aboutsummaryrefslogtreecommitdiffstats
path: root/epan/emem.h
blob: ffa9704df586b4205b65ed55f44036680381bf88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/* emem.h
 * Definitions for Wireshark memory management and garbage collection
 * Ronnie Sahlberg 2005
 *
 * $Id$
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */

#ifndef __EMEM_H__
#define __EMEM_H__

/** @file
 */
/**  Initialize all the memory allocation pools described below.
 *  This function must be called once when *shark initialize to set up the
 *  required structures.
 */
void emem_init(void);

/* Functions for handling memory allocation and garbage collection with
 * a packet lifetime scope.
 * These functions are used to allocate memory that will only remain persistent
 * until Wireshark starts dissecting the next packet in the list.
 * Everytime Wireshark starts decoding the next packet all memory allocated
 * through these functions will be released back to the free pool.
 *
 * These functions are very fast and offer automatic garbage collection:
 * Everytime a new packet is dissected, all memory allocations done in
 * the previous packet is freed.
 */

/** Allocate memory with a packet lifetime scope */
void *ep_alloc(size_t size) G_GNUC_MALLOC;
#define ep_new(type) ((type*)ep_alloc(sizeof(type)))

/** Allocate memory with a packet lifetime scope and fill it with zeros*/
void* ep_alloc0(size_t size) G_GNUC_MALLOC;
#define ep_new0(type) ((type*)ep_alloc0(sizeof(type)))

/** Duplicate a string with a packet lifetime scope */
gchar* ep_strdup(const gchar* src) G_GNUC_MALLOC;

/** Duplicate at most n characters of a string with a packet lifetime scope */
gchar* ep_strndup(const gchar* src, size_t len) G_GNUC_MALLOC;

/** Duplicate a buffer with a packet lifetime scope */
void* ep_memdup(const void* src, size_t len) G_GNUC_MALLOC;

/** Create a formatted string with a packet lifetime scope */
gchar* ep_strdup_vprintf(const gchar* fmt, va_list ap) G_GNUC_MALLOC;
gchar* ep_strdup_printf(const gchar* fmt, ...)
     G_GNUC_MALLOC G_GNUC_PRINTF(1, 2);

gchar *ep_strconcat(const gchar *string, ...) G_GNUC_MALLOC G_GNUC_NULL_TERMINATED;

/** allocates with a packet lifetime scope an array of type made of num elements */
#define ep_alloc_array(type,num) (type*)ep_alloc(sizeof(type)*(num))

/** allocates with a packet lifetime scope an array of type made of num elements,
 * initialised to zero.
 */
#define ep_alloc_array0(type,num) (type*)ep_alloc0(sizeof(type)*(num))

/**
 * Splits a string into a maximum of max_tokens pieces, using the given
 * delimiter. If max_tokens is reached, the remainder of string is appended
 * to the last token. Consecutive delimiters are treated as a single delimiter.
 *
 * The vector and all the strings are allocated with packet lifetime scope
 */
gchar** ep_strsplit(const gchar* string, const gchar* delimiter, int max_tokens);

/** release all memory allocated in the previous packet dissection */
void ep_free_all(void);


/** a stack implemented using ephemeral allocators */

typedef struct _ep_stack_frame_t** ep_stack_t;

struct _ep_stack_frame_t {
    void* payload;
    struct _ep_stack_frame_t* below;
    struct _ep_stack_frame_t* above;
};

/**
 * creates an empty stack with a packet lifetime scope
 */
ep_stack_t ep_stack_new(void) G_GNUC_MALLOC;

/**
 * pushes item into stack, returns item
 */
void* ep_stack_push(ep_stack_t stack, void* item);

/**
 * pops an item from the stack
 */
void* ep_stack_pop(ep_stack_t stack);

/**
 * returns the item on top of the stack without popping it
 */
#define ep_stack_peek(stack) ((*(stack))->payload)


/* Functions for handling memory allocation and garbage collection with
 * a capture lifetime scope.
 * These functions are used to allocate memory that will only remain persistent
 * until Wireshark opens a new capture or capture file.
 * Everytime Wireshark starts a new capture or opens a new capture file
 * all the data allocated through these functions will be released back
 * to the free pool.
 *
 * These functions are very fast and offer automatic garbage collection.
 */

/** Allocate memory with a capture lifetime scope */
void *se_alloc(size_t size) G_GNUC_MALLOC;
#define se_new(type) ((type*)se_alloc(sizeof(type)))

/** Allocate memory with a capture lifetime scope and fill it with zeros*/
void* se_alloc0(size_t size) G_GNUC_MALLOC;
#define se_new0(type) ((type*)se_alloc0(sizeof(type)))

/** Duplicate a string with a capture lifetime scope */
gchar* se_strdup(const gchar* src) G_GNUC_MALLOC;

/** Duplicate at most n characters of a string with a capture lifetime scope */
gchar* se_strndup(const gchar* src, size_t len) G_GNUC_MALLOC;

/** Duplicate a buffer with a capture lifetime scope */
void* se_memdup(const void* src, size_t len) G_GNUC_MALLOC;

/* Create a formatted string with a capture lifetime scope */
gchar* se_strdup_vprintf(const gchar* fmt, va_list ap) G_GNUC_MALLOC;
gchar* se_strdup_printf(const gchar* fmt, ...)
     G_GNUC_MALLOC G_GNUC_PRINTF(1, 2);

/** allocates with a capture lifetime scope an array of type made of num elements */
#define se_alloc_array(type,num) (type*)se_alloc(sizeof(type)*(num))

/** release all memory allocated */
void se_free_all(void);

/**************************************************************
 * slab allocator
 **************************************************************/
struct _emem_chunk_t;

/* Macros to initialize ws_memory_slab */
/* XXX, is G_MEM_ALIGN enough? http://mail.gnome.org/archives/gtk-devel-list/2004-December/msg00091.html */
#define WS_MEMORY_SLAB_INIT(type, count) { ((sizeof(type) + (G_MEM_ALIGN - 1)) & ~(G_MEM_ALIGN - 1)), count, NULL, NULL }
#define WS_MEMORY_SLAB_INIT_UNALIGNED(size, count) { size, count, NULL, NULL }

struct ws_memory_slab {
	const gint item_size;
	const gint count;

	struct _emem_chunk_t *chunk_list;
	void *freed;
};

void *sl_alloc(struct ws_memory_slab *mem_chunk);
void *sl_alloc0(struct ws_memory_slab *mem_chunk);
void sl_free(struct ws_memory_slab *mem_chunk, gpointer ptr);

/** release all memory allocated */
void sl_free_all(struct ws_memory_slab *mem_chunk);

/**************************************************************
 * binary trees
 **************************************************************/
typedef struct _emem_tree_node_t {
	struct _emem_tree_node_t *parent;
	struct _emem_tree_node_t *left;
	struct _emem_tree_node_t *right;
	struct {
#define EMEM_TREE_RB_COLOR_RED		0
#define EMEM_TREE_RB_COLOR_BLACK	1
		guint32 rb_color:1;
#define EMEM_TREE_NODE_IS_DATA		0
#define EMEM_TREE_NODE_IS_SUBTREE	1
		guint32 is_subtree:1;
	} u;
	guint32 key32;
	void *data;
} emem_tree_node_t;

/** Right now we only do basic red/black trees   but in the future we might want
 * to try something different, such as a tree where each node keeps track
 * of how many times it has been looked up, and letting often looked up
 * nodes bubble upwards in the tree using rotate_right/left.
 * That would probably be good for things like nfs filehandles
 */
#define EMEM_TREE_TYPE_RED_BLACK	1
typedef struct _emem_tree_t {
	struct _emem_tree_t *next;
	int type;
	const char *name;    /**< just a string to make debugging easier */
	emem_tree_node_t *tree;
	void *(*malloc)(size_t);
} emem_tree_t;

/* *******************************************************************
 * Tree functions for SE memory allocation scope
 * ******************************************************************* */
/** This function is used to create a se based tree with monitoring.
 * When the SE heap is released back to the system the pointer to the
 * tree is automatically reset to NULL.
 *
 * type is : EMEM_TREE_TYPE_RED_BLACK for a standard red/black tree.
 */
emem_tree_t *se_tree_create(int type, const char *name) G_GNUC_MALLOC;

/** This function is similar to the se_tree_create() call but with the
 * difference that when the se memory is released everything including the
 * pointer to the tree itself will be released.
 * This tree will not be just reset to zero, it will be completely forgotten
 * by the allocator.
 * Use this function for when you want to store the pointer to a tree inside
 * another structure that is also se allocated so that when the structure is
 * released, the tree will be completely released as well.
 */
emem_tree_t *se_tree_create_non_persistent(int type, const char *name) G_GNUC_MALLOC;

/** se_tree_insert32
 * Insert data into the tree and key it by a 32bit integer value
 */
#define se_tree_insert32 emem_tree_insert32

/** se_tree_lookup32
 * Retrieve the data at the search key. The search key is a 32bit integer value
 */
#define se_tree_lookup32 emem_tree_lookup32

/** se_tree_lookup32_le
 * Retrieve the data for the largest key that is less than or equal
 * to the search key.
 */
#define se_tree_lookup32_le emem_tree_lookup32_le

/** se_tree_insert32_array
 * Insert data into the tree and key it by a 32bit integer value
 */
#define se_tree_insert32_array emem_tree_insert32_array

/** se_tree_lookup32_array
 * Lookup data from the tree that is index by an array
 */
#define se_tree_lookup32_array emem_tree_lookup32_array

/** se_tree_lookup32_array_le
 * Retrieve the data for the largest key that is less than or equal
 * to the search key.
 */
#define se_tree_lookup32_array_le emem_tree_lookup32_array_le

/** Create a new string based hash table */
#define se_tree_create_string() se_tree_create(SE_TREE_TYPE_RED_BLACK)

/** Insert a new value under a string key */
#define se_tree_insert_string emem_tree_insert_string

/** Lookup the value under a string key */
#define se_tree_lookup_string emem_tree_lookup_string

/** Traverse a tree */
#define se_tree_foreach emem_tree_foreach


/* *******************************************************************
 * Tree functions for PE memory allocation scope
 * ******************************************************************* */
/* These trees have PErmanent allocation scope and will never be released
 */
emem_tree_t *pe_tree_create(int type, const char *name) G_GNUC_MALLOC;
#define pe_tree_insert32 emem_tree_insert32
#define pe_tree_lookup32 emem_tree_lookup32
#define pe_tree_lookup32_le emem_tree_lookup32_le
#define pe_tree_insert32_array emem_tree_insert32_array
#define pe_tree_lookup32_array emem_tree_lookup32_array
#define pe_tree_insert_string emem_tree_insert_string
#define pe_tree_lookup_string emem_tree_lookup_string
#define pe_tree_foreach emem_tree_foreach



/* ******************************************************************
 * Real tree functions
 * ****************************************************************** */

/** This function is used to insert a node indexed by a guint32 key value.
 * The data pointer should be allocated by the appropriate storage scope
 * so that it will be released at the same time as the tree itself is
 * destroyed.
 */
void emem_tree_insert32(emem_tree_t *se_tree, guint32 key, void *data);

/** This function will look up a node in the tree indexed by a guint32 integer
 * value.
 */
void *emem_tree_lookup32(emem_tree_t *se_tree, guint32 key);

/** This function will look up a node in the tree indexed by a guint32 integer
 * value.
 * The function will return the node that has the largest key that is
 * equal to or smaller than the search key, or NULL if no such key was
 * found.
 */
void *emem_tree_lookup32_le(emem_tree_t *se_tree, guint32 key);

typedef struct _emem_tree_key_t {
	guint32 length;			/**< length in guint32 words */
	guint32 *key;
} emem_tree_key_t;

/** This function is used to insert a node indexed by a sequence of guint32
 * key values.
 * The data pointer should be allocated by SE allocators so that the
 * data will be released at the same time as the tree itself is destroyed.
 *
 * Note: all the "key" members of the "key" argument MUST be aligned on
 * 32-bit boundaries; otherwise, this code will crash on platforms such
 * as SPARC that require aligned pointers.
 *
 * If you use ...32_array() calls you MUST make sure that every single node
 * you add to a specific tree always has a key of exactly the same number of
 * keylen words or things will most likely crash. Or at least that every single
 * item that sits behind the same top level node always have exactly the same
 * number of words.
 *
 * One way to guarantee this is the way that NFS does this for the
 * nfs_name_snoop_known tree which holds filehandles for both v2 and v3.
 * v2 filehandles are always 32 bytes (8 words) while v3 filehandles can have
 * any length (though 32 bytes are most common).
 * The NFS dissector handles this by providing a guint32 containing the length
 * as the very first item in this vector :
 *
 *			emem_tree_key_t fhkey[3];
 *
 *			fhlen=nns->fh_length;
 *			fhkey[0].length=1;
 *			fhkey[0].key=&fhlen;
 *			fhkey[1].length=fhlen/4;
 *			fhkey[1].key=nns->fh;
 *			fhkey[2].length=0;
 */
void emem_tree_insert32_array(emem_tree_t *se_tree, emem_tree_key_t *key, void *data);

/** This function will look up a node in the tree indexed by a sequence of
 * guint32 integer values.
 */
void *emem_tree_lookup32_array(emem_tree_t *se_tree, emem_tree_key_t *key);

/** This function will look up a node in the tree indexed by a
 * multi-part tree value.
 * The function will return the node that has the largest key that is
 * equal to or smaller than the search key, or NULL if no such key was
 * found.
 * Note:  The key returned will be "less" in key order.  The usefullness
 * of the returned node must be verified prior to use.
 */
void *emem_tree_lookup32_array_le(emem_tree_t *se_tree, emem_tree_key_t *key);

/** case insensitive strings as keys */
#define EMEM_TREE_STRING_NOCASE			0x00000001
/** Insert a new value under a string key */
void emem_tree_insert_string(emem_tree_t* h, const gchar* k, void* v, guint32 flags);

/** Lookup the value under a string key */
void* emem_tree_lookup_string(emem_tree_t* h, const gchar* k, guint32 flags);


/** traverse a tree. if the callback returns TRUE the traversal will end */
typedef gboolean (*tree_foreach_func)(void *value, void *userdata);

gboolean emem_tree_foreach(emem_tree_t* emem_tree, tree_foreach_func callback, void *user_data);


/* ******************************************************************
 * String buffers - Growable strings similar to GStrings
 * ****************************************************************** */

typedef struct _emem_strbuf_t {
    gchar *str;             /**< Points to the character data. It may move as text is       */
                            /*  added. The str field is null-terminated and so can        */
                            /*  be used as an ordinary C string.                          */
    gsize len;              /**< strlen: ie: length of str not including trailing '\0'      */
    gsize alloc_len;        /**< num bytes curently allocated for str: 1 .. MAX_STRBUF_LEN  */
    gsize max_alloc_len;    /**< max num bytes to allocate for str: 1 .. MAX_STRBUF_LEN     */
} emem_strbuf_t;

/*
 * The maximum length is limited to 64K. If you need something bigger, you
 * should probably use an actual GString or GByteArray.
 */

/**
 * Allocate an ephemeral string buffer with "unlimited" size.
 *
 * @param init The initial string for the buffer, or NULL to allocate an initial zero-length string.
 *
 * @return A newly-allocated string buffer.
 */
emem_strbuf_t *ep_strbuf_new(const gchar *init) G_GNUC_MALLOC;

/**
 * Allocate an ephemeral string buffer suitable for the protocol tree.
 * The string will never grow beyond the maximum tree item length.
 *
 * @param init The initial string for the buffer, or NULL to allocate an initial zero-length string.
 *
 * @return A newly-allocated string buffer.
 */
emem_strbuf_t *ep_strbuf_new_label(const gchar *init) G_GNUC_MALLOC;

/**
 * Allocate an ephemeral string buffer with enough initial space for alloc_len bytes
 * and a maximum of max_alloc_len bytes.
 *
 * @param alloc_len The initial size of the buffer. This value can be 0, but a nonzero
 * value is recommended.
 * @param max_alloc_len The maximum size of the buffer. 0 means "unlimited" (within
 * reason).
 *
 * @return A newly-allocated string buffer. str will be empty.
 */
emem_strbuf_t *ep_strbuf_sized_new(gsize alloc_len, gsize max_alloc_len) G_GNUC_MALLOC;

/**
 * Append vprintf-style formatted text to a string buffer.
 *
 * @param strbuf The ep_strbuf-allocated string buffer to append to.
 * @param format A printf-style string format.
 * @param ap The list of arguments to append.
 */
void ep_strbuf_append_vprintf(emem_strbuf_t *strbuf, const gchar *format, va_list ap);

/**
 * Apply printf-style formatted text to a string buffer.
 *
 * @param strbuf The ep_strbuf-allocated string buffer to set to.
 * @param format A printf-style string format.
 */
void ep_strbuf_printf(emem_strbuf_t *strbuf, const gchar *format, ...)
     G_GNUC_PRINTF(2, 3);

/**
 * Append printf-style formatted text to a string buffer.
 *
 * @param strbuf The ep_strbuf-allocated string buffer to append to.
 * @param format A printf-style string format.
 */
void ep_strbuf_append_printf(emem_strbuf_t *strbuf, const gchar *format, ...)
    G_GNUC_PRINTF(2, 3);

/**
 * Append a string to a string buffer.
 *
 * @param strbuf The ep_strbuf-allocated string buffer to append to.
 * @param str A null-terminated string.
 *
 * @return strbuf
 */
emem_strbuf_t *ep_strbuf_append(emem_strbuf_t *strbuf, const gchar *str);

/**
 * Append a character to a string buffer.
 *
 * @param strbuf The ep_strbuf-allocated string buffer to append to.
 * @param c The character to append.
 *
 * @return strbuf
 */
emem_strbuf_t *ep_strbuf_append_c(emem_strbuf_t *strbuf, const gchar c);

/**
 * Chop off the end of a string buffer.
 *
 * @param strbuf The ep_strbuf-allocated string buffer to append to.
 * @param len The new string length.
 *
 * @return strbuf
 */
emem_strbuf_t *ep_strbuf_truncate(emem_strbuf_t *strbuf, gsize len);

void emem_print_tree(emem_tree_t* emem_tree);

/* #define DEBUG_INTENSE_CANARY_CHECKS */

/** Helper to troubleshoot ep memory corruption.
 * If compiled and the environment variable WIRESHARK_DEBUG_EP_INTENSE_CANARY exists
 * it will check the canaries and when found corrupt stop there in the hope
 * the corruptor is still there in the stack.
 * Some checkpoints are already set in packet.c in strategic points
 * before and after dissection of a frame or a dissector call.
 */

#ifdef DEBUG_INTENSE_CANARY_CHECKS
void ep_check_canary_integrity(const char* fmt, ...)
    G_GNUC_PRINTF(1, 2);
#define EP_CHECK_CANARY(args) ep_check_canary_integrity args
#else
#define EP_CHECK_CANARY(args)
#endif

/**
 * Verify that the given pointer is of ephemeral type.
 *
 * @param ptr The pointer to verify
 *
 * @return TRUE if the pointer belongs to the ephemeral pool.
 */
gboolean ep_verify_pointer(const void *ptr);
/**
 * Verify that the given pointer is of seasonal type.
 *
 * @param ptr The pointer to verify
 *
 * @return TRUE if the pointer belongs to the seasonal pool.
 */
gboolean se_verify_pointer(const void *ptr);

#endif /* emem.h */