aboutsummaryrefslogtreecommitdiffstats
path: root/target-arm
diff options
context:
space:
mode:
authorbellard <bellard@c046a42c-6fe2-441c-8c8c-71466251a162>2004-02-16 21:43:58 +0000
committerbellard <bellard@c046a42c-6fe2-441c-8c8c-71466251a162>2004-02-16 21:43:58 +0000
commit00406dff19893a4fb9fb582792a249b770eb1d11 (patch)
tree72cd5c15ecf045fd14f8bbec0f016ec139eb35ca /target-arm
parent69de927c6cf7e77508c16d13057122398abe20ec (diff)
added arm nwfpe support (initial patch by Ulrich Hecht)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@609 c046a42c-6fe2-441c-8c8c-71466251a162
Diffstat (limited to 'target-arm')
-rw-r--r--target-arm/nwfpe/ARM-gcc.h120
-rw-r--r--target-arm/nwfpe/double_cpdo.c288
-rw-r--r--target-arm/nwfpe/extended_cpdo.c273
-rw-r--r--target-arm/nwfpe/fpa11.c231
-rw-r--r--target-arm/nwfpe/fpa11.h131
-rw-r--r--target-arm/nwfpe/fpa11.inl51
-rw-r--r--target-arm/nwfpe/fpa11_cpdo.c117
-rw-r--r--target-arm/nwfpe/fpa11_cpdt.c358
-rw-r--r--target-arm/nwfpe/fpa11_cprt.c290
-rw-r--r--target-arm/nwfpe/fpopcode.c148
-rw-r--r--target-arm/nwfpe/fpopcode.h390
-rw-r--r--target-arm/nwfpe/fpsr.h108
-rw-r--r--target-arm/nwfpe/milieu.h48
-rw-r--r--target-arm/nwfpe/single_cpdo.c255
-rw-r--r--target-arm/nwfpe/softfloat-macros740
-rw-r--r--target-arm/nwfpe/softfloat-specialize366
-rw-r--r--target-arm/nwfpe/softfloat.c3427
-rw-r--r--target-arm/nwfpe/softfloat.h232
18 files changed, 7573 insertions, 0 deletions
diff --git a/target-arm/nwfpe/ARM-gcc.h b/target-arm/nwfpe/ARM-gcc.h
new file mode 100644
index 000000000..e6598470b
--- /dev/null
+++ b/target-arm/nwfpe/ARM-gcc.h
@@ -0,0 +1,120 @@
+/*
+-------------------------------------------------------------------------------
+The macro `BITS64' can be defined to indicate that 64-bit integer types are
+supported by the compiler.
+-------------------------------------------------------------------------------
+*/
+#define BITS64
+
+/*
+-------------------------------------------------------------------------------
+Each of the following `typedef's defines the most convenient type that holds
+integers of at least as many bits as specified. For example, `uint8' should
+be the most convenient type that can hold unsigned integers of as many as
+8 bits. The `flag' type must be able to hold either a 0 or 1. For most
+implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
+to the same as `int'.
+-------------------------------------------------------------------------------
+*/
+typedef char flag;
+typedef unsigned char uint8;
+typedef signed char int8;
+typedef int uint16;
+typedef int int16;
+typedef unsigned int uint32;
+typedef signed int int32;
+#ifdef BITS64
+typedef unsigned long long int bits64;
+typedef signed long long int sbits64;
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Each of the following `typedef's defines a type that holds integers
+of _exactly_ the number of bits specified. For instance, for most
+implementation of C, `bits16' and `sbits16' should be `typedef'ed to
+`unsigned short int' and `signed short int' (or `short int'), respectively.
+-------------------------------------------------------------------------------
+*/
+typedef unsigned char bits8;
+typedef signed char sbits8;
+typedef unsigned short int bits16;
+typedef signed short int sbits16;
+typedef unsigned int bits32;
+typedef signed int sbits32;
+#ifdef BITS64
+typedef unsigned long long int uint64;
+typedef signed long long int int64;
+#endif
+
+#ifdef BITS64
+/*
+-------------------------------------------------------------------------------
+The `LIT64' macro takes as its argument a textual integer literal and if
+necessary ``marks'' the literal as having a 64-bit integer type. For
+example, the Gnu C Compiler (`gcc') requires that 64-bit literals be
+appended with the letters `LL' standing for `long long', which is `gcc's
+name for the 64-bit integer type. Some compilers may allow `LIT64' to be
+defined as the identity macro: `#define LIT64( a ) a'.
+-------------------------------------------------------------------------------
+*/
+#define LIT64( a ) a##LL
+#endif
+
+/*
+-------------------------------------------------------------------------------
+The macro `INLINE' can be used before functions that should be inlined. If
+a compiler does not support explicit inlining, this macro should be defined
+to be `static'.
+-------------------------------------------------------------------------------
+*/
+#define INLINE extern __inline__
+
+
+/* For use as a GCC soft-float library we need some special function names. */
+
+#ifdef __LIBFLOAT__
+
+/* Some 32-bit ops can be mapped straight across by just changing the name. */
+#define float32_add __addsf3
+#define float32_sub __subsf3
+#define float32_mul __mulsf3
+#define float32_div __divsf3
+#define int32_to_float32 __floatsisf
+#define float32_to_int32_round_to_zero __fixsfsi
+#define float32_to_uint32_round_to_zero __fixunssfsi
+
+/* These ones go through the glue code. To avoid namespace pollution
+ we rename the internal functions too. */
+#define float32_eq ___float32_eq
+#define float32_le ___float32_le
+#define float32_lt ___float32_lt
+
+/* All the 64-bit ops have to go through the glue, so we pull the same
+ trick. */
+#define float64_add ___float64_add
+#define float64_sub ___float64_sub
+#define float64_mul ___float64_mul
+#define float64_div ___float64_div
+#define int32_to_float64 ___int32_to_float64
+#define float64_to_int32_round_to_zero ___float64_to_int32_round_to_zero
+#define float64_to_uint32_round_to_zero ___float64_to_uint32_round_to_zero
+#define float64_to_float32 ___float64_to_float32
+#define float32_to_float64 ___float32_to_float64
+#define float64_eq ___float64_eq
+#define float64_le ___float64_le
+#define float64_lt ___float64_lt
+
+#if 0
+#define float64_add __adddf3
+#define float64_sub __subdf3
+#define float64_mul __muldf3
+#define float64_div __divdf3
+#define int32_to_float64 __floatsidf
+#define float64_to_int32_round_to_zero __fixdfsi
+#define float64_to_uint32_round_to_zero __fixunsdfsi
+#define float64_to_float32 __truncdfsf2
+#define float32_to_float64 __extendsfdf2
+#endif
+
+#endif
diff --git a/target-arm/nwfpe/double_cpdo.c b/target-arm/nwfpe/double_cpdo.c
new file mode 100644
index 000000000..0f303ea6f
--- /dev/null
+++ b/target-arm/nwfpe/double_cpdo.c
@@ -0,0 +1,288 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.COM, 1998,1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include "fpa11.h"
+#include "softfloat.h"
+#include "fpopcode.h"
+
+float64 float64_exp(float64 Fm);
+float64 float64_ln(float64 Fm);
+float64 float64_sin(float64 rFm);
+float64 float64_cos(float64 rFm);
+float64 float64_arcsin(float64 rFm);
+float64 float64_arctan(float64 rFm);
+float64 float64_log(float64 rFm);
+float64 float64_tan(float64 rFm);
+float64 float64_arccos(float64 rFm);
+float64 float64_pow(float64 rFn,float64 rFm);
+float64 float64_pol(float64 rFn,float64 rFm);
+
+unsigned int DoubleCPDO(const unsigned int opcode)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ float64 rFm, rFn;
+ unsigned int Fd, Fm, Fn, nRc = 1;
+
+ //printk("DoubleCPDO(0x%08x)\n",opcode);
+
+ Fm = getFm(opcode);
+ if (CONSTANT_FM(opcode))
+ {
+ rFm = getDoubleConstant(Fm);
+ }
+ else
+ {
+ switch (fpa11->fType[Fm])
+ {
+ case typeSingle:
+ rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle);
+ break;
+
+ case typeDouble:
+ rFm = fpa11->fpreg[Fm].fDouble;
+ break;
+
+ case typeExtended:
+ // !! patb
+ //printk("not implemented! why not?\n");
+ //!! ScottB
+ // should never get here, if extended involved
+ // then other operand should be promoted then
+ // ExtendedCPDO called.
+ break;
+
+ default: return 0;
+ }
+ }
+
+ if (!MONADIC_INSTRUCTION(opcode))
+ {
+ Fn = getFn(opcode);
+ switch (fpa11->fType[Fn])
+ {
+ case typeSingle:
+ rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle);
+ break;
+
+ case typeDouble:
+ rFn = fpa11->fpreg[Fn].fDouble;
+ break;
+
+ default: return 0;
+ }
+ }
+
+ Fd = getFd(opcode);
+ /* !! this switch isn't optimized; better (opcode & MASK_ARITHMETIC_OPCODE)>>24, sort of */
+ switch (opcode & MASK_ARITHMETIC_OPCODE)
+ {
+ /* dyadic opcodes */
+ case ADF_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm);
+ break;
+
+ case MUF_CODE:
+ case FML_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm);
+ break;
+
+ case SUF_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm);
+ break;
+
+ case RSF_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn);
+ break;
+
+ case DVF_CODE:
+ case FDV_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm);
+ break;
+
+ case RDF_CODE:
+ case FRD_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn);
+ break;
+
+#if 0
+ case POW_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_pow(rFn,rFm);
+ break;
+
+ case RPW_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_pow(rFm,rFn);
+ break;
+#endif
+
+ case RMF_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm);
+ break;
+
+#if 0
+ case POL_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_pol(rFn,rFm);
+ break;
+#endif
+
+ /* monadic opcodes */
+ case MVF_CODE:
+ fpa11->fpreg[Fd].fDouble = rFm;
+ break;
+
+ case MNF_CODE:
+ {
+ unsigned int *p = (unsigned int*)&rFm;
+ p[1] ^= 0x80000000;
+ fpa11->fpreg[Fd].fDouble = rFm;
+ }
+ break;
+
+ case ABS_CODE:
+ {
+ unsigned int *p = (unsigned int*)&rFm;
+ p[1] &= 0x7fffffff;
+ fpa11->fpreg[Fd].fDouble = rFm;
+ }
+ break;
+
+ case RND_CODE:
+ case URD_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_round_to_int(rFm);
+ break;
+
+ case SQT_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm);
+ break;
+
+#if 0
+ case LOG_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_log(rFm);
+ break;
+
+ case LGN_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_ln(rFm);
+ break;
+
+ case EXP_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_exp(rFm);
+ break;
+
+ case SIN_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_sin(rFm);
+ break;
+
+ case COS_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_cos(rFm);
+ break;
+
+ case TAN_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_tan(rFm);
+ break;
+
+ case ASN_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_arcsin(rFm);
+ break;
+
+ case ACS_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_arccos(rFm);
+ break;
+
+ case ATN_CODE:
+ fpa11->fpreg[Fd].fDouble = float64_arctan(rFm);
+ break;
+#endif
+
+ case NRM_CODE:
+ break;
+
+ default:
+ {
+ nRc = 0;
+ }
+ }
+
+ if (0 != nRc) fpa11->fType[Fd] = typeDouble;
+ return nRc;
+}
+
+#if 0
+float64 float64_exp(float64 rFm)
+{
+ return rFm;
+//series
+}
+
+float64 float64_ln(float64 rFm)
+{
+ return rFm;
+//series
+}
+
+float64 float64_sin(float64 rFm)
+{
+ return rFm;
+//series
+}
+
+float64 float64_cos(float64 rFm)
+{
+ return rFm;
+ //series
+}
+
+#if 0
+float64 float64_arcsin(float64 rFm)
+{
+//series
+}
+
+float64 float64_arctan(float64 rFm)
+{
+ //series
+}
+#endif
+
+float64 float64_log(float64 rFm)
+{
+ return float64_div(float64_ln(rFm),getDoubleConstant(7));
+}
+
+float64 float64_tan(float64 rFm)
+{
+ return float64_div(float64_sin(rFm),float64_cos(rFm));
+}
+
+float64 float64_arccos(float64 rFm)
+{
+return rFm;
+ //return float64_sub(halfPi,float64_arcsin(rFm));
+}
+
+float64 float64_pow(float64 rFn,float64 rFm)
+{
+ return float64_exp(float64_mul(rFm,float64_ln(rFn)));
+}
+
+float64 float64_pol(float64 rFn,float64 rFm)
+{
+ return float64_arctan(float64_div(rFn,rFm));
+}
+#endif
diff --git a/target-arm/nwfpe/extended_cpdo.c b/target-arm/nwfpe/extended_cpdo.c
new file mode 100644
index 000000000..331407596
--- /dev/null
+++ b/target-arm/nwfpe/extended_cpdo.c
@@ -0,0 +1,273 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.COM, 1998,1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include "fpa11.h"
+#include "softfloat.h"
+#include "fpopcode.h"
+
+floatx80 floatx80_exp(floatx80 Fm);
+floatx80 floatx80_ln(floatx80 Fm);
+floatx80 floatx80_sin(floatx80 rFm);
+floatx80 floatx80_cos(floatx80 rFm);
+floatx80 floatx80_arcsin(floatx80 rFm);
+floatx80 floatx80_arctan(floatx80 rFm);
+floatx80 floatx80_log(floatx80 rFm);
+floatx80 floatx80_tan(floatx80 rFm);
+floatx80 floatx80_arccos(floatx80 rFm);
+floatx80 floatx80_pow(floatx80 rFn,floatx80 rFm);
+floatx80 floatx80_pol(floatx80 rFn,floatx80 rFm);
+
+unsigned int ExtendedCPDO(const unsigned int opcode)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ floatx80 rFm, rFn;
+ unsigned int Fd, Fm, Fn, nRc = 1;
+
+ //printk("ExtendedCPDO(0x%08x)\n",opcode);
+
+ Fm = getFm(opcode);
+ if (CONSTANT_FM(opcode))
+ {
+ rFm = getExtendedConstant(Fm);
+ }
+ else
+ {
+ switch (fpa11->fType[Fm])
+ {
+ case typeSingle:
+ rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle);
+ break;
+
+ case typeDouble:
+ rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble);
+ break;
+
+ case typeExtended:
+ rFm = fpa11->fpreg[Fm].fExtended;
+ break;
+
+ default: return 0;
+ }
+ }
+
+ if (!MONADIC_INSTRUCTION(opcode))
+ {
+ Fn = getFn(opcode);
+ switch (fpa11->fType[Fn])
+ {
+ case typeSingle:
+ rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle);
+ break;
+
+ case typeDouble:
+ rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble);
+ break;
+
+ case typeExtended:
+ rFn = fpa11->fpreg[Fn].fExtended;
+ break;
+
+ default: return 0;
+ }
+ }
+
+ Fd = getFd(opcode);
+ switch (opcode & MASK_ARITHMETIC_OPCODE)
+ {
+ /* dyadic opcodes */
+ case ADF_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_add(rFn,rFm);
+ break;
+
+ case MUF_CODE:
+ case FML_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_mul(rFn,rFm);
+ break;
+
+ case SUF_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_sub(rFn,rFm);
+ break;
+
+ case RSF_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_sub(rFm,rFn);
+ break;
+
+ case DVF_CODE:
+ case FDV_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_div(rFn,rFm);
+ break;
+
+ case RDF_CODE:
+ case FRD_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_div(rFm,rFn);
+ break;
+
+#if 0
+ case POW_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_pow(rFn,rFm);
+ break;
+
+ case RPW_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_pow(rFm,rFn);
+ break;
+#endif
+
+ case RMF_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_rem(rFn,rFm);
+ break;
+
+#if 0
+ case POL_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_pol(rFn,rFm);
+ break;
+#endif
+
+ /* monadic opcodes */
+ case MVF_CODE:
+ fpa11->fpreg[Fd].fExtended = rFm;
+ break;
+
+ case MNF_CODE:
+ rFm.high ^= 0x8000;
+ fpa11->fpreg[Fd].fExtended = rFm;
+ break;
+
+ case ABS_CODE:
+ rFm.high &= 0x7fff;
+ fpa11->fpreg[Fd].fExtended = rFm;
+ break;
+
+ case RND_CODE:
+ case URD_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_round_to_int(rFm);
+ break;
+
+ case SQT_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_sqrt(rFm);
+ break;
+
+#if 0
+ case LOG_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_log(rFm);
+ break;
+
+ case LGN_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_ln(rFm);
+ break;
+
+ case EXP_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_exp(rFm);
+ break;
+
+ case SIN_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_sin(rFm);
+ break;
+
+ case COS_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_cos(rFm);
+ break;
+
+ case TAN_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_tan(rFm);
+ break;
+
+ case ASN_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_arcsin(rFm);
+ break;
+
+ case ACS_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_arccos(rFm);
+ break;
+
+ case ATN_CODE:
+ fpa11->fpreg[Fd].fExtended = floatx80_arctan(rFm);
+ break;
+#endif
+
+ case NRM_CODE:
+ break;
+
+ default:
+ {
+ nRc = 0;
+ }
+ }
+
+ if (0 != nRc) fpa11->fType[Fd] = typeExtended;
+ return nRc;
+}
+
+#if 0
+floatx80 floatx80_exp(floatx80 Fm)
+{
+//series
+}
+
+floatx80 floatx80_ln(floatx80 Fm)
+{
+//series
+}
+
+floatx80 floatx80_sin(floatx80 rFm)
+{
+//series
+}
+
+floatx80 floatx80_cos(floatx80 rFm)
+{
+//series
+}
+
+floatx80 floatx80_arcsin(floatx80 rFm)
+{
+//series
+}
+
+floatx80 floatx80_arctan(floatx80 rFm)
+{
+ //series
+}
+
+floatx80 floatx80_log(floatx80 rFm)
+{
+ return floatx80_div(floatx80_ln(rFm),getExtendedConstant(7));
+}
+
+floatx80 floatx80_tan(floatx80 rFm)
+{
+ return floatx80_div(floatx80_sin(rFm),floatx80_cos(rFm));
+}
+
+floatx80 floatx80_arccos(floatx80 rFm)
+{
+ //return floatx80_sub(halfPi,floatx80_arcsin(rFm));
+}
+
+floatx80 floatx80_pow(floatx80 rFn,floatx80 rFm)
+{
+ return floatx80_exp(floatx80_mul(rFm,floatx80_ln(rFn)));
+}
+
+floatx80 floatx80_pol(floatx80 rFn,floatx80 rFm)
+{
+ return floatx80_arctan(floatx80_div(rFn,rFm));
+}
+#endif
diff --git a/target-arm/nwfpe/fpa11.c b/target-arm/nwfpe/fpa11.c
new file mode 100644
index 000000000..143bcd399
--- /dev/null
+++ b/target-arm/nwfpe/fpa11.c
@@ -0,0 +1,231 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.COM, 1998,1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include "fpa11.h"
+
+#include "fpopcode.h"
+
+//#include "fpmodule.h"
+//#include "fpmodule.inl"
+
+//#include <asm/system.h>
+
+#include <stdio.h>
+
+/* forward declarations */
+unsigned int EmulateCPDO(const unsigned int);
+unsigned int EmulateCPDT(const unsigned int);
+unsigned int EmulateCPRT(const unsigned int);
+
+FPA11* qemufpa=0;
+unsigned int* user_registers=0;
+
+/* Reset the FPA11 chip. Called to initialize and reset the emulator. */
+void resetFPA11(void)
+{
+ int i;
+ FPA11 *fpa11 = GET_FPA11();
+
+ /* initialize the register type array */
+ for (i=0;i<=7;i++)
+ {
+ fpa11->fType[i] = typeNone;
+ }
+
+ /* FPSR: set system id to FP_EMULATOR, set AC, clear all other bits */
+ fpa11->fpsr = FP_EMULATOR | BIT_AC;
+
+ /* FPCR: set SB, AB and DA bits, clear all others */
+#if MAINTAIN_FPCR
+ fpa11->fpcr = MASK_RESET;
+#endif
+}
+
+void SetRoundingMode(const unsigned int opcode)
+{
+#if MAINTAIN_FPCR
+ FPA11 *fpa11 = GET_FPA11();
+ fpa11->fpcr &= ~MASK_ROUNDING_MODE;
+#endif
+ switch (opcode & MASK_ROUNDING_MODE)
+ {
+ default:
+ case ROUND_TO_NEAREST:
+ float_rounding_mode = float_round_nearest_even;
+#if MAINTAIN_FPCR
+ fpa11->fpcr |= ROUND_TO_NEAREST;
+#endif
+ break;
+
+ case ROUND_TO_PLUS_INFINITY:
+ float_rounding_mode = float_round_up;
+#if MAINTAIN_FPCR
+ fpa11->fpcr |= ROUND_TO_PLUS_INFINITY;
+#endif
+ break;
+
+ case ROUND_TO_MINUS_INFINITY:
+ float_rounding_mode = float_round_down;
+#if MAINTAIN_FPCR
+ fpa11->fpcr |= ROUND_TO_MINUS_INFINITY;
+#endif
+ break;
+
+ case ROUND_TO_ZERO:
+ float_rounding_mode = float_round_to_zero;
+#if MAINTAIN_FPCR
+ fpa11->fpcr |= ROUND_TO_ZERO;
+#endif
+ break;
+ }
+}
+
+void SetRoundingPrecision(const unsigned int opcode)
+{
+#if MAINTAIN_FPCR
+ FPA11 *fpa11 = GET_FPA11();
+ fpa11->fpcr &= ~MASK_ROUNDING_PRECISION;
+#endif
+ switch (opcode & MASK_ROUNDING_PRECISION)
+ {
+ case ROUND_SINGLE:
+ floatx80_rounding_precision = 32;
+#if MAINTAIN_FPCR
+ fpa11->fpcr |= ROUND_SINGLE;
+#endif
+ break;
+
+ case ROUND_DOUBLE:
+ floatx80_rounding_precision = 64;
+#if MAINTAIN_FPCR
+ fpa11->fpcr |= ROUND_DOUBLE;
+#endif
+ break;
+
+ case ROUND_EXTENDED:
+ floatx80_rounding_precision = 80;
+#if MAINTAIN_FPCR
+ fpa11->fpcr |= ROUND_EXTENDED;
+#endif
+ break;
+
+ default: floatx80_rounding_precision = 80;
+ }
+}
+
+/* Emulate the instruction in the opcode. */
+unsigned int EmulateAll(unsigned int opcode, FPA11* qfpa, unsigned int* qregs)
+{
+ unsigned int nRc = 0;
+// unsigned long flags;
+ FPA11 *fpa11;
+// save_flags(flags); sti();
+
+ qemufpa=qfpa;
+ user_registers=qregs;
+
+#if 0
+ fprintf(stderr,"emulating FP insn 0x%08x, PC=0x%08x\n",
+ opcode, qregs[REG_PC]);
+#endif
+ fpa11 = GET_FPA11();
+
+ if (fpa11->initflag == 0) /* good place for __builtin_expect */
+ {
+ resetFPA11();
+ SetRoundingMode(ROUND_TO_NEAREST);
+ SetRoundingPrecision(ROUND_EXTENDED);
+ fpa11->initflag = 1;
+ }
+
+ if (TEST_OPCODE(opcode,MASK_CPRT))
+ {
+ //fprintf(stderr,"emulating CPRT\n");
+ /* Emulate conversion opcodes. */
+ /* Emulate register transfer opcodes. */
+ /* Emulate comparison opcodes. */
+ nRc = EmulateCPRT(opcode);
+ }
+ else if (TEST_OPCODE(opcode,MASK_CPDO))
+ {
+ //fprintf(stderr,"emulating CPDO\n");
+ /* Emulate monadic arithmetic opcodes. */
+ /* Emulate dyadic arithmetic opcodes. */
+ nRc = EmulateCPDO(opcode);
+ }
+ else if (TEST_OPCODE(opcode,MASK_CPDT))
+ {
+ //fprintf(stderr,"emulating CPDT\n");
+ /* Emulate load/store opcodes. */
+ /* Emulate load/store multiple opcodes. */
+ nRc = EmulateCPDT(opcode);
+ }
+ else
+ {
+ /* Invalid instruction detected. Return FALSE. */
+ nRc = 0;
+ }
+
+// restore_flags(flags);
+
+ //printf("returning %d\n",nRc);
+ return(nRc);
+}
+
+#if 0
+unsigned int EmulateAll1(unsigned int opcode)
+{
+ switch ((opcode >> 24) & 0xf)
+ {
+ case 0xc:
+ case 0xd:
+ if ((opcode >> 20) & 0x1)
+ {
+ switch ((opcode >> 8) & 0xf)
+ {
+ case 0x1: return PerformLDF(opcode); break;
+ case 0x2: return PerformLFM(opcode); break;
+ default: return 0;
+ }
+ }
+ else
+ {
+ switch ((opcode >> 8) & 0xf)
+ {
+ case 0x1: return PerformSTF(opcode); break;
+ case 0x2: return PerformSFM(opcode); break;
+ default: return 0;
+ }
+ }
+ break;
+
+ case 0xe:
+ if (opcode & 0x10)
+ return EmulateCPDO(opcode);
+ else
+ return EmulateCPRT(opcode);
+ break;
+
+ default: return 0;
+ }
+}
+#endif
+
diff --git a/target-arm/nwfpe/fpa11.h b/target-arm/nwfpe/fpa11.h
new file mode 100644
index 000000000..95ad11936
--- /dev/null
+++ b/target-arm/nwfpe/fpa11.h
@@ -0,0 +1,131 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.com, 1998-1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#ifndef __FPA11_H__
+#define __FPA11_H__
+
+#define GET_FPA11() (qemufpa)
+
+/*
+ * The processes registers are always at the very top of the 8K
+ * stack+task struct. Use the same method as 'current' uses to
+ * reach them.
+ */
+extern unsigned int *user_registers;
+
+#define GET_USERREG() (user_registers)
+
+/* Need task_struct */
+//#include <linux/sched.h>
+
+/* includes */
+#include "fpsr.h" /* FP control and status register definitions */
+#include "softfloat.h"
+
+#define typeNone 0x00
+#define typeSingle 0x01
+#define typeDouble 0x02
+#define typeExtended 0x03
+
+/*
+ * This must be no more and no less than 12 bytes.
+ */
+typedef union tagFPREG {
+ floatx80 fExtended;
+ float64 fDouble;
+ float32 fSingle;
+} FPREG;
+
+/*
+ * FPA11 device model.
+ *
+ * This structure is exported to user space. Do not re-order.
+ * Only add new stuff to the end, and do not change the size of
+ * any element. Elements of this structure are used by user
+ * space, and must match struct user_fp in include/asm-arm/user.h.
+ * We include the byte offsets below for documentation purposes.
+ *
+ * The size of this structure and FPREG are checked by fpmodule.c
+ * on initialisation. If the rules have been broken, NWFPE will
+ * not initialise.
+ */
+typedef struct tagFPA11 {
+/* 0 */ FPREG fpreg[8]; /* 8 floating point registers */
+/* 96 */ FPSR fpsr; /* floating point status register */
+/* 100 */ FPCR fpcr; /* floating point control register */
+/* 104 */ unsigned char fType[8]; /* type of floating point value held in
+ floating point registers. One of none
+ single, double or extended. */
+/* 112 */ int initflag; /* this is special. The kernel guarantees
+ to set it to 0 when a thread is launched,
+ so we can use it to detect whether this
+ instance of the emulator needs to be
+ initialised. */
+} FPA11;
+
+extern FPA11* qemufpa;
+
+extern void resetFPA11(void);
+extern void SetRoundingMode(const unsigned int);
+extern void SetRoundingPrecision(const unsigned int);
+
+#define get_user(x,y) ((x)=*(y))
+#define put_user(x,y) (*(y)=(x))
+static inline unsigned int readRegister(unsigned int reg)
+{
+ return (user_registers[(reg)]);
+}
+
+static inline void writeRegister(unsigned int x, unsigned int y)
+{
+#if 0
+ printf("writing %d to r%d\n",y,x);
+#endif
+ user_registers[(x)]=(y);
+}
+
+static inline void writeConditionCodes(unsigned int x)
+{
+#if 0
+unsigned int y;
+unsigned int ZF;
+ printf("setting flags to %x from %x\n",x,user_registers[16]);
+#endif
+ user_registers[16]=(x); // cpsr
+ user_registers[17]=(x>>29)&1; // cf
+ user_registers[18]=(x<<3)&(1<<31); // vf
+ user_registers[19]=x&(1<<31); // nzf
+ if(!(x&(1<<30))) user_registers[19]++; // nzf must be non-zero for zf to be cleared
+
+#if 0
+ ZF = (user_registers[19] == 0);
+ y=user_registers[16] | (user_registers[19] & 0x80000000) | (ZF << 30) |
+ (user_registers[17] << 29) | ((user_registers[18] & 0x80000000) >> 3);
+ if(y != x)
+ printf("GODDAM SHIIIIIIIIIIIIIIIIT! %x %x nzf %x zf %x\n",x,y,user_registers[19],ZF);
+#endif
+}
+
+#define REG_PC 15
+
+unsigned int EmulateAll(unsigned int opcode, FPA11* qfpa, unsigned int* qregs);
+
+#endif
diff --git a/target-arm/nwfpe/fpa11.inl b/target-arm/nwfpe/fpa11.inl
new file mode 100644
index 000000000..1c45cba2d
--- /dev/null
+++ b/target-arm/nwfpe/fpa11.inl
@@ -0,0 +1,51 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.COM, 1998,1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include "fpa11.h"
+
+/* Read and write floating point status register */
+extern __inline__ unsigned int readFPSR(void)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ return(fpa11->fpsr);
+}
+
+extern __inline__ void writeFPSR(FPSR reg)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ /* the sysid byte in the status register is readonly */
+ fpa11->fpsr = (fpa11->fpsr & MASK_SYSID) | (reg & ~MASK_SYSID);
+}
+
+/* Read and write floating point control register */
+extern __inline__ FPCR readFPCR(void)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ /* clear SB, AB and DA bits before returning FPCR */
+ return(fpa11->fpcr & ~MASK_RFC);
+}
+
+extern __inline__ void writeFPCR(FPCR reg)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ fpa11->fpcr &= ~MASK_WFC; /* clear SB, AB and DA bits */
+ fpa11->fpcr |= (reg & MASK_WFC); /* write SB, AB and DA bits */
+}
diff --git a/target-arm/nwfpe/fpa11_cpdo.c b/target-arm/nwfpe/fpa11_cpdo.c
new file mode 100644
index 000000000..343a6b9fd
--- /dev/null
+++ b/target-arm/nwfpe/fpa11_cpdo.c
@@ -0,0 +1,117 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.COM, 1998,1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include "fpa11.h"
+#include "fpopcode.h"
+
+unsigned int SingleCPDO(const unsigned int opcode);
+unsigned int DoubleCPDO(const unsigned int opcode);
+unsigned int ExtendedCPDO(const unsigned int opcode);
+
+unsigned int EmulateCPDO(const unsigned int opcode)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ unsigned int Fd, nType, nDest, nRc = 1;
+
+ //printk("EmulateCPDO(0x%08x)\n",opcode);
+
+ /* Get the destination size. If not valid let Linux perform
+ an invalid instruction trap. */
+ nDest = getDestinationSize(opcode);
+ if (typeNone == nDest) return 0;
+
+ SetRoundingMode(opcode);
+
+ /* Compare the size of the operands in Fn and Fm.
+ Choose the largest size and perform operations in that size,
+ in order to make use of all the precision of the operands.
+ If Fm is a constant, we just grab a constant of a size
+ matching the size of the operand in Fn. */
+ if (MONADIC_INSTRUCTION(opcode))
+ nType = nDest;
+ else
+ nType = fpa11->fType[getFn(opcode)];
+
+ if (!CONSTANT_FM(opcode))
+ {
+ register unsigned int Fm = getFm(opcode);
+ if (nType < fpa11->fType[Fm])
+ {
+ nType = fpa11->fType[Fm];
+ }
+ }
+
+ switch (nType)
+ {
+ case typeSingle : nRc = SingleCPDO(opcode); break;
+ case typeDouble : nRc = DoubleCPDO(opcode); break;
+ case typeExtended : nRc = ExtendedCPDO(opcode); break;
+ default : nRc = 0;
+ }
+
+ /* If the operation succeeded, check to see if the result in the
+ destination register is the correct size. If not force it
+ to be. */
+ Fd = getFd(opcode);
+ nType = fpa11->fType[Fd];
+ if ((0 != nRc) && (nDest != nType))
+ {
+ switch (nDest)
+ {
+ case typeSingle:
+ {
+ if (typeDouble == nType)
+ fpa11->fpreg[Fd].fSingle =
+ float64_to_float32(fpa11->fpreg[Fd].fDouble);
+ else
+ fpa11->fpreg[Fd].fSingle =
+ floatx80_to_float32(fpa11->fpreg[Fd].fExtended);
+ }
+ break;
+
+ case typeDouble:
+ {
+ if (typeSingle == nType)
+ fpa11->fpreg[Fd].fDouble =
+ float32_to_float64(fpa11->fpreg[Fd].fSingle);
+ else
+ fpa11->fpreg[Fd].fDouble =
+ floatx80_to_float64(fpa11->fpreg[Fd].fExtended);
+ }
+ break;
+
+ case typeExtended:
+ {
+ if (typeSingle == nType)
+ fpa11->fpreg[Fd].fExtended =
+ float32_to_floatx80(fpa11->fpreg[Fd].fSingle);
+ else
+ fpa11->fpreg[Fd].fExtended =
+ float64_to_floatx80(fpa11->fpreg[Fd].fDouble);
+ }
+ break;
+ }
+
+ fpa11->fType[Fd] = nDest;
+ }
+
+ return nRc;
+}
diff --git a/target-arm/nwfpe/fpa11_cpdt.c b/target-arm/nwfpe/fpa11_cpdt.c
new file mode 100644
index 000000000..283e34673
--- /dev/null
+++ b/target-arm/nwfpe/fpa11_cpdt.c
@@ -0,0 +1,358 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.com, 1998-1999
+ (c) Philip Blundell, 1998
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include "fpa11.h"
+#include "softfloat.h"
+#include "fpopcode.h"
+//#include "fpmodule.h"
+//#include "fpmodule.inl"
+
+//#include <asm/uaccess.h>
+
+static inline
+void loadSingle(const unsigned int Fn,const unsigned int *pMem)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ fpa11->fType[Fn] = typeSingle;
+ get_user(fpa11->fpreg[Fn].fSingle, pMem);
+}
+
+static inline
+void loadDouble(const unsigned int Fn,const unsigned int *pMem)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ unsigned int *p;
+ p = (unsigned int*)&fpa11->fpreg[Fn].fDouble;
+ fpa11->fType[Fn] = typeDouble;
+ get_user(p[0], &pMem[1]);
+ get_user(p[1], &pMem[0]); /* sign & exponent */
+}
+
+static inline
+void loadExtended(const unsigned int Fn,const unsigned int *pMem)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ unsigned int *p;
+ p = (unsigned int*)&fpa11->fpreg[Fn].fExtended;
+ fpa11->fType[Fn] = typeExtended;
+ get_user(p[0], &pMem[0]); /* sign & exponent */
+ get_user(p[1], &pMem[2]); /* ls bits */
+ get_user(p[2], &pMem[1]); /* ms bits */
+}
+
+static inline
+void loadMultiple(const unsigned int Fn,const unsigned int *pMem)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ register unsigned int *p;
+ unsigned long x;
+
+ p = (unsigned int*)&(fpa11->fpreg[Fn]);
+ get_user(x, &pMem[0]);
+ fpa11->fType[Fn] = (x >> 14) & 0x00000003;
+
+ switch (fpa11->fType[Fn])
+ {
+ case typeSingle:
+ case typeDouble:
+ {
+ get_user(p[0], &pMem[2]); /* Single */
+ get_user(p[1], &pMem[1]); /* double msw */
+ p[2] = 0; /* empty */
+ }
+ break;
+
+ case typeExtended:
+ {
+ get_user(p[1], &pMem[2]);
+ get_user(p[2], &pMem[1]); /* msw */
+ p[0] = (x & 0x80003fff);
+ }
+ break;
+ }
+}
+
+static inline
+void storeSingle(const unsigned int Fn,unsigned int *pMem)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ float32 val;
+ register unsigned int *p = (unsigned int*)&val;
+
+ switch (fpa11->fType[Fn])
+ {
+ case typeDouble:
+ val = float64_to_float32(fpa11->fpreg[Fn].fDouble);
+ break;
+
+ case typeExtended:
+ val = floatx80_to_float32(fpa11->fpreg[Fn].fExtended);
+ break;
+
+ default: val = fpa11->fpreg[Fn].fSingle;
+ }
+
+ put_user(p[0], pMem);
+}
+
+static inline
+void storeDouble(const unsigned int Fn,unsigned int *pMem)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ float64 val;
+ register unsigned int *p = (unsigned int*)&val;
+
+ switch (fpa11->fType[Fn])
+ {
+ case typeSingle:
+ val = float32_to_float64(fpa11->fpreg[Fn].fSingle);
+ break;
+
+ case typeExtended:
+ val = floatx80_to_float64(fpa11->fpreg[Fn].fExtended);
+ break;
+
+ default: val = fpa11->fpreg[Fn].fDouble;
+ }
+ put_user(p[1], &pMem[0]); /* msw */
+ put_user(p[0], &pMem[1]); /* lsw */
+}
+
+static inline
+void storeExtended(const unsigned int Fn,unsigned int *pMem)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ floatx80 val;
+ register unsigned int *p = (unsigned int*)&val;
+
+ switch (fpa11->fType[Fn])
+ {
+ case typeSingle:
+ val = float32_to_floatx80(fpa11->fpreg[Fn].fSingle);
+ break;
+
+ case typeDouble:
+ val = float64_to_floatx80(fpa11->fpreg[Fn].fDouble);
+ break;
+
+ default: val = fpa11->fpreg[Fn].fExtended;
+ }
+
+ put_user(p[0], &pMem[0]); /* sign & exp */
+ put_user(p[1], &pMem[2]);
+ put_user(p[2], &pMem[1]); /* msw */
+}
+
+static inline
+void storeMultiple(const unsigned int Fn,unsigned int *pMem)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ register unsigned int nType, *p;
+
+ p = (unsigned int*)&(fpa11->fpreg[Fn]);
+ nType = fpa11->fType[Fn];
+
+ switch (nType)
+ {
+ case typeSingle:
+ case typeDouble:
+ {
+ put_user(p[0], &pMem[2]); /* single */
+ put_user(p[1], &pMem[1]); /* double msw */
+ put_user(nType << 14, &pMem[0]);
+ }
+ break;
+
+ case typeExtended:
+ {
+ put_user(p[2], &pMem[1]); /* msw */
+ put_user(p[1], &pMem[2]);
+ put_user((p[0] & 0x80003fff) | (nType << 14), &pMem[0]);
+ }
+ break;
+ }
+}
+
+unsigned int PerformLDF(const unsigned int opcode)
+{
+ unsigned int *pBase, *pAddress, *pFinal, nRc = 1,
+ write_back = WRITE_BACK(opcode);
+
+ //printk("PerformLDF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode));
+
+ pBase = (unsigned int*)readRegister(getRn(opcode));
+ if (REG_PC == getRn(opcode))
+ {
+ pBase += 2;
+ write_back = 0;
+ }
+
+ pFinal = pBase;
+ if (BIT_UP_SET(opcode))
+ pFinal += getOffset(opcode);
+ else
+ pFinal -= getOffset(opcode);
+
+ if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
+
+ switch (opcode & MASK_TRANSFER_LENGTH)
+ {
+ case TRANSFER_SINGLE : loadSingle(getFd(opcode),pAddress); break;
+ case TRANSFER_DOUBLE : loadDouble(getFd(opcode),pAddress); break;
+ case TRANSFER_EXTENDED: loadExtended(getFd(opcode),pAddress); break;
+ default: nRc = 0;
+ }
+
+ if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
+ return nRc;
+}
+
+unsigned int PerformSTF(const unsigned int opcode)
+{
+ unsigned int *pBase, *pAddress, *pFinal, nRc = 1,
+ write_back = WRITE_BACK(opcode);
+
+ //printk("PerformSTF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode));
+ SetRoundingMode(ROUND_TO_NEAREST);
+
+ pBase = (unsigned int*)readRegister(getRn(opcode));
+ if (REG_PC == getRn(opcode))
+ {
+ pBase += 2;
+ write_back = 0;
+ }
+
+ pFinal = pBase;
+ if (BIT_UP_SET(opcode))
+ pFinal += getOffset(opcode);
+ else
+ pFinal -= getOffset(opcode);
+
+ if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
+
+ switch (opcode & MASK_TRANSFER_LENGTH)
+ {
+ case TRANSFER_SINGLE : storeSingle(getFd(opcode),pAddress); break;
+ case TRANSFER_DOUBLE : storeDouble(getFd(opcode),pAddress); break;
+ case TRANSFER_EXTENDED: storeExtended(getFd(opcode),pAddress); break;
+ default: nRc = 0;
+ }
+
+ if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
+ return nRc;
+}
+
+unsigned int PerformLFM(const unsigned int opcode)
+{
+ unsigned int i, Fd, *pBase, *pAddress, *pFinal,
+ write_back = WRITE_BACK(opcode);
+
+ pBase = (unsigned int*)readRegister(getRn(opcode));
+ if (REG_PC == getRn(opcode))
+ {
+ pBase += 2;
+ write_back = 0;
+ }
+
+ pFinal = pBase;
+ if (BIT_UP_SET(opcode))
+ pFinal += getOffset(opcode);
+ else
+ pFinal -= getOffset(opcode);
+
+ if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
+
+ Fd = getFd(opcode);
+ for (i=getRegisterCount(opcode);i>0;i--)
+ {
+ loadMultiple(Fd,pAddress);
+ pAddress += 3; Fd++;
+ if (Fd == 8) Fd = 0;
+ }
+
+ if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
+ return 1;
+}
+
+unsigned int PerformSFM(const unsigned int opcode)
+{
+ unsigned int i, Fd, *pBase, *pAddress, *pFinal,
+ write_back = WRITE_BACK(opcode);
+
+ pBase = (unsigned int*)readRegister(getRn(opcode));
+ if (REG_PC == getRn(opcode))
+ {
+ pBase += 2;
+ write_back = 0;
+ }
+
+ pFinal = pBase;
+ if (BIT_UP_SET(opcode))
+ pFinal += getOffset(opcode);
+ else
+ pFinal -= getOffset(opcode);
+
+ if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
+
+ Fd = getFd(opcode);
+ for (i=getRegisterCount(opcode);i>0;i--)
+ {
+ storeMultiple(Fd,pAddress);
+ pAddress += 3; Fd++;
+ if (Fd == 8) Fd = 0;
+ }
+
+ if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
+ return 1;
+}
+
+#if 1
+unsigned int EmulateCPDT(const unsigned int opcode)
+{
+ unsigned int nRc = 0;
+
+ //printk("EmulateCPDT(0x%08x)\n",opcode);
+
+ if (LDF_OP(opcode))
+ {
+ nRc = PerformLDF(opcode);
+ }
+ else if (LFM_OP(opcode))
+ {
+ nRc = PerformLFM(opcode);
+ }
+ else if (STF_OP(opcode))
+ {
+ nRc = PerformSTF(opcode);
+ }
+ else if (SFM_OP(opcode))
+ {
+ nRc = PerformSFM(opcode);
+ }
+ else
+ {
+ nRc = 0;
+ }
+
+ return nRc;
+}
+#endif
diff --git a/target-arm/nwfpe/fpa11_cprt.c b/target-arm/nwfpe/fpa11_cprt.c
new file mode 100644
index 000000000..17871c1d7
--- /dev/null
+++ b/target-arm/nwfpe/fpa11_cprt.c
@@ -0,0 +1,290 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.COM, 1998,1999
+ (c) Philip Blundell, 1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include "fpa11.h"
+#include "milieu.h"
+#include "softfloat.h"
+#include "fpopcode.h"
+#include "fpa11.inl"
+//#include "fpmodule.h"
+//#include "fpmodule.inl"
+
+extern flag floatx80_is_nan(floatx80);
+extern flag float64_is_nan( float64);
+extern flag float32_is_nan( float32);
+
+void SetRoundingMode(const unsigned int opcode);
+
+unsigned int PerformFLT(const unsigned int opcode);
+unsigned int PerformFIX(const unsigned int opcode);
+
+static unsigned int
+PerformComparison(const unsigned int opcode);
+
+unsigned int EmulateCPRT(const unsigned int opcode)
+{
+ unsigned int nRc = 1;
+
+ //printk("EmulateCPRT(0x%08x)\n",opcode);
+
+ if (opcode & 0x800000)
+ {
+ /* This is some variant of a comparison (PerformComparison will
+ sort out which one). Since most of the other CPRT
+ instructions are oddball cases of some sort or other it makes
+ sense to pull this out into a fast path. */
+ return PerformComparison(opcode);
+ }
+
+ /* Hint to GCC that we'd like a jump table rather than a load of CMPs */
+ switch ((opcode & 0x700000) >> 20)
+ {
+ case FLT_CODE >> 20: nRc = PerformFLT(opcode); break;
+ case FIX_CODE >> 20: nRc = PerformFIX(opcode); break;
+
+ case WFS_CODE >> 20: writeFPSR(readRegister(getRd(opcode))); break;
+ case RFS_CODE >> 20: writeRegister(getRd(opcode),readFPSR()); break;
+
+#if 0 /* We currently have no use for the FPCR, so there's no point
+ in emulating it. */
+ case WFC_CODE >> 20: writeFPCR(readRegister(getRd(opcode)));
+ case RFC_CODE >> 20: writeRegister(getRd(opcode),readFPCR()); break;
+#endif
+
+ default: nRc = 0;
+ }
+
+ return nRc;
+}
+
+unsigned int PerformFLT(const unsigned int opcode)
+{
+ FPA11 *fpa11 = GET_FPA11();
+
+ unsigned int nRc = 1;
+ SetRoundingMode(opcode);
+
+ switch (opcode & MASK_ROUNDING_PRECISION)
+ {
+ case ROUND_SINGLE:
+ {
+ fpa11->fType[getFn(opcode)] = typeSingle;
+ fpa11->fpreg[getFn(opcode)].fSingle =
+ int32_to_float32(readRegister(getRd(opcode)));
+ }
+ break;
+
+ case ROUND_DOUBLE:
+ {
+ fpa11->fType[getFn(opcode)] = typeDouble;
+ fpa11->fpreg[getFn(opcode)].fDouble =
+ int32_to_float64(readRegister(getRd(opcode)));
+ }
+ break;
+
+ case ROUND_EXTENDED:
+ {
+ fpa11->fType[getFn(opcode)] = typeExtended;
+ fpa11->fpreg[getFn(opcode)].fExtended =
+ int32_to_floatx80(readRegister(getRd(opcode)));
+ }
+ break;
+
+ default: nRc = 0;
+ }
+
+ return nRc;
+}
+
+unsigned int PerformFIX(const unsigned int opcode)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ unsigned int nRc = 1;
+ unsigned int Fn = getFm(opcode);
+
+ SetRoundingMode(opcode);
+
+ switch (fpa11->fType[Fn])
+ {
+ case typeSingle:
+ {
+ writeRegister(getRd(opcode),
+ float32_to_int32(fpa11->fpreg[Fn].fSingle));
+ }
+ break;
+
+ case typeDouble:
+ {
+ //printf("F%d is 0x%llx\n",Fn,fpa11->fpreg[Fn].fDouble);
+ writeRegister(getRd(opcode),
+ float64_to_int32(fpa11->fpreg[Fn].fDouble));
+ }
+ break;
+
+ case typeExtended:
+ {
+ writeRegister(getRd(opcode),
+ floatx80_to_int32(fpa11->fpreg[Fn].fExtended));
+ }
+ break;
+
+ default: nRc = 0;
+ }
+
+ return nRc;
+}
+
+
+static unsigned int __inline__
+PerformComparisonOperation(floatx80 Fn, floatx80 Fm)
+{
+ unsigned int flags = 0;
+
+ /* test for less than condition */
+ if (floatx80_lt(Fn,Fm))
+ {
+ flags |= CC_NEGATIVE;
+ }
+
+ /* test for equal condition */
+ if (floatx80_eq(Fn,Fm))
+ {
+ flags |= CC_ZERO;
+ }
+
+ /* test for greater than or equal condition */
+ if (floatx80_lt(Fm,Fn))
+ {
+ flags |= CC_CARRY;
+ }
+
+ writeConditionCodes(flags);
+ return 1;
+}
+
+/* This instruction sets the flags N, Z, C, V in the FPSR. */
+
+static unsigned int PerformComparison(const unsigned int opcode)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ unsigned int Fn, Fm;
+ floatx80 rFn, rFm;
+ int e_flag = opcode & 0x400000; /* 1 if CxFE */
+ int n_flag = opcode & 0x200000; /* 1 if CNxx */
+ unsigned int flags = 0;
+
+ //printk("PerformComparison(0x%08x)\n",opcode);
+
+ Fn = getFn(opcode);
+ Fm = getFm(opcode);
+
+ /* Check for unordered condition and convert all operands to 80-bit
+ format.
+ ?? Might be some mileage in avoiding this conversion if possible.
+ Eg, if both operands are 32-bit, detect this and do a 32-bit
+ comparison (cheaper than an 80-bit one). */
+ switch (fpa11->fType[Fn])
+ {
+ case typeSingle:
+ //printk("single.\n");
+ if (float32_is_nan(fpa11->fpreg[Fn].fSingle))
+ goto unordered;
+ rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle);
+ break;
+
+ case typeDouble:
+ //printk("double.\n");
+ if (float64_is_nan(fpa11->fpreg[Fn].fDouble))
+ goto unordered;
+ rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble);
+ break;
+
+ case typeExtended:
+ //printk("extended.\n");
+ if (floatx80_is_nan(fpa11->fpreg[Fn].fExtended))
+ goto unordered;
+ rFn = fpa11->fpreg[Fn].fExtended;
+ break;
+
+ default: return 0;
+ }
+
+ if (CONSTANT_FM(opcode))
+ {
+ //printk("Fm is a constant: #%d.\n",Fm);
+ rFm = getExtendedConstant(Fm);
+ if (floatx80_is_nan(rFm))
+ goto unordered;
+ }
+ else
+ {
+ //printk("Fm = r%d which contains a ",Fm);
+ switch (fpa11->fType[Fm])
+ {
+ case typeSingle:
+ //printk("single.\n");
+ if (float32_is_nan(fpa11->fpreg[Fm].fSingle))
+ goto unordered;
+ rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle);
+ break;
+
+ case typeDouble:
+ //printk("double.\n");
+ if (float64_is_nan(fpa11->fpreg[Fm].fDouble))
+ goto unordered;
+ rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble);
+ break;
+
+ case typeExtended:
+ //printk("extended.\n");
+ if (floatx80_is_nan(fpa11->fpreg[Fm].fExtended))
+ goto unordered;
+ rFm = fpa11->fpreg[Fm].fExtended;
+ break;
+
+ default: return 0;
+ }
+ }
+
+ if (n_flag)
+ {
+ rFm.high ^= 0x8000;
+ }
+
+ return PerformComparisonOperation(rFn,rFm);
+
+ unordered:
+ /* ?? The FPA data sheet is pretty vague about this, in particular
+ about whether the non-E comparisons can ever raise exceptions.
+ This implementation is based on a combination of what it says in
+ the data sheet, observation of how the Acorn emulator actually
+ behaves (and how programs expect it to) and guesswork. */
+ flags |= CC_OVERFLOW;
+ flags &= ~(CC_ZERO | CC_NEGATIVE);
+
+ if (BIT_AC & readFPSR()) flags |= CC_CARRY;
+
+ if (e_flag) float_raise(float_flag_invalid);
+
+ writeConditionCodes(flags);
+ return 1;
+}
diff --git a/target-arm/nwfpe/fpopcode.c b/target-arm/nwfpe/fpopcode.c
new file mode 100644
index 000000000..0886a0bdf
--- /dev/null
+++ b/target-arm/nwfpe/fpopcode.c
@@ -0,0 +1,148 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.COM, 1998,1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include "fpa11.h"
+#include "softfloat.h"
+#include "fpopcode.h"
+#include "fpsr.h"
+//#include "fpmodule.h"
+//#include "fpmodule.inl"
+
+const floatx80 floatx80Constant[] = {
+ { 0x0000, 0x0000000000000000ULL}, /* extended 0.0 */
+ { 0x3fff, 0x8000000000000000ULL}, /* extended 1.0 */
+ { 0x4000, 0x8000000000000000ULL}, /* extended 2.0 */
+ { 0x4000, 0xc000000000000000ULL}, /* extended 3.0 */
+ { 0x4001, 0x8000000000000000ULL}, /* extended 4.0 */
+ { 0x4001, 0xa000000000000000ULL}, /* extended 5.0 */
+ { 0x3ffe, 0x8000000000000000ULL}, /* extended 0.5 */
+ { 0x4002, 0xa000000000000000ULL} /* extended 10.0 */
+};
+
+const float64 float64Constant[] = {
+ 0x0000000000000000ULL, /* double 0.0 */
+ 0x3ff0000000000000ULL, /* double 1.0 */
+ 0x4000000000000000ULL, /* double 2.0 */
+ 0x4008000000000000ULL, /* double 3.0 */
+ 0x4010000000000000ULL, /* double 4.0 */
+ 0x4014000000000000ULL, /* double 5.0 */
+ 0x3fe0000000000000ULL, /* double 0.5 */
+ 0x4024000000000000ULL /* double 10.0 */
+};
+
+const float32 float32Constant[] = {
+ 0x00000000, /* single 0.0 */
+ 0x3f800000, /* single 1.0 */
+ 0x40000000, /* single 2.0 */
+ 0x40400000, /* single 3.0 */
+ 0x40800000, /* single 4.0 */
+ 0x40a00000, /* single 5.0 */
+ 0x3f000000, /* single 0.5 */
+ 0x41200000 /* single 10.0 */
+};
+
+unsigned int getTransferLength(const unsigned int opcode)
+{
+ unsigned int nRc;
+
+ switch (opcode & MASK_TRANSFER_LENGTH)
+ {
+ case 0x00000000: nRc = 1; break; /* single precision */
+ case 0x00008000: nRc = 2; break; /* double precision */
+ case 0x00400000: nRc = 3; break; /* extended precision */
+ default: nRc = 0;
+ }
+
+ return(nRc);
+}
+
+unsigned int getRegisterCount(const unsigned int opcode)
+{
+ unsigned int nRc;
+
+ switch (opcode & MASK_REGISTER_COUNT)
+ {
+ case 0x00000000: nRc = 4; break;
+ case 0x00008000: nRc = 1; break;
+ case 0x00400000: nRc = 2; break;
+ case 0x00408000: nRc = 3; break;
+ default: nRc = 0;
+ }
+
+ return(nRc);
+}
+
+unsigned int getRoundingPrecision(const unsigned int opcode)
+{
+ unsigned int nRc;
+
+ switch (opcode & MASK_ROUNDING_PRECISION)
+ {
+ case 0x00000000: nRc = 1; break;
+ case 0x00000080: nRc = 2; break;
+ case 0x00080000: nRc = 3; break;
+ default: nRc = 0;
+ }
+
+ return(nRc);
+}
+
+unsigned int getDestinationSize(const unsigned int opcode)
+{
+ unsigned int nRc;
+
+ switch (opcode & MASK_DESTINATION_SIZE)
+ {
+ case 0x00000000: nRc = typeSingle; break;
+ case 0x00000080: nRc = typeDouble; break;
+ case 0x00080000: nRc = typeExtended; break;
+ default: nRc = typeNone;
+ }
+
+ return(nRc);
+}
+
+/* condition code lookup table
+ index into the table is test code: EQ, NE, ... LT, GT, AL, NV
+ bit position in short is condition code: NZCV */
+static const unsigned short aCC[16] = {
+ 0xF0F0, // EQ == Z set
+ 0x0F0F, // NE
+ 0xCCCC, // CS == C set
+ 0x3333, // CC
+ 0xFF00, // MI == N set
+ 0x00FF, // PL
+ 0xAAAA, // VS == V set
+ 0x5555, // VC
+ 0x0C0C, // HI == C set && Z clear
+ 0xF3F3, // LS == C clear || Z set
+ 0xAA55, // GE == (N==V)
+ 0x55AA, // LT == (N!=V)
+ 0x0A05, // GT == (!Z && (N==V))
+ 0xF5FA, // LE == (Z || (N!=V))
+ 0xFFFF, // AL always
+ 0 // NV
+};
+
+unsigned int checkCondition(const unsigned int opcode, const unsigned int ccodes)
+{
+ return (aCC[opcode>>28] >> (ccodes>>28)) & 1;
+}
diff --git a/target-arm/nwfpe/fpopcode.h b/target-arm/nwfpe/fpopcode.h
new file mode 100644
index 000000000..13c741926
--- /dev/null
+++ b/target-arm/nwfpe/fpopcode.h
@@ -0,0 +1,390 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.COM, 1998,1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#ifndef __FPOPCODE_H__
+#define __FPOPCODE_H__
+
+/*
+ARM Floating Point Instruction Classes
+| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
+|c o n d|1 1 0 P|U|u|W|L| Rn |v| Fd |0|0|0|1| o f f s e t | CPDT
+|c o n d|1 1 0 P|U|w|W|L| Rn |x| Fd |0|0|0|1| o f f s e t | CPDT
+| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
+|c o n d|1 1 1 0|a|b|c|d|e| Fn |j| Fd |0|0|0|1|f|g|h|0|i| Fm | CPDO
+|c o n d|1 1 1 0|a|b|c|L|e| Fn | Rd |0|0|0|1|f|g|h|1|i| Fm | CPRT
+|c o n d|1 1 1 0|a|b|c|1|e| Fn |1|1|1|1|0|0|0|1|f|g|h|1|i| Fm | comparisons
+| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
+
+CPDT data transfer instructions
+ LDF, STF, LFM, SFM
+
+CPDO dyadic arithmetic instructions
+ ADF, MUF, SUF, RSF, DVF, RDF,
+ POW, RPW, RMF, FML, FDV, FRD, POL
+
+CPDO monadic arithmetic instructions
+ MVF, MNF, ABS, RND, SQT, LOG, LGN, EXP,
+ SIN, COS, TAN, ASN, ACS, ATN, URD, NRM
+
+CPRT joint arithmetic/data transfer instructions
+ FIX (arithmetic followed by load/store)
+ FLT (load/store followed by arithmetic)
+ CMF, CNF CMFE, CNFE (comparisons)
+ WFS, RFS (write/read floating point status register)
+ WFC, RFC (write/read floating point control register)
+
+cond condition codes
+P pre/post index bit: 0 = postindex, 1 = preindex
+U up/down bit: 0 = stack grows down, 1 = stack grows up
+W write back bit: 1 = update base register (Rn)
+L load/store bit: 0 = store, 1 = load
+Rn base register
+Rd destination/source register
+Fd floating point destination register
+Fn floating point source register
+Fm floating point source register or floating point constant
+
+uv transfer length (TABLE 1)
+wx register count (TABLE 2)
+abcd arithmetic opcode (TABLES 3 & 4)
+ef destination size (rounding precision) (TABLE 5)
+gh rounding mode (TABLE 6)
+j dyadic/monadic bit: 0 = dyadic, 1 = monadic
+i constant bit: 1 = constant (TABLE 6)
+*/
+
+/*
+TABLE 1
++-------------------------+---+---+---------+---------+
+| Precision | u | v | FPSR.EP | length |
++-------------------------+---+---+---------+---------+
+| Single | 0 ü 0 | x | 1 words |
+| Double | 1 ü 1 | x | 2 words |
+| Extended | 1 ü 1 | x | 3 words |
+| Packed decimal | 1 ü 1 | 0 | 3 words |
+| Expanded packed decimal | 1 ü 1 | 1 | 4 words |
++-------------------------+---+---+---------+---------+
+Note: x = don't care
+*/
+
+/*
+TABLE 2
++---+---+---------------------------------+
+| w | x | Number of registers to transfer |
++---+---+---------------------------------+
+| 0 ü 1 | 1 |
+| 1 ü 0 | 2 |
+| 1 ü 1 | 3 |
+| 0 ü 0 | 4 |
++---+---+---------------------------------+
+*/
+
+/*
+TABLE 3: Dyadic Floating Point Opcodes
++---+---+---+---+----------+-----------------------+-----------------------+
+| a | b | c | d | Mnemonic | Description | Operation |
++---+---+---+---+----------+-----------------------+-----------------------+
+| 0 | 0 | 0 | 0 | ADF | Add | Fd := Fn + Fm |
+| 0 | 0 | 0 | 1 | MUF | Multiply | Fd := Fn * Fm |
+| 0 | 0 | 1 | 0 | SUF | Subtract | Fd := Fn - Fm |
+| 0 | 0 | 1 | 1 | RSF | Reverse subtract | Fd := Fm - Fn |
+| 0 | 1 | 0 | 0 | DVF | Divide | Fd := Fn / Fm |
+| 0 | 1 | 0 | 1 | RDF | Reverse divide | Fd := Fm / Fn |
+| 0 | 1 | 1 | 0 | POW | Power | Fd := Fn ^ Fm |
+| 0 | 1 | 1 | 1 | RPW | Reverse power | Fd := Fm ^ Fn |
+| 1 | 0 | 0 | 0 | RMF | Remainder | Fd := IEEE rem(Fn/Fm) |
+| 1 | 0 | 0 | 1 | FML | Fast Multiply | Fd := Fn * Fm |
+| 1 | 0 | 1 | 0 | FDV | Fast Divide | Fd := Fn / Fm |
+| 1 | 0 | 1 | 1 | FRD | Fast reverse divide | Fd := Fm / Fn |
+| 1 | 1 | 0 | 0 | POL | Polar angle (ArcTan2) | Fd := arctan2(Fn,Fm) |
+| 1 | 1 | 0 | 1 | | undefined instruction | trap |
+| 1 | 1 | 1 | 0 | | undefined instruction | trap |
+| 1 | 1 | 1 | 1 | | undefined instruction | trap |
++---+---+---+---+----------+-----------------------+-----------------------+
+Note: POW, RPW, POL are deprecated, and are available for backwards
+ compatibility only.
+*/
+
+/*
+TABLE 4: Monadic Floating Point Opcodes
++---+---+---+---+----------+-----------------------+-----------------------+
+| a | b | c | d | Mnemonic | Description | Operation |
++---+---+---+---+----------+-----------------------+-----------------------+
+| 0 | 0 | 0 | 0 | MVF | Move | Fd := Fm |
+| 0 | 0 | 0 | 1 | MNF | Move negated | Fd := - Fm |
+| 0 | 0 | 1 | 0 | ABS | Absolute value | Fd := abs(Fm) |
+| 0 | 0 | 1 | 1 | RND | Round to integer | Fd := int(Fm) |
+| 0 | 1 | 0 | 0 | SQT | Square root | Fd := sqrt(Fm) |
+| 0 | 1 | 0 | 1 | LOG | Log base 10 | Fd := log10(Fm) |
+| 0 | 1 | 1 | 0 | LGN | Log base e | Fd := ln(Fm) |
+| 0 | 1 | 1 | 1 | EXP | Exponent | Fd := e ^ Fm |
+| 1 | 0 | 0 | 0 | SIN | Sine | Fd := sin(Fm) |
+| 1 | 0 | 0 | 1 | COS | Cosine | Fd := cos(Fm) |
+| 1 | 0 | 1 | 0 | TAN | Tangent | Fd := tan(Fm) |
+| 1 | 0 | 1 | 1 | ASN | Arc Sine | Fd := arcsin(Fm) |
+| 1 | 1 | 0 | 0 | ACS | Arc Cosine | Fd := arccos(Fm) |
+| 1 | 1 | 0 | 1 | ATN | Arc Tangent | Fd := arctan(Fm) |
+| 1 | 1 | 1 | 0 | URD | Unnormalized round | Fd := int(Fm) |
+| 1 | 1 | 1 | 1 | NRM | Normalize | Fd := norm(Fm) |
++---+---+---+---+----------+-----------------------+-----------------------+
+Note: LOG, LGN, EXP, SIN, COS, TAN, ASN, ACS, ATN are deprecated, and are
+ available for backwards compatibility only.
+*/
+
+/*
+TABLE 5
++-------------------------+---+---+
+| Rounding Precision | e | f |
++-------------------------+---+---+
+| IEEE Single precision | 0 ü 0 |
+| IEEE Double precision | 0 ü 1 |
+| IEEE Extended precision | 1 ü 0 |
+| undefined (trap) | 1 ü 1 |
++-------------------------+---+---+
+*/
+
+/*
+TABLE 5
++---------------------------------+---+---+
+| Rounding Mode | g | h |
++---------------------------------+---+---+
+| Round to nearest (default) | 0 ü 0 |
+| Round toward plus infinity | 0 ü 1 |
+| Round toward negative infinity | 1 ü 0 |
+| Round toward zero | 1 ü 1 |
++---------------------------------+---+---+
+*/
+
+/*
+===
+=== Definitions for load and store instructions
+===
+*/
+
+/* bit masks */
+#define BIT_PREINDEX 0x01000000
+#define BIT_UP 0x00800000
+#define BIT_WRITE_BACK 0x00200000
+#define BIT_LOAD 0x00100000
+
+/* masks for load/store */
+#define MASK_CPDT 0x0c000000 /* data processing opcode */
+#define MASK_OFFSET 0x000000ff
+#define MASK_TRANSFER_LENGTH 0x00408000
+#define MASK_REGISTER_COUNT MASK_TRANSFER_LENGTH
+#define MASK_COPROCESSOR 0x00000f00
+
+/* Tests for transfer length */
+#define TRANSFER_SINGLE 0x00000000
+#define TRANSFER_DOUBLE 0x00008000
+#define TRANSFER_EXTENDED 0x00400000
+#define TRANSFER_PACKED MASK_TRANSFER_LENGTH
+
+/* Get the coprocessor number from the opcode. */
+#define getCoprocessorNumber(opcode) ((opcode & MASK_COPROCESSOR) >> 8)
+
+/* Get the offset from the opcode. */
+#define getOffset(opcode) (opcode & MASK_OFFSET)
+
+/* Tests for specific data transfer load/store opcodes. */
+#define TEST_OPCODE(opcode,mask) (((opcode) & (mask)) == (mask))
+
+#define LOAD_OP(opcode) TEST_OPCODE((opcode),MASK_CPDT | BIT_LOAD)
+#define STORE_OP(opcode) ((opcode & (MASK_CPDT | BIT_LOAD)) == MASK_CPDT)
+
+#define LDF_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 1))
+#define LFM_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 2))
+#define STF_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 1))
+#define SFM_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 2))
+
+#define PREINDEXED(opcode) ((opcode & BIT_PREINDEX) != 0)
+#define POSTINDEXED(opcode) ((opcode & BIT_PREINDEX) == 0)
+#define BIT_UP_SET(opcode) ((opcode & BIT_UP) != 0)
+#define BIT_UP_CLEAR(opcode) ((opcode & BIT_DOWN) == 0)
+#define WRITE_BACK(opcode) ((opcode & BIT_WRITE_BACK) != 0)
+#define LOAD(opcode) ((opcode & BIT_LOAD) != 0)
+#define STORE(opcode) ((opcode & BIT_LOAD) == 0)
+
+/*
+===
+=== Definitions for arithmetic instructions
+===
+*/
+/* bit masks */
+#define BIT_MONADIC 0x00008000
+#define BIT_CONSTANT 0x00000008
+
+#define CONSTANT_FM(opcode) ((opcode & BIT_CONSTANT) != 0)
+#define MONADIC_INSTRUCTION(opcode) ((opcode & BIT_MONADIC) != 0)
+
+/* instruction identification masks */
+#define MASK_CPDO 0x0e000000 /* arithmetic opcode */
+#define MASK_ARITHMETIC_OPCODE 0x00f08000
+#define MASK_DESTINATION_SIZE 0x00080080
+
+/* dyadic arithmetic opcodes. */
+#define ADF_CODE 0x00000000
+#define MUF_CODE 0x00100000
+#define SUF_CODE 0x00200000
+#define RSF_CODE 0x00300000
+#define DVF_CODE 0x00400000
+#define RDF_CODE 0x00500000
+#define POW_CODE 0x00600000
+#define RPW_CODE 0x00700000
+#define RMF_CODE 0x00800000
+#define FML_CODE 0x00900000
+#define FDV_CODE 0x00a00000
+#define FRD_CODE 0x00b00000
+#define POL_CODE 0x00c00000
+/* 0x00d00000 is an invalid dyadic arithmetic opcode */
+/* 0x00e00000 is an invalid dyadic arithmetic opcode */
+/* 0x00f00000 is an invalid dyadic arithmetic opcode */
+
+/* monadic arithmetic opcodes. */
+#define MVF_CODE 0x00008000
+#define MNF_CODE 0x00108000
+#define ABS_CODE 0x00208000
+#define RND_CODE 0x00308000
+#define SQT_CODE 0x00408000
+#define LOG_CODE 0x00508000
+#define LGN_CODE 0x00608000
+#define EXP_CODE 0x00708000
+#define SIN_CODE 0x00808000
+#define COS_CODE 0x00908000
+#define TAN_CODE 0x00a08000
+#define ASN_CODE 0x00b08000
+#define ACS_CODE 0x00c08000
+#define ATN_CODE 0x00d08000
+#define URD_CODE 0x00e08000
+#define NRM_CODE 0x00f08000
+
+/*
+===
+=== Definitions for register transfer and comparison instructions
+===
+*/
+
+#define MASK_CPRT 0x0e000010 /* register transfer opcode */
+#define MASK_CPRT_CODE 0x00f00000
+#define FLT_CODE 0x00000000
+#define FIX_CODE 0x00100000
+#define WFS_CODE 0x00200000
+#define RFS_CODE 0x00300000
+#define WFC_CODE 0x00400000
+#define RFC_CODE 0x00500000
+#define CMF_CODE 0x00900000
+#define CNF_CODE 0x00b00000
+#define CMFE_CODE 0x00d00000
+#define CNFE_CODE 0x00f00000
+
+/*
+===
+=== Common definitions
+===
+*/
+
+/* register masks */
+#define MASK_Rd 0x0000f000
+#define MASK_Rn 0x000f0000
+#define MASK_Fd 0x00007000
+#define MASK_Fm 0x00000007
+#define MASK_Fn 0x00070000
+
+/* condition code masks */
+#define CC_MASK 0xf0000000
+#define CC_NEGATIVE 0x80000000
+#define CC_ZERO 0x40000000
+#define CC_CARRY 0x20000000
+#define CC_OVERFLOW 0x10000000
+#define CC_EQ 0x00000000
+#define CC_NE 0x10000000
+#define CC_CS 0x20000000
+#define CC_HS CC_CS
+#define CC_CC 0x30000000
+#define CC_LO CC_CC
+#define CC_MI 0x40000000
+#define CC_PL 0x50000000
+#define CC_VS 0x60000000
+#define CC_VC 0x70000000
+#define CC_HI 0x80000000
+#define CC_LS 0x90000000
+#define CC_GE 0xa0000000
+#define CC_LT 0xb0000000
+#define CC_GT 0xc0000000
+#define CC_LE 0xd0000000
+#define CC_AL 0xe0000000
+#define CC_NV 0xf0000000
+
+/* rounding masks/values */
+#define MASK_ROUNDING_MODE 0x00000060
+#define ROUND_TO_NEAREST 0x00000000
+#define ROUND_TO_PLUS_INFINITY 0x00000020
+#define ROUND_TO_MINUS_INFINITY 0x00000040
+#define ROUND_TO_ZERO 0x00000060
+
+#define MASK_ROUNDING_PRECISION 0x00080080
+#define ROUND_SINGLE 0x00000000
+#define ROUND_DOUBLE 0x00000080
+#define ROUND_EXTENDED 0x00080000
+
+/* Get the condition code from the opcode. */
+#define getCondition(opcode) (opcode >> 28)
+
+/* Get the source register from the opcode. */
+#define getRn(opcode) ((opcode & MASK_Rn) >> 16)
+
+/* Get the destination floating point register from the opcode. */
+#define getFd(opcode) ((opcode & MASK_Fd) >> 12)
+
+/* Get the first source floating point register from the opcode. */
+#define getFn(opcode) ((opcode & MASK_Fn) >> 16)
+
+/* Get the second source floating point register from the opcode. */
+#define getFm(opcode) (opcode & MASK_Fm)
+
+/* Get the destination register from the opcode. */
+#define getRd(opcode) ((opcode & MASK_Rd) >> 12)
+
+/* Get the rounding mode from the opcode. */
+#define getRoundingMode(opcode) ((opcode & MASK_ROUNDING_MODE) >> 5)
+
+static inline const floatx80 getExtendedConstant(const unsigned int nIndex)
+{
+ extern const floatx80 floatx80Constant[];
+ return floatx80Constant[nIndex];
+}
+
+static inline const float64 getDoubleConstant(const unsigned int nIndex)
+{
+ extern const float64 float64Constant[];
+ return float64Constant[nIndex];
+}
+
+static inline const float32 getSingleConstant(const unsigned int nIndex)
+{
+ extern const float32 float32Constant[];
+ return float32Constant[nIndex];
+}
+
+extern unsigned int getRegisterCount(const unsigned int opcode);
+extern unsigned int getDestinationSize(const unsigned int opcode);
+
+#endif
diff --git a/target-arm/nwfpe/fpsr.h b/target-arm/nwfpe/fpsr.h
new file mode 100644
index 000000000..6dafb0f52
--- /dev/null
+++ b/target-arm/nwfpe/fpsr.h
@@ -0,0 +1,108 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.com, 1998-1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#ifndef __FPSR_H__
+#define __FPSR_H__
+
+/*
+The FPSR is a 32 bit register consisting of 4 parts, each exactly
+one byte.
+
+ SYSTEM ID
+ EXCEPTION TRAP ENABLE BYTE
+ SYSTEM CONTROL BYTE
+ CUMULATIVE EXCEPTION FLAGS BYTE
+
+The FPCR is a 32 bit register consisting of bit flags.
+*/
+
+/* SYSTEM ID
+------------
+Note: the system id byte is read only */
+
+typedef unsigned int FPSR; /* type for floating point status register */
+typedef unsigned int FPCR; /* type for floating point control register */
+
+#define MASK_SYSID 0xff000000
+#define BIT_HARDWARE 0x80000000
+#define FP_EMULATOR 0x01000000 /* System ID for emulator */
+#define FP_ACCELERATOR 0x81000000 /* System ID for FPA11 */
+
+/* EXCEPTION TRAP ENABLE BYTE
+----------------------------- */
+
+#define MASK_TRAP_ENABLE 0x00ff0000
+#define MASK_TRAP_ENABLE_STRICT 0x001f0000
+#define BIT_IXE 0x00100000 /* inexact exception enable */
+#define BIT_UFE 0x00080000 /* underflow exception enable */
+#define BIT_OFE 0x00040000 /* overflow exception enable */
+#define BIT_DZE 0x00020000 /* divide by zero exception enable */
+#define BIT_IOE 0x00010000 /* invalid operation exception enable */
+
+/* SYSTEM CONTROL BYTE
+---------------------- */
+
+#define MASK_SYSTEM_CONTROL 0x0000ff00
+#define MASK_TRAP_STRICT 0x00001f00
+
+#define BIT_AC 0x00001000 /* use alternative C-flag definition
+ for compares */
+#define BIT_EP 0x00000800 /* use expanded packed decimal format */
+#define BIT_SO 0x00000400 /* select synchronous operation of FPA */
+#define BIT_NE 0x00000200 /* NaN exception bit */
+#define BIT_ND 0x00000100 /* no denormalized numbers bit */
+
+/* CUMULATIVE EXCEPTION FLAGS BYTE
+---------------------------------- */
+
+#define MASK_EXCEPTION_FLAGS 0x000000ff
+#define MASK_EXCEPTION_FLAGS_STRICT 0x0000001f
+
+#define BIT_IXC 0x00000010 /* inexact exception flag */
+#define BIT_UFC 0x00000008 /* underflow exception flag */
+#define BIT_OFC 0x00000004 /* overfloat exception flag */
+#define BIT_DZC 0x00000002 /* divide by zero exception flag */
+#define BIT_IOC 0x00000001 /* invalid operation exception flag */
+
+/* Floating Point Control Register
+----------------------------------*/
+
+#define BIT_RU 0x80000000 /* rounded up bit */
+#define BIT_IE 0x10000000 /* inexact bit */
+#define BIT_MO 0x08000000 /* mantissa overflow bit */
+#define BIT_EO 0x04000000 /* exponent overflow bit */
+#define BIT_SB 0x00000800 /* store bounce */
+#define BIT_AB 0x00000400 /* arithmetic bounce */
+#define BIT_RE 0x00000200 /* rounding exception */
+#define BIT_DA 0x00000100 /* disable FPA */
+
+#define MASK_OP 0x00f08010 /* AU operation code */
+#define MASK_PR 0x00080080 /* AU precision */
+#define MASK_S1 0x00070000 /* AU source register 1 */
+#define MASK_S2 0x00000007 /* AU source register 2 */
+#define MASK_DS 0x00007000 /* AU destination register */
+#define MASK_RM 0x00000060 /* AU rounding mode */
+#define MASK_ALU 0x9cfff2ff /* only ALU can write these bits */
+#define MASK_RESET 0x00000d00 /* bits set on reset, all others cleared */
+#define MASK_WFC MASK_RESET
+#define MASK_RFC ~MASK_RESET
+
+#endif
diff --git a/target-arm/nwfpe/milieu.h b/target-arm/nwfpe/milieu.h
new file mode 100644
index 000000000..a3892ab2d
--- /dev/null
+++ b/target-arm/nwfpe/milieu.h
@@ -0,0 +1,48 @@
+
+/*
+===============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/softfloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these three paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+/*
+-------------------------------------------------------------------------------
+Include common integer types and flags.
+-------------------------------------------------------------------------------
+*/
+#include "ARM-gcc.h"
+
+/*
+-------------------------------------------------------------------------------
+Symbolic Boolean literals.
+-------------------------------------------------------------------------------
+*/
+enum {
+ FALSE = 0,
+ TRUE = 1
+};
+
diff --git a/target-arm/nwfpe/single_cpdo.c b/target-arm/nwfpe/single_cpdo.c
new file mode 100644
index 000000000..c38cb01e4
--- /dev/null
+++ b/target-arm/nwfpe/single_cpdo.c
@@ -0,0 +1,255 @@
+/*
+ NetWinder Floating Point Emulator
+ (c) Rebel.COM, 1998,1999
+
+ Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include "fpa11.h"
+#include "softfloat.h"
+#include "fpopcode.h"
+
+float32 float32_exp(float32 Fm);
+float32 float32_ln(float32 Fm);
+float32 float32_sin(float32 rFm);
+float32 float32_cos(float32 rFm);
+float32 float32_arcsin(float32 rFm);
+float32 float32_arctan(float32 rFm);
+float32 float32_log(float32 rFm);
+float32 float32_tan(float32 rFm);
+float32 float32_arccos(float32 rFm);
+float32 float32_pow(float32 rFn,float32 rFm);
+float32 float32_pol(float32 rFn,float32 rFm);
+
+unsigned int SingleCPDO(const unsigned int opcode)
+{
+ FPA11 *fpa11 = GET_FPA11();
+ float32 rFm, rFn;
+ unsigned int Fd, Fm, Fn, nRc = 1;
+
+ Fm = getFm(opcode);
+ if (CONSTANT_FM(opcode))
+ {
+ rFm = getSingleConstant(Fm);
+ }
+ else
+ {
+ switch (fpa11->fType[Fm])
+ {
+ case typeSingle:
+ rFm = fpa11->fpreg[Fm].fSingle;
+ break;
+
+ default: return 0;
+ }
+ }
+
+ if (!MONADIC_INSTRUCTION(opcode))
+ {
+ Fn = getFn(opcode);
+ switch (fpa11->fType[Fn])
+ {
+ case typeSingle:
+ rFn = fpa11->fpreg[Fn].fSingle;
+ break;
+
+ default: return 0;
+ }
+ }
+
+ Fd = getFd(opcode);
+ switch (opcode & MASK_ARITHMETIC_OPCODE)
+ {
+ /* dyadic opcodes */
+ case ADF_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm);
+ break;
+
+ case MUF_CODE:
+ case FML_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm);
+ break;
+
+ case SUF_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm);
+ break;
+
+ case RSF_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn);
+ break;
+
+ case DVF_CODE:
+ case FDV_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm);
+ break;
+
+ case RDF_CODE:
+ case FRD_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn);
+ break;
+
+#if 0
+ case POW_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_pow(rFn,rFm);
+ break;
+
+ case RPW_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_pow(rFm,rFn);
+ break;
+#endif
+
+ case RMF_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm);
+ break;
+
+#if 0
+ case POL_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_pol(rFn,rFm);
+ break;
+#endif
+
+ /* monadic opcodes */
+ case MVF_CODE:
+ fpa11->fpreg[Fd].fSingle = rFm;
+ break;
+
+ case MNF_CODE:
+ rFm ^= 0x80000000;
+ fpa11->fpreg[Fd].fSingle = rFm;
+ break;
+
+ case ABS_CODE:
+ rFm &= 0x7fffffff;
+ fpa11->fpreg[Fd].fSingle = rFm;
+ break;
+
+ case RND_CODE:
+ case URD_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm);
+ break;
+
+ case SQT_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm);
+ break;
+
+#if 0
+ case LOG_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_log(rFm);
+ break;
+
+ case LGN_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_ln(rFm);
+ break;
+
+ case EXP_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_exp(rFm);
+ break;
+
+ case SIN_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_sin(rFm);
+ break;
+
+ case COS_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_cos(rFm);
+ break;
+
+ case TAN_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_tan(rFm);
+ break;
+
+ case ASN_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_arcsin(rFm);
+ break;
+
+ case ACS_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_arccos(rFm);
+ break;
+
+ case ATN_CODE:
+ fpa11->fpreg[Fd].fSingle = float32_arctan(rFm);
+ break;
+#endif
+
+ case NRM_CODE:
+ break;
+
+ default:
+ {
+ nRc = 0;
+ }
+ }
+
+ if (0 != nRc) fpa11->fType[Fd] = typeSingle;
+ return nRc;
+}
+
+#if 0
+float32 float32_exp(float32 Fm)
+{
+//series
+}
+
+float32 float32_ln(float32 Fm)
+{
+//series
+}
+
+float32 float32_sin(float32 rFm)
+{
+//series
+}
+
+float32 float32_cos(float32 rFm)
+{
+//series
+}
+
+float32 float32_arcsin(float32 rFm)
+{
+//series
+}
+
+float32 float32_arctan(float32 rFm)
+{
+ //series
+}
+
+float32 float32_arccos(float32 rFm)
+{
+ //return float32_sub(halfPi,float32_arcsin(rFm));
+}
+
+float32 float32_log(float32 rFm)
+{
+ return float32_div(float32_ln(rFm),getSingleConstant(7));
+}
+
+float32 float32_tan(float32 rFm)
+{
+ return float32_div(float32_sin(rFm),float32_cos(rFm));
+}
+
+float32 float32_pow(float32 rFn,float32 rFm)
+{
+ return float32_exp(float32_mul(rFm,float32_ln(rFn)));
+}
+
+float32 float32_pol(float32 rFn,float32 rFm)
+{
+ return float32_arctan(float32_div(rFn,rFm));
+}
+#endif
diff --git a/target-arm/nwfpe/softfloat-macros b/target-arm/nwfpe/softfloat-macros
new file mode 100644
index 000000000..c245a0ef4
--- /dev/null
+++ b/target-arm/nwfpe/softfloat-macros
@@ -0,0 +1,740 @@
+
+/*
+===============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/softfloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these three paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+/*
+-------------------------------------------------------------------------------
+Shifts `a' right by the number of bits given in `count'. If any nonzero
+bits are shifted off, they are ``jammed'' into the least significant bit of
+the result by setting the least significant bit to 1. The value of `count'
+can be arbitrarily large; in particular, if `count' is greater than 32, the
+result will be either 0 or 1, depending on whether `a' is zero or nonzero.
+The result is stored in the location pointed to by `zPtr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
+{
+ bits32 z;
+ if ( count == 0 ) {
+ z = a;
+ }
+ else if ( count < 32 ) {
+ z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
+ }
+ else {
+ z = ( a != 0 );
+ }
+ *zPtr = z;
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts `a' right by the number of bits given in `count'. If any nonzero
+bits are shifted off, they are ``jammed'' into the least significant bit of
+the result by setting the least significant bit to 1. The value of `count'
+can be arbitrarily large; in particular, if `count' is greater than 64, the
+result will be either 0 or 1, depending on whether `a' is zero or nonzero.
+The result is stored in the location pointed to by `zPtr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
+{
+ bits64 z;
+
+// __asm__("@shift64RightJamming -- start");
+ if ( count == 0 ) {
+ z = a;
+ }
+ else if ( count < 64 ) {
+ z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
+ }
+ else {
+ z = ( a != 0 );
+ }
+// __asm__("@shift64RightJamming -- end");
+ *zPtr = z;
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
+_plus_ the number of bits given in `count'. The shifted result is at most
+64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
+bits shifted off form a second 64-bit result as follows: The _last_ bit
+shifted off is the most-significant bit of the extra result, and the other
+63 bits of the extra result are all zero if and only if _all_but_the_last_
+bits shifted off were all zero. This extra result is stored in the location
+pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
+ (This routine makes more sense if `a0' and `a1' are considered to form a
+fixed-point value with binary point between `a0' and `a1'. This fixed-point
+value is shifted right by the number of bits given in `count', and the
+integer part of the result is returned at the location pointed to by
+`z0Ptr'. The fractional part of the result may be slightly corrupted as
+described above, and is returned at the location pointed to by `z1Ptr'.)
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift64ExtraRightJamming(
+ bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits64 z0, z1;
+ int8 negCount = ( - count ) & 63;
+
+ if ( count == 0 ) {
+ z1 = a1;
+ z0 = a0;
+ }
+ else if ( count < 64 ) {
+ z1 = ( a0<<negCount ) | ( a1 != 0 );
+ z0 = a0>>count;
+ }
+ else {
+ if ( count == 64 ) {
+ z1 = a0 | ( a1 != 0 );
+ }
+ else {
+ z1 = ( ( a0 | a1 ) != 0 );
+ }
+ z0 = 0;
+ }
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
+number of bits given in `count'. Any bits shifted off are lost. The value
+of `count' can be arbitrarily large; in particular, if `count' is greater
+than 128, the result will be 0. The result is broken into two 64-bit pieces
+which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift128Right(
+ bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits64 z0, z1;
+ int8 negCount = ( - count ) & 63;
+
+ if ( count == 0 ) {
+ z1 = a1;
+ z0 = a0;
+ }
+ else if ( count < 64 ) {
+ z1 = ( a0<<negCount ) | ( a1>>count );
+ z0 = a0>>count;
+ }
+ else {
+ z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
+ z0 = 0;
+ }
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
+number of bits given in `count'. If any nonzero bits are shifted off, they
+are ``jammed'' into the least significant bit of the result by setting the
+least significant bit to 1. The value of `count' can be arbitrarily large;
+in particular, if `count' is greater than 128, the result will be either 0
+or 1, depending on whether the concatenation of `a0' and `a1' is zero or
+nonzero. The result is broken into two 64-bit pieces which are stored at
+the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift128RightJamming(
+ bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits64 z0, z1;
+ int8 negCount = ( - count ) & 63;
+
+ if ( count == 0 ) {
+ z1 = a1;
+ z0 = a0;
+ }
+ else if ( count < 64 ) {
+ z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
+ z0 = a0>>count;
+ }
+ else {
+ if ( count == 64 ) {
+ z1 = a0 | ( a1 != 0 );
+ }
+ else if ( count < 128 ) {
+ z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
+ }
+ else {
+ z1 = ( ( a0 | a1 ) != 0 );
+ }
+ z0 = 0;
+ }
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
+by 64 _plus_ the number of bits given in `count'. The shifted result is
+at most 128 nonzero bits; these are broken into two 64-bit pieces which are
+stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
+off form a third 64-bit result as follows: The _last_ bit shifted off is
+the most-significant bit of the extra result, and the other 63 bits of the
+extra result are all zero if and only if _all_but_the_last_ bits shifted off
+were all zero. This extra result is stored in the location pointed to by
+`z2Ptr'. The value of `count' can be arbitrarily large.
+ (This routine makes more sense if `a0', `a1', and `a2' are considered
+to form a fixed-point value with binary point between `a1' and `a2'. This
+fixed-point value is shifted right by the number of bits given in `count',
+and the integer part of the result is returned at the locations pointed to
+by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
+corrupted as described above, and is returned at the location pointed to by
+`z2Ptr'.)
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shift128ExtraRightJamming(
+ bits64 a0,
+ bits64 a1,
+ bits64 a2,
+ int16 count,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2;
+ int8 negCount = ( - count ) & 63;
+
+ if ( count == 0 ) {
+ z2 = a2;
+ z1 = a1;
+ z0 = a0;
+ }
+ else {
+ if ( count < 64 ) {
+ z2 = a1<<negCount;
+ z1 = ( a0<<negCount ) | ( a1>>count );
+ z0 = a0>>count;
+ }
+ else {
+ if ( count == 64 ) {
+ z2 = a1;
+ z1 = a0;
+ }
+ else {
+ a2 |= a1;
+ if ( count < 128 ) {
+ z2 = a0<<negCount;
+ z1 = a0>>( count & 63 );
+ }
+ else {
+ z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
+ z1 = 0;
+ }
+ }
+ z0 = 0;
+ }
+ z2 |= ( a2 != 0 );
+ }
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
+number of bits given in `count'. Any bits shifted off are lost. The value
+of `count' must be less than 64. The result is broken into two 64-bit
+pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shortShift128Left(
+ bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+
+ *z1Ptr = a1<<count;
+ *z0Ptr =
+ ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
+by the number of bits given in `count'. Any bits shifted off are lost.
+The value of `count' must be less than 64. The result is broken into three
+64-bit pieces which are stored at the locations pointed to by `z0Ptr',
+`z1Ptr', and `z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ shortShift192Left(
+ bits64 a0,
+ bits64 a1,
+ bits64 a2,
+ int16 count,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2;
+ int8 negCount;
+
+ z2 = a2<<count;
+ z1 = a1<<count;
+ z0 = a0<<count;
+ if ( 0 < count ) {
+ negCount = ( ( - count ) & 63 );
+ z1 |= a2>>negCount;
+ z0 |= a1>>negCount;
+ }
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
+value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
+any carry out is lost. The result is broken into two 64-bit pieces which
+are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ add128(
+ bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits64 z1;
+
+ z1 = a1 + b1;
+ *z1Ptr = z1;
+ *z0Ptr = a0 + b0 + ( z1 < a1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
+192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
+modulo 2^192, so any carry out is lost. The result is broken into three
+64-bit pieces which are stored at the locations pointed to by `z0Ptr',
+`z1Ptr', and `z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ add192(
+ bits64 a0,
+ bits64 a1,
+ bits64 a2,
+ bits64 b0,
+ bits64 b1,
+ bits64 b2,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2;
+ int8 carry0, carry1;
+
+ z2 = a2 + b2;
+ carry1 = ( z2 < a2 );
+ z1 = a1 + b1;
+ carry0 = ( z1 < a1 );
+ z0 = a0 + b0;
+ z1 += carry1;
+ z0 += ( z1 < carry1 );
+ z0 += carry0;
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
+128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
+2^128, so any borrow out (carry out) is lost. The result is broken into two
+64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
+`z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ sub128(
+ bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+
+ *z1Ptr = a1 - b1;
+ *z0Ptr = a0 - b0 - ( a1 < b1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
+from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
+Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
+result is broken into three 64-bit pieces which are stored at the locations
+pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ sub192(
+ bits64 a0,
+ bits64 a1,
+ bits64 a2,
+ bits64 b0,
+ bits64 b1,
+ bits64 b2,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2;
+ int8 borrow0, borrow1;
+
+ z2 = a2 - b2;
+ borrow1 = ( a2 < b2 );
+ z1 = a1 - b1;
+ borrow0 = ( a1 < b1 );
+ z0 = a0 - b0;
+ z0 -= ( z1 < borrow1 );
+ z1 -= borrow1;
+ z0 -= borrow0;
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
+into two 64-bit pieces which are stored at the locations pointed to by
+`z0Ptr' and `z1Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
+{
+ bits32 aHigh, aLow, bHigh, bLow;
+ bits64 z0, zMiddleA, zMiddleB, z1;
+
+ aLow = a;
+ aHigh = a>>32;
+ bLow = b;
+ bHigh = b>>32;
+ z1 = ( (bits64) aLow ) * bLow;
+ zMiddleA = ( (bits64) aLow ) * bHigh;
+ zMiddleB = ( (bits64) aHigh ) * bLow;
+ z0 = ( (bits64) aHigh ) * bHigh;
+ zMiddleA += zMiddleB;
+ z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
+ zMiddleA <<= 32;
+ z1 += zMiddleA;
+ z0 += ( z1 < zMiddleA );
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Multiplies the 128-bit value formed by concatenating `a0' and `a1' by `b' to
+obtain a 192-bit product. The product is broken into three 64-bit pieces
+which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
+`z2Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ mul128By64To192(
+ bits64 a0,
+ bits64 a1,
+ bits64 b,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr
+ )
+{
+ bits64 z0, z1, z2, more1;
+
+ mul64To128( a1, b, &z1, &z2 );
+ mul64To128( a0, b, &z0, &more1 );
+ add128( z0, more1, 0, z1, &z0, &z1 );
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
+128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
+product. The product is broken into four 64-bit pieces which are stored at
+the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
+-------------------------------------------------------------------------------
+*/
+INLINE void
+ mul128To256(
+ bits64 a0,
+ bits64 a1,
+ bits64 b0,
+ bits64 b1,
+ bits64 *z0Ptr,
+ bits64 *z1Ptr,
+ bits64 *z2Ptr,
+ bits64 *z3Ptr
+ )
+{
+ bits64 z0, z1, z2, z3;
+ bits64 more1, more2;
+
+ mul64To128( a1, b1, &z2, &z3 );
+ mul64To128( a1, b0, &z1, &more2 );
+ add128( z1, more2, 0, z2, &z1, &z2 );
+ mul64To128( a0, b0, &z0, &more1 );
+ add128( z0, more1, 0, z1, &z0, &z1 );
+ mul64To128( a0, b1, &more1, &more2 );
+ add128( more1, more2, 0, z2, &more1, &z2 );
+ add128( z0, z1, 0, more1, &z0, &z1 );
+ *z3Ptr = z3;
+ *z2Ptr = z2;
+ *z1Ptr = z1;
+ *z0Ptr = z0;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns an approximation to the 64-bit integer quotient obtained by dividing
+`b' into the 128-bit value formed by concatenating `a0' and `a1'. The
+divisor `b' must be at least 2^63. If q is the exact quotient truncated
+toward zero, the approximation returned lies between q and q + 2 inclusive.
+If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
+unsigned integer is returned.
+-------------------------------------------------------------------------------
+*/
+static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
+{
+ bits64 b0, b1;
+ bits64 rem0, rem1, term0, term1;
+ bits64 z;
+ if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
+ b0 = b>>32;
+ z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
+ mul64To128( b, z, &term0, &term1 );
+ sub128( a0, a1, term0, term1, &rem0, &rem1 );
+ while ( ( (sbits64) rem0 ) < 0 ) {
+ z -= LIT64( 0x100000000 );
+ b1 = b<<32;
+ add128( rem0, rem1, b0, b1, &rem0, &rem1 );
+ }
+ rem0 = ( rem0<<32 ) | ( rem1>>32 );
+ z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns an approximation to the square root of the 32-bit significand given
+by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
+`aExp' (the least significant bit) is 1, the integer returned approximates
+2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
+is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
+case, the approximation returned lies strictly within +/-2 of the exact
+value.
+-------------------------------------------------------------------------------
+*/
+static bits32 estimateSqrt32( int16 aExp, bits32 a )
+{
+ static const bits16 sqrtOddAdjustments[] = {
+ 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
+ 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
+ };
+ static const bits16 sqrtEvenAdjustments[] = {
+ 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
+ 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
+ };
+ int8 index;
+ bits32 z;
+
+ index = ( a>>27 ) & 15;
+ if ( aExp & 1 ) {
+ z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
+ z = ( ( a / z )<<14 ) + ( z<<15 );
+ a >>= 1;
+ }
+ else {
+ z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
+ z = a / z + z;
+ z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
+ if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
+ }
+ return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the number of leading 0 bits before the most-significant 1 bit
+of `a'. If `a' is zero, 32 is returned.
+-------------------------------------------------------------------------------
+*/
+static int8 countLeadingZeros32( bits32 a )
+{
+ static const int8 countLeadingZerosHigh[] = {
+ 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
+ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+ int8 shiftCount;
+
+ shiftCount = 0;
+ if ( a < 0x10000 ) {
+ shiftCount += 16;
+ a <<= 16;
+ }
+ if ( a < 0x1000000 ) {
+ shiftCount += 8;
+ a <<= 8;
+ }
+ shiftCount += countLeadingZerosHigh[ a>>24 ];
+ return shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the number of leading 0 bits before the most-significant 1 bit
+of `a'. If `a' is zero, 64 is returned.
+-------------------------------------------------------------------------------
+*/
+static int8 countLeadingZeros64( bits64 a )
+{
+ int8 shiftCount;
+
+ shiftCount = 0;
+ if ( a < ( (bits64) 1 )<<32 ) {
+ shiftCount += 32;
+ }
+ else {
+ a >>= 32;
+ }
+ shiftCount += countLeadingZeros32( a );
+ return shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
+is equal to the 128-bit value formed by concatenating `b0' and `b1'.
+Otherwise, returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+ return ( a0 == b0 ) && ( a1 == b1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
+than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
+Otherwise, returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+ return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
+than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
+returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+ return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
+not equal to the 128-bit value formed by concatenating `b0' and `b1'.
+Otherwise, returns 0.
+-------------------------------------------------------------------------------
+*/
+INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
+{
+
+ return ( a0 != b0 ) || ( a1 != b1 );
+
+}
+
diff --git a/target-arm/nwfpe/softfloat-specialize b/target-arm/nwfpe/softfloat-specialize
new file mode 100644
index 000000000..a23a8a360
--- /dev/null
+++ b/target-arm/nwfpe/softfloat-specialize
@@ -0,0 +1,366 @@
+
+/*
+===============================================================================
+
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/softfloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these three paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+/*
+-------------------------------------------------------------------------------
+Underflow tininess-detection mode, statically initialized to default value.
+(The declaration in `softfloat.h' must match the `int8' type here.)
+-------------------------------------------------------------------------------
+*/
+int8 float_detect_tininess = float_tininess_after_rounding;
+
+/*
+-------------------------------------------------------------------------------
+Raises the exceptions specified by `flags'. Floating-point traps can be
+defined here if desired. It is currently not possible for such a trap to
+substitute a result value. If traps are not implemented, this routine
+should be simply `float_exception_flags |= flags;'.
+
+ScottB: November 4, 1998
+Moved this function out of softfloat-specialize into fpmodule.c.
+This effectively isolates all the changes required for integrating with the
+Linux kernel into fpmodule.c. Porting to NetBSD should only require modifying
+fpmodule.c to integrate with the NetBSD kernel (I hope!).
+-------------------------------------------------------------------------------
+*/
+void float_raise( int8 flags )
+{
+ float_exception_flags |= flags;
+}
+
+/*
+-------------------------------------------------------------------------------
+Internal canonical NaN format.
+-------------------------------------------------------------------------------
+*/
+typedef struct {
+ flag sign;
+ bits64 high, low;
+} commonNaNT;
+
+/*
+-------------------------------------------------------------------------------
+The pattern for a default generated single-precision NaN.
+-------------------------------------------------------------------------------
+*/
+#define float32_default_nan 0xFFFFFFFF
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is a NaN;
+otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag float32_is_nan( float32 a )
+{
+
+ return ( 0xFF000000 < (bits32) ( a<<1 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is a signaling
+NaN; otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag float32_is_signaling_nan( float32 a )
+{
+
+ return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point NaN
+`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
+exception is raised.
+-------------------------------------------------------------------------------
+*/
+static commonNaNT float32ToCommonNaN( float32 a )
+{
+ commonNaNT z;
+
+ if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+ z.sign = a>>31;
+ z.low = 0;
+ z.high = ( (bits64) a )<<41;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the canonical NaN `a' to the single-
+precision floating-point format.
+-------------------------------------------------------------------------------
+*/
+static float32 commonNaNToFloat32( commonNaNT a )
+{
+
+ return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes two single-precision floating-point values `a' and `b', one of which
+is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
+signaling NaN, the invalid exception is raised.
+-------------------------------------------------------------------------------
+*/
+static float32 propagateFloat32NaN( float32 a, float32 b )
+{
+ flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+ aIsNaN = float32_is_nan( a );
+ aIsSignalingNaN = float32_is_signaling_nan( a );
+ bIsNaN = float32_is_nan( b );
+ bIsSignalingNaN = float32_is_signaling_nan( b );
+ a |= 0x00400000;
+ b |= 0x00400000;
+ if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+ if ( aIsNaN ) {
+ return ( aIsSignalingNaN & bIsNaN ) ? b : a;
+ }
+ else {
+ return b;
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+The pattern for a default generated double-precision NaN.
+-------------------------------------------------------------------------------
+*/
+#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is a NaN;
+otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag float64_is_nan( float64 a )
+{
+
+ return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is a signaling
+NaN; otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag float64_is_signaling_nan( float64 a )
+{
+
+ return
+ ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
+ && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point NaN
+`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
+exception is raised.
+-------------------------------------------------------------------------------
+*/
+static commonNaNT float64ToCommonNaN( float64 a )
+{
+ commonNaNT z;
+
+ if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+ z.sign = a>>63;
+ z.low = 0;
+ z.high = a<<12;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the canonical NaN `a' to the double-
+precision floating-point format.
+-------------------------------------------------------------------------------
+*/
+static float64 commonNaNToFloat64( commonNaNT a )
+{
+
+ return
+ ( ( (bits64) a.sign )<<63 )
+ | LIT64( 0x7FF8000000000000 )
+ | ( a.high>>12 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes two double-precision floating-point values `a' and `b', one of which
+is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
+signaling NaN, the invalid exception is raised.
+-------------------------------------------------------------------------------
+*/
+static float64 propagateFloat64NaN( float64 a, float64 b )
+{
+ flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+ aIsNaN = float64_is_nan( a );
+ aIsSignalingNaN = float64_is_signaling_nan( a );
+ bIsNaN = float64_is_nan( b );
+ bIsSignalingNaN = float64_is_signaling_nan( b );
+ a |= LIT64( 0x0008000000000000 );
+ b |= LIT64( 0x0008000000000000 );
+ if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+ if ( aIsNaN ) {
+ return ( aIsSignalingNaN & bIsNaN ) ? b : a;
+ }
+ else {
+ return b;
+ }
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+The pattern for a default generated extended double-precision NaN. The
+`high' and `low' values hold the most- and least-significant bits,
+respectively.
+-------------------------------------------------------------------------------
+*/
+#define floatx80_default_nan_high 0xFFFF
+#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is a
+NaN; otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_is_nan( floatx80 a )
+{
+
+ return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is a
+signaling NaN; otherwise returns 0.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_is_signaling_nan( floatx80 a )
+{
+ //register int lr;
+ bits64 aLow;
+
+ //__asm__("mov %0, lr" : : "g" (lr));
+ //fp_printk("floatx80_is_signalling_nan() called from 0x%08x\n",lr);
+ aLow = a.low & ~ LIT64( 0x4000000000000000 );
+ return
+ ( ( a.high & 0x7FFF ) == 0x7FFF )
+ && (bits64) ( aLow<<1 )
+ && ( a.low == aLow );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
+invalid exception is raised.
+-------------------------------------------------------------------------------
+*/
+static commonNaNT floatx80ToCommonNaN( floatx80 a )
+{
+ commonNaNT z;
+
+ if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
+ z.sign = a.high>>15;
+ z.low = 0;
+ z.high = a.low<<1;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the canonical NaN `a' to the extended
+double-precision floating-point format.
+-------------------------------------------------------------------------------
+*/
+static floatx80 commonNaNToFloatx80( commonNaNT a )
+{
+ floatx80 z;
+
+ z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
+ z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes two extended double-precision floating-point values `a' and `b', one
+of which is a NaN, and returns the appropriate NaN result. If either `a' or
+`b' is a signaling NaN, the invalid exception is raised.
+-------------------------------------------------------------------------------
+*/
+static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
+{
+ flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
+
+ aIsNaN = floatx80_is_nan( a );
+ aIsSignalingNaN = floatx80_is_signaling_nan( a );
+ bIsNaN = floatx80_is_nan( b );
+ bIsSignalingNaN = floatx80_is_signaling_nan( b );
+ a.low |= LIT64( 0xC000000000000000 );
+ b.low |= LIT64( 0xC000000000000000 );
+ if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
+ if ( aIsNaN ) {
+ return ( aIsSignalingNaN & bIsNaN ) ? b : a;
+ }
+ else {
+ return b;
+ }
+
+}
+
+#endif
diff --git a/target-arm/nwfpe/softfloat.c b/target-arm/nwfpe/softfloat.c
new file mode 100644
index 000000000..8ffb9a98d
--- /dev/null
+++ b/target-arm/nwfpe/softfloat.c
@@ -0,0 +1,3427 @@
+/*
+===============================================================================
+
+This C source file is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/softfloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these three paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+#include "fpa11.h"
+#include "milieu.h"
+#include "softfloat.h"
+
+/*
+-------------------------------------------------------------------------------
+Floating-point rounding mode, extended double-precision rounding precision,
+and exception flags.
+-------------------------------------------------------------------------------
+*/
+int8 float_rounding_mode = float_round_nearest_even;
+int8 floatx80_rounding_precision = 80;
+int8 float_exception_flags;
+
+/*
+-------------------------------------------------------------------------------
+Primitive arithmetic functions, including multi-word arithmetic, and
+division and square root approximations. (Can be specialized to target if
+desired.)
+-------------------------------------------------------------------------------
+*/
+#include "softfloat-macros"
+
+/*
+-------------------------------------------------------------------------------
+Functions and definitions to determine: (1) whether tininess for underflow
+is detected before or after rounding by default, (2) what (if anything)
+happens when exceptions are raised, (3) how signaling NaNs are distinguished
+from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
+are propagated from function inputs to output. These details are target-
+specific.
+-------------------------------------------------------------------------------
+*/
+#include "softfloat-specialize"
+
+/*
+-------------------------------------------------------------------------------
+Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
+and 7, and returns the properly rounded 32-bit integer corresponding to the
+input. If `zSign' is nonzero, the input is negated before being converted
+to an integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point
+input is simply rounded to an integer, with the inexact exception raised if
+the input cannot be represented exactly as an integer. If the fixed-point
+input is too large, however, the invalid exception is raised and the largest
+positive or negative integer is returned.
+-------------------------------------------------------------------------------
+*/
+static int32 roundAndPackInt32( flag zSign, bits64 absZ )
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int8 roundIncrement, roundBits;
+ int32 z;
+
+ roundingMode = float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ roundIncrement = 0x40;
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = 0x7F;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = absZ & 0x7F;
+ absZ = ( absZ + roundIncrement )>>7;
+ absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+ z = absZ;
+ if ( zSign ) z = - z;
+ if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
+ float_exception_flags |= float_flag_invalid;
+ return zSign ? 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( roundBits ) float_exception_flags |= float_flag_inexact;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the fraction bits of the single-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits32 extractFloat32Frac( float32 a )
+{
+
+ return a & 0x007FFFFF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the exponent bits of the single-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE int16 extractFloat32Exp( float32 a )
+{
+
+ return ( a>>23 ) & 0xFF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the sign bit of the single-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE flag extractFloat32Sign( float32 a )
+{
+
+ return a>>31;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Normalizes the subnormal single-precision floating-point value represented
+by the denormalized significand `aSig'. The normalized exponent and
+significand are stored at the locations pointed to by `zExpPtr' and
+`zSigPtr', respectively.
+-------------------------------------------------------------------------------
+*/
+static void
+ normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros32( aSig ) - 8;
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+single-precision floating-point value, returning the result. After being
+shifted into the proper positions, the three fields are simply added
+together to form the result. This means that any integer portion of `zSig'
+will be added into the exponent. Since a properly normalized significand
+will have an integer portion equal to 1, the `zExp' input should be 1 less
+than the desired result exponent whenever `zSig' is a complete, normalized
+significand.
+-------------------------------------------------------------------------------
+*/
+INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+ return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper single-precision floating-
+point value corresponding to the abstract input. Ordinarily, the abstract
+value is simply rounded and packed into the single-precision format, with
+the inexact exception raised if the abstract input cannot be represented
+exactly. If the abstract value is too large, however, the overflow and
+inexact exceptions are raised and an infinity or maximal finite value is
+returned. If the abstract value is too small, the input value is rounded to
+a subnormal number, and the underflow and inexact exceptions are raised if
+the abstract input cannot be represented exactly as a subnormal single-
+precision floating-point number.
+ The input significand `zSig' has its binary point between bits 30
+and 29, which is 7 bits to the left of the usual location. This shifted
+significand must be normalized or smaller. If `zSig' is not normalized,
+`zExp' must be 0; in that case, the result returned is a subnormal number,
+and it must not require rounding. In the usual case that `zSig' is
+normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+The handling of underflow and overflow follows the IEC/IEEE Standard for
+Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int8 roundIncrement, roundBits;
+ flag isTiny;
+
+ roundingMode = float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ roundIncrement = 0x40;
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = 0x7F;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = zSig & 0x7F;
+ if ( 0xFD <= (bits16) zExp ) {
+ if ( ( 0xFD < zExp )
+ || ( ( zExp == 0xFD )
+ && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
+ ) {
+ float_raise( float_flag_overflow | float_flag_inexact );
+ return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
+ }
+ if ( zExp < 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < -1 )
+ || ( zSig + roundIncrement < 0x80000000 );
+ shift32RightJamming( zSig, - zExp, &zSig );
+ zExp = 0;
+ roundBits = zSig & 0x7F;
+ if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+ }
+ }
+ if ( roundBits ) float_exception_flags |= float_flag_inexact;
+ zSig = ( zSig + roundIncrement )>>7;
+ zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
+ if ( zSig == 0 ) zExp = 0;
+ return packFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper single-precision floating-
+point value corresponding to the abstract input. This routine is just like
+`roundAndPackFloat32' except that `zSig' does not have to be normalized in
+any way. In all cases, `zExp' must be 1 less than the ``true'' floating-
+point exponent.
+-------------------------------------------------------------------------------
+*/
+static float32
+ normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros32( zSig ) - 1;
+ return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the fraction bits of the double-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits64 extractFloat64Frac( float64 a )
+{
+
+ return a & LIT64( 0x000FFFFFFFFFFFFF );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the exponent bits of the double-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE int16 extractFloat64Exp( float64 a )
+{
+
+ return ( a>>52 ) & 0x7FF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the sign bit of the double-precision floating-point value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE flag extractFloat64Sign( float64 a )
+{
+
+ return a>>63;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Normalizes the subnormal double-precision floating-point value represented
+by the denormalized significand `aSig'. The normalized exponent and
+significand are stored at the locations pointed to by `zExpPtr' and
+`zSigPtr', respectively.
+-------------------------------------------------------------------------------
+*/
+static void
+ normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( aSig ) - 11;
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
+double-precision floating-point value, returning the result. After being
+shifted into the proper positions, the three fields are simply added
+together to form the result. This means that any integer portion of `zSig'
+will be added into the exponent. Since a properly normalized significand
+will have an integer portion equal to 1, the `zExp' input should be 1 less
+than the desired result exponent whenever `zSig' is a complete, normalized
+significand.
+-------------------------------------------------------------------------------
+*/
+INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
+{
+
+ return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper double-precision floating-
+point value corresponding to the abstract input. Ordinarily, the abstract
+value is simply rounded and packed into the double-precision format, with
+the inexact exception raised if the abstract input cannot be represented
+exactly. If the abstract value is too large, however, the overflow and
+inexact exceptions are raised and an infinity or maximal finite value is
+returned. If the abstract value is too small, the input value is rounded to
+a subnormal number, and the underflow and inexact exceptions are raised if
+the abstract input cannot be represented exactly as a subnormal double-
+precision floating-point number.
+ The input significand `zSig' has its binary point between bits 62
+and 61, which is 10 bits to the left of the usual location. This shifted
+significand must be normalized or smaller. If `zSig' is not normalized,
+`zExp' must be 0; in that case, the result returned is a subnormal number,
+and it must not require rounding. In the usual case that `zSig' is
+normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
+The handling of underflow and overflow follows the IEC/IEEE Standard for
+Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
+{
+ int8 roundingMode;
+ flag roundNearestEven;
+ int16 roundIncrement, roundBits;
+ flag isTiny;
+
+ roundingMode = float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ roundIncrement = 0x200;
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = 0x3FF;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = zSig & 0x3FF;
+ if ( 0x7FD <= (bits16) zExp ) {
+ if ( ( 0x7FD < zExp )
+ || ( ( zExp == 0x7FD )
+ && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
+ ) {
+ //register int lr = __builtin_return_address(0);
+ //printk("roundAndPackFloat64 called from 0x%08x\n",lr);
+ float_raise( float_flag_overflow | float_flag_inexact );
+ return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
+ }
+ if ( zExp < 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < -1 )
+ || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
+ shift64RightJamming( zSig, - zExp, &zSig );
+ zExp = 0;
+ roundBits = zSig & 0x3FF;
+ if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+ }
+ }
+ if ( roundBits ) float_exception_flags |= float_flag_inexact;
+ zSig = ( zSig + roundIncrement )>>10;
+ zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
+ if ( zSig == 0 ) zExp = 0;
+ return packFloat64( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and significand `zSig', and returns the proper double-precision floating-
+point value corresponding to the abstract input. This routine is just like
+`roundAndPackFloat64' except that `zSig' does not have to be normalized in
+any way. In all cases, `zExp' must be 1 less than the ``true'' floating-
+point exponent.
+-------------------------------------------------------------------------------
+*/
+static float64
+ normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( zSig ) - 1;
+ return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the fraction bits of the extended double-precision floating-point
+value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE bits64 extractFloatx80Frac( floatx80 a )
+{
+
+ return a.low;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the exponent bits of the extended double-precision floating-point
+value `a'.
+-------------------------------------------------------------------------------
+*/
+INLINE int32 extractFloatx80Exp( floatx80 a )
+{
+
+ return a.high & 0x7FFF;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the sign bit of the extended double-precision floating-point value
+`a'.
+-------------------------------------------------------------------------------
+*/
+INLINE flag extractFloatx80Sign( floatx80 a )
+{
+
+ return a.high>>15;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Normalizes the subnormal extended double-precision floating-point value
+represented by the denormalized significand `aSig'. The normalized exponent
+and significand are stored at the locations pointed to by `zExpPtr' and
+`zSigPtr', respectively.
+-------------------------------------------------------------------------------
+*/
+static void
+ normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( aSig );
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
+extended double-precision floating-point value, returning the result.
+-------------------------------------------------------------------------------
+*/
+INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
+{
+ floatx80 z;
+
+ z.low = zSig;
+ z.high = ( ( (bits16) zSign )<<15 ) + zExp;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+and extended significand formed by the concatenation of `zSig0' and `zSig1',
+and returns the proper extended double-precision floating-point value
+corresponding to the abstract input. Ordinarily, the abstract value is
+rounded and packed into the extended double-precision format, with the
+inexact exception raised if the abstract input cannot be represented
+exactly. If the abstract value is too large, however, the overflow and
+inexact exceptions are raised and an infinity or maximal finite value is
+returned. If the abstract value is too small, the input value is rounded to
+a subnormal number, and the underflow and inexact exceptions are raised if
+the abstract input cannot be represented exactly as a subnormal extended
+double-precision floating-point number.
+ If `roundingPrecision' is 32 or 64, the result is rounded to the same
+number of bits as single or double precision, respectively. Otherwise, the
+result is rounded to the full precision of the extended double-precision
+format.
+ The input significand must be normalized or smaller. If the input
+significand is not normalized, `zExp' must be 0; in that case, the result
+returned is a subnormal number, and it must not require rounding. The
+handling of underflow and overflow follows the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static floatx80
+ roundAndPackFloatx80(
+ int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ )
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment, isTiny;
+ int64 roundIncrement, roundMask, roundBits;
+
+ roundingMode = float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ if ( roundingPrecision == 80 ) goto precision80;
+ if ( roundingPrecision == 64 ) {
+ roundIncrement = LIT64( 0x0000000000000400 );
+ roundMask = LIT64( 0x00000000000007FF );
+ }
+ else if ( roundingPrecision == 32 ) {
+ roundIncrement = LIT64( 0x0000008000000000 );
+ roundMask = LIT64( 0x000000FFFFFFFFFF );
+ }
+ else {
+ goto precision80;
+ }
+ zSig0 |= ( zSig1 != 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = roundMask;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = zSig0 & roundMask;
+ if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+ if ( ( 0x7FFE < zExp )
+ || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
+ ) {
+ goto overflow;
+ }
+ if ( zExp <= 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < 0 )
+ || ( zSig0 <= zSig0 + roundIncrement );
+ shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
+ zExp = 0;
+ roundBits = zSig0 & roundMask;
+ if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+ if ( roundBits ) float_exception_flags |= float_flag_inexact;
+ zSig0 += roundIncrement;
+ if ( (sbits64) zSig0 < 0 ) zExp = 1;
+ roundIncrement = roundMask + 1;
+ if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+ roundMask |= roundIncrement;
+ }
+ zSig0 &= ~ roundMask;
+ return packFloatx80( zSign, zExp, zSig0 );
+ }
+ }
+ if ( roundBits ) float_exception_flags |= float_flag_inexact;
+ zSig0 += roundIncrement;
+ if ( zSig0 < roundIncrement ) {
+ ++zExp;
+ zSig0 = LIT64( 0x8000000000000000 );
+ }
+ roundIncrement = roundMask + 1;
+ if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+ roundMask |= roundIncrement;
+ }
+ zSig0 &= ~ roundMask;
+ if ( zSig0 == 0 ) zExp = 0;
+ return packFloatx80( zSign, zExp, zSig0 );
+ precision80:
+ increment = ( (sbits64) zSig1 < 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ increment = 0;
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig1;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig1;
+ }
+ }
+ }
+ if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+ if ( ( 0x7FFE < zExp )
+ || ( ( zExp == 0x7FFE )
+ && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
+ && increment
+ )
+ ) {
+ roundMask = 0;
+ overflow:
+ float_raise( float_flag_overflow | float_flag_inexact );
+ if ( ( roundingMode == float_round_to_zero )
+ || ( zSign && ( roundingMode == float_round_up ) )
+ || ( ! zSign && ( roundingMode == float_round_down ) )
+ ) {
+ return packFloatx80( zSign, 0x7FFE, ~ roundMask );
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( zExp <= 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < 0 )
+ || ! increment
+ || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
+ shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
+ zExp = 0;
+ if ( isTiny && zSig1 ) float_raise( float_flag_underflow );
+ if ( zSig1 ) float_exception_flags |= float_flag_inexact;
+ if ( roundNearestEven ) {
+ increment = ( (sbits64) zSig1 < 0 );
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig1;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig1;
+ }
+ }
+ if ( increment ) {
+ ++zSig0;
+ zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
+ if ( (sbits64) zSig0 < 0 ) zExp = 1;
+ }
+ return packFloatx80( zSign, zExp, zSig0 );
+ }
+ }
+ if ( zSig1 ) float_exception_flags |= float_flag_inexact;
+ if ( increment ) {
+ ++zSig0;
+ if ( zSig0 == 0 ) {
+ ++zExp;
+ zSig0 = LIT64( 0x8000000000000000 );
+ }
+ else {
+ zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven );
+ }
+ }
+ else {
+ if ( zSig0 == 0 ) zExp = 0;
+ }
+
+ return packFloatx80( zSign, zExp, zSig0 );
+}
+
+/*
+-------------------------------------------------------------------------------
+Takes an abstract floating-point value having sign `zSign', exponent
+`zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
+and returns the proper extended double-precision floating-point value
+corresponding to the abstract input. This routine is just like
+`roundAndPackFloatx80' except that the input significand does not have to be
+normalized.
+-------------------------------------------------------------------------------
+*/
+static floatx80
+ normalizeRoundAndPackFloatx80(
+ int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ )
+{
+ int8 shiftCount;
+
+ if ( zSig0 == 0 ) {
+ zSig0 = zSig1;
+ zSig1 = 0;
+ zExp -= 64;
+ }
+ shiftCount = countLeadingZeros64( zSig0 );
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ zExp -= shiftCount;
+ return
+ roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 32-bit two's complement integer `a' to
+the single-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 int32_to_float32( int32 a )
+{
+ flag zSign;
+
+ if ( a == 0 ) return 0;
+ if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
+ zSign = ( a < 0 );
+ return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 32-bit two's complement integer `a' to
+the double-precision floating-point format. The conversion is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 int32_to_float64( int32 a )
+{
+ flag aSign;
+ uint32 absA;
+ int8 shiftCount;
+ bits64 zSig;
+
+ if ( a == 0 ) return 0;
+ aSign = ( a < 0 );
+ absA = aSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 21;
+ zSig = absA;
+ return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the 32-bit two's complement integer `a'
+to the extended double-precision floating-point format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 int32_to_floatx80( int32 a )
+{
+ flag zSign;
+ uint32 absA;
+ int8 shiftCount;
+ bits64 zSig;
+
+ if ( a == 0 ) return packFloatx80( 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 32;
+ zSig = absA;
+ return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
+
+}
+
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 float32_to_int32( float32 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig;
+ bits64 zSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+ if ( aExp ) aSig |= 0x00800000;
+ shiftCount = 0xAF - aExp;
+ zSig = aSig;
+ zSig <<= 32;
+ if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig );
+ return roundAndPackInt32( aSign, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic, except that the conversion is always rounded toward zero. If
+`a' is a NaN, the largest positive integer is returned. Otherwise, if the
+conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int32 float32_to_int32_round_to_zero( float32 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits32 aSig;
+ int32 z;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ shiftCount = aExp - 0x9E;
+ if ( 0 <= shiftCount ) {
+ if ( a == 0xCF000000 ) return 0x80000000;
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
+ return 0x80000000;
+ }
+ else if ( aExp <= 0x7E ) {
+ if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
+ return 0;
+ }
+ aSig = ( aSig | 0x00800000 )<<8;
+ z = aSig>>( - shiftCount );
+ if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ return aSign ? - z : z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the double-precision floating-point format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float32_to_float64( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 aSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the single-precision floating-point value
+`a' to the extended double-precision floating-point format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 float32_to_floatx80( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 aSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ aSig |= 0x00800000;
+ return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
+
+}
+
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Rounds the single-precision floating-point value `a' to an integer, and
+returns the result as a single-precision floating-point value. The
+operation is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_round_to_int( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ float32 z;
+
+ aExp = extractFloat32Exp( a );
+ if ( 0x96 <= aExp ) {
+ if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
+ return propagateFloat32NaN( a, a );
+ }
+ return a;
+ }
+ if ( aExp <= 0x7E ) {
+ if ( (bits32) ( a<<1 ) == 0 ) return a;
+ float_exception_flags |= float_flag_inexact;
+ aSign = extractFloat32Sign( a );
+ switch ( float_rounding_mode ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
+ return packFloat32( aSign, 0x7F, 0 );
+ }
+ break;
+ case float_round_down:
+ return aSign ? 0xBF800000 : 0;
+ case float_round_up:
+ return aSign ? 0x80000000 : 0x3F800000;
+ }
+ return packFloat32( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x96 - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ z += lastBitMask>>1;
+ if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+ z += roundBitsMask;
+ }
+ }
+ z &= ~ roundBitsMask;
+ if ( z != a ) float_exception_flags |= float_flag_inexact;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the absolute values of the single-precision
+floating-point values `a' and `b'. If `zSign' is true, the sum is negated
+before being returned. `zSign' is ignored if the result is a NaN. The
+addition is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 6;
+ bSig <<= 6;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= 0x20000000;
+ }
+ shift32RightJamming( bSig, expDiff, &bSig );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= 0x20000000;
+ }
+ shift32RightJamming( aSig, - expDiff, &aSig );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0xFF ) {
+ if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
+ zSig = 0x40000000 + aSig + bSig;
+ zExp = aExp;
+ goto roundAndPack;
+ }
+ aSig |= 0x20000000;
+ zSig = ( aSig + bSig )<<1;
+ --zExp;
+ if ( (sbits32) zSig < 0 ) {
+ zSig = aSig + bSig;
+ ++zExp;
+ }
+ roundAndPack:
+ return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the absolute values of the single-
+precision floating-point values `a' and `b'. If `zSign' is true, the
+difference is negated before being returned. `zSign' is ignored if the
+result is a NaN. The subtraction is performed according to the IEC/IEEE
+Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 7;
+ bSig <<= 7;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0xFF ) {
+ if ( aSig | bSig ) return propagateFloat32NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return packFloat32( zSign ^ 1, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= 0x40000000;
+ }
+ shift32RightJamming( aSig, - expDiff, &aSig );
+ bSig |= 0x40000000;
+ bBigger:
+ zSig = bSig - aSig;
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= 0x40000000;
+ }
+ shift32RightJamming( bSig, expDiff, &bSig );
+ aSig |= 0x40000000;
+ aBigger:
+ zSig = aSig - bSig;
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the single-precision floating-point values `a'
+and `b'. The operation is performed according to the IEC/IEEE Standard for
+Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_add( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat32Sigs( a, b, aSign );
+ }
+ else {
+ return subFloat32Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the single-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_sub( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat32Sigs( a, b, aSign );
+ }
+ else {
+ return addFloat32Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of multiplying the single-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_mul( float32 a, float32 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig;
+ bits64 zSig64;
+ bits32 zSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0xFF ) {
+ if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+ return propagateFloat32NaN( a, b );
+ }
+ if ( ( bExp | bSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x7F;
+ aSig = ( aSig | 0x00800000 )<<7;
+ bSig = ( bSig | 0x00800000 )<<8;
+ shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
+ zSig = zSig64;
+ if ( 0 <= (sbits32) ( zSig<<1 ) ) {
+ zSig <<= 1;
+ --zExp;
+ }
+ return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of dividing the single-precision floating-point value `a'
+by the corresponding value `b'. The operation is performed according to the
+IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_div( float32 a, float32 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits32 aSig, bSig, zSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, b );
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return packFloat32( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloat32( zSign, 0xFF, 0 );
+ }
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x7D;
+ aSig = ( aSig | 0x00800000 )<<7;
+ bSig = ( bSig | 0x00800000 )<<8;
+ if ( bSig <= ( aSig + aSig ) ) {
+ aSig >>= 1;
+ ++zExp;
+ }
+ zSig = ( ( (bits64) aSig )<<32 ) / bSig;
+ if ( ( zSig & 0x3F ) == 0 ) {
+ zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 );
+ }
+ return roundAndPackFloat32( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the remainder of the single-precision floating-point value `a'
+with respect to the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_rem( float32 a, float32 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, expDiff;
+ bits32 aSig, bSig;
+ bits32 q;
+ bits64 aSig64, bSig64, q64;
+ bits32 alternateASig;
+ sbits32 sigMean;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ bSig = extractFloat32Frac( b );
+ bExp = extractFloat32Exp( b );
+ bSign = extractFloat32Sign( b );
+ if ( aExp == 0xFF ) {
+ if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
+ return propagateFloat32NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( bExp == 0xFF ) {
+ if ( bSig ) return propagateFloat32NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ normalizeFloat32Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return a;
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ expDiff = aExp - bExp;
+ aSig |= 0x00800000;
+ bSig |= 0x00800000;
+ if ( expDiff < 32 ) {
+ aSig <<= 8;
+ bSig <<= 8;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ aSig >>= 1;
+ }
+ q = ( bSig <= aSig );
+ if ( q ) aSig -= bSig;
+ if ( 0 < expDiff ) {
+ q = ( ( (bits64) aSig )<<32 ) / bSig;
+ q >>= 32 - expDiff;
+ bSig >>= 2;
+ aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ else {
+ aSig >>= 2;
+ bSig >>= 2;
+ }
+ }
+ else {
+ if ( bSig <= aSig ) aSig -= bSig;
+ aSig64 = ( (bits64) aSig )<<40;
+ bSig64 = ( (bits64) bSig )<<40;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q64 = estimateDiv128To64( aSig64, 0, bSig64 );
+ q64 = ( 2 < q64 ) ? q64 - 2 : 0;
+ aSig64 = - ( ( bSig * q64 )<<38 );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ q64 = estimateDiv128To64( aSig64, 0, bSig64 );
+ q64 = ( 2 < q64 ) ? q64 - 2 : 0;
+ q = q64>>( 64 - expDiff );
+ bSig <<= 6;
+ aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ do {
+ alternateASig = aSig;
+ ++q;
+ aSig -= bSig;
+ } while ( 0 <= (sbits32) aSig );
+ sigMean = aSig + alternateASig;
+ if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+ aSig = alternateASig;
+ }
+ zSign = ( (sbits32) aSig < 0 );
+ if ( zSign ) aSig = - aSig;
+ return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the square root of the single-precision floating-point value `a'.
+The operation is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float32_sqrt( float32 a )
+{
+ flag aSign;
+ int16 aExp, zExp;
+ bits32 aSig, zSig;
+ bits64 rem, term;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return propagateFloat32NaN( a, 0 );
+ if ( ! aSign ) return a;
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig ) == 0 ) return a;
+ float_raise( float_flag_invalid );
+ return float32_default_nan;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return 0;
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
+ aSig = ( aSig | 0x00800000 )<<8;
+ zSig = estimateSqrt32( aExp, aSig ) + 2;
+ if ( ( zSig & 0x7F ) <= 5 ) {
+ if ( zSig < 2 ) {
+ zSig = 0xFFFFFFFF;
+ }
+ else {
+ aSig >>= aExp & 1;
+ term = ( (bits64) zSig ) * zSig;
+ rem = ( ( (bits64) aSig )<<32 ) - term;
+ while ( (sbits64) rem < 0 ) {
+ --zSig;
+ rem += ( ( (bits64) zSig )<<1 ) | 1;
+ }
+ zSig |= ( rem != 0 );
+ }
+ }
+ shift32RightJamming( zSig, 1, &zSig );
+ return roundAndPackFloat32( 0, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is equal to the
+corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_eq( float32 a, float32 b )
+{
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than or
+equal to the corresponding value `b', and 0 otherwise. The comparison is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_le( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_lt( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is equal to the
+corresponding value `b', and 0 otherwise. The invalid exception is raised
+if either operand is a NaN. Otherwise, the comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_eq_signaling( float32 a, float32 b )
+{
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than or
+equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+cause an exception. Otherwise, the comparison is performed according to the
+IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_le_quiet( float32 a, float32 b )
+{
+ flag aSign, bSign;
+ //int16 aExp, bExp;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the single-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+exception. Otherwise, the comparison is performed according to the IEC/IEEE
+Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float32_lt_quiet( float32 a, float32 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
+ || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
+ ) {
+ if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat32Sign( a );
+ bSign = extractFloat32Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 float64_to_int32( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+ if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x42C - aExp;
+ if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
+ return roundAndPackInt32( aSign, aSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic, except that the conversion is always rounded toward zero. If
+`a' is a NaN, the largest positive integer is returned. Otherwise, if the
+conversion overflows, the largest integer with the same sign as `a' is
+returned.
+-------------------------------------------------------------------------------
+*/
+int32 float64_to_int32_round_to_zero( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig, savedASig;
+ int32 z;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ shiftCount = 0x433 - aExp;
+ if ( shiftCount < 21 ) {
+ if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+ goto invalid;
+ }
+ else if ( 52 < shiftCount ) {
+ if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
+ return 0;
+ }
+ aSig |= LIT64( 0x0010000000000000 );
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_exception_flags |= float_flag_invalid;
+ return aSign ? 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 32-bit two's complement unsigned integer format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic---which means in particular that the conversion is rounded
+according to the current rounding mode. If `a' is a NaN, the largest
+positive integer is returned. Otherwise, if the conversion overflows, the
+largest positive integer is returned.
+-------------------------------------------------------------------------------
+*/
+int32 float64_to_uint32( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = 0; //extractFloat64Sign( a );
+ //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+ if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
+ shiftCount = 0x42C - aExp;
+ if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
+ return roundAndPackInt32( aSign, aSig );
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the 32-bit two's complement integer format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic, except that the conversion is always rounded toward zero. If
+`a' is a NaN, the largest positive integer is returned. Otherwise, if the
+conversion overflows, the largest positive integer is returned.
+-------------------------------------------------------------------------------
+*/
+int32 float64_to_uint32_round_to_zero( float64 a )
+{
+ flag aSign;
+ int16 aExp, shiftCount;
+ bits64 aSig, savedASig;
+ int32 z;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ shiftCount = 0x433 - aExp;
+ if ( shiftCount < 21 ) {
+ if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
+ goto invalid;
+ }
+ else if ( 52 < shiftCount ) {
+ if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
+ return 0;
+ }
+ aSig |= LIT64( 0x0010000000000000 );
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_exception_flags |= float_flag_invalid;
+ return aSign ? 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the single-precision floating-point format. The conversion is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 float64_to_float32( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 aSig;
+ bits32 zSig;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ shift64RightJamming( aSig, 22, &aSig );
+ zSig = aSig;
+ if ( aExp || zSig ) {
+ zSig |= 0x40000000;
+ aExp -= 0x381;
+ }
+ return roundAndPackFloat32( aSign, aExp, zSig );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the double-precision floating-point value
+`a' to the extended double-precision floating-point format. The conversion
+is performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 float64_to_floatx80( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 aSig;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ return
+ packFloatx80(
+ aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
+
+}
+
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Rounds the double-precision floating-point value `a' to an integer, and
+returns the result as a double-precision floating-point value. The
+operation is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_round_to_int( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ float64 z;
+
+ aExp = extractFloat64Exp( a );
+ if ( 0x433 <= aExp ) {
+ if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
+ return propagateFloat64NaN( a, a );
+ }
+ return a;
+ }
+ if ( aExp <= 0x3FE ) {
+ if ( (bits64) ( a<<1 ) == 0 ) return a;
+ float_exception_flags |= float_flag_inexact;
+ aSign = extractFloat64Sign( a );
+ switch ( float_rounding_mode ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
+ return packFloat64( aSign, 0x3FF, 0 );
+ }
+ break;
+ case float_round_down:
+ return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
+ case float_round_up:
+ return
+ aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
+ }
+ return packFloat64( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x433 - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ z += lastBitMask>>1;
+ if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+ z += roundBitsMask;
+ }
+ }
+ z &= ~ roundBitsMask;
+ if ( z != a ) float_exception_flags |= float_flag_inexact;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the absolute values of the double-precision
+floating-point values `a' and `b'. If `zSign' is true, the sum is negated
+before being returned. `zSign' is ignored if the result is a NaN. The
+addition is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 9;
+ bSig <<= 9;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= LIT64( 0x2000000000000000 );
+ }
+ shift64RightJamming( bSig, expDiff, &bSig );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= LIT64( 0x2000000000000000 );
+ }
+ shift64RightJamming( aSig, - expDiff, &aSig );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FF ) {
+ if ( aSig | bSig ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
+ zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
+ zExp = aExp;
+ goto roundAndPack;
+ }
+ aSig |= LIT64( 0x2000000000000000 );
+ zSig = ( aSig + bSig )<<1;
+ --zExp;
+ if ( (sbits64) zSig < 0 ) {
+ zSig = aSig + bSig;
+ ++zExp;
+ }
+ roundAndPack:
+ return roundAndPackFloat64( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the absolute values of the double-
+precision floating-point values `a' and `b'. If `zSign' is true, the
+difference is negated before being returned. `zSign' is ignored if the
+result is a NaN. The subtraction is performed according to the IEC/IEEE
+Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
+{
+ int16 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig;
+ int16 expDiff;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ expDiff = aExp - bExp;
+ aSig <<= 10;
+ bSig <<= 10;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FF ) {
+ if ( aSig | bSig ) return propagateFloat64NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloat64( float_rounding_mode == float_round_down, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ return packFloat64( zSign ^ 1, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig |= LIT64( 0x4000000000000000 );
+ }
+ shift64RightJamming( aSig, - expDiff, &aSig );
+ bSig |= LIT64( 0x4000000000000000 );
+ bBigger:
+ zSig = bSig - aSig;
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig |= LIT64( 0x4000000000000000 );
+ }
+ shift64RightJamming( bSig, expDiff, &bSig );
+ aSig |= LIT64( 0x4000000000000000 );
+ aBigger:
+ zSig = aSig - bSig;
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat64( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the double-precision floating-point values `a'
+and `b'. The operation is performed according to the IEC/IEEE Standard for
+Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_add( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat64Sigs( a, b, aSign );
+ }
+ else {
+ return subFloat64Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the double-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_sub( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat64Sigs( a, b, aSign );
+ }
+ else {
+ return addFloat64Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of multiplying the double-precision floating-point values
+`a' and `b'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_mul( float64 a, float64 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FF ) {
+ if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
+ return propagateFloat64NaN( a, b );
+ }
+ if ( ( bExp | bSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
+ normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x3FF;
+ aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
+ bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+ mul64To128( aSig, bSig, &zSig0, &zSig1 );
+ zSig0 |= ( zSig1 != 0 );
+ if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
+ zSig0 <<= 1;
+ --zExp;
+ }
+ return roundAndPackFloat64( zSign, zExp, zSig0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of dividing the double-precision floating-point value `a'
+by the corresponding value `b'. The operation is performed according to
+the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_div( float64 a, float64 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig;
+ bits64 rem0, rem1;
+ bits64 term0, term1;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return propagateFloat64NaN( a, b );
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ return packFloat64( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloat64( zSign, 0x7FF, 0 );
+ }
+ normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x3FD;
+ aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
+ bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+ if ( bSig <= ( aSig + aSig ) ) {
+ aSig >>= 1;
+ ++zExp;
+ }
+ zSig = estimateDiv128To64( aSig, 0, bSig );
+ if ( ( zSig & 0x1FF ) <= 2 ) {
+ mul64To128( bSig, zSig, &term0, &term1 );
+ sub128( aSig, 0, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig;
+ add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
+ }
+ zSig |= ( rem1 != 0 );
+ }
+ return roundAndPackFloat64( zSign, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the remainder of the double-precision floating-point value `a'
+with respect to the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_rem( float64 a, float64 b )
+{
+ flag aSign, bSign, zSign;
+ int16 aExp, bExp, expDiff;
+ bits64 aSig, bSig;
+ bits64 q, alternateASig;
+ sbits64 sigMean;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ bSig = extractFloat64Frac( b );
+ bExp = extractFloat64Exp( b );
+ bSign = extractFloat64Sign( b );
+ if ( aExp == 0x7FF ) {
+ if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
+ return propagateFloat64NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( bExp == 0x7FF ) {
+ if ( bSig ) return propagateFloat64NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ normalizeFloat64Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return a;
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ expDiff = aExp - bExp;
+ aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
+ bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ aSig >>= 1;
+ }
+ q = ( bSig <= aSig );
+ if ( q ) aSig -= bSig;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig, 0, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ aSig = - ( ( bSig>>2 ) * q );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ if ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig, 0, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ q >>= 64 - expDiff;
+ bSig >>= 2;
+ aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
+ }
+ else {
+ aSig >>= 2;
+ bSig >>= 2;
+ }
+ do {
+ alternateASig = aSig;
+ ++q;
+ aSig -= bSig;
+ } while ( 0 <= (sbits64) aSig );
+ sigMean = aSig + alternateASig;
+ if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
+ aSig = alternateASig;
+ }
+ zSign = ( (sbits64) aSig < 0 );
+ if ( zSign ) aSig = - aSig;
+ return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the square root of the double-precision floating-point value `a'.
+The operation is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 float64_sqrt( float64 a )
+{
+ flag aSign;
+ int16 aExp, zExp;
+ bits64 aSig, zSig;
+ bits64 rem0, rem1, term0, term1; //, shiftedRem;
+ //float64 z;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return propagateFloat64NaN( a, a );
+ if ( ! aSign ) return a;
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig ) == 0 ) return a;
+ float_raise( float_flag_invalid );
+ return float64_default_nan;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return 0;
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
+ aSig |= LIT64( 0x0010000000000000 );
+ zSig = estimateSqrt32( aExp, aSig>>21 );
+ zSig <<= 31;
+ aSig <<= 9 - ( aExp & 1 );
+ zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2;
+ if ( ( zSig & 0x3FF ) <= 5 ) {
+ if ( zSig < 2 ) {
+ zSig = LIT64( 0xFFFFFFFFFFFFFFFF );
+ }
+ else {
+ aSig <<= 2;
+ mul64To128( zSig, zSig, &term0, &term1 );
+ sub128( aSig, 0, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig;
+ shortShift128Left( 0, zSig, 1, &term0, &term1 );
+ term1 |= 1;
+ add128( rem0, rem1, term0, term1, &rem0, &rem1 );
+ }
+ zSig |= ( ( rem0 | rem1 ) != 0 );
+ }
+ }
+ shift64RightJamming( zSig, 1, &zSig );
+ return roundAndPackFloat64( 0, zExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is equal to the
+corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_eq( float64 a, float64 b )
+{
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than or
+equal to the corresponding value `b', and 0 otherwise. The comparison is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_le( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. The comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_lt( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is equal to the
+corresponding value `b', and 0 otherwise. The invalid exception is raised
+if either operand is a NaN. Otherwise, the comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_eq_signaling( float64 a, float64 b )
+{
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than or
+equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+cause an exception. Otherwise, the comparison is performed according to the
+IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_le_quiet( float64 a, float64 b )
+{
+ flag aSign, bSign;
+ //int16 aExp, bExp;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
+ return ( a == b ) || ( aSign ^ ( a < b ) );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the double-precision floating-point value `a' is less than
+the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+exception. Otherwise, the comparison is performed according to the IEC/IEEE
+Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag float64_lt_quiet( float64 a, float64 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
+ || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
+ ) {
+ if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat64Sign( a );
+ bSign = extractFloat64Sign( b );
+ if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
+ return ( a != b ) && ( aSign ^ ( a < b ) );
+
+}
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the 32-bit two's complement integer format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic---which means in particular that the conversion
+is rounded according to the current rounding mode. If `a' is a NaN, the
+largest positive integer is returned. Otherwise, if the conversion
+overflows, the largest integer with the same sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 floatx80_to_int32( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+ shiftCount = 0x4037 - aExp;
+ if ( shiftCount <= 0 ) shiftCount = 1;
+ shift64RightJamming( aSig, shiftCount, &aSig );
+ return roundAndPackInt32( aSign, aSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the 32-bit two's complement integer format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic, except that the conversion is always rounded
+toward zero. If `a' is a NaN, the largest positive integer is returned.
+Otherwise, if the conversion overflows, the largest integer with the same
+sign as `a' is returned.
+-------------------------------------------------------------------------------
+*/
+int32 floatx80_to_int32_round_to_zero( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig, savedASig;
+ int32 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ shiftCount = 0x403E - aExp;
+ if ( shiftCount < 32 ) {
+ if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+ goto invalid;
+ }
+ else if ( 63 < shiftCount ) {
+ if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
+ return 0;
+ }
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_exception_flags |= float_flag_invalid;
+ return aSign ? 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the single-precision floating-point format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float32 floatx80_to_float32( floatx80 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) {
+ return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
+ }
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ shift64RightJamming( aSig, 33, &aSig );
+ if ( aExp || aSig ) aExp -= 0x3F81;
+ return roundAndPackFloat32( aSign, aExp, aSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of converting the extended double-precision floating-
+point value `a' to the double-precision floating-point format. The
+conversion is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+float64 floatx80_to_float64( floatx80 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig, zSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) {
+ return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
+ }
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ shift64RightJamming( aSig, 1, &zSig );
+ if ( aExp || aSig ) aExp -= 0x3C01;
+ return roundAndPackFloat64( aSign, aExp, zSig );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Rounds the extended double-precision floating-point value `a' to an integer,
+and returns the result as an extended quadruple-precision floating-point
+value. The operation is performed according to the IEC/IEEE Standard for
+Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_round_to_int( floatx80 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ floatx80 z;
+
+ aExp = extractFloatx80Exp( a );
+ if ( 0x403E <= aExp ) {
+ if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
+ return propagateFloatx80NaN( a, a );
+ }
+ return a;
+ }
+ if ( aExp <= 0x3FFE ) {
+ if ( ( aExp == 0 )
+ && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
+ return a;
+ }
+ float_exception_flags |= float_flag_inexact;
+ aSign = extractFloatx80Sign( a );
+ switch ( float_rounding_mode ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
+ ) {
+ return
+ packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
+ }
+ break;
+ case float_round_down:
+ return
+ aSign ?
+ packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
+ : packFloatx80( 0, 0, 0 );
+ case float_round_up:
+ return
+ aSign ? packFloatx80( 1, 0, 0 )
+ : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
+ }
+ return packFloatx80( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x403E - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ z.low += lastBitMask>>1;
+ if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+ z.low += roundBitsMask;
+ }
+ }
+ z.low &= ~ roundBitsMask;
+ if ( z.low == 0 ) {
+ ++z.high;
+ z.low = LIT64( 0x8000000000000000 );
+ }
+ if ( z.low != a.low ) float_exception_flags |= float_flag_inexact;
+ return z;
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the absolute values of the extended double-
+precision floating-point values `a' and `b'. If `zSign' is true, the sum is
+negated before being returned. `zSign' is ignored if the result is a NaN.
+The addition is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ int32 expDiff;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) --expDiff;
+ shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) ++expDiff;
+ shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ return a;
+ }
+ zSig1 = 0;
+ zSig0 = aSig + bSig;
+ if ( aExp == 0 ) {
+ normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
+ goto roundAndPack;
+ }
+ zExp = aExp;
+ goto shiftRight1;
+ }
+
+ zSig0 = aSig + bSig;
+
+ if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
+ shiftRight1:
+ shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
+ zSig0 |= LIT64( 0x8000000000000000 );
+ ++zExp;
+ roundAndPack:
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the absolute values of the extended
+double-precision floating-point values `a' and `b'. If `zSign' is true,
+the difference is negated before being returned. `zSign' is ignored if the
+result is a NaN. The subtraction is performed according to the IEC/IEEE
+Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ int32 expDiff;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ zSig1 = 0;
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloatx80( float_rounding_mode == float_round_down, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) ++expDiff;
+ shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+ bBigger:
+ sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) --expDiff;
+ shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+ aBigger:
+ sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
+ zExp = aExp;
+ normalizeRoundAndPack:
+ return
+ normalizeRoundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of adding the extended double-precision floating-point
+values `a' and `b'. The operation is performed according to the IEC/IEEE
+Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_add( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign == bSign ) {
+ return addFloatx80Sigs( a, b, aSign );
+ }
+ else {
+ return subFloatx80Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of subtracting the extended double-precision floating-
+point values `a' and `b'. The operation is performed according to the
+IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_sub( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign == bSign ) {
+ return subFloatx80Sigs( a, b, aSign );
+ }
+ else {
+ return addFloatx80Sigs( a, b, aSign );
+ }
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of multiplying the extended double-precision floating-
+point values `a' and `b'. The operation is performed according to the
+IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_mul( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 )
+ || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ if ( ( bExp | bSig ) == 0 ) goto invalid;
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x3FFE;
+ mul64To128( aSig, bSig, &zSig0, &zSig1 );
+ if ( 0 < (sbits64) zSig0 ) {
+ shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
+ --zExp;
+ }
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the result of dividing the extended double-precision floating-point
+value `a' by the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_div( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ bits64 rem0, rem1, rem2, term0, term1, term2;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ goto invalid;
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return packFloatx80( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x3FFE;
+ rem1 = 0;
+ if ( bSig <= aSig ) {
+ shift128Right( aSig, 0, 1, &aSig, &rem1 );
+ ++zExp;
+ }
+ zSig0 = estimateDiv128To64( aSig, rem1, bSig );
+ mul64To128( bSig, zSig0, &term0, &term1 );
+ sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, bSig );
+ if ( (bits64) ( zSig1<<1 ) <= 8 ) {
+ mul64To128( bSig, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
+ }
+ zSig1 |= ( ( rem1 | rem2 ) != 0 );
+ }
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the remainder of the extended double-precision floating-point value
+`a' with respect to the corresponding value `b'. The operation is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_rem( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, expDiff;
+ bits64 aSig0, aSig1, bSig;
+ bits64 q, term0, term1, alternateASig0, alternateASig1;
+ floatx80 z;
+
+ aSig0 = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig0<<1 )
+ || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ goto invalid;
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
+ normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+ }
+ bSig |= LIT64( 0x8000000000000000 );
+ zSign = aSign;
+ expDiff = aExp - bExp;
+ aSig1 = 0;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
+ expDiff = 0;
+ }
+ q = ( bSig <= aSig0 );
+ if ( q ) aSig0 -= bSig;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ mul64To128( bSig, q, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ if ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ q >>= 64 - expDiff;
+ mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
+ while ( le128( term0, term1, aSig0, aSig1 ) ) {
+ ++q;
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ }
+ }
+ else {
+ term1 = 0;
+ term0 = bSig;
+ }
+ sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
+ if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
+ || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
+ && ( q & 1 ) )
+ ) {
+ aSig0 = alternateASig0;
+ aSig1 = alternateASig1;
+ zSign = ! zSign;
+ }
+ return
+ normalizeRoundAndPackFloatx80(
+ 80, zSign, bExp + expDiff, aSig0, aSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns the square root of the extended double-precision floating-point
+value `a'. The operation is performed according to the IEC/IEEE Standard
+for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_sqrt( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, zExp;
+ bits64 aSig0, aSig1, zSig0, zSig1;
+ bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ bits64 shiftedRem0, shiftedRem1;
+ floatx80 z;
+
+ aSig0 = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
+ if ( ! aSign ) return a;
+ goto invalid;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig0 ) == 0 ) return a;
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
+ normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+ }
+ zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
+ zSig0 = estimateSqrt32( aExp, aSig0>>32 );
+ zSig0 <<= 31;
+ aSig1 = 0;
+ shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 );
+ zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4;
+ if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF );
+ shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 );
+ mul64To128( zSig0, zSig0, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ shortShift128Left( 0, zSig0, 1, &term0, &term1 );
+ term1 |= 1;
+ add128( rem0, rem1, term0, term1, &rem0, &rem1 );
+ }
+ shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 );
+ zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 );
+ if ( (bits64) ( zSig1<<1 ) <= 10 ) {
+ if ( zSig1 == 0 ) zSig1 = 1;
+ mul64To128( zSig0, zSig1, &term1, &term2 );
+ shortShift128Left( term1, term2, 1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ mul64To128( zSig1, zSig1, &term2, &term3 );
+ sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 );
+ term3 |= 1;
+ add192(
+ rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, 0, zExp, zSig0, zSig1 );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is
+equal to the corresponding value `b', and 0 otherwise. The comparison is
+performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_eq( floatx80 a, floatx80 b )
+{
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is
+less than or equal to the corresponding value `b', and 0 otherwise. The
+comparison is performed according to the IEC/IEEE Standard for Binary
+Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_le( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is
+less than the corresponding value `b', and 0 otherwise. The comparison
+is performed according to the IEC/IEEE Standard for Binary Floating-point
+Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_lt( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is equal
+to the corresponding value `b', and 0 otherwise. The invalid exception is
+raised if either operand is a NaN. Otherwise, the comparison is performed
+according to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_eq_signaling( floatx80 a, floatx80 b )
+{
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is less
+than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
+do not cause an exception. Otherwise, the comparison is performed according
+to the IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_le_quiet( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*
+-------------------------------------------------------------------------------
+Returns 1 if the extended double-precision floating-point value `a' is less
+than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
+an exception. Otherwise, the comparison is performed according to the
+IEC/IEEE Standard for Binary Floating-point Arithmetic.
+-------------------------------------------------------------------------------
+*/
+flag floatx80_lt_quiet( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+#endif
+
diff --git a/target-arm/nwfpe/softfloat.h b/target-arm/nwfpe/softfloat.h
new file mode 100644
index 000000000..22c2193a4
--- /dev/null
+++ b/target-arm/nwfpe/softfloat.h
@@ -0,0 +1,232 @@
+
+/*
+===============================================================================
+
+This C header file is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/softfloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these three paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+#ifndef __SOFTFLOAT_H__
+#define __SOFTFLOAT_H__
+
+/*
+-------------------------------------------------------------------------------
+The macro `FLOATX80' must be defined to enable the extended double-precision
+floating-point format `floatx80'. If this macro is not defined, the
+`floatx80' type will not be defined, and none of the functions that either
+input or output the `floatx80' type will be defined.
+-------------------------------------------------------------------------------
+*/
+#define FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE floating-point types.
+-------------------------------------------------------------------------------
+*/
+typedef unsigned long int float32;
+typedef unsigned long long float64;
+typedef struct {
+ unsigned short high;
+ unsigned long long low;
+} floatx80;
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE floating-point underflow tininess-detection mode.
+-------------------------------------------------------------------------------
+*/
+extern signed char float_detect_tininess;
+enum {
+ float_tininess_after_rounding = 0,
+ float_tininess_before_rounding = 1
+};
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE floating-point rounding mode.
+-------------------------------------------------------------------------------
+*/
+extern signed char float_rounding_mode;
+enum {
+ float_round_nearest_even = 0,
+ float_round_to_zero = 1,
+ float_round_down = 2,
+ float_round_up = 3
+};
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE floating-point exception flags.
+-------------------------------------------------------------------------------
+extern signed char float_exception_flags;
+enum {
+ float_flag_inexact = 1,
+ float_flag_underflow = 2,
+ float_flag_overflow = 4,
+ float_flag_divbyzero = 8,
+ float_flag_invalid = 16
+};
+
+ScottB: November 4, 1998
+Changed the enumeration to match the bit order in the FPA11.
+*/
+
+extern signed char float_exception_flags;
+enum {
+ float_flag_invalid = 1,
+ float_flag_divbyzero = 2,
+ float_flag_overflow = 4,
+ float_flag_underflow = 8,
+ float_flag_inexact = 16
+};
+
+/*
+-------------------------------------------------------------------------------
+Routine to raise any or all of the software IEC/IEEE floating-point
+exception flags.
+-------------------------------------------------------------------------------
+*/
+void float_raise( signed char );
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE integer-to-floating-point conversion routines.
+-------------------------------------------------------------------------------
+*/
+float32 int32_to_float32( signed int );
+float64 int32_to_float64( signed int );
+#ifdef FLOATX80
+floatx80 int32_to_floatx80( signed int );
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE single-precision conversion routines.
+-------------------------------------------------------------------------------
+*/
+signed int float32_to_int32( float32 );
+signed int float32_to_int32_round_to_zero( float32 );
+float64 float32_to_float64( float32 );
+#ifdef FLOATX80
+floatx80 float32_to_floatx80( float32 );
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE single-precision operations.
+-------------------------------------------------------------------------------
+*/
+float32 float32_round_to_int( float32 );
+float32 float32_add( float32, float32 );
+float32 float32_sub( float32, float32 );
+float32 float32_mul( float32, float32 );
+float32 float32_div( float32, float32 );
+float32 float32_rem( float32, float32 );
+float32 float32_sqrt( float32 );
+char float32_eq( float32, float32 );
+char float32_le( float32, float32 );
+char float32_lt( float32, float32 );
+char float32_eq_signaling( float32, float32 );
+char float32_le_quiet( float32, float32 );
+char float32_lt_quiet( float32, float32 );
+char float32_is_signaling_nan( float32 );
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE double-precision conversion routines.
+-------------------------------------------------------------------------------
+*/
+signed int float64_to_int32( float64 );
+signed int float64_to_int32_round_to_zero( float64 );
+float32 float64_to_float32( float64 );
+#ifdef FLOATX80
+floatx80 float64_to_floatx80( float64 );
+#endif
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE double-precision operations.
+-------------------------------------------------------------------------------
+*/
+float64 float64_round_to_int( float64 );
+float64 float64_add( float64, float64 );
+float64 float64_sub( float64, float64 );
+float64 float64_mul( float64, float64 );
+float64 float64_div( float64, float64 );
+float64 float64_rem( float64, float64 );
+float64 float64_sqrt( float64 );
+char float64_eq( float64, float64 );
+char float64_le( float64, float64 );
+char float64_lt( float64, float64 );
+char float64_eq_signaling( float64, float64 );
+char float64_le_quiet( float64, float64 );
+char float64_lt_quiet( float64, float64 );
+char float64_is_signaling_nan( float64 );
+
+#ifdef FLOATX80
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE extended double-precision conversion routines.
+-------------------------------------------------------------------------------
+*/
+signed int floatx80_to_int32( floatx80 );
+signed int floatx80_to_int32_round_to_zero( floatx80 );
+float32 floatx80_to_float32( floatx80 );
+float64 floatx80_to_float64( floatx80 );
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE extended double-precision rounding precision. Valid
+values are 32, 64, and 80.
+-------------------------------------------------------------------------------
+*/
+extern signed char floatx80_rounding_precision;
+
+/*
+-------------------------------------------------------------------------------
+Software IEC/IEEE extended double-precision operations.
+-------------------------------------------------------------------------------
+*/
+floatx80 floatx80_round_to_int( floatx80 );
+floatx80 floatx80_add( floatx80, floatx80 );
+floatx80 floatx80_sub( floatx80, floatx80 );
+floatx80 floatx80_mul( floatx80, floatx80 );
+floatx80 floatx80_div( floatx80, floatx80 );
+floatx80 floatx80_rem( floatx80, floatx80 );
+floatx80 floatx80_sqrt( floatx80 );
+char floatx80_eq( floatx80, floatx80 );
+char floatx80_le( floatx80, floatx80 );
+char floatx80_lt( floatx80, floatx80 );
+char floatx80_eq_signaling( floatx80, floatx80 );
+char floatx80_le_quiet( floatx80, floatx80 );
+char floatx80_lt_quiet( floatx80, floatx80 );
+char floatx80_is_signaling_nan( floatx80 );
+
+#endif
+
+#endif