aboutsummaryrefslogtreecommitdiffstats
path: root/epan/crypt/airpdcap.c
blob: 22ccfb067e766d79f3f87be51485e369b63a01c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
/* airpdcap.c
 *
 * $Id$
 * Copyright (c) 2006 CACE Technologies, Davis (California)
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the project nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * Alternatively, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") version 2 as published by the Free
 * Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/****************************************************************************/
/*	File includes								*/

#ifdef HAVE_CONFIG_H
# include "config.h"
#endif

#include <epan/tvbuff.h>
#include <epan/crc32.h>
#include <epan/strutil.h>
#include <epan/ws_strsplit.h>
#include <epan/emem.h>
#include <epan/pint.h>

#include "airpdcap_system.h"
#include "airpdcap_int.h"

#include "crypt-sha1.h"
#include "crypt-md5.h"

#include "airpdcap_debug.h"

#include "wep-wpadefs.h"

#ifdef NEED_G_ASCII_STRCASECMP_H
#include "../g_ascii_strcasecmp.h"
#endif

/****************************************************************************/

/****************************************************************************/
/*	Constant definitions							*/

#define	AIRPDCAP_SHA_DIGEST_LEN	20

/*	EAPOL definitions							*/
/**
 * Length of the EAPOL-Key key confirmation key (KCK) used to calculate
 * MIC over EAPOL frame and validate an EAPOL packet (128 bits)
 */
#define	AIRPDCAP_WPA_KCK_LEN	16
/**
 *Offset of the Key MIC in the EAPOL packet body
 */
#define	AIRPDCAP_WPA_MICKEY_OFFSET	77
/**
 * Maximum length of the EAPOL packet (it depends on the maximum MAC
 * frame size)
 */
#define	AIRPDCAP_WPA_MAX_EAPOL_LEN	4095
/**
 * EAPOL Key Descriptor Version 1, used for all EAPOL-Key frames to and
 * from a STA when neither the group nor pairwise ciphers are CCMP for
 * Key Descriptor 1.
 * @note
 * Defined in 802.11i-2004, page 78
 */
#define	AIRPDCAP_WPA_KEY_VER_CCMP	1
/**
 * EAPOL Key Descriptor Version 2, used for all EAPOL-Key frames to and
 * from a STA when either the pairwise or the group cipher is AES-CCMP
 * for Key Descriptor 2.
 * /note
 * Defined in 802.11i-2004, page 78
 */
#define	AIRPDCAP_WPA_KEY_VER_AES_CCMP	2

/****************************************************************************/

/****************************************************************************/
/*	Macro definitions							*/

extern const UINT32 crc32_table[256];
#define CRC(crc, ch)	 (crc = (crc >> 8) ^ crc32_table[(crc ^ (ch)) & 0xff])

#define	AIRPDCAP_GET_TK(ptk)	(ptk + 32)

/****************************************************************************/

/****************************************************************************/
/*	Type definitions							*/

/*	Internal function prototype declarations				*/

#ifdef	__cplusplus
extern "C" {
#endif

/**
 * It is a step of the PBKDF2 (specifically the PKCS #5 v2.0) defined in
 * the RFC 2898 to derive a key (used as PMK in WPA)
 * @param password [IN] pointer to a password (sequence of between 8 and
 * 63 ASCII encoded characters)
 * @param ssid [IN] pointer to the SSID string encoded in max 32 ASCII
 * encoded characters
 * @param iterations [IN] times to hash the password (4096 for WPA)
 * @param count [IN] ???
 * @param output [OUT] pointer to a preallocated buffer of
 * AIRPDCAP_SHA_DIGEST_LEN characters that will contain a part of the key
 */
static INT AirPDcapRsnaPwd2PskStep(
    const guint8 *ppbytes,
    const guint passLength,
    const CHAR *ssid,
    const size_t ssidLength,
    const INT iterations,
    const INT count,
    UCHAR *output)
    ;

/**
 * It calculates the passphrase-to-PSK mapping reccomanded for use with
 * RSNAs. This implementation uses the PBKDF2 method defined in the RFC
 * 2898.
 * @param password [IN] pointer to a password (sequence of between 8 and
 * 63 ASCII encoded characters)
 * @param ssid [IN] pointer to the SSID string encoded in max 32 ASCII
 * encoded characters
 * @param output [OUT] calculated PSK (to use as PMK in WPA)
 * @note
 * Described in 802.11i-2004, page 165
 */
static INT AirPDcapRsnaPwd2Psk(
    const CHAR *passphrase,
    const CHAR *ssid,
    const size_t ssidLength,
    UCHAR *output)
    ;

static INT AirPDcapRsnaMng(
    UCHAR *decrypt_data,
    guint mac_header_len,
    guint *decrypt_len,
    PAIRPDCAP_KEY_ITEM key,
    AIRPDCAP_SEC_ASSOCIATION *sa,
    INT offset)
    ;

static INT AirPDcapWepMng(
    PAIRPDCAP_CONTEXT ctx,
    UCHAR *decrypt_data,
    guint mac_header_len,
    guint *decrypt_len,
    PAIRPDCAP_KEY_ITEM key,
    AIRPDCAP_SEC_ASSOCIATION *sa,
    INT offset)
    ;

static INT AirPDcapRsna4WHandshake(
    PAIRPDCAP_CONTEXT ctx,
    const UCHAR *data,
    AIRPDCAP_SEC_ASSOCIATION *sa,
    PAIRPDCAP_KEY_ITEM key,
    INT offset)
    ;
/**
 * It checks whether the specified key is corrected or not.
 * @note
 * For a standard WEP key the length will be changed to the standard
 * length, and the type changed in a generic WEP key.
 * @param key [IN] pointer to the key to validate
 * @return
 * - TRUE: the key contains valid fields and values
 * - FALSE: the key has some invalid field or value
 */
static INT AirPDcapValidateKey(
    PAIRPDCAP_KEY_ITEM key)
    ;

static INT AirPDcapRsnaMicCheck(
    UCHAR *eapol,
    USHORT eapol_len,
    UCHAR KCK[AIRPDCAP_WPA_KCK_LEN],
    USHORT key_ver)
    ;

/**
 * @param ctx [IN] pointer to the current context
 * @param id [IN] id of the association (composed by BSSID and MAC of
 * the station)
 * @return
 * - index of the Security Association structure if found
 * - -1, if the specified addresses pair BSSID-STA MAC has not been found
 */
static INT AirPDcapGetSa(
    PAIRPDCAP_CONTEXT ctx,
    AIRPDCAP_SEC_ASSOCIATION_ID *id)
    ;

static INT AirPDcapStoreSa(
    PAIRPDCAP_CONTEXT ctx,
    AIRPDCAP_SEC_ASSOCIATION_ID *id)
    ;

static const UCHAR * AirPDcapGetStaAddress(
    const AIRPDCAP_MAC_FRAME_ADDR4 *frame)
    ;

static const UCHAR * AirPDcapGetBssidAddress(
    const AIRPDCAP_MAC_FRAME_ADDR4 *frame)
    ;

static void AirPDcapRsnaPrfX(
    AIRPDCAP_SEC_ASSOCIATION *sa,
    const UCHAR pmk[32],
    const UCHAR snonce[32],
    const INT x,	/*	for TKIP 512, for CCMP 384	*/
    UCHAR *ptk)
    ;

#ifdef	__cplusplus
}
#endif

/****************************************************************************/

/****************************************************************************/
/* Exported function definitions						*/

#ifdef	__cplusplus
extern "C" {
#endif

INT AirPDcapPacketProcess(
    PAIRPDCAP_CONTEXT ctx,
    const guint8 *data,
    const guint mac_header_len,
    const guint tot_len,
    UCHAR *decrypt_data,
    guint *decrypt_len,
    PAIRPDCAP_KEY_ITEM key,
    gboolean mngHandshake,
    gboolean mngDecrypt)
{
    const UCHAR *address;
    AIRPDCAP_SEC_ASSOCIATION_ID id;
    int index;
    PAIRPDCAP_SEC_ASSOCIATION sa;
    int offset = 0;
    guint bodyLength;
    const guint8 dot1x_header[] = {
        0xAA,             /* DSAP=SNAP */
        0xAA,             /* SSAP=SNAP */
        0x03,             /* Control field=Unnumbered frame */
        0x00, 0x00, 0x00, /* Org. code=encaps. Ethernet */
        0x88, 0x8E        /* Type: 802.1X authentication */
    };

#ifdef _DEBUG
    CHAR msgbuf[255];
#endif

    AIRPDCAP_DEBUG_TRACE_START("AirPDcapPacketProcess");

    if (ctx==NULL) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "NULL context", AIRPDCAP_DEBUG_LEVEL_5);
        AIRPDCAP_DEBUG_TRACE_END("AirPDcapPacketProcess");
        return AIRPDCAP_RET_UNSUCCESS;
    }
    if (data==NULL || tot_len==0) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "NULL data or length=0", AIRPDCAP_DEBUG_LEVEL_5);
        AIRPDCAP_DEBUG_TRACE_END("AirPDcapPacketProcess");
        return AIRPDCAP_RET_UNSUCCESS;
    }

    /* check if the packet is of data type	*/
    if (AIRPDCAP_TYPE(data[0])!=AIRPDCAP_TYPE_DATA) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "not data packet", AIRPDCAP_DEBUG_LEVEL_5);
        return AIRPDCAP_RET_NO_DATA;
    }

    /* check correct packet size, to avoid wrong elaboration of encryption algorithms	*/
    if (tot_len < (UINT)(mac_header_len+AIRPDCAP_CRYPTED_DATA_MINLEN)) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "minimum length violated", AIRPDCAP_DEBUG_LEVEL_5);
        return AIRPDCAP_RET_WRONG_DATA_SIZE;
    }

    /* get BSSID */
    if ( (address=AirPDcapGetBssidAddress((const AIRPDCAP_MAC_FRAME_ADDR4 *)(data))) != NULL) {
        memcpy(id.bssid, address, AIRPDCAP_MAC_LEN);
#ifdef _DEBUG
        sprintf(msgbuf, "BSSID: %2X.%2X.%2X.%2X.%2X.%2X\t", id.bssid[0],id.bssid[1],id.bssid[2],id.bssid[3],id.bssid[4],id.bssid[5]);
#endif
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", msgbuf, AIRPDCAP_DEBUG_LEVEL_3);
    } else {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "BSSID not found", AIRPDCAP_DEBUG_LEVEL_5);
        return AIRPDCAP_RET_REQ_DATA;
    }

    /* get STA address	*/
    if ( (address=AirPDcapGetStaAddress((const AIRPDCAP_MAC_FRAME_ADDR4 *)(data))) != NULL) {
        memcpy(id.sta, address, AIRPDCAP_MAC_LEN);
#ifdef _DEBUG
        sprintf(msgbuf, "ST_MAC: %2X.%2X.%2X.%2X.%2X.%2X\t", id.sta[0],id.sta[1],id.sta[2],id.sta[3],id.sta[4],id.sta[5]);
#endif
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", msgbuf, AIRPDCAP_DEBUG_LEVEL_3);
    } else {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "SA not found", AIRPDCAP_DEBUG_LEVEL_5);
        return AIRPDCAP_RET_REQ_DATA;
    }

    /* search for a cached Security Association for current BSSID and station MAC	*/
    if ((index=AirPDcapGetSa(ctx, &id))==-1) {
        /* create a new Security Association	*/
        if ((index=AirPDcapStoreSa(ctx, &id))==-1) {
            return AIRPDCAP_RET_UNSUCCESS;
        }
    }

    /* get the Security Association structure	*/
    sa=&ctx->sa[index];

    /* cache offset in the packet data (to scan encryption data)	*/
    offset = mac_header_len;

    /*	check if data is encrypted (use the WEP bit in the Frame Control field)	*/
    if (AIRPDCAP_WEP(data[1])==0)
    {
        if (mngHandshake) {
            /* data is sent in cleartext, check if is an authentication message or end the process	*/
            AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "Unencrypted data", AIRPDCAP_DEBUG_LEVEL_3);

            /* check if the packet as an LLC header and the packet is 802.1X authentication (IEEE 802.1X-2004, pg. 24)	*/
            if (memcmp(data+offset, dot1x_header, 8) == 0) {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "Authentication: EAPOL packet", AIRPDCAP_DEBUG_LEVEL_3);

                /* skip LLC header	*/
                offset+=8;

                /* check the version of the EAPOL protocol used (IEEE 802.1X-2004, pg. 24)	*/
                /* TODO EAPOL protocol version to check?	*/
                /*if (data[offset]!=2) {
                    AIRPDCAP_DEBUG_PRINT_LINE("EAPOL protocol version not recognized", AIRPDCAP_DEBUG_LEVEL_5);
                    return AIRPDCAP_RET_NO_VALID_HANDSHAKE;
                }*/

                /*	check if the packet is a EAPOL-Key (0x03) (IEEE 802.1X-2004, pg. 25)	*/
                if (data[offset+1]!=3) {
                    AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "Not EAPOL-Key", AIRPDCAP_DEBUG_LEVEL_5);
                    return AIRPDCAP_RET_NO_VALID_HANDSHAKE;
                }

                /* get and check the body length (IEEE 802.1X-2004, pg. 25)	*/
                bodyLength=pntohs(data+offset+2);
                if ((tot_len-offset-4) < bodyLength) {
                    AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "EAPOL body too short", AIRPDCAP_DEBUG_LEVEL_5);
                    return AIRPDCAP_RET_NO_VALID_HANDSHAKE;
                }

                /* skip EAPOL MPDU and go to the first byte of the body	*/
                offset+=4;

                /* check if the key descriptor type is valid (IEEE 802.1X-2004, pg. 27)	*/
                if (/*data[offset]!=0x1 &&*/	/* RC4 Key Descriptor Type (deprecated)	*/
                    data[offset]!=0x2 &&		/* IEEE 802.11 Key Descriptor Type			*/
                    data[offset]!=0xFE)		/* TODO what's this value???					*/
                {
                    AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "Not valid key descriptor type", AIRPDCAP_DEBUG_LEVEL_5);
                    return AIRPDCAP_RET_NO_VALID_HANDSHAKE;
                }

                /* start with descriptor body	*/
                offset+=1;

                /* manage the 4-way handshake to define the key */
                return AirPDcapRsna4WHandshake(ctx, data, sa, key, offset);
            } else {
                /* cleartext message, not authentication */
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "No authentication data", AIRPDCAP_DEBUG_LEVEL_5);
                return AIRPDCAP_RET_NO_DATA_ENCRYPTED;
            }
        }
    } else {
        if (mngDecrypt) {

            if (decrypt_data==NULL)
                return AIRPDCAP_RET_UNSUCCESS;

            /*	create new header and data to modify	*/
            *decrypt_len = tot_len;
            memcpy(decrypt_data, data, *decrypt_len);

            /* encrypted data	*/
            AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "Encrypted data", AIRPDCAP_DEBUG_LEVEL_3);

            /* check the Extension IV to distinguish between WEP encryption and WPA encryption	*/
            /* refer to IEEE 802.11i-2004, 8.2.1.2, pag.35 for WEP,	*/
            /*		IEEE 802.11i-2004, 8.3.2.2, pag. 45 for TKIP,		*/
            /*		IEEE 802.11i-2004, 8.3.3.2, pag. 57 for CCMP			*/
            if (AIRPDCAP_EXTIV(data[offset+3])==0) {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "WEP encryption", AIRPDCAP_DEBUG_LEVEL_3);
                return AirPDcapWepMng(ctx, decrypt_data, mac_header_len, decrypt_len, key, sa, offset);
            } else {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapPacketProcess", "TKIP or CCMP encryption", AIRPDCAP_DEBUG_LEVEL_3);
                return AirPDcapRsnaMng(decrypt_data, mac_header_len, decrypt_len, key, sa, offset);
            }
        }
    }

    return AIRPDCAP_RET_UNSUCCESS;
}

INT AirPDcapSetKeys(
    PAIRPDCAP_CONTEXT ctx,
    AIRPDCAP_KEY_ITEM keys[],
    const size_t keys_nr)
{
    INT i;
    INT success;
    AIRPDCAP_DEBUG_TRACE_START("AirPDcapSetKeys");

    if (ctx==NULL || keys==NULL) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapSetKeys", "NULL context or NULL keys array", AIRPDCAP_DEBUG_LEVEL_3);
        AIRPDCAP_DEBUG_TRACE_END("AirPDcapSetKeys");
        return 0;
    }

    if (keys_nr>AIRPDCAP_MAX_KEYS_NR) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapSetKeys", "Keys number greater than maximum", AIRPDCAP_DEBUG_LEVEL_3);
        AIRPDCAP_DEBUG_TRACE_END("AirPDcapSetKeys");
        return 0;
    }

    /* clean key and SA collections before setting new ones	*/
    AirPDcapInitContext(ctx);

    /* check and insert keys	*/
    for (i=0, success=0; i<(INT)keys_nr; i++) {
        if (AirPDcapValidateKey(keys+i)==TRUE) {
            if (keys[i].KeyType==AIRPDCAP_KEY_TYPE_WPA_PWD) {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapSetKeys", "Set a WPA-PWD key", AIRPDCAP_DEBUG_LEVEL_4);
                AirPDcapRsnaPwd2Psk(keys[i].UserPwd.Passphrase, keys[i].UserPwd.Ssid, keys[i].UserPwd.SsidLen, keys[i].KeyData.Wpa.Psk);
            }
#ifdef	_DEBUG
            else if (keys[i].KeyType==AIRPDCAP_KEY_TYPE_WPA_PMK) {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapSetKeys", "Set a WPA-PMK key", AIRPDCAP_DEBUG_LEVEL_4);
            } else if (keys[i].KeyType==AIRPDCAP_KEY_TYPE_WEP) {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapSetKeys", "Set a WEP key", AIRPDCAP_DEBUG_LEVEL_4);
            } else {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapSetKeys", "Set a key", AIRPDCAP_DEBUG_LEVEL_4);
            }
#endif
            memcpy(&ctx->keys[success], &keys[i], sizeof(keys[i]));
            success++;
        }
    }

    ctx->keys_nr=success;

    AIRPDCAP_DEBUG_TRACE_END("AirPDcapSetKeys");
    return success;
}


INT AirPDcapGetKeys(
    const PAIRPDCAP_CONTEXT ctx,
    AIRPDCAP_KEY_ITEM keys[],
    const size_t keys_nr)
{
    UINT i;
    UINT j;
    AIRPDCAP_DEBUG_TRACE_START("AirPDcapGetKeys");

    if (ctx==NULL) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapGetKeys", "NULL context", AIRPDCAP_DEBUG_LEVEL_5);
        AIRPDCAP_DEBUG_TRACE_END("AirPDcapGetKeys");
        return 0;
    } else if (keys==NULL) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapGetKeys", "NULL keys array", AIRPDCAP_DEBUG_LEVEL_5);
        AIRPDCAP_DEBUG_TRACE_END("AirPDcapGetKeys");
        return (INT)ctx->keys_nr;
    } else {
        for (i=0, j=0; i<ctx->keys_nr && i<keys_nr && i<AIRPDCAP_MAX_KEYS_NR; i++) {
            memcpy(&keys[j], &ctx->keys[i], sizeof(keys[j]));
            j++;
            AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapGetKeys", "Got a key", AIRPDCAP_DEBUG_LEVEL_5);
        }

        AIRPDCAP_DEBUG_TRACE_END("AirPDcapGetKeys");
        return j;
    }
}

/*
 * XXX - This won't be reliable if a packet containing SSID "B" shows
 * up in the middle of a 4-way handshake for SSID "A".
 * We should probably use a small array or hash table to keep multiple
 * SSIDs.
 */
INT AirPDcapSetLastSSID(
    PAIRPDCAP_CONTEXT ctx,
    CHAR *pkt_ssid,
    size_t pkt_ssid_len)
{
    if (!ctx || !pkt_ssid || pkt_ssid_len < 1 || pkt_ssid_len > WPA_SSID_MAX_SIZE)
        return AIRPDCAP_RET_UNSUCCESS;

    memcpy(ctx->pkt_ssid, pkt_ssid, pkt_ssid_len);
    ctx->pkt_ssid_len = pkt_ssid_len;

    return AIRPDCAP_RET_SUCCESS;
}

INT AirPDcapInitContext(
    PAIRPDCAP_CONTEXT ctx)
{
    AIRPDCAP_DEBUG_TRACE_START("AirPDcapInitContext");

    if (ctx==NULL) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapInitContext", "NULL context", AIRPDCAP_DEBUG_LEVEL_5);
        AIRPDCAP_DEBUG_TRACE_END("AirPDcapInitContext");
        return AIRPDCAP_RET_UNSUCCESS;
    }

    memset(ctx->keys, 0, sizeof(AIRPDCAP_KEY_ITEM) * AIRPDCAP_MAX_KEYS_NR);
    ctx->keys_nr=0;
    memset(ctx->sa, 0, AIRPDCAP_MAX_SEC_ASSOCIATIONS_NR * sizeof(AIRPDCAP_SEC_ASSOCIATION));

    ctx->first_free_index=0;
    ctx->index=-1;
    ctx->sa_index=-1;
    ctx->pkt_ssid_len = 0;

    AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapInitContext", "Context initialized!", AIRPDCAP_DEBUG_LEVEL_5);
    AIRPDCAP_DEBUG_TRACE_END("AirPDcapInitContext");
    return AIRPDCAP_RET_SUCCESS;
}

INT AirPDcapDestroyContext(
    PAIRPDCAP_CONTEXT ctx)
{
    AIRPDCAP_DEBUG_TRACE_START("AirPDcapDestroyContext");

    if (ctx==NULL) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapDestroyContext", "NULL context", AIRPDCAP_DEBUG_LEVEL_5);
        AIRPDCAP_DEBUG_TRACE_END("AirPDcapDestroyContext");
        return AIRPDCAP_RET_UNSUCCESS;
    }

    ctx->first_free_index=0;
    ctx->index=-1;
    ctx->sa_index=-1;

    AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapDestroyContext", "Context destroyed!", AIRPDCAP_DEBUG_LEVEL_5);
    AIRPDCAP_DEBUG_TRACE_END("AirPDcapDestroyContext");
    return AIRPDCAP_RET_SUCCESS;
}

#ifdef	__cplusplus
}
#endif

/****************************************************************************/

/****************************************************************************/
/* Internal function definitions						*/

#ifdef	__cplusplus
extern "C" {
#endif

static INT
AirPDcapRsnaMng(
    UCHAR *decrypt_data,
    guint mac_header_len,
    guint *decrypt_len,
    PAIRPDCAP_KEY_ITEM key,
    AIRPDCAP_SEC_ASSOCIATION *sa,
    INT offset)
{
    INT ret_value;

    if (sa->key==NULL) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsnaMng", "No key associated", AIRPDCAP_DEBUG_LEVEL_3);
        return AIRPDCAP_RET_REQ_DATA;
    }
    if (sa->validKey==FALSE) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsnaMng", "Key not yet valid", AIRPDCAP_DEBUG_LEVEL_3);
        return AIRPDCAP_RET_UNSUCCESS;
    }
    if (sa->wpa.key_ver==1) {
        /*	CCMP -> HMAC-MD5 is the EAPOL-Key MIC, RC4 is the EAPOL-Key encryption algorithm	*/
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsnaMng", "TKIP", AIRPDCAP_DEBUG_LEVEL_3);

        ret_value=AirPDcapTkipDecrypt(decrypt_data+offset, *decrypt_len-offset, decrypt_data+AIRPDCAP_TA_OFFSET, AIRPDCAP_GET_TK(sa->wpa.ptk));
        if (ret_value)
            return ret_value;

        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsnaMng", "TKIP DECRYPTED!!!", AIRPDCAP_DEBUG_LEVEL_3);
        /* remove MIC (8bytes) and ICV (4bytes) from the end of packet	*/
        *decrypt_len-=12;
    } else {
        /*	AES-CCMP -> HMAC-SHA1-128 is the EAPOL-Key MIC, AES wep_key wrap is the EAPOL-Key encryption algorithm	*/
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsnaMng", "CCMP", AIRPDCAP_DEBUG_LEVEL_3);

        ret_value=AirPDcapCcmpDecrypt(decrypt_data, mac_header_len, (INT)*decrypt_len, AIRPDCAP_GET_TK(sa->wpa.ptk));
        if (ret_value)
            return ret_value;

        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsnaMng", "CCMP DECRYPTED!!!", AIRPDCAP_DEBUG_LEVEL_3);
        /* remove MIC (8bytes) from the end of packet	*/
        *decrypt_len-=8;
    }

    /* remove protection bit	*/
    decrypt_data[1]&=0xBF;

    /* remove TKIP/CCMP header	*/
    offset = mac_header_len;
    *decrypt_len-=8;
    memcpy(decrypt_data+offset, decrypt_data+offset+8, *decrypt_len-offset);

    if (key!=NULL) {
        memcpy(key, sa->key, sizeof(AIRPDCAP_KEY_ITEM));

        if (sa->wpa.key_ver==AIRPDCAP_WPA_KEY_VER_CCMP)
            key->KeyType=AIRPDCAP_KEY_TYPE_TKIP;
        else if (sa->wpa.key_ver==AIRPDCAP_WPA_KEY_VER_AES_CCMP)
            key->KeyType=AIRPDCAP_KEY_TYPE_CCMP;
    }

    return AIRPDCAP_RET_SUCCESS;
}

static INT
AirPDcapWepMng(
    PAIRPDCAP_CONTEXT ctx,
    UCHAR *decrypt_data,
    guint mac_header_len,
    guint *decrypt_len,
    PAIRPDCAP_KEY_ITEM key,
    AIRPDCAP_SEC_ASSOCIATION *sa,
    INT offset)
{
    UCHAR wep_key[AIRPDCAP_WEP_KEY_MAXLEN+AIRPDCAP_WEP_IVLEN];
    size_t keylen;
    INT ret_value=1;
    INT key_index;
    AIRPDCAP_KEY_ITEM *tmp_key;
    UINT8 useCache=FALSE;
    UCHAR *try_data = ep_alloc(*decrypt_len);

    if (sa->key!=NULL)
        useCache=TRUE;

    for (key_index=0; key_index<(INT)ctx->keys_nr; key_index++) {
        /* use the cached one, or try all keys	*/
        if (!useCache) {
            tmp_key=&ctx->keys[key_index];
        } else {
            if (sa->key!=NULL && sa->key->KeyType==AIRPDCAP_KEY_TYPE_WEP) {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapWepMng", "Try cached WEP key...", AIRPDCAP_DEBUG_LEVEL_3);
                tmp_key=sa->key;
            } else {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapWepMng", "Cached key is not valid, try another WEP key...", AIRPDCAP_DEBUG_LEVEL_3);
                tmp_key=&ctx->keys[key_index];
            }
        }

        /* obviously, try only WEP keys...	*/
        if (tmp_key->KeyType==AIRPDCAP_KEY_TYPE_WEP)
        {
            AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapWepMng", "Try WEP key...", AIRPDCAP_DEBUG_LEVEL_3);

            memset(wep_key, 0, sizeof(wep_key));
            memcpy(try_data, decrypt_data, *decrypt_len);

            /* Costruct the WEP seed: copy the IV in first 3 bytes and then the WEP key (refer to 802-11i-2004, 8.2.1.4.3, pag. 36)	*/
            memcpy(wep_key, try_data+mac_header_len, AIRPDCAP_WEP_IVLEN);
            keylen=tmp_key->KeyData.Wep.WepKeyLen;
            memcpy(wep_key+AIRPDCAP_WEP_IVLEN, tmp_key->KeyData.Wep.WepKey, keylen);

            ret_value=AirPDcapWepDecrypt(wep_key,
                keylen+AIRPDCAP_WEP_IVLEN,
                try_data + (mac_header_len+AIRPDCAP_WEP_IVLEN+AIRPDCAP_WEP_KIDLEN),
                *decrypt_len-(mac_header_len+AIRPDCAP_WEP_IVLEN+AIRPDCAP_WEP_KIDLEN+AIRPDCAP_CRC_LEN));

            if (ret_value == AIRPDCAP_RET_SUCCESS)
                memcpy(decrypt_data, try_data, *decrypt_len);
        }

        if (!ret_value && tmp_key->KeyType==AIRPDCAP_KEY_TYPE_WEP) {
            /* the tried key is the correct one, cached in the Security Association	*/

            sa->key=tmp_key;

            if (key!=NULL) {
                memcpy(key, &sa->key, sizeof(AIRPDCAP_KEY_ITEM));
                key->KeyType=AIRPDCAP_KEY_TYPE_WEP;
            }

            break;
        } else {
            /* the cached key was not valid, try other keys	*/

            if (useCache==TRUE) {
                useCache=FALSE;
                key_index--;
            }
        }
    }

    if (ret_value)
        return ret_value;

    AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapWepMng", "WEP DECRYPTED!!!", AIRPDCAP_DEBUG_LEVEL_3);

    /* remove ICV (4bytes) from the end of packet	*/
    *decrypt_len-=4;

    /* remove protection bit	*/
    decrypt_data[1]&=0xBF;

    /* remove IC header	*/
    offset = mac_header_len;
    *decrypt_len-=4;
    memcpy(decrypt_data+offset, decrypt_data+offset+AIRPDCAP_WEP_IVLEN+AIRPDCAP_WEP_KIDLEN, *decrypt_len-offset);

    return AIRPDCAP_RET_SUCCESS;
}

/* Refer to IEEE 802.11i-2004, 8.5.3, pag. 85	*/
static INT
AirPDcapRsna4WHandshake(
    PAIRPDCAP_CONTEXT ctx,
    const UCHAR *data,
    AIRPDCAP_SEC_ASSOCIATION *sa,
    PAIRPDCAP_KEY_ITEM key,
    INT offset)
{
    AIRPDCAP_KEY_ITEM *tmp_key, pkt_key;
    INT key_index;
    INT ret_value=1;
    UCHAR useCache=FALSE;
    UCHAR eapol[AIRPDCAP_EAPOL_MAX_LEN];
    USHORT eapol_len;

    if (sa->key!=NULL)
        useCache=TRUE;

    /* a 4-way handshake packet use a Pairwise key type (IEEE 802.11i-2004, pg. 79)	*/
    if (AIRPDCAP_EAP_KEY(data[offset+1])!=1) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "Group/STAKey message (not used)", AIRPDCAP_DEBUG_LEVEL_5);
        return AIRPDCAP_RET_NO_VALID_HANDSHAKE;
    }

    /* TODO timeouts? reauthentication?	*/

    /* TODO consider key-index	*/

    /* TODO considera Deauthentications	*/

    AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "4-way handshake...", AIRPDCAP_DEBUG_LEVEL_5);

    /* manage 4-way handshake packets; this step completes the 802.1X authentication process (IEEE 802.11i-2004, pag. 85)	*/

    /* message 1: Authenticator->Supplicant (Sec=0, Mic=0, Ack=1, Inst=0, Key=1(pairwise), KeyRSC=0, Nonce=ANonce, MIC=0)	*/
    if (AIRPDCAP_EAP_INST(data[offset+1])==0 &&
        AIRPDCAP_EAP_ACK(data[offset+1])==1 &&
        AIRPDCAP_EAP_MIC(data[offset])==0)
    {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "4-way handshake message 1", AIRPDCAP_DEBUG_LEVEL_3);

        /* On reception of Message 1, the Supplicant determines whether the Key Replay Counter field value has been			*/
        /* used before with the current PMKSA. If the Key Replay Counter field value is less than or equal to the current	*/
        /* local value, the Supplicant discards the message.																					*/
        /* -> not checked, the Authenticator will be send another Message 1 (hopefully!)												*/

        /* save ANonce (from authenticator)	to derive the PTK with the SNonce (from the 2 message)	*/
        memcpy(sa->wpa.nonce, data+offset+12, 32);

        /* get the Key Descriptor Version (to select algorithm used in decryption -CCMP or TKIP-)	*/
        sa->wpa.key_ver=AIRPDCAP_EAP_KEY_DESCR_VER(data[offset+1]);

        sa->handshake=1;

        return AIRPDCAP_RET_SUCCESS_HANDSHAKE;
    }

    /* message 2|4: Supplicant->Authenticator (Sec=0|1, Mic=1, Ack=0, Inst=0, Key=1(pairwise), KeyRSC=0, Nonce=SNonce|0, MIC=MIC(KCK,EAPOL))	*/
    if (AIRPDCAP_EAP_INST(data[offset+1])==0 &&
        AIRPDCAP_EAP_ACK(data[offset+1])==0 &&
        AIRPDCAP_EAP_MIC(data[offset])==1)
    {
        if (AIRPDCAP_EAP_SEC(data[offset])==0) {

            /* PATCH:	some implementations set secure bit to 0 also in the 4th message		*/
            /*		to recognize which message is this check if wep_key data length is 0		*/
            /*		in the 4th message								*/
            if (data[offset+92]!=0 || data[offset+93]!=0) {
                /* message 2	*/
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "4-way handshake message 2", AIRPDCAP_DEBUG_LEVEL_3);

                /* On reception of Message 2, the Authenticator checks that the key replay counter corresponds to the	*/
                /* outstanding Message 1. If not, it silently discards the message.												*/
                /* If the calculated MIC does not match the MIC that the Supplicant included in the EAPOL-Key frame,	*/
                /* the Authenticator silently discards Message 2.																		*/
                /* -> not checked; the Supplicant will send another message 2 (hopefully!)										*/

                /* now you can derive the PTK	*/
                for (key_index=0; key_index<(INT)ctx->keys_nr || useCache; key_index++) {
                    /* use the cached one, or try all keys	*/
                    if (!useCache) {
                        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "Try WPA key...", AIRPDCAP_DEBUG_LEVEL_3);
                        tmp_key=&ctx->keys[key_index];
                    } else {
                        /* there is a cached key in the security association, if it's a WPA key try it...	*/
                        if (sa->key!=NULL &&
                            (sa->key->KeyType==AIRPDCAP_KEY_TYPE_WPA_PWD ||
                             sa->key->KeyType==AIRPDCAP_KEY_TYPE_WPA_PSK ||
                             sa->key->KeyType==AIRPDCAP_KEY_TYPE_WPA_PMK)) {
                                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "Try cached WPA key...", AIRPDCAP_DEBUG_LEVEL_3);
                                tmp_key=sa->key;
                        } else {
                            AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "Cached key is of a wrong type, try WPA key...", AIRPDCAP_DEBUG_LEVEL_3);
                            tmp_key=&ctx->keys[key_index];
                        }
                    }

                    /* obviously, try only WPA keys...	*/
                    if (tmp_key->KeyType==AIRPDCAP_KEY_TYPE_WPA_PWD ||
                        tmp_key->KeyType==AIRPDCAP_KEY_TYPE_WPA_PSK ||
                        tmp_key->KeyType==AIRPDCAP_KEY_TYPE_WPA_PMK)
                    {
                        if (tmp_key->KeyType == AIRPDCAP_KEY_TYPE_WPA_PWD && tmp_key->UserPwd.SsidLen == 0 && ctx->pkt_ssid_len > 0 && ctx->pkt_ssid_len <= AIRPDCAP_WPA_SSID_MAX_LEN) {
                            /* We have a "wildcard" SSID.  Use the one from the packet. */
                            memcpy(&pkt_key, tmp_key, sizeof(pkt_key));
                            memcpy(&pkt_key.UserPwd.Ssid, ctx->pkt_ssid, ctx->pkt_ssid_len);
                             pkt_key.UserPwd.SsidLen = ctx->pkt_ssid_len;
                            AirPDcapRsnaPwd2Psk(pkt_key.UserPwd.Passphrase, pkt_key.UserPwd.Ssid,
                                pkt_key.UserPwd.SsidLen, pkt_key.KeyData.Wpa.Psk);
                            tmp_key = &pkt_key;
                        }

                        /* derive the PTK from the BSSID, STA MAC, PMK, SNonce, ANonce	*/
                        AirPDcapRsnaPrfX(sa,			/* authenticator nonce, bssid, station mac	*/
                            tmp_key->KeyData.Wpa.Pmk,	/* PMK	*/
                            data+offset+12,		/* supplicant nonce	*/
                            512,
                            sa->wpa.ptk);

                        /* verify the MIC (compare the MIC in the packet included in this message with a MIC calculated with the PTK)	*/
                        eapol_len=pntohs(data+offset-3)+4;
                        memcpy(eapol, &data[offset-5], (eapol_len<AIRPDCAP_EAPOL_MAX_LEN?eapol_len:AIRPDCAP_EAPOL_MAX_LEN));
                        ret_value=AirPDcapRsnaMicCheck(eapol,						/*	eapol frame (header also)		*/
                            eapol_len,													/*	eapol frame length				*/
                            sa->wpa.ptk,												/*	Key Confirmation Key				*/
                            AIRPDCAP_EAP_KEY_DESCR_VER(data[offset+1]));		/*	EAPOL-Key description version	*/

                        /* If the MIC is valid, the Authenticator checks that the RSN information element bit-wise matches		*/
                        /* that from the (Re)Association Request message.																		*/
                        /*		i) TODO If these are not exactly the same, the Authenticator uses MLME-DEAUTHENTICATE.request	*/
                        /* primitive to terminate the association.																				*/
                        /*		ii) If they do match bit-wise, the Authenticator constructs Message 3.									*/
                    }

                    if (!ret_value &&
                        (tmp_key->KeyType==AIRPDCAP_KEY_TYPE_WPA_PWD ||
                        tmp_key->KeyType==AIRPDCAP_KEY_TYPE_WPA_PSK ||
                        tmp_key->KeyType==AIRPDCAP_KEY_TYPE_WPA_PMK))
                    {
                        /* the temporary key is the correct one, cached in the Security Association	*/

                        sa->key=tmp_key;

                        if (key!=NULL) {
                            memcpy(key, &tmp_key, sizeof(AIRPDCAP_KEY_ITEM));
                            if (AIRPDCAP_EAP_KEY_DESCR_VER(data[offset+1])==AIRPDCAP_WPA_KEY_VER_CCMP)
                                key->KeyType=AIRPDCAP_KEY_TYPE_TKIP;
                            else if (AIRPDCAP_EAP_KEY_DESCR_VER(data[offset+1])==AIRPDCAP_WPA_KEY_VER_AES_CCMP)
                                key->KeyType=AIRPDCAP_KEY_TYPE_CCMP;
                        }

                        break;
                    } else {
                        /* the cached key was not valid, try other keys	*/

                        if (useCache==TRUE) {
                            useCache=FALSE;
                            key_index--;
                        }
                    }
                }

                if (ret_value) {
                    AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "handshake step failed", AIRPDCAP_DEBUG_LEVEL_3);
                    return AIRPDCAP_RET_NO_VALID_HANDSHAKE;
                }

                sa->handshake=2;

                return AIRPDCAP_RET_SUCCESS_HANDSHAKE;
            } else {
                /* message 4	*/

                /* TODO "Note that when the 4-Way Handshake is first used Message 4 is sent in the clear."	*/

                /* TODO check MIC and Replay Counter																							*/
                /* On reception of Message 4, the Authenticator verifies that the Key Replay Counter field value is one	*/
                /* that it used on this 4-Way Handshake; if it is not, it silently discards the message.						*/
                /* If the calculated MIC does not match the MIC that the Supplicant included in the EAPOL-Key frame, the	*/
                /* Authenticator silently discards Message 4.																				*/

                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "4-way handshake message 4 (patched)", AIRPDCAP_DEBUG_LEVEL_3);

                sa->handshake=4;

                sa->validKey=TRUE;

                return AIRPDCAP_RET_SUCCESS_HANDSHAKE;
            }
            /* END OF PATCH																					*/
            /*																										*/
        } else {
            /* message 4	*/

            /* TODO "Note that when the 4-Way Handshake is first used Message 4 is sent in the clear."	*/

            /* TODO check MIC and Replay Counter																							*/
            /* On reception of Message 4, the Authenticator verifies that the Key Replay Counter field value is one	*/
            /* that it used on this 4-Way Handshake; if it is not, it silently discards the message.						*/
            /* If the calculated MIC does not match the MIC that the Supplicant included in the EAPOL-Key frame, the	*/
            /* Authenticator silently discards Message 4.																				*/

            AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "4-way handshake message 4", AIRPDCAP_DEBUG_LEVEL_3);

            sa->handshake=4;

            sa->validKey=TRUE;

            return AIRPDCAP_RET_SUCCESS_HANDSHAKE;
        }
    }

    /* message 3: Authenticator->Supplicant (Sec=1, Mic=1, Ack=1, Inst=0/1, Key=1(pairwise), KeyRSC=???, Nonce=ANonce, MIC=1)	*/
    if (AIRPDCAP_EAP_ACK(data[offset+1])==1 &&
        AIRPDCAP_EAP_MIC(data[offset])==1)
    {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapRsna4WHandshake", "4-way handshake message 3", AIRPDCAP_DEBUG_LEVEL_3);

        /* On reception of Message 3, the Supplicant silently discards the message if the Key Replay Counter field		*/
        /* value has already been used or if the ANonce value in Message 3 differs from the ANonce value in Message 1.	*/
        /* -> not checked, the Authenticator will send another message 3 (hopefully!)												*/

        /*	TODO check page 88 (RNS)	*/

        return AIRPDCAP_RET_SUCCESS_HANDSHAKE;
    }

    return AIRPDCAP_RET_UNSUCCESS;
}

static INT
AirPDcapRsnaMicCheck(
    UCHAR *eapol,
    USHORT eapol_len,
    UCHAR KCK[AIRPDCAP_WPA_KCK_LEN],
    USHORT key_ver)
{
    UCHAR mic[AIRPDCAP_WPA_MICKEY_LEN];
    UCHAR c_mic[20];	/* MIC 16 byte, the HMAC-SHA1 use a buffer of 20 bytes */

    /* copy the MIC from the EAPOL packet	*/
    memcpy(mic, eapol+AIRPDCAP_WPA_MICKEY_OFFSET+4, AIRPDCAP_WPA_MICKEY_LEN);

    /* set to 0 the MIC in the EAPOL packet (to calculate the MIC) */
    memset(eapol+AIRPDCAP_WPA_MICKEY_OFFSET+4, 0, AIRPDCAP_WPA_MICKEY_LEN);

    if (key_ver==AIRPDCAP_WPA_KEY_VER_CCMP) {
        /* use HMAC-MD5 for the EAPOL-Key MIC	*/
        md5_hmac(eapol, eapol_len, KCK, AIRPDCAP_WPA_KCK_LEN, c_mic);
    } else if (key_ver==AIRPDCAP_WPA_KEY_VER_AES_CCMP) {
        /* use HMAC-SHA1-128 for the EAPOL-Key MIC */
        sha1_hmac(KCK, AIRPDCAP_WPA_KCK_LEN, eapol, eapol_len, c_mic);
    } else
        /* key descriptor version not recognized */
        return AIRPDCAP_RET_UNSUCCESS;

    /* compare calculated MIC with the Key MIC and return result (0 means success) */
    return memcmp(mic, c_mic, AIRPDCAP_WPA_MICKEY_LEN);
}

static INT
AirPDcapValidateKey(
    PAIRPDCAP_KEY_ITEM key)
{
    size_t len;
    UCHAR ret=TRUE;
    AIRPDCAP_DEBUG_TRACE_START("AirPDcapValidateKey");

    if (key==NULL) {
        AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapValidateKey", "NULL key", AIRPDCAP_DEBUG_LEVEL_5);
        AIRPDCAP_DEBUG_TRACE_START("AirPDcapValidateKey");
        return FALSE;
    }

    switch (key->KeyType) {
        case AIRPDCAP_KEY_TYPE_WEP:
            /* check key size limits	*/
            len=key->KeyData.Wep.WepKeyLen;
            if (len<AIRPDCAP_WEP_KEY_MINLEN || len>AIRPDCAP_WEP_KEY_MAXLEN) {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapValidateKey", "WEP key: key length not accepted", AIRPDCAP_DEBUG_LEVEL_5);
                ret=FALSE;
            }
            break;

        case AIRPDCAP_KEY_TYPE_WEP_40:
            /* set the standard length	and use a generic WEP key type	*/
            key->KeyData.Wep.WepKeyLen=AIRPDCAP_WEP_40_KEY_LEN;
            key->KeyType=AIRPDCAP_KEY_TYPE_WEP;
            break;

        case AIRPDCAP_KEY_TYPE_WEP_104:
            /* set the standard length	and use a generic WEP key type	*/
            key->KeyData.Wep.WepKeyLen=AIRPDCAP_WEP_104_KEY_LEN;
            key->KeyType=AIRPDCAP_KEY_TYPE_WEP;
            break;

        case AIRPDCAP_KEY_TYPE_WPA_PWD:
            /* check passphrase and SSID size limits	*/
            len=strlen(key->UserPwd.Passphrase);
            if (len<AIRPDCAP_WPA_PASSPHRASE_MIN_LEN || len>AIRPDCAP_WPA_PASSPHRASE_MAX_LEN) {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapValidateKey", "WPA-PWD key: passphrase length not accepted", AIRPDCAP_DEBUG_LEVEL_5);
                ret=FALSE;
            }

            len=key->UserPwd.SsidLen;
            if (len>AIRPDCAP_WPA_SSID_MAX_LEN) {
                AIRPDCAP_DEBUG_PRINT_LINE("AirPDcapValidateKey", "WPA-PWD key: ssid length not accepted", AIRPDCAP_DEBUG_LEVEL_5);
                ret=FALSE;
            }

            break;

        case AIRPDCAP_KEY_TYPE_WPA_PSK:
            break;

        case AIRPDCAP_KEY_TYPE_WPA_PMK:
            break;

        default:
            ret=FALSE;
    }

    AIRPDCAP_DEBUG_TRACE_END("AirPDcapValidateKey");
    return ret;
}

static INT
AirPDcapGetSa(
    PAIRPDCAP_CONTEXT ctx,
    AIRPDCAP_SEC_ASSOCIATION_ID *id)
{
    INT index;

    if (ctx->sa_index!=-1) {
        /* at least one association was stored														*/
        /* search for the association from sa_index to 0 (most recent added)	*/
        for (index=ctx->sa_index; index>=0; index--) {
            if (ctx->sa[index].used) {
                if (memcmp(id, &(ctx->sa[index].saId), sizeof(AIRPDCAP_SEC_ASSOCIATION_ID))==0) {
                    ctx->index=index;
                    return index;
                }
            }
        }
    }

    return -1;
}

static INT
AirPDcapStoreSa(
    PAIRPDCAP_CONTEXT ctx,
    AIRPDCAP_SEC_ASSOCIATION_ID *id)
{
    INT last_free;

    if (ctx->sa[ctx->first_free_index].used) {
        /* last addition was in the middle of the array (and the first_free_index was just incremented by 1)	*/
        /* search for a free space from the first_free_index to AIRPDCAP_STA_INFOS_NR (to avoid free blocks in	*/
        /*		the middle)																													*/
        for (last_free=ctx->first_free_index; last_free<AIRPDCAP_MAX_SEC_ASSOCIATIONS_NR; last_free++)
            if (!ctx->sa[last_free].used)
                break;

        if (last_free>=AIRPDCAP_MAX_SEC_ASSOCIATIONS_NR) {
            /* there is no empty space available. FAILURE	*/
            return -1;
        }

        /* store first free space index	*/
        ctx->first_free_index=last_free;
    }

    /* use this info	*/
    ctx->index=ctx->first_free_index;

    /* reset the info structure	*/
    memset(ctx->sa+ctx->index, 0, sizeof(AIRPDCAP_SEC_ASSOCIATION));

    ctx->sa[ctx->index].used=1;

    /* set the info structure	*/
    memcpy(&(ctx->sa[ctx->index].saId), id, sizeof(AIRPDCAP_SEC_ASSOCIATION_ID));

    /* increment by 1 the first_free_index (heuristic)	*/
    ctx->first_free_index++;

    /* set the sa_index if the added index is greater the the sa_index	*/
    if (ctx->index > ctx->sa_index)
        ctx->sa_index=ctx->index;

    return ctx->index;
}

/*
 * AirPDcapGetBssidAddress() and AirPDcapGetBssidAddress() are used for
 * key caching.  In each case, it's more important to return a value than
 * to return a _correct_ value, so we fudge addresses in some cases, e.g.
 * the BSSID in bridged connections.
 * FromDS    ToDS    Sta    BSSID
 * 0         0       addr2  addr3
 * 0         1       addr2  addr1
 * 1         0       addr1  addr2
 * 1         1       addr2  addr1
 */

static const UCHAR *
AirPDcapGetStaAddress(
    const AIRPDCAP_MAC_FRAME_ADDR4 *frame)
{
    switch(AIRPDCAP_DS_BITS(frame->fc[1])) { /* Bit 1 = FromDS, bit 0 = ToDS */
        case 0:
        case 1:
        case 3:
            return frame->addr2;
        case 2:
            return frame->addr1;
        default:
            return NULL;
    }
}

static const UCHAR *
AirPDcapGetBssidAddress(
    const AIRPDCAP_MAC_FRAME_ADDR4 *frame)
{
    switch(AIRPDCAP_DS_BITS(frame->fc[1])) { /* Bit 1 = FromDS, bit 0 = ToDS */
        case 0:
            return frame->addr3;
        case 1:
        case 3:
            return frame->addr1;
        case 2:
            return frame->addr2;
        default:
            return NULL;
    }
}

/* Function used to derive the PTK. Refer to IEEE 802.11I-2004, pag. 74	*/
static void
AirPDcapRsnaPrfX(
    AIRPDCAP_SEC_ASSOCIATION *sa,
    const UCHAR pmk[32],
    const UCHAR snonce[32],
    const INT x,	/*	for TKIP 512, for CCMP 384	*/
    UCHAR *ptk)
{
    UINT8 i;
    UCHAR R[100];
    INT offset=sizeof("Pairwise key expansion");

    memset(R, 0, 100);

    memcpy(R, "Pairwise key expansion", offset);

    /*	Min(AA, SPA) || Max(AA, SPA)	*/
    if (memcmp(sa->saId.sta, sa->saId.bssid, AIRPDCAP_MAC_LEN) < 0)
    {
        memcpy(R + offset, sa->saId.sta, AIRPDCAP_MAC_LEN);
        memcpy(R + offset+AIRPDCAP_MAC_LEN, sa->saId.bssid, AIRPDCAP_MAC_LEN);
    }
    else
    {
        memcpy(R + offset, sa->saId.bssid, AIRPDCAP_MAC_LEN);
        memcpy(R + offset+AIRPDCAP_MAC_LEN, sa->saId.sta, AIRPDCAP_MAC_LEN);
    }

    offset+=AIRPDCAP_MAC_LEN*2;

    /*	Min(ANonce,SNonce) || Max(ANonce,SNonce)	*/
    if( memcmp(snonce, sa->wpa.nonce, 32) < 0 )
    {
        memcpy(R + offset, snonce, 32);
        memcpy(R + offset + 32, sa->wpa.nonce, 32);
    }
    else
    {
        memcpy(R + offset, sa->wpa.nonce, 32);
        memcpy(R + offset + 32, snonce, 32);
    }

    offset+=32*2;

    for(i = 0; i < (x+159)/160; i++)
    {
        R[offset] = i;
        sha1_hmac(pmk, 32, R, 100, ptk + i * 20);
    }
}

static INT
AirPDcapRsnaPwd2PskStep(
    const guint8 *ppBytes,
    const guint ppLength,
    const CHAR *ssid,
    const size_t ssidLength,
    const INT iterations,
    const INT count,
    UCHAR *output)
{
    UCHAR digest[36], digest1[AIRPDCAP_SHA_DIGEST_LEN];
    INT i, j;

    /* U1 = PRF(P, S || INT(i)) */
    memcpy(digest, ssid, ssidLength);
    digest[ssidLength] = (UCHAR)((count>>24) & 0xff);
    digest[ssidLength+1] = (UCHAR)((count>>16) & 0xff);
    digest[ssidLength+2] = (UCHAR)((count>>8) & 0xff);
    digest[ssidLength+3] = (UCHAR)(count & 0xff);
    sha1_hmac(ppBytes, ppLength, digest, ssidLength+4, digest1);

    /* output = U1 */
    memcpy(output, digest1, AIRPDCAP_SHA_DIGEST_LEN);
    for (i = 1; i < iterations; i++) {
        /* Un = PRF(P, Un-1) */
        sha1_hmac(ppBytes, ppLength, digest1, AIRPDCAP_SHA_DIGEST_LEN, digest);

        memcpy(digest1, digest, AIRPDCAP_SHA_DIGEST_LEN);
        /* output = output xor Un */
        for (j = 0; j < AIRPDCAP_SHA_DIGEST_LEN; j++) {
            output[j] ^= digest[j];
        }
    }

    return AIRPDCAP_RET_SUCCESS;
}

static INT
AirPDcapRsnaPwd2Psk(
    const CHAR *passphrase,
    const CHAR *ssid,
    const size_t ssidLength,
    UCHAR *output)
{
    UCHAR m_output[AIRPDCAP_WPA_PSK_LEN];
    GByteArray *pp_ba = g_byte_array_new();

    memset(m_output, 0, AIRPDCAP_WPA_PSK_LEN);

    if (!uri_str_to_bytes(passphrase, pp_ba)) {
        g_byte_array_free(pp_ba, TRUE);
        return 0;
    }

    AirPDcapRsnaPwd2PskStep(pp_ba->data, pp_ba->len, ssid, ssidLength, 4096, 1, m_output);
    AirPDcapRsnaPwd2PskStep(pp_ba->data, pp_ba->len, ssid, ssidLength, 4096, 2, &m_output[AIRPDCAP_SHA_DIGEST_LEN]);

    memcpy(output, m_output, AIRPDCAP_WPA_PSK_LEN);
    g_byte_array_free(pp_ba, TRUE);

    return 0;
}

/*
 * Returns the decryption_key_t struct given a string describing the key.
 * Returns NULL if the key_string cannot be parsed.
 */
decryption_key_t*
parse_key_string(gchar* input_string)
{
    gchar *type;
    gchar *key;
    gchar *ssid;

    GString    *key_string = NULL;
    GByteArray *ssid_ba = NULL, *key_ba;
    gboolean    res;

    gchar **tokens;
    guint n = 0;
    decryption_key_t *dk;
    gchar *first_nibble = input_string;

    if(input_string == NULL)
        return NULL;

    /*
     * Parse the input_string. It should be in the form
     * <key type>:<key data>[:<ssid>]
     * XXX - For backward compatibility, the a WEP key can be just a string
     * of hexadecimal characters (if WEP key is wrong, null will be
     * returned...).
     */

    /* First, check for a WEP string */
    /* XXX - This duplicates code in packet-ieee80211.c */
    if (g_ascii_strncasecmp(input_string, STRING_KEY_TYPE_WEP ":", 4) == 0) {
        first_nibble += 4;
    }

    key_ba = g_byte_array_new();
    res = hex_str_to_bytes(first_nibble, key_ba, FALSE);

    if (res && key_ba->len > 0) {
        /* Key is correct! It was probably an 'old style' WEP key */
        /* Create the decryption_key_t structure, fill it and return it*/
        dk = g_malloc(sizeof(decryption_key_t));

        dk->type = AIRPDCAP_KEY_TYPE_WEP;
        /* XXX - The current key handling code in the GUI requires
         * no separators and lower case */
        dk->key  = g_string_new(bytes_to_str(key_ba->data, key_ba->len));
        g_string_down(dk->key);
        dk->bits = key_ba->len * 8;
        dk->ssid = NULL;

        g_byte_array_free(key_ba, TRUE);
        return dk;
    }
    g_byte_array_free(key_ba, TRUE);


    tokens = g_strsplit(input_string,":",0);

    /* Tokens is a null termiated array of strings ... */
    while(tokens[n] != NULL)
        n++;

    if(n < 2)
    {
        /* Free the array of strings */
        g_strfreev(tokens);
        return NULL;
    }

    type = g_strdup(tokens[0]);

    /*
     * The second token is the key (right now it doesn't matter
     * if it is a passphrase[+ssid] or an hexadecimal one)
     */
    key = g_strdup(tokens[1]);

    ssid = NULL;
    /* Maybe there is a third token (an ssid, if everything else is ok) */
    if(n >= 3)
    {
        ssid = g_strdup(tokens[2]);
    }

    if (g_ascii_strcasecmp(type,STRING_KEY_TYPE_WPA_PSK) == 0) /* WPA key */
    {
        /* Create a new string */
        key_string = g_string_new(key);

        key_ba = g_byte_array_new();
        res = hex_str_to_bytes(key, key_ba, FALSE);

        /* Two tokens means that the user should have entered a WPA-BIN key ... */
        if(!res || ((key_string->len) != WPA_PSK_KEY_CHAR_SIZE))
        {
            g_string_free(key_string, TRUE);
            g_byte_array_free(key_ba, TRUE);

            g_free(type);
            g_free(key);
            /* No ssid has been created ... */
            /* Free the array of strings */
            g_strfreev(tokens);
            return NULL;
        }

        /* Key was correct!!! Create the new decryption_key_t ... */
        dk = (decryption_key_t*)g_malloc(sizeof(decryption_key_t));

        dk->type = AIRPDCAP_KEY_TYPE_WPA_PMK;
        dk->key  = g_string_new(key);
        dk->bits = dk->key->len * 4;
        dk->ssid = NULL;

        g_string_free(key_string, TRUE);
        g_byte_array_free(key_ba, TRUE);
        g_free(key);
        g_free(type);

        /* Free the array of strings */
        g_strfreev(tokens);
        return dk;
    }
    else if(g_ascii_strcasecmp(type,STRING_KEY_TYPE_WPA_PWD) == 0) /* WPA key *//* If the number of tokens is more than three, we accept the string... if the first three tokens are correct... */
    {
        /* Create a new string */
        key_string = g_string_new(key);
        ssid_ba = NULL;

        /* Three (or more) tokens mean that the user entered a WPA-PWD key ... */
        if( ((key_string->len) > WPA_KEY_MAX_CHAR_SIZE) || ((key_string->len) < WPA_KEY_MIN_CHAR_SIZE))
        {
            g_string_free(key_string, TRUE);

            g_free(type);
            g_free(key);
            g_free(ssid);

            /* Free the array of strings */
            g_strfreev(tokens);
            return NULL;
        }

        if(ssid != NULL) /* more than three tokens found, means that the user specified the ssid */
        {
            ssid_ba = g_byte_array_new();
            if (! uri_str_to_bytes(ssid, ssid_ba)) {
                g_string_free(key_string, TRUE);
                g_byte_array_free(ssid_ba, TRUE);
                g_free(type);
                g_free(key);
                g_free(ssid);
                /* Free the array of strings */
                g_strfreev(tokens);
                return NULL;
            }

            if(ssid_ba->len > WPA_SSID_MAX_CHAR_SIZE)
            {
                g_string_free(key_string, TRUE);
                g_byte_array_free(ssid_ba, TRUE);

                g_free(type);
                g_free(key);
                g_free(ssid);

                /* Free the array of strings */
                g_strfreev(tokens);
                return NULL;
            }
        }

        /* Key was correct!!! Create the new decryption_key_t ... */
        dk = (decryption_key_t*)g_malloc(sizeof(decryption_key_t));

        dk->type = AIRPDCAP_KEY_TYPE_WPA_PWD;
        dk->key  = g_string_new(key);
        dk->bits = 256; /* This is the length of the array pf bytes that will be generated using key+ssid ...*/
        dk->ssid = byte_array_dup(ssid_ba); /* NULL if ssid_ba is NULL */

        g_string_free(key_string, TRUE);
        if (ssid_ba != NULL)
            g_byte_array_free(ssid_ba, TRUE);

        g_free(type);
        g_free(key);
        if(ssid != NULL)
            g_free(ssid);

        /* Free the array of strings */
        g_strfreev(tokens);
        return dk;
    }

    /* Something was wrong ... free everything */

    g_free(type);
    g_free(key);
    if(ssid != NULL)
        g_free(ssid); /* It is not always present */
    if (ssid_ba != NULL)
        g_byte_array_free(ssid_ba, TRUE);

    /* Free the array of strings */
    g_strfreev(tokens);

    return NULL;
}

/*
 * Returns a newly allocated string representing the given decryption_key_t
 * struct, or NULL if something is wrong...
 */
gchar*
get_key_string(decryption_key_t* dk)
{
    gchar* output_string = NULL;

    if(dk == NULL || dk->key == NULL)
        return NULL;

    switch(dk->type) {
        case AIRPDCAP_KEY_TYPE_WEP:
            output_string = g_strdup_printf("%s:%s",STRING_KEY_TYPE_WEP,dk->key->str);
            break;
        case AIRPDCAP_KEY_TYPE_WPA_PWD:
            if(dk->ssid == NULL)
                output_string = g_strdup_printf("%s:%s",STRING_KEY_TYPE_WPA_PWD,dk->key->str);
            else
                output_string = g_strdup_printf("%s:%s:%s",
                    STRING_KEY_TYPE_WPA_PWD, dk->key->str,
                    format_uri(dk->ssid, ":"));
            break;
        case AIRPDCAP_KEY_TYPE_WPA_PMK:
            output_string = g_strdup_printf("%s:%s",STRING_KEY_TYPE_WPA_PSK,dk->key->str);
            break;
        default:
            return NULL;
            break;
    }

    return output_string;
}

#ifdef	__cplusplus
}
#endif

/****************************************************************************/

/*
 * Editor modelines
 *
 * Local Variables:
 * c-basic-offset: 4
 * tab-width: 8
 * set-tabs-mode: nil
 * End:
 *
 * ex: set shiftwidth=4 tabstop=8 expandtab
 * :indentSize=4:tabSize=8:noTabs=true:
 */