aboutsummaryrefslogtreecommitdiffstats
path: root/src/gsm/tuak/KeccakP-1600-3gpp.c
blob: 3f5e2ad47ccc50c5215239b9ef2976adc1e69920 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/* -----------------------------------------------------------------------
 * code extracted from 3GPP TS 35.231, annex E for Keccak core functions
 * https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2402
 *-----------------------------------------------------------------------*/

/* This code may be freely used or adapted.
*/

#include "KeccakP-1600-3gpp.h"


const uint8_t Rho[25]		= {0,1,62,28,27,36,44,6,55,20,3,10,43,25,39,41,45,
   15,21,8,18,2,61,56,14};

const uint8_t Pi[25]		= {0,6,12,18,24,3,9,10,16,22,1,7,13,19,20,4,5,11,17,
   23,2,8,14,15,21};

const uint8_t Iota[24]	= {1,146,218,112,155,33,241,89,138,136,57,42,187,203,
   217,83,82,192,26,106,241,208,33,120};

#define ROTATE64(value, n)	\
((((uint64_t)(value))<<(n)) | (((uint64_t)(value))>>(64-(n))))

/* ---------------------------------------------------------------------
   64-bit version of Keccak_f(1600)
   ---------------------------------------------------------------------
*/
void Keccak_f_64(uint64_t s[25])
{	uint64_t t[5];
	uint8_t i, j, round;

	for(round=0; round<24; ++round)
	{	/* Theta function */
		for(i=0; i<5; ++i)
			t[i] = s[i] ^ s[5+i] ^ s[10+i] ^ s[15+i] ^ s[20+i];
		for(i=0; i<5; ++i, s+=5)
		{	s[0] ^= t[4] ^ ROTATE64(t[1], 1);
			s[1] ^= t[0] ^ ROTATE64(t[2], 1);
			s[2] ^= t[1] ^ ROTATE64(t[3], 1);
			s[3] ^= t[2] ^ ROTATE64(t[4], 1);
			s[4] ^= t[3] ^ ROTATE64(t[0], 1);
		}
		s -= 25;

		/* Rho function */
		for(i=1; i<25; ++i)
			s[i] = ROTATE64(s[i], Rho[i]);

		/* Pi function */
		for(t[1] = s[i=1]; (j=Pi[i]) > 1; s[i]=s[j], i=j);
		s[i] = t[1];

		/* Chi function */
		for(i=0; i<5; ++i, s += 5)
		{	t[0] = (~s[1]) & s[2];
			t[1] = (~s[2]) & s[3];
			t[2] = (~s[3]) & s[4];
			t[3] = (~s[4]) & s[0];
			t[4] = (~s[0]) & s[1];
			for(j=0; j<5; ++j) s[j] ^= t[j];
		}
		s -= 25;

		/* Iota function */
		t[0] = Iota[round];
		*s ^= (t[0] | (t[0]<<11) | (t[0]<<26) | (t[0]<<57)) 
              & 0x800000008000808BULL; /* set & mask bits 0,1,3,7,15,31,63 */
	}
}


/* ---------------------------------------------------------------------
   8-bit version of Keccak_f(1600)
   ---------------------------------------------------------------------
*/
void Keccak_f_8(uint8_t s[200])
{	uint8_t t[40], i, j, k, round;

	for(round=0; round<24; ++round)
	{	/* Theta function */
		for(i=0; i<40; ++i)
			t[i]=s[i]^s[40+i]^s[80+i]^s[120+i]^s[160+i];
		for(i=0; i<200; i+=8)
			for(j = (i+32)%40, k=0; k<8; ++k)
				s[i+k] ^= t[j+k];
		for(i=0; i<40; t[i] = (t[i]<<1)|j, i+=8)
			for(j = t[i+7]>>7, k=7; k; --k)
				t[i+k] = (t[i+k]<<1)|(t[i+k-1]>>7);
		for(i=0; i<200; i+=8)
			for(j = (i+8)%40, k=0; k<8; ++k)
				s[i+k] ^= t[j+k];

		/* Rho function */
		for(i=8; i<200; i+=8)
		{	for(j = Rho[i>>3]>>3, k=0; k<8; ++k) 	/* j:=bytes to shift, s->t 		*/
				t[(k+j)&7] = s[i+k];
			for(j = Rho[i>>3]&7, k=7; k; --k) 	   /* j:=bits  to shift, t->s 	*/
				s[i+k] = (t[k]<<j) | (t[k-1]>>(8-j));
			s[i] = (t[0]<<j) | (t[7]>>(8-j));
		}

		/* Pi function */
		for(k=8; k<16; ++k) t[k] = s[k];		/* =memcpy(t+8, s+8, 8) 				 	*/
		for(i=1; (j=Pi[i])>1; i=j)
			for(k=0; k<8; ++k)						/* =memcpy(s+(i<<3), s+(j<<3), 8)	*/
				s[(i<<3)|k] = s[(j<<3)|k];
		for(k=0; k<8; ++k)							/* =memcpy(s+(i<<3), t+8, 8) 		 	*/
			s[(i<<3)|k] = t[k+8];

		/* Chi function */
		for(i=0; i<200; i+=40)
		{	for(j=0; j<40; ++j)
				t[j]=(~s[i+(j+8)%40]) & s[i+(j+16)%40];
			for(j=0; j<40; ++j)	s[i+j]^=t[j];
		}

		/* Iota function */
		k = Iota[round];
		s[0] ^= k & 0x8B;			/* bits 0, 1, 3, 7 */
		s[1] ^= (k<<3)&0x80;		/* bit 15 */
		s[3] ^= (k<<2)&0x80;		/* bit 31 */
		s[7] ^= (k<<1)&0x80;		/* bit 63 */

	}
}

/* ---------------------------------------------------------------------
   32-bit version of Keccak_f(1600)
   ---------------------------------------------------------------------
*/
void Keccak_f_32(uint32_t s[50])
{	uint32_t t[10];
	uint8_t i, j, round, k;

	for(round=0; round<24; ++round)
	{	/* Theta function */
		for(i=0; i<10; ++i)
			t[i] = s[i] ^ s[10+i] ^ s[20+i] ^ s[30+i] ^ s[40+i];
		for(i=0; i<5; ++i)
			for(j=8, k=2; ; j%=10, k=(k+2)%10)
			{	*s++ ^= t[j++] ^ ((t[k]<<1)|(t[k+1]>>31));
				*s++ ^= t[j++] ^ ((t[k+1]<<1)|(t[k]>>31));
				if(j==8) break;
			}
		s -= 50;

		/* Rho function */
		for(i=2; i<50; i+=2)
		{	k = Rho[i>>1] & 0x1f;
			t[0] = (s[i+1] << k) | (s[i] >> (32-k));
			t[1] = (s[i] << k) | (s[i+1] >> (32-k));
			k = Rho[i>>1] >> 5;
			s[i] = t[1-k], s[i+1] = t[k];
		}

		/* Pi function */
		for(i=2, t[0]=s[2], t[1]=s[3]; (j=(Pi[i>>1]<<1))>2; i=j)
			s[i]=s[j], s[i+1]=s[j+1];
		s[i]=t[0], s[i+1]=t[1];

		/* Chi function */
		for(i=0; i<5; ++i, s+=10)
		{	for(j=0; j<10; ++j)
				t[j] = (~s[(j+2)%10]) & s[(j+4)%10];
			for(j=0; j<10; ++j)
				s[j] ^= t[j];
		}
		s -= 50;

		/* Iota function */
		t[0] = Iota[round];
		s[0] ^= (t[0] | (t[0]<<11) | (t[0]<<26)) & 0x8000808B;
		s[1] ^= (t[0]<<25) & 0x80000000;
	}
}