aboutsummaryrefslogtreecommitdiffstats
path: root/epan/dissectors/packet-knxip_decrypt.c
blob: d9648257c45e867f1d408b65d30778bac3152617 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
/* packet-knxip_decrypt.c
 * Decryption keys and decryption functions for KNX/IP Dissector
 * Copyright 2018, ise GmbH <Ralf.Nasilowski@ise.de>
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

// Activate g_debug output with environment variable: G_MESSAGES_DEBUG=packet-knxip
#define G_LOG_DOMAIN "packet-knxip"

#include <wsutil/file_util.h>
#include "proto.h"
#include "packet-knxip_decrypt.h"
#include <epan/wmem/wmem.h>
#include <wsutil/wsgcrypt.h>
#include <wsutil/strtoi.h>

#define TEXT_BUFFER_SIZE  128

#define IPA_SIZE  4  // = size of IPv4 address

#define BASE64_KNX_KEY_LENGTH  24  // = length of base64 encoded KNX key

struct knx_keyring_mca_keys* knx_keyring_mca_keys;
struct knx_keyring_ga_keys* knx_keyring_ga_keys;
struct knx_keyring_ga_senders* knx_keyring_ga_senders;
struct knx_keyring_ia_keys* knx_keyring_ia_keys;
struct knx_keyring_ia_seqs* knx_keyring_ia_seqs;

// Encrypt 16-byte block via AES
static void encrypt_block( const guint8 key[ KNX_KEY_LENGTH ], const guint8 plain[ KNX_KEY_LENGTH ], guint8 p_crypt[ KNX_KEY_LENGTH ] )
{
  gcry_cipher_hd_t cryptor = NULL;
  gcry_cipher_open( &cryptor, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CBC, 0 );
  gcry_cipher_setkey( cryptor, key, KNX_KEY_LENGTH );
  gcry_cipher_encrypt( cryptor, p_crypt, KNX_KEY_LENGTH, plain, KNX_KEY_LENGTH );
  gcry_cipher_close( cryptor );
}

// Create B_0 for CBC-MAC
static void build_b0( guint8 p_result[ KNX_KEY_LENGTH ], const guint8* nonce, guint8 nonce_length )
{
  DISSECTOR_ASSERT( nonce_length <= KNX_KEY_LENGTH );
  if( nonce_length ) memcpy( p_result, nonce, nonce_length );
  memset( p_result + nonce_length, 0, KNX_KEY_LENGTH - nonce_length );
}

// Create Ctr_0 for CCM encryption/decryption
static void build_ctr0( guint8 p_result[ KNX_KEY_LENGTH ], const guint8* nonce, guint8 nonce_length )
{
  build_b0( p_result, nonce, nonce_length );
  p_result[ KNX_KEY_LENGTH - 2 ] = 0xFF;
}

// Calculate MAC for KNX IP Security or KNX Data Security
void knx_ccm_calc_cbc_mac( guint8* p_mac, const guint8 key[ KNX_KEY_LENGTH ],
  const guint8* a_bytes, gint a_length, const guint8* p_bytes, gint p_length,
  const guint8 b_0[ KNX_KEY_LENGTH ] )
{
  guint8 plain[ KNX_KEY_LENGTH ];
  guint8 b_pos;

  // Add B_0
  memcpy( plain, b_0, KNX_KEY_LENGTH );
  encrypt_block( key, plain, p_mac );

  // Add a_length
  plain[ 0 ] = (guint8) ((a_length >> 8) ^ p_mac[ 0 ]);
  plain[ 1 ] = (guint8) ((a_length & 0xFF) ^ p_mac[ 1 ]);
  b_pos = 2;

  // Add a_bytes directly followed by p_bytes
  while( a_length || p_length )
  {
    while( a_length && b_pos < KNX_KEY_LENGTH )
    {
      plain[ b_pos ] = *a_bytes++ ^ p_mac[ b_pos ];
      --a_length;
      ++b_pos;
    }

    while( p_length && b_pos < KNX_KEY_LENGTH )
    {
      plain[ b_pos ] = *p_bytes++ ^ p_mac[ b_pos ];
      --p_length;
      ++b_pos;
    }

    while( b_pos < KNX_KEY_LENGTH )
    {
      plain[ b_pos ] = p_mac[ b_pos ];
      ++b_pos;
    }

    encrypt_block( key, plain, p_mac );

    b_pos = 0;
  }
}

// Calculate MAC for KNX IP Security, using 6-byte Sequence ID
void knxip_ccm_calc_cbc_mac( guint8* p_mac, const guint8 key[ KNX_KEY_LENGTH ],
  const guint8* a_bytes, gint a_length, const guint8* p_bytes, gint p_length,
  const guint8* nonce, guint8 nonce_length )
{
  guint8 b_0[ KNX_KEY_LENGTH ];
  build_b0( b_0, nonce, nonce_length );
  b_0[ KNX_KEY_LENGTH - 2 ] = (guint8) (p_length >> 8);
  b_0[ KNX_KEY_LENGTH - 1 ] = (guint8) (p_length & 0xFF);
  knx_ccm_calc_cbc_mac( p_mac, key, a_bytes, a_length, p_bytes, p_length, b_0 );
}

// Encrypt for KNX IP Security or KNX Data Security
guint8* knx_ccm_encrypt( guint8* p_result, const guint8 key[ KNX_KEY_LENGTH ], const guint8* p_bytes, gint p_length,
  const guint8* mac, guint8 mac_length, const guint8 ctr_0[ KNX_KEY_LENGTH ], guint8 s0_bytes_used_for_mac )
{
  if( p_length >= 0 && !(p_length && !p_bytes) )
  {
    // NB: mac_length = 16 (for IP Security), or 4 (for Data Security)

    guint8* result = p_result ? p_result : (guint8*) wmem_alloc( wmem_packet_scope(), p_length + mac_length );

    guint8* dest = result;

    guint8 ctr[ KNX_KEY_LENGTH ];
    guint8 mask[ KNX_KEY_LENGTH ];
    guint8 mask_0[ KNX_KEY_LENGTH ];
    guint8 b_pos;

    // Encrypt ctr_0 for mac
    memcpy( ctr, ctr_0, KNX_KEY_LENGTH );
    encrypt_block( key, ctr, mask_0 );

    // Encrypt p_bytes with rest of S_0, only if mac_length < 16.
    b_pos = s0_bytes_used_for_mac;
    while (p_length && b_pos < KNX_KEY_LENGTH )
    {
      *dest++ = mask_0[b_pos++] ^ *p_bytes++;
      --p_length;
    }

    // Encrypt p_bytes
    while( p_length )
    {
      // Increment and encrypt ctr
      ++ctr[ KNX_KEY_LENGTH - 1 ];
      encrypt_block( key, ctr, mask );

      // Encrypt input block via encrypted ctr
      b_pos = 0;
      while( p_length && b_pos < KNX_KEY_LENGTH )
      {
        *dest++ = mask[ b_pos++] ^ *p_bytes++;
        --p_length;
      }
    }

    if( mac )
    {
      if( mac_length > KNX_KEY_LENGTH )
      {
        mac_length = KNX_KEY_LENGTH;
      }

      // Encrypt and append mac
      b_pos = 0;
      while( mac_length )
      {
        *dest++ = mask_0[ b_pos++] ^ *mac++;
        --mac_length;
      }
    }

    return result;
  }

  return NULL;
}

// Encrypt for KNX IP Security (with 16-byte MAC and Nonce based on 6-byte Sequence ID)
guint8* knxip_ccm_encrypt( guint8* p_result, const guint8 key[ KNX_KEY_LENGTH ], const guint8* p_bytes, gint p_length,
  const guint8* mac, const guint8* nonce, guint8 nonce_length )
{
  guint8 ctr_0[ KNX_KEY_LENGTH ];
  build_ctr0( ctr_0, nonce, nonce_length );
  return knx_ccm_encrypt( p_result, key, p_bytes, p_length, mac, KNX_KEY_LENGTH, ctr_0, KNX_KEY_LENGTH );
}

// Decrypt for KNX-IP Security (with 16-byte MAC and Nonce based on 6-byte Sequence ID)
guint8* knxip_ccm_decrypt( guint8* p_result, const guint8 key[ KNX_KEY_LENGTH ], const guint8* crypt, gint crypt_length,
  const guint8* nonce, guint8 nonce_length )
{
  gint p_length = crypt_length - KNX_KEY_LENGTH;
  guint8 ctr_0[ KNX_KEY_LENGTH ];
  build_ctr0( ctr_0, nonce, nonce_length );
  return knx_ccm_encrypt( p_result, key, crypt, p_length, crypt + p_length, KNX_KEY_LENGTH, ctr_0, KNX_KEY_LENGTH );
}

static void fprintf_hex( FILE* f, const guint8* data, guint8 length )
{
  for( ; length; --length ) fprintf( f, " %02X", *data++ );
  fputc( '\n', f );
}

static void clear_keyring_data( void )
{
  while( knx_keyring_mca_keys )
  {
    struct knx_keyring_mca_keys* mca_key = knx_keyring_mca_keys;
    knx_keyring_mca_keys = mca_key->next;
    wmem_free( wmem_epan_scope(), mca_key );
  }

  while( knx_keyring_ga_keys )
  {
    struct knx_keyring_ga_keys* ga_key = knx_keyring_ga_keys;
    knx_keyring_ga_keys = ga_key->next;
    wmem_free( wmem_epan_scope(), ga_key );
  }

  while( knx_keyring_ga_senders )
  {
    struct knx_keyring_ga_senders* ga_sender = knx_keyring_ga_senders;
    knx_keyring_ga_senders = ga_sender->next;
    wmem_free( wmem_epan_scope(), ga_sender );
  }

  while( knx_keyring_ia_keys )
  {
    struct knx_keyring_ia_keys* ia_key = knx_keyring_ia_keys;
    knx_keyring_ia_keys = ia_key->next;
    wmem_free( wmem_epan_scope(), ia_key );
  }

  while( knx_keyring_ia_seqs )
  {
    struct knx_keyring_ia_seqs* ia_seq = knx_keyring_ia_seqs;
    knx_keyring_ia_seqs = ia_seq->next;
    wmem_free( wmem_epan_scope(), ia_seq );
  }
}

// Read IP address
static void read_ip_addr( guint8 result[ 4 ], const gchar* text )
{
  ws_in4_addr value = 0;
  if( ws_inet_pton4( text, &value ) )
    memcpy( result, &value, 4 );
  else
    memset( result, 0, 4 );
}

// Read KNX group address
static guint16 read_ga( const gchar* text )
{
  guint a[ 3 ];
  gint n = sscanf( text, "%u/%u/%u", a, a + 1, a + 2 );
  return
    (n == 1) ? (guint16) a[ 0 ] :
    (n == 2) ? (guint16) ((a[ 0 ] << 11) | a[ 1 ]) :
    (n == 3) ? (guint16) ((a[ 0 ] << 11) | (a[ 1 ] << 8) | a[ 2 ]) :
    0;
}

// Read KNX individual address
static guint16 read_ia( const gchar* text )
{
  guint a[ 3 ];
  gint n = sscanf( text, "%u.%u.%u", a, a + 1, a + 2 );
  return
    (n == 1) ? (guint16) a[ 0 ] :
    (n == 2) ? (guint16) ((a[ 0 ] << 8) | a[ 1 ]) :
    (n == 3) ? (guint16) ((a[ 0 ] << 12) | (a[ 1 ] << 8) | a[ 2 ]) :
    0;
}

// Read 6-byte sequence number from decimal representation
static guint64 read_seq( const gchar* text )
{
  guint64 result;
  return ws_strtou64( text, NULL, &result ) ? result : 0;
}

// Decrypt key
static void decrypt_key( guint8 key[] _U_, guint8 password_hash[] _U_, guint8 created_hash[] _U_ )
{
  // TODO: decrypt as AES128-CBC(key, password_hash, created_hash)
}

// Decode and decrypt key
static void decode_and_decrypt_key( guint8 key[ BASE64_KNX_KEY_LENGTH + 1 ], const gchar* text, guint8 password_hash[], guint8 created_hash[] )
{
  gsize out_len;
  g_snprintf( (gchar*) key, BASE64_KNX_KEY_LENGTH + 1, "%s", text );
  g_base64_decode_inplace( (gchar*) key, &out_len );
  decrypt_key( key, password_hash, created_hash );
}

// Add MCA <-> key association
static void add_mca_key( const guint8 mca[ IPA_SIZE ], const gchar* text, guint8 password_hash[], guint8 created_hash[], FILE* f2 )
{
  gint text_length = (gint) strlen( text );

  if( text_length == BASE64_KNX_KEY_LENGTH )
  {
    guint8 key[ BASE64_KNX_KEY_LENGTH + 1 ];
    struct knx_keyring_mca_keys** mca_keys_next;
    struct knx_keyring_mca_keys* mca_key;

    decode_and_decrypt_key( key, text, password_hash, created_hash );

    mca_keys_next = &knx_keyring_mca_keys;

    while( (mca_key = *mca_keys_next) != NULL )
    {
      if( memcmp( mca_key->mca, mca, IPA_SIZE ) == 0 )
      {
        if( memcmp( mca_key->key, key, KNX_KEY_LENGTH ) == 0 )
        {
          return;
        }
      }

      mca_keys_next = &mca_key->next;
    }

    if( f2 )
    {
      fprintf( f2, "MCA %u.%u.%u.%u key", mca[ 0 ], mca[ 1 ], mca[ 2 ], mca[ 3 ] );
      fprintf_hex( f2, key, KNX_KEY_LENGTH );
    }

    mca_key = (struct knx_keyring_mca_keys*) wmem_alloc( wmem_epan_scope(), sizeof( struct knx_keyring_mca_keys ) );

    if( mca_key )
    {
      mca_key->next = NULL;
      memcpy( mca_key->mca, mca, IPA_SIZE );
      memcpy( mca_key->key, key, KNX_KEY_LENGTH );

      *mca_keys_next = mca_key;
    }
  }
}

// Add GA <-> key association
static void add_ga_key( guint16 ga, const gchar* text, guint8 password_hash[], guint8 created_hash[], FILE* f2 )
{
  gint text_length = (gint) strlen( text );

  if( text_length == BASE64_KNX_KEY_LENGTH )
  {
    guint8 key[ BASE64_KNX_KEY_LENGTH + 1 ];
    struct knx_keyring_ga_keys** ga_keys_next;
    struct knx_keyring_ga_keys* ga_key;

    decode_and_decrypt_key( key, text, password_hash, created_hash );

    ga_keys_next = &knx_keyring_ga_keys;

    while( (ga_key = *ga_keys_next) != NULL )
    {
      if( ga_key->ga == ga )
      {
        if( memcmp( ga_key->key, key, KNX_KEY_LENGTH ) == 0 )
        {
          return;
        }
      }

      ga_keys_next = &ga_key->next;
    }

    if( f2 )
    {
      fprintf( f2, "GA %u/%u/%u key", (ga >> 11) & 0x1F, (ga >> 8) & 0x7, ga & 0xFF );
      fprintf_hex( f2, key, KNX_KEY_LENGTH );
    }

    ga_key = (struct knx_keyring_ga_keys*) wmem_alloc( wmem_epan_scope(), sizeof( struct knx_keyring_ga_keys ) );

    if( ga_key )
    {
      ga_key->next = NULL;
      ga_key->ga = ga;
      memcpy( ga_key->key, key, KNX_KEY_LENGTH );

      *ga_keys_next = ga_key;
    }
  }
}

// Add GA <-> sender association
static void add_ga_sender( guint16 ga, const gchar* text, FILE* f2 )
{
  guint16 ia = read_ia( text );
  struct knx_keyring_ga_senders** ga_senders_next = &knx_keyring_ga_senders;
  struct knx_keyring_ga_senders* ga_sender;

  while( (ga_sender = *ga_senders_next) != NULL )
  {
    if( ga_sender->ga == ga )
    {
      if( ga_sender->ia == ia )
      {
        return;
      }
    }

    ga_senders_next = &ga_sender->next;
  }

  if( f2 )
  {
    fprintf( f2, "GA %u/%u/%u sender %u.%u.%u\n", (ga >> 11) & 0x1F, (ga >> 8) & 0x7, ga & 0xFF, (ia >> 12) & 0xF, (ia >> 8) & 0xF, ia & 0xFF );
  }

  ga_sender = (struct knx_keyring_ga_senders*) wmem_alloc( wmem_epan_scope(), sizeof( struct knx_keyring_ga_senders ) );

  if( ga_sender )
  {
    ga_sender->next = NULL;
    ga_sender->ga = ga;
    ga_sender->ia = ia;

    *ga_senders_next = ga_sender;
  }
}

// Add IA <-> key association
static void add_ia_key( guint16 ia, const gchar* text, guint8 password_hash[], guint8 created_hash[], FILE* f2 )
{
  gint text_length = (gint) strlen( text );

  if( text_length == BASE64_KNX_KEY_LENGTH )
  {
    guint8 key[ BASE64_KNX_KEY_LENGTH + 1 ];
    struct knx_keyring_ia_keys** ia_keys_next;
    struct knx_keyring_ia_keys* ia_key;

    decode_and_decrypt_key( key, text, password_hash, created_hash );

    ia_keys_next = &knx_keyring_ia_keys;

    while( (ia_key = *ia_keys_next) != NULL )
    {
      if( ia_key->ia == ia )
      {
        if( memcmp( ia_key->key, key, KNX_KEY_LENGTH ) == 0 )
        {
          return;
        }
      }

      ia_keys_next = &ia_key->next;
    }

    if( f2 )
    {
      fprintf( f2, "IA %u.%u.%u key", (ia >> 12) & 0xF, (ia >> 8) & 0xF, ia & 0xFF );
      fprintf_hex( f2, key, KNX_KEY_LENGTH );
    }

    ia_key = (struct knx_keyring_ia_keys*) wmem_alloc( wmem_epan_scope(), sizeof( struct knx_keyring_ia_keys ) );

    if( ia_key )
    {
      ia_key->next = NULL;
      ia_key->ia = ia;
      memcpy( ia_key->key, key, KNX_KEY_LENGTH );

      *ia_keys_next = ia_key;
    }
  }
}

// Add IA <-> sequence number association
static void add_ia_seq( guint16 ia, const gchar* text, FILE* f2 )
{
  guint64 seq = read_seq( text );

  struct knx_keyring_ia_seqs** ia_seqs_next = &knx_keyring_ia_seqs;
  struct knx_keyring_ia_seqs* ia_seq;

  while( (ia_seq = *ia_seqs_next) != NULL )
  {
    if( ia_seq->ia == ia )
    {
      if( ia_seq->seq == seq )
      {
        return;
      }
    }

    ia_seqs_next = &ia_seq->next;
  }

  if( f2 )
  {
    fprintf( f2, "IA %u.%u.%u SeqNr %" G_GINT64_MODIFIER "u\n", (ia >> 12) & 0xF, (ia >> 8) & 0xF, ia & 0xFF, seq );
  }

  ia_seq = (struct knx_keyring_ia_seqs*) wmem_alloc( wmem_epan_scope(), sizeof( struct knx_keyring_ia_seqs ) );

  if( ia_seq )
  {
    ia_seq->next = NULL;
    ia_seq->ia = ia;
    ia_seq->seq = seq;

    *ia_seqs_next = ia_seq;
  }
}

// Calculate PBKDF2(HMAC-SHA256, password, "1.keyring.ets.knx.org", 65536, 128)
static void make_password_hash( guint8 password_hash[] _U_, const gchar* password _U_ )
{
  // TODO: password_hash = PBKDF2(HMAC-SHA256, password, "1.keyring.ets.knx.org", 65536, 128)
}

// Calculate MSB128(SHA256(created))
static void make_created_hash( guint8 created_hash[] _U_, const gchar* created _U_ )
{
  // TODO: created_hash = MSB128(SHA256(created))
}

// Read KNX security key info from keyring XML file.
//
// An example keyring XML file is
//   "test/keys/knx_keyring.xml".
//
// Corresponding test is
//   suite_decryption.case_decrypt_knxip.test_knxip_keyring_xml_import
//
// We do not use LibXml2 here, because
// (1) we want to be platform independent,
// (2) we just want to extract some data from the keyring XML file,
// (3) we want to avoid the complicated recursive DOM processing implied by LibXml2.
//
// Resulting decoded and decrypted 16-byte keys with context info are optionally written to a "key info" text file.
// This may be useful, as these keys are not directly available from the keyring XML file .
void read_knx_keyring_xml_file( const gchar* key_file, const gchar* password, const gchar* key_info_file )
{
  // Clear old keyring data
  clear_keyring_data();

  // Read new data from keyring XML file
  FILE* f = ws_fopen( key_file, "r" );

  // Optionally write extracted data to key info file
  FILE* f2 = (!key_info_file || !*key_info_file) ? NULL :
    (strcmp( key_info_file, "-" ) == 0) ? stdout :
    ws_fopen( key_info_file, "w" );

  if( f )
  {
    guint8 backbone_mca[ IPA_SIZE ];
    guint8 backbone_mca_valid = 0;
    guint16 group_ga = 0;
    guint8 group_ga_valid = 0;
    guint16 device_ia = 0;
    guint8 device_ia_valid = 0;
    gchar name[ TEXT_BUFFER_SIZE ];
    gchar value[ TEXT_BUFFER_SIZE ];
    guint8 password_hash[ KNX_KEY_LENGTH ];
    guint8 created_hash[ KNX_KEY_LENGTH ];
    gchar tag_name[ TEXT_BUFFER_SIZE ];
    guint8 tag_name_done = 0;
    guint8 tag_end = 0;
    guint8 in_tag = 0;

    memset( backbone_mca, 0, IPA_SIZE );
    *name = '\0';
    *value = '\0';
    memset( password_hash, 0, KNX_KEY_LENGTH );
    memset( created_hash, 0, KNX_KEY_LENGTH );
    *tag_name = '\0';

    make_password_hash( password_hash, password );

    g_debug( "%s:", key_file );

    gint c = fgetc( f );

    while( c >= 0 )
    {
      if( c == '<' )  // tag start
      {
        in_tag = 1;
        tag_end = 0;
        *tag_name = 0;
        tag_name_done = 0;
        *name = '\0';
        *value = '\0';
      }
      else if( c == '>' )  // tag end
      {
        in_tag = 0;
      }
      else if( c == '/' )
      {
        if( in_tag )  // "</" or "/>"
        {
          tag_end = 1;
          *tag_name = 0;
          tag_name_done = 0;
          *name = '\0';
          *value = '\0';
        }
      }
      else if( g_ascii_isalpha( c ) || c == '_' )  // possibly tag name, or attribute name
      {
        size_t length = 0;
        name[ length++ ] = (gchar) c;
        while( (c = fgetc( f )) >= 0 )
        {
          if( g_ascii_isalnum( c ) || c == '_' )
          {
            if( length < sizeof name + 1 )
            {
              name[ length++ ] = (gchar) c;
            }
          }
          else
          {
            break;
          }
        }
        name[ length ] = '\0';
        *value = '\0';

        if( !tag_name_done )  // tag name
        {
          g_snprintf( tag_name, sizeof tag_name, "%s", name );
          *name = '\0';
          tag_name_done = 1;
        }
        else  // Check for name="value" construct
        {
          while( c >= 0 && g_ascii_isspace( c ) ) c = fgetc( f );

          if( c == '=' )
          {
            while( (c = fgetc( f )) >= 0 && g_ascii_isspace( c ) );

            if( c == '"' )
            {
              length = 0;

              while( (c = fgetc( f )) >= 0 )
              {
                if( c == '"' )
                {
                  c = fgetc( f );
                  if( c != '"' )
                  {
                    break;
                  }
                }
                if( length < sizeof value - 1 )
                {
                  value[ length++ ] = (gchar) c;
                }
              }

              value[ length ] = 0;

              if( !tag_end )
              {
                // Found name="value" construct between < and >
                g_debug( "%s %s=%s", tag_name, name, value );

                // Process name/value pair
                if( strcmp( tag_name, "Keyring" ) == 0 )
                {
                  if( strcmp( name, "Created" ) == 0 )
                  {
                    make_created_hash( created_hash, value );
                  }
                }
                else if( strcmp( tag_name, "Backbone" ) == 0 )
                {
                  group_ga_valid = 0;
                  device_ia_valid = 0;

                  if( strcmp( name, "MulticastAddress" ) == 0 )
                  {
                    read_ip_addr( backbone_mca, value );
                    backbone_mca_valid = 1;
                  }
                  else if( strcmp( name, "Key" ) == 0 )
                  {
                    if( backbone_mca_valid )
                    {
                      add_mca_key( backbone_mca, value, password_hash, created_hash, f2 );
                    }
                  }
                }
                else if( strcmp( tag_name, "Group" ) == 0 )
                {
                  backbone_mca_valid = 0;
                  device_ia_valid = 0;

                  if( strcmp( name, "Address" ) == 0 )
                  {
                    group_ga = read_ga( value );
                    group_ga_valid = 1;
                  }
                  else if( strcmp( name, "Key" ) == 0 )
                  {
                    if( group_ga_valid )
                    {
                      add_ga_key( group_ga, value, password_hash, created_hash, f2 );
                    }
                  }
                  else if( strcmp( name, "Senders" ) == 0 )
                  {
                    if( group_ga_valid )
                    {
                      // Add senders given by space separated list of KNX IAs
                      static const gchar delim[] = " ,";
                      const gchar* token = strtok( value, delim );
                      while( token )
                      {
                        add_ga_sender( group_ga, token, f2 );
                        token = strtok( NULL, delim );
                      }
                    }
                  }
                }
                else if( strcmp( tag_name, "Device" ) == 0 )
                {
                  backbone_mca_valid = 0;
                  group_ga_valid = 0;

                  if( strcmp( name, "IndividualAddress" ) == 0 )
                  {
                    device_ia = read_ia( value );
                    device_ia_valid = 1;
                  }
                  else if( strcmp( name, "ToolKey" ) == 0 )
                  {
                    if( device_ia_valid )
                    {
                      add_ia_key( device_ia, value, password_hash, created_hash, f2 );
                    }
                  }
                  else if( strcmp( name, "SequenceNumber" ) == 0 )
                  {
                    if( device_ia_valid )
                    {
                      add_ia_seq( device_ia, value, f2 );
                    }
                  }
                }
                else
                {
                  backbone_mca_valid = 0;
                  group_ga_valid = 0;
                  device_ia_valid = 0;
                }
              }
            }
          }
        }

        if( c < 0 )  // EOF
        {
          break;
        }

        continue;
      }
      else
      {
        if( !g_ascii_isspace( c ) )
        {
          tag_name_done = 1;
          *name = '\0';
          *value = '\0';
        }
      }

      c = fgetc( f );
    }

    fclose( f );
  }

  if( f2 && f2 != stdout )
  {
    fclose( f2 );
  }
}

/*
 * Editor modelines  -  https://www.wireshark.org/tools/modelines.html
 *
 * Local variables:
 * c-basic-offset: 2
 * tab-width: 8
 * indent-tabs-mode: nil
 * End:
 *
 * vi: set shiftwidth=2 tabstop=8 expandtab:
 * :indentSize=2:tabSize=8:noTabs=true:
 */