centerVec+widthVec+lengthVec*0.7, centerVec+widthVec*0.75+lengthVec*0.15);
      return qSqrt(qMin(qMin(a, b), qMin(c, d)));
    }
  }
  return -1;
}

/* inherits documentation from base class */
void QCPItemBracket::draw(QCPPainter *painter)
{
  QCPVector2D leftVec(left->pixelPosition());
  QCPVector2D rightVec(right->pixelPosition());
  if (leftVec.toPoint() == rightVec.toPoint())
    return;

  QCPVector2D widthVec = (rightVec-leftVec)*0.5;
  QCPVector2D lengthVec = widthVec.perpendicular().normalized()*mLength;
  QCPVector2D centerVec = (rightVec+leftVec)*0.5-lengthVec;

  QPolygon boundingPoly;
  boundingPoly << leftVec.toPoint() << rightVec.toPoint()
               << (rightVec-lengthVec).toPoint() << (leftVec-lengthVec).toPoint();
  QRect clip = clipRect().adjusted(-mainPen().widthF(), -mainPen().widthF(), mainPen().widthF(), mainPen().widthF());
  if (clip.intersects(boundingPoly.boundingRect()))
  {
    painter->setPen(mainPen());
    switch (mStyle)
    {
      case bsSquare:
      {
        painter->drawLine((centerVec+widthVec).toPointF(), (centerVec-widthVec).toPointF());
        painter->drawLine((centerVec+widthVec).toPointF(), (centerVec+widthVec+lengthVec).toPointF());
        painter->drawLine((centerVec-widthVec).toPointF(), (centerVec-widthVec+lengthVec).toPointF());
        break;
      }
      case bsRound:
      {
        painter->setBrush(Qt::NoBrush);
        QPainterPath path;
        path.moveTo((centerVec+widthVec+lengthVec).toPointF());
        path.cubicTo((centerVec+widthVec).toPointF(), (centerVec+widthVec).toPointF(), centerVec.toPointF());
        path.cubicTo((centerVec-widthVec).toPointF(), (centerVec-widthVec).toPointF(), (centerVec-widthVec+lengthVec).toPointF());
        painter->drawPath(path);
        break;
      }
      case bsCurly:
      {
        painter->setBrush(Qt::NoBrush);
        QPainterPath path;
        path.moveTo((centerVec+widthVec+lengthVec).toPointF());
        path.cubicTo((centerVec+widthVec-lengthVec*0.8).toPointF(), (centerVec+0.4*widthVec+lengthVec).toPointF(), centerVec.toPointF());
        path.cubicTo((centerVec-0.4*widthVec+lengthVec).toPointF(), (centerVec-widthVec-lengthVec*0.8).toPointF(), (centerVec-widthVec+lengthVec).toPointF());
        painter->drawPath(path);
        break;
      }
      case bsCalligraphic:
      {
        painter->setPen(Qt::NoPen);
        painter->setBrush(QBrush(mainPen().color()));
        QPainterPath path;
        path.moveTo((centerVec+widthVec+lengthVec).toPointF());

        path.cubicTo((centerVec+widthVec-lengthVec*0.8).toPointF(), (centerVec+0.4*widthVec+0.8*lengthVec).toPointF(), centerVec.toPointF());
        path.cubicTo((centerVec-0.4*widthVec+0.8*lengthVec).toPointF(), (centerVec-widthVec-lengthVec*0.8).toPointF(), (centerVec-widthVec+lengthVec).toPointF());

        path.cubicTo((centerVec-widthVec-lengthVec*0.5).toPointF(), (centerVec-0.2*widthVec+1.2*lengthVec).toPointF(), (centerVec+lengthVec*0.2).toPointF());
        path.cubicTo((centerVec+0.2*widthVec+1.2*lengthVec).toPointF(), (centerVec+widthVec-lengthVec*0.5).toPointF(), (centerVec+widthVec+lengthVec).toPointF());

        painter->drawPath(path);
        break;
      }
    }
  }
}

/* inherits documentation from base class */
QPointF QCPItemBracket::anchorPixelPosition(int anchorId) const
{
  QCPVector2D leftVec(left->pixelPosition());
  QCPVector2D rightVec(right->pixelPosition());
  if (leftVec.toPoint() == rightVec.toPoint())
    return leftVec.toPointF();

  QCPVector2D widthVec = (rightVec-leftVec)*0.5;
  QCPVector2D lengthVec = widthVec.perpendicular().normalized()*mLength;
  QCPVector2D centerVec = (rightVec+leftVec)*0.5-lengthVec;

  switch (anchorId)
  {
    case aiCenter:
      return centerVec.toPointF();
  }
  qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
  return QPointF();
}

/*! \internal

  Returns the pen that should be used for drawing lines. Returns mPen when the
  item is not selected and mSelectedPen when it is.
*/
QPen QCPItemBracket::mainPen() const
{
    return mSelected ? mSelectedPen : mPen;
}
/* end of 'src/items/item-bracket.cpp' */