aboutsummaryrefslogtreecommitdiffstats
path: root/wiretap/vwr.c
diff options
context:
space:
mode:
Diffstat (limited to 'wiretap/vwr.c')
-rw-r--r--wiretap/vwr.c2105
1 files changed, 2105 insertions, 0 deletions
diff --git a/wiretap/vwr.c b/wiretap/vwr.c
new file mode 100644
index 0000000000..5b4117cd76
--- /dev/null
+++ b/wiretap/vwr.c
@@ -0,0 +1,2105 @@
+/* vwr.c
+ * Copyright (c) 2011 by Tom Alexander <talexander@ixiacom.com>
+ *
+ * $Id$
+ *
+ * Wiretap Library
+ * Copyright (c) 1998 by Gilbert Ramirez <gram@alumni.rice.edu>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ */
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+#include <stdlib.h>
+#include <errno.h>
+#include <string.h>
+#include "wtap-int.h"
+#include "file_wrappers.h"
+#include "buffer.h"
+#include "vwr.h"
+
+
+/* platform-specific definitions for portability */
+static int find_signature(register guint8*, int, register guint32,
+ register guint8);
+static guint64 get_signature_ts(register guint8*, int);
+
+/* unsigned long long constants */
+# define NS_IN_US G_GINT64_CONSTANT(1000U) /* nanoseconds-to-microseconds */
+# define NS_IN_SEC G_GINT64_CONSTANT(1000000000U) /* nanoseconds-to-seconds */
+# define US_IN_SEC G_GINT64_CONSTANT(1000000U) /* microseconds-to-seconds */
+# define LL_ZERO G_GINT64_CONSTANT(0U) /* zero in unsigned long long */
+
+/* .vwr log file defines */
+#define B_SIZE 32768 /* max var len message = 32 kB */
+#define VT_FRAME 0 /* varlen msg is a frame */
+#define VT_CPMSG 1 /* varlen msg is a CP<->PP msg */
+#define MAX_TRACKED_CLIENTS 1024 /* track 1024 clients */
+#define MAX_TRACKED_FLOWS 65536 /* and 64K flows */
+
+/* the radiotap header */
+
+/* IxVeriwave common header fields */
+typedef struct {
+ guint16 vw_port_type; /* 0 for WLAN, 1 for Ethernet */
+ guint16 it_len; /* WHOLE radiotap header length (incl. */
+ guint16 vw_msdu_length; /* length of MAC SDU */
+ guint32 vw_flowid; /* VeriWave-specific flow ID for packet */
+ guint16 vw_vcid; /* VeriWave-specific vC ID (client id) */
+ guint16 vw_seqnum; /* VeriWave-specific signature seqnum */
+ guint32 vw_latency; /* VeriWave-specific packet latency, ns */
+ guint32 vw_sig_ts; /* signature timestamp, 32 LSBs, nsec */
+ guint64 vw_startt; /* frame start time (nsec) */
+ guint64 vw_endt; /* frame end time (nsec) */
+ guint32 vw_pktdur; /* VeriWave-specific pkt duration, us */
+
+} stats_common_fields;
+
+/* Veriwave-specific extended radiotap header fields (following vwr_rtap_hdr above) */
+/* structure elements correspond one-to-one with the RADIOTAP_PRESENT bitmask below */
+/* NOTE: must ensure that elements are aligned to their "natural" packing */
+/* NOTE: must ensure that "latency" precedes all other packet timing details, because it */
+/* is used to start a subtree */
+typedef struct {
+ guint16 it_len; /* WHOLE radiotap header length (incl. */
+ guint16 flags; /* short preamble, WEP, frag */
+ guint16 chanflags; /* channel flags bitmap */
+ guint8 rate; /* PHY bit rate, 500 kb/s units */
+ gint8 signal; /* RF signal power, +/- dBm */
+ gint8 tx_power; /* transmit power, +/- dBm */
+ guint8 pad;
+ guint16 vw_flags; /* VeriWave-specific packet flags */
+ guint16 vw_ht_length; /* ht length (in plcp header)*/
+ guint16 vw_info; /* VeriWave-specific information */
+ guint32 vw_errors; /* VeriWave-specific errors */
+
+} ext_rtap_fields;
+
+/* Veriwave-specific Ethernettap header */
+typedef struct {
+ guint16 it_len; /* WHOLE radiotap header length (incl. */
+ guint16 vw_flags; /* Veriwave-specific flags (see above) */
+ guint16 vw_info; /* VeriWave-specific information */
+ guint32 vw_errors; /* VeriWave-specific flags */
+ guint32 vw_l4id; /* layer four id*/
+ guint32 it_pad2; /* pad out header to 16-byte boundary */
+} stats_ethernettap_fields;
+
+/* the bitmap offsets of the bits in it_present, above */
+/* also lists the expected field sizes in bytes */
+/* MUST BE IN SAME ORDER AS THE STRUCTURE ELEMENTS ABOVE */
+enum radiotap_type {
+ VW_RADIOTAP_FLAGS = 0, /* 2 bytes */
+ VW_RADIOTAP_RATE = 1, /* 1 byte */
+ VW_RADIOTAP_CHANNEL = 2, /* 4 bytes (mhz + chanflags) */
+ VW_RADIOTAP_DBM_ANTSIGNAL = 3, /* 1 byte */
+ VW_RADIOTAP_DBM_TX_POWER = 4, /* 1 byte */
+ /* start of veriwave addition */
+ VW_RADIOTAP_FPGA_VERSION = 5, /* 2 bytes */
+ VW_RADIOTAP_VW_FLAGS = 6, /* 2 bytes */
+ VW_RADIOTAP_MSDU_LENGTH = 7, /* 2 bytes */
+ VW_RADIOTAP_HT_LENGTH = 8, /* 2 bytes */
+ VW_RADIOTAP_INFO = 9, /* 2 bytes */
+ VW_RADIOTAP_ERRORS = 10, /* 4 bytes */
+ VW_RADIOTAP_FLOWID = 11, /* 4 bytes */
+ VW_RADIOTAP_MCID = 12, /* 2 bytes */
+ VW_RADIOTAP_SEQNUM = 13, /* 2 bytes */
+ VW_RADIOTAP_LATENCY = 14, /* 4 bytes (MUST COME BEFORE OTHER TIMES)*/
+ VW_RADIOTAP_SIG_TS = 15, /* 4 bytes */
+ VW_RADIOTAP_STARTT = 16, /* 8 bytes */
+ VW_RADIOTAP_ENDT = 17, /* 8 bytes */
+ VW_RADIOTAP_PKTDUR = 18, /* 4 bytes */
+ VW_RADIOTAP_IFG = 19, /* 4 bytes */
+
+ /* end of Veriwave addition 6-2007 */
+
+ VW_RADIOTAP_EXT = 31
+};
+
+/* standard field-present bitmap corresponding to above fixed-size set of fields */
+/* this produces a 16-byte header */
+#define VW_RADIOTAP_PRESENT ((1 << VW_RADIOTAP_FLAGS) | \
+ (1 << VW_RADIOTAP_RATE) | \
+ (1 << VW_RADIOTAP_CHANNEL) | \
+ (1 << VW_RADIOTAP_DBM_ANTSIGNAL) | \
+ (1 << VW_RADIOTAP_DBM_TX_POWER))
+
+/* extended field-present bitmap corresponding to above fixed-size set of fields */
+/* this produces a 32-byte header */
+#define VW_EXT_RTAP_PRESENT ((1 << VW_RADIOTAP_FLAGS) | \
+ (1 << VW_RADIOTAP_RATE) | \
+ (1 << VW_RADIOTAP_CHANNEL) | \
+ (1 << VW_RADIOTAP_DBM_ANTSIGNAL) | \
+ (1 << VW_RADIOTAP_DBM_TX_POWER) | \
+ (1 << VW_RADIOTAP_FPGA_VERSION) | \
+ (1 << VW_RADIOTAP_VW_FLAGS) | \
+ (1 << VW_RADIOTAP_MSDU_LENGTH) | \
+ (1 << VW_RADIOTAP_HT_LENGTH) | \
+ (1 << VW_RADIOTAP_ERRORS) | \
+ (1 << VW_RADIOTAP_INFO) | \
+ (1 << VW_RADIOTAP_MCID) | \
+ (1 << VW_RADIOTAP_FLOWID) | \
+ (1 << VW_RADIOTAP_SEQNUM) | \
+ (1 << VW_RADIOTAP_LATENCY) | \
+ (1 << VW_RADIOTAP_SIG_TS) | \
+ (1 << VW_RADIOTAP_STARTT) | \
+ (1 << VW_RADIOTAP_ENDT) |\
+ (1 << VW_RADIOTAP_PKTDUR) |\
+ (1 << VW_RADIOTAP_IFG))
+
+/*
+ * RADIOTAP_FLAGS u_int8_t bitmap
+ * See flags definitions below
+ *
+ * RADIOTAP_RATE u_int8_t 500kb/s
+ * Tx/Rx data rate
+ *
+ * RADIOTAP_CHANNEL 2 x u_int16_t MHz+bitmap
+ * Tx/Rx frequency in MHz, followed by flags (see below).
+ *
+ * RADIOTAP_DBM_ANTSIGNAL int8_t dBm
+ * RF signal power at the antenna, dBm
+ *
+ * RADIOTAP_DBM_ANTNOISE int8_t dBm
+ * RF noise power at the antenna, dBm
+ *
+ * RADIOTAP_BARKER_CODE_LOCK u_int16_t unitless
+ * Quality of Barker code lock. Monotonically nondecreasing with "better" lock strength.
+ * Called "Signal Quality" in datasheets.
+ *
+ * RADIOTAP_DBM_TX_POWER int8_t dBm
+ * Transmit power expressed as dBm.
+*/
+
+/* Channel flags for IEEE80211_RADIOTAP_CHANNEL */
+#define CHAN_TURBO 0x0010 /* Turbo channel */
+#define CHAN_CCK 0x0020 /* CCK channel */
+#define CHAN_OFDM 0x0040 /* OFDM channel */
+#define CHAN_2GHZ 0x0080 /* 2 GHz spectrum channel. */
+#define CHAN_5GHZ 0x0100 /* 5 GHz spectrum channel */
+#define CHAN_PASSIVE 0x0200 /* Only passive scan allowed */
+
+/* For RADIOTAP_FLAGS */
+#define RADIOTAP_F_CFP 0x001 /* sent/received during CFP */
+#define RADIOTAP_F_SHORTPRE 0x002 /* sent/received with short preamble */
+#define RADIOTAP_F_WEP 0x004 /* sent/received with WEP encryption */
+#define RADIOTAP_F_FRAG 0x008 /* sent/received with fragmentation */
+#define RADIOTAP_F_FCS 0x010 /* frame includes FCS */
+#define RADIOTAP_F_DATAPAD 0x020 /* padding between 802.11 hdr & payload */
+#define RADIOTAP_F_CHAN_HT 0x040 /* In HT mode */
+#define RADIOTAP_F_CHAN_40MHZ 0x080 /* 40 Mhz CBW */
+#define RADIOTAP_F_CHAN_SHORTGI 0x100 /* Short guard interval */
+
+
+/* For VeriWave-specific RADIOTAP_FLAGS and ETHERNETTAP_FLAGS */
+#define RADIOTAP_VWF_TXF 0x01 /* frame was transmitted */
+#define RADIOTAP_VWF_FCSERR 0x02 /* FCS error detected */
+#define RADIOTAP_VWF_RETRERR 0x04 /* excess retry error detected */
+#define RADIOTAP_VWF_DCRERR 0x10 /* decrypt error detected (WLAN) */
+#define RADIOTAP_VWF_ENCMSK 0x60 /* encryption type mask */
+ /* 0 = none, 1 = WEP, 2 = TKIP, 3 = CCKM */
+#define RADIOTAP_VWF_IS_WEP 0x20 /* WEP */
+#define RADIOTAP_VWF_IS_TKIP 0x40 /* TKIP */
+#define RADIOTAP_VWF_IS_CCMP 0x60 /* CCMP */
+#define RADIOTAP_VWF_SEQ_ERR 0x80 /* flow sequence error detected */
+
+/* FPGA-generated frame buffer STATS block offsets and definitions */
+
+/* definitions for v2.2 frames, Ethernet format */
+#define v22_E_STATS_LEN 44 /* length of stats block trailer */
+#define v22_E_VALID_OFF 0 /* bit 6 (0x40) is flow-is-valid flag */
+#define v22_E_MTYPE_OFF 1 /* offset of modulation type */
+#define v22_E_VCID_OFF 2 /* offset of VC ID */
+#define v22_E_FLOWSEQ_OFF 4 /* offset of signature sequence number */
+#define v22_E_FLOWID_OFF 5 /* offset of flow ID */
+#define v22_E_OCTET_OFF 8 /* offset of octets */
+#define v22_E_ERRORS_OFF 10 /* offset of error vector */
+#define v22_E_PATN_OFF 12 /* offset of pattern match vector */
+#define v22_E_L4ID_OFF 12
+#define v22_E_IPLEN_OFF 14
+#define v22_E_FRAME_TYPE_OFF 16 /* offset of frame type, 32 bits */
+#define v22_E_RSSI_OFF 21 /* RSSI (NOTE: invalid for Ethernet) */
+#define v22_E_STARTT_OFF 20 /* offset of start time, 64 bits */
+#define v22_E_ENDT_OFF 28 /* offset of end time, 64 bits */
+#define v22_E_LATVAL_OFF 36 /* offset of latency, 32 bits */
+#define v22_E_INFO_OFF 40 /* NO INFO FIELD IN ETHERNET STATS! */
+#define v22_E_DIFFERENTIATOR_OFF 0 /* offset to determine whether */
+ /* eth/802.11, 8 bits */
+
+#define v22_E_MT_10_HALF 0 /* 10 Mb/s half-duplex */
+#define v22_E_MT_10_FULL 1 /* 10 Mb/s full-duplex */
+#define v22_E_MT_100_HALF 2 /* 100 Mb/s half-duplex */
+#define v22_E_MT_100_FULL 3 /* 100 Mb/s full-duplex */
+#define v22_E_MT_1G_HALF 4 /* 1 Gb/s half-duplex */
+#define v22_E_MT_1G_FULL 5 /* 1 Gb/s full-duplex */
+
+#define v22_E_FCS_ERROR 0x0002 /* FCS error flag in error vector */
+#define v22_E_CRYPTO_ERR 0x1f00 /* RX decrypt error flags (UNUSED) */
+#define v22_E_SIG_ERR 0x0004 /* signature magic byte mismatch */
+#define v22_E_PAYCHK_ERR 0x0008 /* payload checksum failure */
+#define v22_E_RETRY_ERR 0x0400 /* excessive retries on TX fail (UNUSED)*/
+#define v22_E_IS_RX 0x08 /* TX/RX bit in STATS block */
+#define v22_E_MT_MASK 0x07 /* modulation type mask (UNUSED) */
+#define v22_E_VCID_MASK 0x03ff /* VC ID is only 9 bits */
+#define v22_E_FLOW_VALID 0x40 /* flow-is-valid flag (else force to 0) */
+#define v22_E_DIFFERENTIATOR_MASK 0X3F /* mask to differentiate ethernet from */
+#define v22_E_IS_TCP 0x00000040 /* TCP bit in FRAME_TYPE field */
+#define v22_E_IS_UDP 0x00000010 /* UDP bit in FRAME_TYPE field */
+#define v22_E_IS_ICMP 0x00000020 /* ICMP bit in FRAME_TYPE field */
+#define v22_E_IS_IGMP 0x00000080 /* IGMP bit in FRAME_TYPE field */
+#define v22_E_IS_QOS 0x80 /* QoS bit in MTYPE field (WLAN only) */
+#define v22_E_IS_VLAN 0x00200000
+
+
+#define v22_E_RX_DECRYPTS 0x0007 /* RX-frame-was-decrypted (UNUSED) */
+#define v22_E_TX_DECRYPTS 0x0007 /* TX-frame-was-decrypted (UNUSED) */
+
+#define v22_E_FC_PROT_BIT 0x40 /* Protected Frame bit in FC1 of frame */
+
+
+#define v22_E_HEADER_IS_RX 0x21
+#define v22_E_HEADER_IS_TX 0x31
+
+#define v22_E_IS_ETHERNET 0x00700000 /* bits set in frame type if ethernet */
+#define v22_E_IS_80211 0x7F000000 /* bits set in frame type if 802.11 */
+
+/* definitions for v2.2 frames, WLAN format for VW510006 FPGA*/
+#define v22_W_STATS_LEN 64 /* length of stats block trailer */
+#define v22_W_VALID_OFF 0 /* bit 6 (0x40) is flow-is-valid flag */
+#define v22_W_MTYPE_OFF 1 /* offset of modulation type */
+#define v22_W_VCID_OFF 2 /* offset of VC ID */
+#define v22_W_FLOWSEQ_OFF 4 /* offset of signature sequence number */
+#define v22_W_FLOWID_OFF 5 /* offset of flow ID */
+#define v22_W_OCTET_OFF 8 /* offset of octets */
+#define v22_W_ERRORS_OFF 10 /* offset of error vector */
+#define v22_W_PATN_OFF 12
+#define v22_W_L4ID_OFF 12
+#define v22_W_IPLEN_OFF 14
+#define v22_W_FRAME_TYPE_OFF 16 /* offset of frame type, 32 bits */
+#define v22_W_RSSI_OFF 21 /* RSSI (NOTE: RSSI must be negated!) */
+#define v22_W_STARTT_OFF 24 /* offset of start time, 64 bits */
+#define v22_W_ENDT_OFF 32 /* offset of end time, 64 bits */
+#define v22_W_LATVAL_OFF 40 /* offset of latency, 32 bits */
+#define v22_W_INFO_OFF 54 /* offset of INFO field, 16 LSBs */
+#define v22_W_DIFFERENTIATOR_OFF 20 /* offset to determine whether */
+ /* eth/802.11, 32 bits */
+
+#define v22_W_PLCP_LENGTH_OFF 4 /* LENGTH field in the plcp header */
+
+
+#define v22_W_MT_CCKL 0 /* CCK modulation, long preamble */
+#define v22_W_MT_CCKS 1 /* CCK modulation, short preamble */
+#define v22_W_MT_OFDM 2 /* OFDM modulation */
+
+#define v22_W_IS_TCP 0x00000040 /* TCP bit in FRAME_TYPE field */
+#define v22_W_IS_UDP 0x00000010 /* UDP bit in FRAME_TYPE field */
+#define v22_W_IS_ICMP 0x00000020 /* ICMP bit in FRAME_TYPE field */
+#define v22_W_IS_IGMP 0x00000080 /* IGMP bit in FRAME_TYPE field */
+#define v22_W_IS_QOS 0x80 /* QoS bit in MTYPE field (WLAN only) */
+
+
+#define v22_W_FCS_ERROR 0x0002 /* FCS error flag in error vector */
+#define v22_W_CRYPTO_ERR 0x1f00 /* RX decrypt error flags */
+#define v22_W_SIG_ERR 0x0004 /* signature magic byte mismatch */
+#define v22_W_PAYCHK_ERR 0x0008 /* payload checksum failure */
+#define v22_W_RETRY_ERR 0x0400 /* excessive retries on TX failure */
+#define v22_W_IS_RX 0x08 /* TX/RX bit in STATS block */
+#define v22_W_MT_MASK 0x07 /* modulation type mask */
+#define v22_W_VCID_MASK 0x01ff /* VC ID is only 9 bits */
+#define v22_W_FLOW_VALID 0x40 /* flow-is-valid flag (else force to 0) */
+#define v22_W_DIFFERENTIATOR_MASK 0Xf0ff /* mask to differentiate ethernet from */
+ /* 802.11 capture */
+
+#define v22_W_RX_DECRYPTS 0x0007 /* RX-frame-was-decrypted bits */
+#define v22_W_TX_DECRYPTS 0x0007 /* TX-frame-was-decrypted bits */
+
+#define v22_W_WEPTYPE 0x0001 /* WEP frame */
+#define v22_W_TKIPTYPE 0x0002 /* TKIP frame */
+#define v22_W_CCMPTYPE 0x0004 /* CCMP frame */
+
+#define v22_W_HEADER_IS_RX 0x21
+#define v22_W_HEADER_IS_TX 0x31
+
+#define v22_W_FC_PROT_BIT 0x40 /* Protected Frame bit in FC1 of frame */
+
+#define v22_W_IS_ETHERNET 0x00100000 /* bits set in frame type if ethernet */
+#define v22_W_IS_80211 0x7F000000 /* bits set in frame type if 802.11 */
+
+/* definitions for VW510021 FPGA, WLAN format */
+/* FORMAT:
+ 16 BYTE header
+ 8 bytes of stat block
+ plcp stuff (11 bytes plcp + 1 byte pad)
+ data
+ remaining 48 bytes of stat block
+*/
+/* offsets in the stats block */
+#define vVW510021_W_STATS_LEN 48 /* length of stats block trailer after the plcp portion*/
+#define vVW510021_W_STARTT_OFF 0 /* offset of start time, 64 bits */
+#define vVW510021_W_ENDT_OFF 8 /* offset of end time, 64 bits */
+#define vVW510021_W_ERRORS_OFF 16 /* offset of error vector */
+#define vVW510021_W_VALID_OFF 20 /* 2 Bytes with different validity bits */
+#define vVW510021_W_INFO_OFF 22 /* offset of INFO field, 16 LSBs */
+#define vVW510021_W_FRAME_TYPE_OFF 24
+#define vVW510021_W_L4ID_OFF 28
+#define vVW510021_W_IPLEN_OFF 30 /* offset of IP Total Length field */
+#define vVW510021_W_FLOWSEQ_OFF 32 /* offset of signature sequence number */
+#define vVW510021_W_FLOWID_OFF 33 /* offset of flow ID */
+#define vVW510021_W_LATVAL_OFF 36 /* offset of delay/flowtimestamp, 32b */
+#define vVW510021_W_DEBUG_OFF 40 /* offset of debug, 16 bits */
+#define vVW510021_W_FPGA_VERSION_OFF 44 /* offset of fpga version, 16 bits */
+#define vVW510021_W_MATCH_OFF 47 /* offset of pattern match vector */
+
+/* offsets in the header block */
+#define vVW510021_W_HEADER_LEN 16 /* length of FRAME header */
+#define vVW510021_W_RXTX_OFF 0 /* rxtx offset, cmd byte of header */
+#define vVW510021_W_HEADER_VERSION_OFF 9 /* version, 2bytes */
+#define vVW510021_MSG_LENGTH_OFF 10 /* MSG LENGTH, 2bytes */
+#define vVW510021_W_DEVICE_TYPE_OFF 8 /* version, 2bytes */
+
+/* offsets that occurs right after the header */
+#define vVW510021_W_AFTERHEADER_LEN 8 /* length of STATs info directly after header */
+#define vVW510021_W_L1P_1_OFF 0 /* offset of 1st byte of layer one info */
+#define vVW510021_W_L1P_2_OFF 1 /* offset of 2nd byte of layer one info */
+#define vVW510021_W_MTYPE_OFF vVW510021_W_L1P_2_OFF
+#define vVW510021_W_PREAMBLE_OFF vVW510021_W_L1P_1_OFF
+#define vVW510021_W_RSSI_TXPOWER_OFF 2 /* RSSI (NOTE: RSSI must be negated!) */
+#define vVW510021_W_MSDU_LENGTH_OFF 3 /* 7:0 of length, next byte 11:8 in top 4 bits */
+#define vVW510021_W_BVCV_VALID_OFF 4 /* BV,CV Determine validaity of bssid and txpower */
+#define vVW510021_W_VCID_OFF 6 /* offset of VC (client) ID */
+#define vVW510021_W_PLCP_LENGTH_OFF 12 /* LENGTH field in the plcp header */
+
+/* Masks and defines */
+#define vVW510021_W_IS_BV 0x04 /* BV bit in STATS block */
+#define vVW510021_W_IS_CV 0x02 /* BV bit in STATS block */
+#define vVW510021_W_FLOW_VALID 0x8000 /* valid_off flow-is-valid flag (else 0) */
+#define vVW510021_W_QOS_VALID 0x4000
+#define vVW510021_W_HT_VALID 0x2000
+#define vVW510021_W_L4ID_VALID 0x1000
+#define vVW510021_W_PREAMBLE_MASK 0x40 /* short/long preamble/guard(ofdm) mask */
+#define vVW510021_W_MCS_MASK 0x3f /* mcs index (a/b) type mask */
+#define vVW510021_W_MOD_SCHEME_MASK 0x3f /* modulation type mask */
+#define vVW510021_W_PLCPC_MASK 0x03 /* PLPCP type mask */
+#define vVW510021_W_SEL_MASK 0x80
+#define vVW510021_W_WEP_MASK 0x0001
+#define vVW510021_W_CBW_MASK 0xC0
+
+#define vVW510021_W_MT_SEL_LEGACY 0x00
+#define vVW510021_W_PLCP_LEGACY 0x00
+#define vVW510021_W_PLCP_MIXED 0x01
+#define vVW510021_W_PLCP_GREENFIELD 0x02
+#define vVW510021_W_HEADER_IS_RX 0x21
+#define vVW510021_W_HEADER_IS_TX 0x31
+#define vVW510021_W_IS_WEP 0x0001
+#define vVW510021_W_IS_LONGPREAMBLE 0x40
+
+#define vVW510021_W_IS_TCP 0x01000000 /* TCP bit in FRAME_TYPE field */
+#define vVW510021_W_IS_UDP 0x00100000 /* UDP bit in FRAME_TYPE field */
+#define vVW510021_W_IS_ICMP 0x00001000 /* ICMP bit in FRAME_TYPE field */
+#define vVW510021_W_IS_IGMP 0x00010000 /* IGMP bit in FRAME_TYPE field */
+
+
+#define vVW510021_W_HEADER_VERSION 0x00
+#define vVW510021_W_DEVICE_TYPE 0x15
+#define vVW510021_W_11n_DEVICE_TYPE 0x20
+#define vVW510021_W_FPGA_VERSION 0x000C
+#define vVW510021_W_11n_FPGA_VERSION 0x000D
+
+/* Error masks */
+#define vVW510021_W_FCS_ERROR 0x10
+#define vVW510021_W_CRYPTO_ERROR 0x50000
+
+#define vVW510021_W_WEPTYPE 0x0001 /* WEP frame */
+#define vVW510021_W_TKIPTYPE 0x0002 /* TKIP frame */
+#define vVW510021_W_CCMPTYPE 0x0004 /* CCMP frame */
+
+/* definitions for VW510024 FPGA, wired ethernet format */
+/* FORMAT:
+ 16 BYTE header
+ 52 bytes of stats block trailer
+*/
+/* offsets in the stats block */
+#define vVW510024_E_STATS_LEN 48 /* length of stats block trailer */
+#define vVW510024_E_MSDU_LENGTH_OFF 0 /* MSDU 16 BITS */
+#define vVW510024_E_BMCV_VALID_OFF 2 /* BM,CV Determine validITY */
+#define vVW510024_E_VCID_OFF 2 /* offset of VC (client) ID 13:8, */
+ /* 7:0 IN offset 7*/
+#define vVW510024_E_STARTT_OFF 4 /* offset of start time, 64 bits */
+#define vVW510024_E_ENDT_OFF 12 /* offset of end time, 64 bits */
+#define vVW510024_E_ERRORS_OFF 22 /* offset of error vector */
+#define vVW510024_E_VALID_OFF 24 /* 2 Bytes with different validity bits */
+#define vVW510024_E_INFO_OFF 26 /* offset of INFO field, 16 LSBs */
+#define vVW510024_E_FRAME_TYPE_OFF 28
+#define vVW510024_E_L4ID_OFF 32
+#define vVW510024_E_IPLEN_OFF 34
+#define vVW510024_E_FLOWSEQ_OFF 36 /* offset of signature sequence number */
+#define vVW510024_E_FLOWID_OFF 37 /* offset of flow ID */
+#define vVW510024_E_LATVAL_OFF 40 /* offset of delay/flowtimestamp, 32 bits */
+#define vVW510024_E_FPGA_VERSION_OFF 20 /* offset of fpga version, 16 bits */
+#define vVW510024_E_MATCH_OFF 51 /* offset of pattern match vector */
+
+/* offsets in the header block */
+#define vVW510024_E_HEADER_LEN vVW510021_W_HEADER_LEN /* length of FRAME header */
+#define vVW510024_E_RXTX_OFF vVW510021_W_RXTX_OFF /* rxtx offset, cmd byte */
+#define vVW510024_E_HEADER_VERSION_OFF 16 /* version, 2bytes */
+#define vVW510024_E_MSG_LENGTH_OFF vVW510021_MSG_LENGTH_OFF /* MSG LENGTH, 2bytes */
+#define vVW510024_E_DEVICE_TYPE_OFF vVW510021_W_DEVICE_TYPE_OFF /* Device Type, 2bytes */
+
+/* Masks and defines */
+#define vVW510024_E_IS_BV 0x80 /* Bm bit in STATS block */
+#define vVW510024_E_IS_CV 0x40 /* cV bit in STATS block */
+#define vVW510024_E_FLOW_VALID 0x8000 /* valid_off flow-is-valid flag (else force to 0) */
+#define vVW510024_E_QOS_VALID 0x0000 /*not valid for ethernet*/
+#define vVW510024_E_L4ID_VALID 0x1000
+#define vVW510024_E_CBW_MASK 0xC0
+#define vVW510024_E_VCID_MASK 0x3FFF
+
+#define vVW510024_E_HEADER_IS_RX 0x21
+#define vVW510024_E_HEADER_IS_TX 0x31
+
+#define vVW510024_E_IS_TCP 0x01000000 /* TCP bit in FRAME_TYPE field */
+#define vVW510024_E_IS_UDP 0x00100000 /* UDP bit in FRAME_TYPE field */
+#define vVW510024_E_IS_ICMP 0x00001000 /* ICMP bit in FRAME_TYPE field */
+#define vVW510024_E_IS_IGMP 0x00010000
+#define vVW510024_E_IS_VLAN 0x4000
+
+#define vVW510024_E_HEADER_VERSION 0x00
+#define vVW510024_E_DEVICE_TYPE 0x18
+#define vVW510024_E_FPGA_VERSION 0x0001
+
+#define FPGA_VER_NOT_APPLICABLE 0
+
+#define UNKNOWN_FPGA 0
+#define vVW510021_W_FPGA 1
+#define vVW510006_W_FPGA 2
+#define vVW510012_E_FPGA 3
+#define vVW510024_E_FPGA 4
+
+ /*the flow signature is:
+ Byte Description
+0 Magic Number (0xDD)
+1 Chassis Number[7:0]
+2 Slot Number[7:0]
+3 Port Number[7:0]
+4 Flow ID[7:0]
+5 Flow ID[15:8]
+6 Flow ID[23:16]
+7 Flow Sequence Number[7:0]
+8 Timestamp[7:0]
+9 Timestamp[15:8]
+10 Timestamp[23:16]
+11 Timestamp[31:24]
+12 Timestamp[39:32]
+13 Timestamp[47:40]
+14 CRC16
+15 CRC16
+
+*/
+#define SIG_SIZE 16 /* size of signature field, bytes */
+#define SIG_FID_OFF 4 /* offset of flow ID in signature */
+#define SIG_FSQ_OFF 7 /* offset of flow seqnum in signature */
+#define SIG_TS_OFF 8 /* offset of flow seqnum in signature */
+
+
+
+/*--------------------------------------------------------------------------------------*/
+/* various internal variables */
+
+/* offsets in stats block; these are dependent on the frame type (Ethernet/WLAN) and */
+/* version number of .vwr file, and are set up by setup_defaults() */
+static guint32 STATS_LEN; /* length of stats block trailer */
+static guint32 STATS_START_OFF; /* STATS OFF AFTER HEADER */
+static guint32 VALID_OFF; /* bit 6 (0x40) is flow-is-valid flag */
+static guint32 MTYPE_OFF; /* offset of modulation type */
+static guint32 VCID_OFF; /* offset of VC ID */
+static guint32 FLOWSEQ_OFF; /* offset of signature sequence number */
+static guint32 FLOWID_OFF; /* offset of flow ID */
+static guint32 OCTET_OFF; /* offset of octets */
+static guint32 ERRORS_OFF; /* offset of error vector */
+static guint32 PATN_OFF; /* offset of pattern match vector */
+static guint32 RSSI_OFF; /* RSSI (NOTE: RSSI must be negated!) */
+static guint32 STARTT_OFF; /* offset of start time, 64 bits */
+static guint32 ENDT_OFF; /* offset of end time, 64 bits */
+static guint32 LATVAL_OFF; /* offset of latency, 32 bits */
+static guint32 INFO_OFF; /* offset of INFO field, 16 bits */
+static guint32 L1P_1_OFF; /* offset 1ST Byte of l1params */
+static guint32 L1P_2_OFF; /* offset 2nd Byte of l1params */
+static guint32 L4ID_OFF; /* LAYER 4 id offset*/
+static guint32 IPLEN_OFF; /* */
+static guint32 PLCP_LENGTH_OFF; /* plcp length offset*/
+static guint32 FPGA_VERSION_OFF; /* offset of fpga version field, 16 bits */
+static guint32 HEADER_VERSION_OFF; /* offset of header version, 16 bits */
+static guint32 RXTX_OFF; /* offset of CMD bit, rx or tx */
+static guint32 MT_10_HALF; /* 10 Mb/s half-duplex */
+static guint32 MT_10_FULL; /* 10 Mb/s full-duplex */
+static guint32 MT_100_HALF; /* 100 Mb/s half-duplex */
+static guint32 MT_100_FULL; /* 100 Mb/s full-duplex */
+static guint32 MT_1G_HALF; /* 1 Gb/s half-duplex */
+static guint32 MT_1G_FULL; /* 1 Gb/s full-duplex */
+static guint32 FCS_ERROR; /* FCS error in frame */
+static guint32 CRYPTO_ERR; /* RX decrypt error flags */
+static guint32 PAYCHK_ERR; /* payload checksum failure */
+static guint32 RETRY_ERR; /* excessive retries on TX failure */
+static guint32 IS_RX; /* TX/RX bit in STATS block */
+static guint32 MT_MASK; /* modulation type mask */
+static guint32 VCID_MASK; /* VC ID is only 9 bits */
+static guint32 FLOW_VALID; /* flow-is-valid flag (else force to 0) */
+static guint32 RX_DECRYPTS; /* RX-frame-was-decrypted bits */
+static guint32 TX_DECRYPTS; /* TX-frame-was-decrypted bits */
+static guint32 FC_PROT_BIT; /* Protected Frame bit in FC1 of frame */
+static guint32 MT_CCKL; /* CCK modulation, long preamble */
+static guint32 MT_CCKS; /* CCK modulation, short preamble */
+static guint32 MT_OFDM; /* OFDM modulation */
+static guint32 MCS_INDEX_MASK; /* mcs index type mask */
+static guint32 PREAMBLE_MASK; /* preamble type mask */
+static guint32 IS_TX; /* FOR FPGA500021 this is true if tx */
+static guint32 FPGA_VERSION;
+static guint32 HEADER_IS_RX;
+static guint32 HEADER_IS_TX;
+static guint32 WEPTYPE; /* frame is WEP */
+static guint32 TKIPTYPE; /* frame is TKIP */
+static guint32 CCMPTYPE; /* frame is CCMP */
+static guint32 FRAME_TYPE_OFF;
+static guint32 IS_TCP;
+static guint32 IS_UDP;
+static guint32 IS_ICMP;
+static guint32 IS_IGMP;
+static guint32 IS_QOS;
+static guint32 IS_VLAN;
+
+/* internal utility functions */
+static int decode_msg(register guint8 *, int *);
+static guint8 get_ofdm_rate(guint8 *);
+static guint8 get_cck_rate(guint8 *plcp);
+static void setup_defaults(guint16);
+
+static gboolean vwr_read(wtap *, int *, gchar **, gint64 *);
+static gboolean vwr_seek_read(wtap *, gint64, union wtap_pseudo_header *, guchar *,
+ int, int *, gchar **);
+
+static int vwr_read_rec_header(FILE_T, int *, int *, gchar **);
+static void vwr_read_rec_data(wtap *, guint8 *, guint8 *, int);
+
+static guint16 vwr_get_fpga_version(wtap *, int *, gchar **);
+
+
+static void vwr_read_rec_data_vVW510021(wtap *, guint8 *, guint8 *, int);
+static void vwr_read_rec_data_ethernet(wtap *, guint8 *, guint8 *, int);
+
+static int find_signature(register guint8 *, int, register guint32, register guint8);
+static guint64 get_signature_ts(register guint8 *, int);
+
+/* open a .vwr file for reading */
+/* this does very little, except setting the wiretap header for a VWR file type */
+/* and the timestamp precision to microseconds */
+
+int vwr_open(wtap *wth, int *err, gchar **err_info _U_)
+{
+ guint16 fpgaVer;
+
+ *err = 0;
+
+ fpgaVer = vwr_get_fpga_version(wth, err, err_info);
+ if ((*err != 0) || (fpgaVer == UNKNOWN_FPGA))
+ return (-1);
+ FPGA_VERSION = fpgaVer;
+ /* set the local module options first (this is a WLAN capture) */
+ setup_defaults(fpgaVer);
+
+ wth->snapshot_length = 0;
+ wth->subtype_read = vwr_read;
+ wth->subtype_seek_read = vwr_seek_read;
+ wth->tsprecision = WTAP_FILE_TSPREC_USEC;
+
+ if (fpgaVer == vVW510021_W_FPGA) {
+ wth->file_type = WTAP_FILE_VWR_80211;
+ wth->file_encap = WTAP_ENCAP_IXVERIWAVE;
+
+ }
+ else if (fpgaVer == vVW510006_W_FPGA) {
+ wth->file_type = WTAP_FILE_VWR_80211;
+ wth->file_encap = WTAP_ENCAP_IXVERIWAVE;
+
+ }
+ else if (fpgaVer == vVW510012_E_FPGA) {
+ wth->file_type = WTAP_FILE_VWR_ETH;
+ wth->file_encap = WTAP_ENCAP_IXVERIWAVE;
+
+ }
+ else if (fpgaVer == vVW510024_E_FPGA) {
+ wth->file_type = WTAP_FILE_VWR_ETH;
+ wth->file_encap = WTAP_ENCAP_IXVERIWAVE;
+
+ }
+
+ return(1);
+}
+
+
+/* Read the next packet */
+/* note that the VWR file format consists of a sequence of fixed 16-byte record headers of */
+/* different types; some types, including frame record headers, are followed by */
+/* variable-length data */
+/* a frame record consists of: the above 16-byte record header, a 1-16384 byte raw PLCP */
+/* frame, and a 64-byte statistics block trailer */
+/* the PLCP frame consists of a 4-byte or 6-byte PLCP header, followed by the MAC frame */
+
+static gboolean vwr_read(wtap *wth, int *err, gchar **err_info _U_, gint64 *data_offset)
+{
+ int ret;
+ guint8 rec[B_SIZE]; /* local buffer (holds input record) */
+ int rec_size = 0;
+ guint8 *data_ptr;
+ guint16 pkt_len; /* length of radiotap headers */
+
+ /* read the next frame record header in the capture file; if no more frames, return */
+ /* if we found a frame record, set the data_offset value to the start of the frame */
+ /* record (i.e., the record header for the frame) */
+ if ((ret = vwr_read_rec_header(wth->fh, &rec_size, err, err_info)) <= 0) {
+ *err_info = g_strdup_printf("Record not readable or EOF encountered");
+ return(FALSE); /* Read error or EOF */
+ } else
+ wth->data_offset += ret; /* bump offset past header */
+
+ *data_offset = (wth->data_offset - 16); /* set offset for random seek @PLCP */
+
+ /* got a frame record; read over entire record (frame + trailer) into a local buffer */
+ /* if we don't get it all, then declare an error, we can't process the frame */
+ if (file_read(rec, rec_size, wth->fh) != rec_size) {
+ *err = file_error(wth->fh, err_info);
+ if (*err == 0)
+ *err = WTAP_ERR_SHORT_READ;
+ return(FALSE);
+ }
+ else
+ wth->data_offset += rec_size; /* got it OK, bump to next rec */
+
+
+
+ /* before writing anything out, make sure the buffer has enough space for everything */
+ if ((FPGA_VERSION == vVW510021_W_FPGA) || (FPGA_VERSION == vVW510006_W_FPGA) )
+ /* frames are always 802.11 with an extended radiotap header */
+ pkt_len = rec_size + sizeof(stats_common_fields) + sizeof(ext_rtap_fields);
+ else
+ /* frames are always ethernet with an extended ethernettap header */
+ pkt_len = rec_size + sizeof(stats_common_fields) + sizeof(stats_ethernettap_fields);
+ buffer_assure_space(wth->frame_buffer, pkt_len);
+ data_ptr = buffer_start_ptr(wth->frame_buffer);
+
+ /* now format up the frame data */
+ switch (FPGA_VERSION)
+ {
+ case vVW510006_W_FPGA:
+ vwr_read_rec_data(wth, data_ptr, rec, rec_size);
+ break;
+ case vVW510021_W_FPGA:
+ vwr_read_rec_data_vVW510021(wth, data_ptr, rec, rec_size);
+ break;
+ case vVW510012_E_FPGA:
+ vwr_read_rec_data_ethernet(wth, data_ptr, rec, rec_size);
+ break;
+ case vVW510024_E_FPGA:
+ vwr_read_rec_data_ethernet(wth, data_ptr, rec, rec_size);
+ break;
+ }
+
+ /* If the per-file encapsulation isn't known, set it to this packet's encapsulation */
+ /* If it *is* known, and it isn't this packet's encapsulation, set it to */
+ /* WTAP_ENCAP_PER_PACKET, as this file doesn't have a single encapsulation for all */
+ /* packets in the file */
+ if (wth->file_encap == WTAP_ENCAP_UNKNOWN)
+ wth->file_encap = wth->phdr.pkt_encap;
+ else {
+ if (wth->file_encap != wth->phdr.pkt_encap)
+ wth->file_encap = WTAP_ENCAP_PER_PACKET;
+ }
+
+ return(TRUE);
+}
+
+/* read a random frame in the middle of a file; the start of the PLCP frame is @ seek_off */
+
+static gboolean vwr_seek_read(wtap *wth, gint64 seek_off, union wtap_pseudo_header *pseudo_header _U_, guchar *pd, int pkt_size _U_,
+ int *err, gchar **err_info _U_)
+{
+ guint8 rec[B_SIZE]; /* local buffer (holds input record) */
+ int rec_size;
+
+ /* first seek to the indicated record header */
+ if (file_seek(wth->random_fh, seek_off, SEEK_SET, err) == -1)
+ return(FALSE);
+
+ /* read in the record header */
+ if (vwr_read_rec_header(wth->random_fh, &rec_size, err, err_info) <= 0)
+ return(FALSE); /* Read error or EOF */
+
+ /* read over the entire record (frame + trailer) into a local buffer */
+ /* if we don't get it all, then declare an error, we can't process the frame */
+ if (file_read(rec, rec_size, wth->random_fh) != rec_size) {
+ *err = file_error(wth->random_fh, err_info);
+ if (*err == 0)
+ *err = WTAP_ERR_SHORT_READ;
+ return(FALSE);
+ }
+
+ /* now format up the frame data into the passed buffer, according to the FPGA type */
+ switch (FPGA_VERSION) {
+ case vVW510006_W_FPGA:
+ vwr_read_rec_data(wth, pd, rec, rec_size);
+ break;
+ case vVW510021_W_FPGA:
+ vwr_read_rec_data_vVW510021(wth, pd, rec, rec_size);
+ break;
+ case vVW510012_E_FPGA:
+ vwr_read_rec_data_ethernet(wth, pd, rec, rec_size);
+ break;
+ case vVW510024_E_FPGA:
+ vwr_read_rec_data_ethernet(wth, pd, rec, rec_size);
+ break;
+ }
+
+ return(TRUE);
+}
+
+/* scan down in the input capture file to find the next frame header */
+/* decode and skip over all non-frame messages that are in the way */
+/* return the offset into the file for the first byte of the frame (if found); -1 on */
+/* error; zero if EOF with no frame */
+/* also return the frame size in bytes */
+
+static int vwr_read_rec_header(FILE_T fh, int *rec_size, int *err, gchar **err_info)
+{
+ int bytes_read, file_off;
+ int f_len, v_type;
+ guint8 header[16];
+
+ errno = WTAP_ERR_CANT_READ;
+ file_off = 0;
+ *rec_size = 0;
+
+ /* read out the file data in 16-byte messages, stopping either after we find a frame, */
+ /* or if we run out of data */
+ /* each 16-byte message is decoded; if we run across a non-frame message followed by a*/
+ /* variable-length item, we read the variable length item out and discard it */
+ /* if we find a frame, we return (with the header in the passed buffer) */
+ while (1) {
+ if ((bytes_read = file_read(header, 16, fh)) != 16) {
+ *err = file_error(fh, err_info);
+ if (*err != 0)
+ return(-1);
+ else
+ return(0);
+ }
+ else
+ file_off += bytes_read;
+
+ /* got a header; invoke decode-message function to parse and process it */
+ /* if the function returns a length, then a frame or variable-length message */
+ /* follows the 16-byte message */
+ /* if the variable length message is not a frame, simply skip over it */
+ if ((f_len = decode_msg(header, &v_type)) != 0) {
+ if (f_len > B_SIZE) {
+ *err = WTAP_ERR_CANT_READ;
+ return(-1);
+ }
+ else if (v_type != VT_FRAME) {
+ if (file_seek(fh, f_len, SEEK_CUR, err) < 0)
+ return(-1);
+ else
+ file_off += f_len;
+ }
+ else {
+ *rec_size = f_len;
+ return(file_off);
+ }
+ }
+ }
+}
+
+/* figure out the FPGA version (and also see whether this is a VWR file type */
+
+static guint16 vwr_get_fpga_version(wtap *wth, int *err, gchar **err_info _U_)
+{
+ guint8 rec[B_SIZE]; /* local buffer (holds input record) */
+ guint8 header[16];
+ int rec_size = 0;
+ guint8 i;
+ guint8 *s_510021_ptr = NULL;
+ guint8 *s_510006_ptr = NULL;
+ guint8 *s_510024_ptr = NULL;
+ guint8 *s_510012_ptr = NULL; /* stats pointers */
+ guint8 device_type,header_version; /* length of radiotap headers */
+ gint64 filePos = -1;
+ guint32 frame_type = 0;
+ int f_len, v_type;
+ gboolean found_frame = FALSE;
+ guint16 data_length = 0;
+ guint16 fpga_version;
+
+ device_type = 0;
+ header_version = 0;
+
+ filePos = file_tell(wth->fh);
+ if (filePos == -1) {
+ *err = WTAP_ERR_SHORT_READ;
+ return(UNKNOWN_FPGA);
+ }
+
+ fpga_version = 1000;
+ /* got a frame record; see if it is vwr */
+ /* if we don't get it all, then declare an error, we can't process the frame */
+ /* read out the file data in 16-byte messages, stopping either after we find a frame, */
+ /* or if we run out of data */
+ /* each 16-byte message is decoded; if we run across a non-frame message followed by a*/
+ /* variable-length item, we read the variable length item out and discard it */
+ /* if we find a frame, we return (with the header in the passed buffer) */
+ while ((file_read(header, 16, wth->fh)) == 16) {
+ /* got a header; invoke decode-message function to parse and process it */
+ /* if the function returns a length, then a frame or variable-length message */
+ /* follows the 16-byte message */
+ /* if the variable length message is not a frame, simply skip over it */
+ if ((f_len = decode_msg(header, &v_type)) != 0) {
+ if (f_len > B_SIZE) {
+ *err = WTAP_ERR_CANT_READ;
+ return(UNKNOWN_FPGA);
+ }
+ else if (v_type != VT_FRAME) {
+ if (file_seek(wth->fh, f_len, SEEK_CUR, err) < 0)
+ return(UNKNOWN_FPGA);
+ }
+ else {
+ rec_size = f_len;
+ found_frame = TRUE;
+ /* got a frame record; read over entire record (frame + trailer) into a local buffer */
+ /* if we don't get it all, then declare an error, we can't process the frame */
+ if (file_read(rec, rec_size, wth->fh) != rec_size) {
+ *err = file_error(wth->fh, err_info);
+ if (*err == 0)
+ *err = WTAP_ERR_SHORT_READ;
+
+ return(UNKNOWN_FPGA);
+ }
+
+
+ /* I'll grab the bytes where the Ethernet "octets" field should be and the bytes where */
+ /* the 802.11 "octets" field should be. Then if I do rec_size - octets - */
+ /* size_of_stats_block and it's 0, I can select the correct type. */
+ /* octets + stats_len = rec_size only when octets have been incremented to nearest */
+ /* number divisible by 4. */
+
+ /* First check for series I WLAN since the check is more rigorous. */
+ if (rec_size > v22_W_STATS_LEN) {
+ s_510006_ptr = &(rec[rec_size - v22_W_STATS_LEN]); /* point to 510006 WLAN */
+ /* stats block */
+
+ data_length = (s_510006_ptr[v22_W_OCTET_OFF] << 8) + s_510006_ptr[v22_W_OCTET_OFF + 1];
+ i = 0;
+ while (((data_length + i) % 4) != 0)
+ i = i + 1;
+
+ frame_type = (s_510006_ptr[v22_W_FRAME_TYPE_OFF] << 24) | (s_510006_ptr[v22_W_FRAME_TYPE_OFF + 1] << 16) |
+ (s_510006_ptr[v22_W_FRAME_TYPE_OFF + 2] << 8) | (s_510006_ptr[v22_W_FRAME_TYPE_OFF + 3]);
+
+ if (rec_size == (data_length + v22_W_STATS_LEN + i) && (frame_type & v22_W_IS_80211) == 0x1000000) {
+ fpga_version = vVW510006_W_FPGA;
+ }
+ }
+
+ /* Next for the series I Ethernet */
+ if ((rec_size > v22_E_STATS_LEN) && (fpga_version == 1000)) {
+ s_510012_ptr = &(rec[rec_size - v22_E_STATS_LEN]); /* point to 510012 enet */
+ /* stats block */
+ data_length = (s_510012_ptr[v22_E_OCTET_OFF] << 8) + s_510012_ptr[v22_E_OCTET_OFF + 1];
+ i = 0;
+ while (((data_length + i) % 4) != 0)
+ i = i + 1;
+
+ if (rec_size == (data_length + v22_E_STATS_LEN + i))
+ fpga_version = vVW510012_E_FPGA;
+ }
+
+
+ /* Next the series II WLAN */
+ if ((rec_size > vVW510021_W_STATS_LEN) && (fpga_version == 1000)) {
+ s_510021_ptr = &(rec[rec_size - vVW510021_W_STATS_LEN]); /* point to 510021 WLAN */
+ /* stats block */
+
+ data_length = (256 * (rec[vVW510021_W_MSDU_LENGTH_OFF + 1] & 0x1f)) + rec[vVW510021_W_MSDU_LENGTH_OFF];
+
+ i = 0;
+ while (((data_length + i) % 4) != 0)
+ i = i + 1;
+
+ /*the 12 is from the 12 bytes of plcp header */
+ if (rec_size == (data_length + vVW510021_W_STATS_LEN +vVW510021_W_AFTERHEADER_LEN+12+i))
+ fpga_version = vVW510021_W_FPGA;
+ }
+
+ /* Finally the Series II Ethernet */
+ if ((rec_size > vVW510024_E_STATS_LEN) && (fpga_version == 1000)) {
+ s_510024_ptr = &(rec[rec_size - vVW510024_E_STATS_LEN]); /* point to 510024 ENET */
+ data_length = (s_510024_ptr[vVW510024_E_MSDU_LENGTH_OFF] << 8) + s_510024_ptr[vVW510024_E_MSDU_LENGTH_OFF + 1];
+
+ i = 0;
+ while (((data_length + i) % 4) != 0)
+ i = i + 1;
+
+ if (rec_size == (data_length + vVW510024_E_STATS_LEN + i)) {
+ if (s_510024_ptr != NULL)
+ fpga_version = vVW510024_E_FPGA;
+ }
+ }
+ if (fpga_version != 1000)
+ {
+ /* reset the file position offset */
+ if (file_seek (wth->fh, filePos, SEEK_SET, err) == -1) {
+ *err = WTAP_ERR_SHORT_READ;
+ return (UNKNOWN_FPGA);
+ }
+ /* We found an FPGA that works */
+ return(fpga_version);
+ }
+ }
+ }
+ }
+
+ *err = file_error(wth->fh, err_info);
+ return(UNKNOWN_FPGA);
+}
+
+/* copy the actual packet data from the capture file into the target data block */
+/* the packet is constructed as a 38-byte VeriWave-extended Radiotap header plus the raw */
+/* MAC octets */
+
+static void vwr_read_rec_data(wtap *wth, guint8 *data_ptr, guint8 *rec, int rec_size)
+{
+ int bytes_written = 0; /* bytes output to buf so far */
+ register int i; /* temps */
+ register guint8 *s_ptr, *m_ptr; /* stats and MPDU pointers */
+ gint16 octets, msdu_length; /* octets in frame */
+ guint8 m_type, flow_seq; /* mod type (CCK-L/CCK-S/OFDM), seqnum */
+ guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
+ /* times, nsec */
+ guint32 latency;
+ guint64 start_time, s_sec, s_usec = LL_ZERO; /* start time, sec + usec */
+ guint64 end_time, e_sec, e_usec = LL_ZERO; /* end time, sec + usec */
+ guint16 info; /* INFO/ERRORS fields in stats blk */
+ gint16 rssi; /* RSSI, signed 16-bit number */
+ int f_tx; /* flag: if set, is a TX frame */
+ int f_flow, f_qos; /* flags: flow valid, frame is QoS */
+ guint32 frame_type; /* frame type field */
+ int rate; /* PHY bit rate in 0.5 Mb/s units */
+ guint16 vc_id, flow_id,ip_len, ht_len=0; /* VC ID, flow ID, total ip length */
+ guint32 d_time, errors; /* packet duration & errors */
+ guint16 r_hdr_len; /* length of radiotap headers */
+ ext_rtap_fields er_fields; /* extended radiotap fields */
+ stats_common_fields common_fields; /* extended radiotap fields */
+ int mac_snap, sig_off, pay_off; /* MAC+SNAP header len, signature offset */
+ guint64 sig_ts; /* 32 LSBs of timestamp in signature */
+ gint32 remaining_length = 0;
+
+ /* calculate the start of the statistics block in the buffer */
+ /* also get a bunch of fields from the stats block */
+ s_ptr = &(rec[rec_size - STATS_LEN]); /* point to it */
+ m_type = s_ptr[MTYPE_OFF] & (guint8)MT_MASK;
+ f_tx = !(s_ptr[MTYPE_OFF] & (guint8)IS_RX);
+ octets = (s_ptr[OCTET_OFF] << 8) + s_ptr[OCTET_OFF + 1];
+ vc_id = ((s_ptr[VCID_OFF] << 8) + s_ptr[VCID_OFF + 1]) & (guint8)VCID_MASK;
+ flow_seq = s_ptr[FLOWSEQ_OFF];
+ ip_len = (s_ptr[IPLEN_OFF] << 8) | s_ptr[IPLEN_OFF+1];
+
+ f_flow = (s_ptr[VALID_OFF] & (guint8)FLOW_VALID) != 0;
+ f_qos = (s_ptr[MTYPE_OFF] & (guint8)IS_QOS) != 0;
+ frame_type = (s_ptr[FRAME_TYPE_OFF] << 24) | (s_ptr[FRAME_TYPE_OFF + 1] << 16) |
+ (s_ptr[FRAME_TYPE_OFF + 2] << 8) | (s_ptr[FRAME_TYPE_OFF + 3]);
+
+ latency = (s_ptr[LATVAL_OFF + 6] << 8) | (s_ptr[LATVAL_OFF + 7]); /* latency MSbytes */
+ for (i = 0; i < 4; i++)
+ latency = (latency << 8) | s_ptr[LATVAL_OFF + i];
+
+ flow_id = 0; /* init flow ID to 0 */
+ flow_id = (s_ptr[FLOWID_OFF + 1] << 8) + s_ptr[FLOWID_OFF + 2]; /* only 16 LSBs kept */
+ errors = (s_ptr[ERRORS_OFF] << 8) + s_ptr[ERRORS_OFF + 1];
+
+ info = (s_ptr[INFO_OFF] << 8) + s_ptr[INFO_OFF + 1];
+ rssi = (s_ptr[RSSI_OFF] & 0x80) ? (-1 * (s_ptr[RSSI_OFF] & 0x7f)) : s_ptr[RSSI_OFF];
+ /*if ((info && AGGREGATE_MASK) != 0)*/
+ /* this length includes the Start_Spacing + Delimiter + MPDU + Padding for each piece of the aggregate*/
+ /*ht_len = (int)rec[PLCP_LENGTH_OFF] + ((int)rec[PLCP_LENGTH_OFF+1] << 8);*/
+
+ /* decode OFDM or CCK PLCP header and determine rate and short preamble flag */
+ /* the SIGNAL byte is always the first byte of the PLCP header in the frame */
+ if (m_type == MT_OFDM)
+ rate = get_ofdm_rate(rec);
+ else if ((m_type == MT_CCKL) || (m_type == MT_CCKS))
+ rate = get_cck_rate(rec);
+ else
+ rate = 1;
+ /* calculate the MPDU size/ptr stuff; MPDU starts at 4 or 6 depending on OFDM/CCK */
+ /* note that the number of octets in the frame also varies depending on OFDM/CCK, */
+ /* because the PLCP header is prepended to the actual MPDU */
+ m_ptr = &(rec[((m_type == MT_OFDM) ? 4 : 6)]);
+ octets -= (m_type == MT_OFDM) ? 4 : 6;
+
+ /* sanity check the octets field to determine if it is OK (or segfaults result) */
+ /* if it's greater, then truncate to actual record size */
+ remaining_length = rec_size - STATS_LEN;
+
+ if (octets > (rec_size - (int)STATS_LEN))
+ octets = (rec_size - (int)STATS_LEN);
+ msdu_length = octets;
+
+
+ /* calculate start & end times (in sec/usec), converting 64-bit times to usec */
+ for (i = 0; i < 4; i++) /* 64-bit times are "Corey-endian" */
+ s_time = (s_time << 8) | s_ptr[STARTT_OFF + i + 4];
+ for (i = 0; i < 4; i++)
+ s_time = (s_time << 8) | s_ptr[STARTT_OFF + i];
+ for (i = 0; i < 4; i++)
+ e_time = (e_time << 8) | s_ptr[ENDT_OFF + i + 4];
+ for (i = 0; i < 4; i++)
+ e_time = (e_time << 8) | s_ptr[ENDT_OFF + i];
+
+ /* find the packet duration (difference between start and end times) */
+ d_time = (guint32)((e_time - s_time) / NS_IN_US); /* find diff, converting to usec */
+
+ /* also convert the packet start time to seconds and microseconds */
+ start_time = s_time / NS_IN_US; /* convert to microseconds first */
+ s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
+ s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
+
+ /* also convert the packet end time to seconds and microseconds */
+ end_time = e_time / NS_IN_US; /* convert to microseconds first */
+ e_sec = (end_time / US_IN_SEC); /* get the number of seconds */
+ e_usec = end_time - (e_sec * US_IN_SEC); /* get the number of microseconds */
+
+ /* extract the 32 LSBs of the signature timestamp field from the data block*/
+ mac_snap = (f_qos ? 34 : 32); /* 24 (MAC) + 2 (QoS) + 8 (SNAP) */
+
+ if (frame_type & IS_TCP) /* signature offset for TCP frame */
+ {
+ pay_off = mac_snap + 40;
+ }
+ else if (frame_type & IS_UDP) /* signature offset for UDP frame */
+ {
+ pay_off = mac_snap + 28;
+ }
+ else if (frame_type & IS_ICMP) /* signature offset for ICMP frame */
+ {
+ pay_off = mac_snap + 24;
+ }
+ else if (frame_type & IS_IGMP) /* signature offset for IGMPv2 frame */
+ {
+ pay_off = mac_snap + 28;
+ }
+ else /* signature offset for raw IP frame */
+ {
+ pay_off = mac_snap + 20;
+ }
+
+ sig_off = find_signature(m_ptr, pay_off, flow_id, flow_seq);
+ if ((m_ptr[sig_off] == 0xdd) && (sig_off + 15 <= msdu_length) && (f_flow != 0))
+ sig_ts = get_signature_ts(m_ptr, sig_off);
+ else
+ sig_ts = 0;
+
+ /* fill up the per-packet header (amazingly like a PCAP packet header! ;-) */
+ /* frames are always 802.11, with an extended radiotap header */
+ /* caplen is the length that is captured into the file (i.e., the written-out frame */
+ /* block), and should always represent the actual number of bytes in the file */
+ /* len is the length of the original packet before truncation; */
+ /* the FCS is NOT included */
+ r_hdr_len = sizeof(stats_common_fields) + sizeof(er_fields);
+
+ wth->phdr.len = (msdu_length - 4) + r_hdr_len;
+ wth->phdr.caplen = (octets - 4) + r_hdr_len;
+
+ wth->phdr.presence_flags = WTAP_HAS_TS;
+
+ wth->phdr.ts.secs = (time_t)s_sec;
+ wth->phdr.ts.nsecs = (long)(s_usec * 1000);
+ wth->phdr.pkt_encap = WTAP_ENCAP_IXVERIWAVE;
+
+ /* generate and write out the radiotap header, set the version number to 1 (extended) */
+ common_fields.vw_port_type = 0;
+ common_fields.it_len = sizeof(stats_common_fields);
+ er_fields.it_len = sizeof(er_fields);
+
+ /* create the extended radiotap header fields */
+ er_fields.flags = 0;
+ er_fields.flags = (m_type == MT_CCKS) ? RADIOTAP_F_SHORTPRE : 0;
+
+ er_fields.rate = rate;
+ er_fields.chanflags = (m_type == MT_OFDM) ? CHAN_OFDM : CHAN_CCK;
+ er_fields.signal = f_tx ? 100 : (gint8)rssi;
+ er_fields.tx_power = f_tx ? ((gint8)rssi) : 100;
+
+ /* fill in the VeriWave flags field */
+ er_fields.vw_flags = 0;
+ if (f_tx)
+ er_fields.vw_flags |= RADIOTAP_VWF_TXF;
+ if (errors & FCS_ERROR)
+ er_fields.vw_flags |= RADIOTAP_VWF_FCSERR;
+ if (!f_tx && (errors & CRYPTO_ERR))
+ er_fields.vw_flags |= RADIOTAP_VWF_DCRERR;
+ if (!f_tx && (errors & RETRY_ERR))
+ er_fields.vw_flags |= RADIOTAP_VWF_RETRERR;
+ if (info & WEPTYPE)
+ er_fields.vw_flags |= RADIOTAP_VWF_IS_WEP;
+ else if (info & TKIPTYPE)
+ er_fields.vw_flags |= RADIOTAP_VWF_IS_TKIP;
+ else if (info & CCMPTYPE)
+ er_fields.vw_flags |= RADIOTAP_VWF_IS_CCMP;
+
+ er_fields.vw_errors = (guint32)errors;
+ common_fields.vw_vcid = (guint16)vc_id;
+ common_fields.vw_flowid = (guint16)flow_id;
+ common_fields.vw_seqnum = (guint16)flow_seq;
+ if (!f_tx && sig_ts != 0)
+ common_fields.vw_latency = (guint32)latency;
+ else
+ common_fields.vw_latency = 0;
+ common_fields.vw_pktdur = (guint32)d_time;
+ er_fields.vw_info = (guint16)info;
+ common_fields.vw_msdu_length = (guint16)msdu_length;
+ er_fields.vw_ht_length = (guint16)ht_len;
+ common_fields.vw_sig_ts = (guint32)sig_ts; /* 32 LSBs of signature timestamp (nsec) */
+ common_fields.vw_startt = start_time; /* record start & end times of frame */
+ common_fields.vw_endt = end_time;
+
+ memcpy(&data_ptr[bytes_written], &common_fields, sizeof(common_fields));
+ bytes_written += sizeof(common_fields);
+
+ memcpy(&data_ptr[bytes_written], &er_fields, sizeof(er_fields));
+ bytes_written += sizeof(er_fields);
+
+ /* finally, dump the whole MAC frame to file as-is; exclude FCS */
+ if ( rec_size < ((int)msdu_length + (int)STATS_LEN) )
+ /*something's been truncated, DUMP AS-IS*/
+ memcpy(&data_ptr[bytes_written], m_ptr, octets);
+ else if (octets >= 4)
+ memcpy(&data_ptr[bytes_written], m_ptr, octets - 4);
+ else
+ memcpy(&data_ptr[bytes_written], m_ptr, octets);
+}
+
+/* Read the next packet for vVW510021 FPGAs */
+/* note that the VWR file format consists of a sequence of fixed 16-byte record headers of */
+/* different types; some types, including frame record headers, are followed by */
+/* variable-length data */
+/* a frame record consists of: the above 16-byte record header, a 1-16384 byte raw PLCP */
+/* frame, and a 56-byte statistics block trailer */
+/* the PLCP frame consists of a 4-byte or 6-byte PLCP header, followed by the MAC frame */
+/* copy the actual packet data from the capture file into the target data block */
+/* the packet is constructed as a 38-byte VeriWave-extended Radiotap header plus the raw */
+/* MAC octets */
+
+static void vwr_read_rec_data_vVW510021(wtap *wth, guint8 *data_ptr, guint8 *rec, int rec_size)
+{
+ int bytes_written = 0; /* bytes output to buf so far */
+ int PLCP_OFF = 8;
+ register int i; /* temps */
+ register guint8 *s_start_ptr,*s_trail_ptr, *m_ptr,*plcp_ptr; /* stats & MPDU ptr */
+ gint16 msdu_length, plcp_offset, actual_octets; /* octets in frame */
+ guint8 l1p_1,l1p_2,sel_type, flow_seq, plcp_type, mcs_index; /* mod (CCK-L/CCK-S/OFDM) */
+ guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
+ /* times, nsec */
+ guint64 latency = LL_ZERO;
+ guint64 start_time, s_sec, s_usec = LL_ZERO; /* start time, sec + usec */
+ guint64 end_time, e_sec, e_usec = LL_ZERO; /* end time, sec + usec */
+ guint16 info, fpga_version, validityBits; /* INFO/ERRORS fields in stats blk */
+ guint32 errors = 0;
+ gint16 rssi; /* RSSI, signed 16-bit number */
+ int f_tx; /* flag: if set, is a TX frame */
+ int f_flow, f_qos; /* flags: flow valid, frame is QoS */
+ guint32 frame_type; /* frame type field */
+ guint8 rate; /* PHY bit rate in 0.5 Mb/s units */
+ guint16 vc_id, ip_len, ht_len=0; /* VC ID , total ip length*/
+ guint32 flow_id, d_time; /* flow ID, packet duration*/
+ guint16 r_hdr_len; /* length of radiotap headers */
+ ext_rtap_fields er_fields; /* extended radiotap fields */
+ stats_common_fields common_fields; /* extended radiotap fields */
+ gint8 tx_power = 0; /* transmit power value in dBm */
+ int mac_snap, sig_off, pay_off; /* MAC+SNAP header len, signature offset */
+ guint64 sig_ts, tsid; /* 32 LSBs of timestamp in signature */
+ guint16 chanflags = 0; /* extended radio tap channel flags */
+ guint16 radioflags = 0; /* extended radio tap flags */
+ guint64 delta_b; /* Used for calculating latency */
+
+ /* calculate the start of the statistics block in the buffer */
+ /* also get a bunch of fields from the stats block */
+ s_start_ptr = &(rec[0]);
+ s_trail_ptr = &(rec[rec_size - STATS_LEN]); /* point to it */
+
+ l1p_1 = s_start_ptr[L1P_1_OFF];
+ sel_type = l1p_1 & (guint8)vVW510021_W_SEL_MASK;
+ mcs_index = l1p_1 & (guint8)vVW510021_W_MCS_MASK;
+ l1p_2 = s_start_ptr[L1P_2_OFF];
+ plcp_type = l1p_2 & (guint8)vVW510021_W_PLCPC_MASK;
+ msdu_length = (256 * (s_start_ptr[OCTET_OFF + 1] & 0x1f)) + s_start_ptr[OCTET_OFF];
+ /* If the packet has an MSDU length of 0, then bail - malformed packet */
+ /* if (msdu_length < 4) return; */
+ actual_octets = msdu_length;
+
+
+ f_tx = IS_TX;
+ vc_id = ((s_start_ptr[VCID_OFF] << 8) | (s_start_ptr[VCID_OFF + 1]));
+ flow_seq = s_trail_ptr[FLOWSEQ_OFF];
+ fpga_version = (s_trail_ptr[FPGA_VERSION_OFF] << 8) + s_trail_ptr[FPGA_VERSION_OFF + 1];
+ validityBits = (s_trail_ptr[VALID_OFF] << 8) + s_trail_ptr[VALID_OFF + 1];
+
+ f_flow = (validityBits & FLOW_VALID) != 0;
+ f_qos = (validityBits & IS_QOS) != 0;
+
+ frame_type = (s_trail_ptr[FRAME_TYPE_OFF] << 24) | (s_trail_ptr[FRAME_TYPE_OFF + 1] << 16) |
+ (s_trail_ptr[FRAME_TYPE_OFF + 2] << 8) | (s_trail_ptr[FRAME_TYPE_OFF + 3]);
+
+ flow_id = 0x00000000; latency = 0x00000000; /* clear flow ID & latency */
+ flow_id = (s_trail_ptr[FLOWID_OFF] << 16) | (s_trail_ptr[FLOWID_OFF + 1] << 8) |
+ s_trail_ptr[FLOWID_OFF + 2]; /* all 24 bits valid */
+ ip_len = (s_trail_ptr[IPLEN_OFF] << 8) | s_trail_ptr[IPLEN_OFF+1];
+ /* for tx latency is duration, for rx latency is timestamp */
+ /* get 48-bit latency value */
+ tsid = (s_trail_ptr[LATVAL_OFF + 6] << 8) | (s_trail_ptr[LATVAL_OFF + 7]);
+
+ for (i = 0; i < 4; i++)
+ tsid = (tsid << 8) | s_trail_ptr[LATVAL_OFF + i];
+
+ for (i = 0; i < 4; i++)
+ errors = (errors << 8) | s_trail_ptr[ERRORS_OFF + i];
+ info = (s_trail_ptr[INFO_OFF] << 8) + s_trail_ptr[INFO_OFF + 1];
+ if ((info && 0xFC00) != 0)
+ /* this length includes the Start_Spacing + Delimiter + MPDU + Padding for each piece of the aggregate*/
+ ht_len = s_start_ptr[PLCP_LENGTH_OFF] + (s_start_ptr[PLCP_LENGTH_OFF+1] << 8);
+
+ rssi = s_start_ptr[RSSI_OFF];
+ if (f_tx) {
+ if (rssi & 0x80)
+ tx_power = -1 * (rssi & 0x7f);
+ else
+ tx_power = rssi & 0x7f;
+ } else {
+ if (rssi > 128) rssi = rssi - 256; /* Signed 2's complement */
+ }
+
+ /* decode OFDM or CCK PLCP header and determine rate and short preamble flag */
+ /* the SIGNAL byte is always the first byte of the PLCP header in the frame */
+ plcp_ptr = &(rec[PLCP_OFF]);
+ if (plcp_type == vVW510021_W_PLCP_LEGACY){
+ if (mcs_index < 4) {
+ rate = get_cck_rate(plcp_ptr);
+ chanflags |= CHAN_CCK;
+ }
+ else {
+ rate = get_ofdm_rate(plcp_ptr);
+ chanflags |= CHAN_OFDM;
+ }
+ }
+ else if (plcp_type == vVW510021_W_PLCP_MIXED) {
+ /* pack the rate field with mcs index and gi */
+ rate = (plcp_ptr[3] & 0x7f) + (plcp_ptr[6] & 0x80);
+ /* set the appropriate flags to indicate HT mode and CB */
+ radioflags |= RADIOTAP_F_CHAN_HT | ((plcp_ptr[3] & 0x80) ? RADIOTAP_F_CHAN_40MHZ : 0) |
+ ((plcp_ptr[6] & 0x80) ? RADIOTAP_F_CHAN_SHORTGI : 0);
+ chanflags |= CHAN_OFDM;
+ }
+ else if (plcp_type == vVW510021_W_PLCP_GREENFIELD) {
+ /* pack the rate field with mcs index and gi */
+ rate = (plcp_ptr[0] & 0x7f) + (plcp_ptr[3] & 0x80);
+ /* set the appropriate flags to indicate HT mode and CB */
+ radioflags |= RADIOTAP_F_CHAN_HT | ((plcp_ptr[0] & 0x80) ? RADIOTAP_F_CHAN_40MHZ : 0) |
+ ((plcp_ptr[3] & 0x80) ? RADIOTAP_F_CHAN_SHORTGI : 0);
+ chanflags |= CHAN_OFDM;
+ }
+ else {
+ rate = 1;
+ plcp_offset = 6;
+ }
+
+ /* calculate the MPDU size/ptr stuff; MPDU starts at 4 or 6 depending on OFDM/CCK */
+ /* note that the number of octets in the frame also varies depending on OFDM/CCK, */
+ /* because the PLCP header is prepended to the actual MPDU */
+ /*the 8 is from the 8 bytes of stats block that precede the plcps ,
+ the 12 is for 11 bytes plcp and 1 byte of pad before the data*/
+ m_ptr = &(rec[8+12]);
+
+ /* sanity check the msdu_length field to determine if it is OK (or segfaults result) */
+ /* if it's greater, then truncate to the indicated message length */
+ /*changed the comparison
+ if (msdu_length > (rec_size )) {
+ msdu_length = (rec_size );
+ }
+*/
+ if (msdu_length > (rec_size - (int)STATS_LEN)) {
+ msdu_length = (rec_size - (int)STATS_LEN);
+ }
+
+ /* calculate start & end times (in sec/usec), converting 64-bit times to usec */
+ for (i = 0; i < 4; i++) /* 64-bit times are "Corey-endian" */
+ s_time = (s_time << 8) | s_trail_ptr[STARTT_OFF + i + 4];
+ for (i = 0; i < 4; i++)
+ s_time = (s_time << 8) | s_trail_ptr[STARTT_OFF + i];
+ for (i = 0; i < 4; i++)
+ e_time = (e_time << 8) | s_trail_ptr[ENDT_OFF + i + 4];
+ for (i = 0; i < 4; i++)
+ e_time = (e_time << 8) | s_trail_ptr[ENDT_OFF + i];
+
+ /* find the packet duration (difference between start and end times) */
+ d_time = (guint32)((e_time - s_time) / NS_IN_US); /* find diff, converting to usec */
+
+ /* also convert the packet start time to seconds and microseconds */
+ start_time = s_time / NS_IN_US; /* convert to microseconds first */
+ s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
+ s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
+
+ /* also convert the packet end time to seconds and microseconds */
+ end_time = e_time / NS_IN_US; /* convert to microseconds first */
+ e_sec = (end_time / US_IN_SEC); /* get the number of seconds */
+ e_usec = end_time - (e_sec * US_IN_SEC); /* get the number of microseconds */
+
+ /* extract the 32 LSBs of the signature timestamp field */
+ mac_snap = (f_qos ? 34 : 32); /* 24 (MAC) + 2 (QoS) + 8 (SNAP) */
+
+ if (frame_type & IS_TCP) /* signature offset for TCP frame */
+ {
+ pay_off = mac_snap + 40;
+ }
+ else if (frame_type & IS_UDP) /* signature offset for UDP frame */
+ {
+ pay_off = mac_snap + 28;
+ }
+ else if (frame_type & IS_ICMP) /* signature offset for ICMP frame */
+ {
+ pay_off = mac_snap + 24;
+ }
+ else if (frame_type & IS_IGMP) /* signature offset for IGMPv2 frame */
+ {
+ pay_off = mac_snap + 28;
+ }
+ else /* signature offset for raw IP frame */
+ {
+ pay_off = mac_snap + 20;
+ }
+
+ sig_off = find_signature(m_ptr, pay_off, flow_id, flow_seq);
+ if ((m_ptr[sig_off] == 0xdd) && (sig_off + 15 <= msdu_length) && (f_flow != 0))
+ sig_ts = get_signature_ts(m_ptr, sig_off);
+ else
+ sig_ts = 0;
+
+ /* Set latency based on rx/tx and signature timestamp */
+
+ /* Set latency based on rx/tx and signature timestamp */
+ if (!IS_TX) {
+ if (tsid < s_time) {
+ latency = s_time - tsid;
+ } else {
+ /* Account for the rollover case. Since we cannot use 0x100000000 - l_time + s_time */
+ /* we look for a large difference between l_time and s_time. */
+ delta_b = tsid - s_time;
+ if (delta_b > 0x10000000)
+ latency = 0;
+ else
+ latency = delta_b;
+ }
+ }
+
+ /* fill up the per-packet header (amazingly like a PCAP packet header! ;-) */
+ /* frames are always 802.11, with an extended radiotap header */
+ /* caplen is the length that is captured into the file (i.e., the written-out frame */
+ /* block), and should always represent the actual number of bytes in the file */
+ /* len is the length of the original packet before truncation */
+ /* the FCS is NOT included */
+ r_hdr_len = sizeof(common_fields) + sizeof(er_fields);
+ wth->phdr.len = (actual_octets - 4) + r_hdr_len;
+ wth->phdr.caplen = (msdu_length - 4) + r_hdr_len;
+
+ wth->phdr.presence_flags = WTAP_HAS_TS;
+
+ wth->phdr.ts.secs = (time_t)s_sec;
+ wth->phdr.ts.nsecs = (long)(s_usec * 1000);
+ wth->phdr.pkt_encap = WTAP_ENCAP_IXVERIWAVE;
+
+ /* generate and write out the radiotap header, set the version number to 1 (extended) */
+ common_fields.vw_port_type = 0;
+ common_fields.it_len = sizeof(stats_common_fields);
+ er_fields.it_len = sizeof(er_fields);
+
+ /* create the extended radiotap header fields */
+ er_fields.flags = radioflags;
+ if (info & (guint16)vVW510021_W_IS_WEP)
+ er_fields.flags |= RADIOTAP_F_WEP;
+ if ((l1p_1 & (guint8)PREAMBLE_MASK) != vVW510021_W_IS_LONGPREAMBLE)
+ er_fields.flags |= RADIOTAP_F_SHORTPRE;
+
+ er_fields.rate = rate;
+ er_fields.chanflags = chanflags;
+
+ if (f_tx) {
+ er_fields.tx_power = (gint8)tx_power;
+ er_fields.signal = 100;
+ }
+ else {
+ er_fields.tx_power = 100;
+ er_fields.signal = (gint8)rssi;
+ }
+
+ /* fill in the VeriWave flags field */
+ er_fields.vw_flags = 0;
+ if (f_tx)
+ er_fields.vw_flags |= RADIOTAP_VWF_TXF;
+ if (errors & FCS_ERROR)
+ er_fields.vw_flags |= RADIOTAP_VWF_FCSERR;
+ if (!f_tx && (errors & CRYPTO_ERR))
+ er_fields.vw_flags |= RADIOTAP_VWF_DCRERR;
+ if (!f_tx && (errors & RETRY_ERR))
+ er_fields.vw_flags |= RADIOTAP_VWF_RETRERR;
+ if (info & WEPTYPE)
+ er_fields.vw_flags |= RADIOTAP_VWF_IS_WEP;
+ else if (info & TKIPTYPE)
+ er_fields.vw_flags |= RADIOTAP_VWF_IS_TKIP;
+ else if (info & CCMPTYPE)
+ er_fields.vw_flags |= RADIOTAP_VWF_IS_CCMP;
+
+ er_fields.vw_errors = (guint32)errors;
+ common_fields.vw_vcid = (guint16)vc_id;
+
+ common_fields.vw_msdu_length = (guint16)msdu_length;
+ er_fields.vw_ht_length = (guint16)ht_len;
+
+ common_fields.vw_flowid = (guint32)flow_id;
+ common_fields.vw_seqnum = (guint16)flow_seq;
+ if (!f_tx && (sig_ts != 0) )
+ common_fields.vw_latency = (guint32)latency;
+ else
+ common_fields.vw_latency = 0;
+ common_fields.vw_pktdur = (guint32)d_time;
+ er_fields.vw_info = (guint16)info;
+ /*
+ er_fields.vw_startt = s_time;
+ er_fields.vw_endt = e_time;
+ */
+ common_fields.vw_startt = start_time; /* record start & end times of frame */
+ common_fields.vw_endt = end_time;
+ common_fields.vw_sig_ts = (guint32)(sig_ts);/* 32 LSBs of signature */
+
+ memcpy(&data_ptr[bytes_written], &common_fields, sizeof(common_fields));
+ bytes_written += sizeof(common_fields);
+
+ memcpy(&data_ptr[bytes_written], &er_fields, sizeof(er_fields));
+ bytes_written += sizeof(er_fields);
+
+ /* finally, dump the whole MAC frame to file as-is; exclude 4-byte FCS */
+ if ( rec_size < ((int)actual_octets + (int)STATS_LEN) )
+ /*something's been truncated, DUMP AS-IS*/
+ memcpy(&data_ptr[bytes_written], m_ptr, msdu_length);
+ else if (msdu_length >= 4)
+ memcpy(&data_ptr[bytes_written], m_ptr, msdu_length - 4);
+ else
+ memcpy(&data_ptr[bytes_written], m_ptr, msdu_length);
+}
+
+/* read an Ethernet packet */
+/* copy the actual packet data from the capture file into the target data block */
+/* the packet is constructed as a 38-byte VeriWave-extended Radiotap header plus the raw */
+/* MAC octets */
+
+static void vwr_read_rec_data_ethernet(wtap *wth, guint8 *data_ptr, guint8 *rec, int rec_size)
+{
+ int bytes_written = 0; /* bytes output to buf so far */
+ register int i; /* temps */
+ register guint8 *s_ptr, *m_ptr; /* stats and MPDU pointers */
+ gint16 msdu_length,actual_octets; /* octets in frame */
+ guint8 flow_seq; /* seqnum */
+ guint64 s_time = LL_ZERO, e_time = LL_ZERO; /* start/end */
+ /* times, nsec */
+ guint32 latency = 0;
+ guint64 start_time, s_sec, s_usec = LL_ZERO; /* start time, sec + usec */
+ guint64 end_time, e_sec, e_usec = LL_ZERO; /* end time, sec + usec */
+ guint16 l4id, info, fpga_version, validityBits; /* INFO/ERRORS fields in stats */
+ guint32 errors;
+ guint16 vc_id, ip_len; /* VC ID, total (incl of aggregates) ip length */
+ guint32 flow_id, d_time; /* packet duration */
+ int f_flow; /* flags: flow valid */
+ guint32 frame_type; /* frame type field */
+ stats_ethernettap_fields etap_hdr; /* VWR ethernettap header */
+ stats_common_fields common_hdr; /* VWR common header */
+ guint16 e_hdr_len; /* length of ethernettap headers */
+ int mac_len, sig_off, pay_off; /* MAC header len, signature offset */
+ guint64 sig_ts, tsid; /* 32 LSBs of timestamp in signature */
+ guint64 delta_b; /* Used for calculating latency */
+
+ flow_id = 0x00000000; /* initialize flow ID to 0 */
+
+ /* calculate the start of the statistics block in the buffer */
+ /* also get a bunch of fields from the stats block */
+ m_ptr = &(rec[0]); /* point to the data block */
+ s_ptr = &(rec[rec_size - STATS_LEN]); /* point to the stats block */
+
+ msdu_length = (s_ptr[OCTET_OFF] << 8) + s_ptr[OCTET_OFF + 1];
+ actual_octets = msdu_length;
+ /* sanity check the msdu_length field to determine if it is OK (or segfaults result) */
+ /* if it's greater, then truncate to the indicated message length */
+ if (msdu_length > (rec_size - (int)STATS_LEN)) {
+ msdu_length = (rec_size - (int)STATS_LEN);
+ }
+
+ vc_id = (((s_ptr[VCID_OFF] << 8) | (s_ptr[VCID_OFF + 1]))) & VCID_MASK;
+ flow_seq = s_ptr[FLOWSEQ_OFF];
+ frame_type = (s_ptr[FRAME_TYPE_OFF] << 24) | (s_ptr[FRAME_TYPE_OFF + 1] << 16) |
+ (s_ptr[FRAME_TYPE_OFF + 2] << 8) | (s_ptr[FRAME_TYPE_OFF + 3]);
+
+ if (FPGA_VERSION == vVW510024_E_FPGA) {
+ fpga_version = (s_ptr[FPGA_VERSION_OFF] << 8) + s_ptr[FPGA_VERSION_OFF + 1];
+ validityBits = (s_ptr[VALID_OFF] << 8) + s_ptr[VALID_OFF + 1];
+ f_flow = validityBits & FLOW_VALID;
+
+ mac_len = (validityBits & IS_VLAN) ? 16 : 14; /* MAC hdr length based on VLAN tag */
+
+
+ errors = (s_ptr[ERRORS_OFF] << 8) + s_ptr[ERRORS_OFF + 1];
+ }
+ else {
+ fpga_version = 0;
+
+ validityBits = 0;
+ f_flow = s_ptr[VALID_OFF] & FLOW_VALID;
+ mac_len = (frame_type & IS_VLAN) ? 16 : 14; /* MAC hdr length based on VLAN tag */
+
+
+ /*for older fpga errors is only represented by 16 bits)*/
+ errors = (s_ptr[ERRORS_OFF] << 8) + s_ptr[ERRORS_OFF + 1];
+ }
+
+ info = (s_ptr[INFO_OFF] << 8) + s_ptr[INFO_OFF + 1];
+ ip_len = (s_ptr[IPLEN_OFF] << 8) | s_ptr[IPLEN_OFF+1];
+ /* 24 LSBs */
+ flow_id = (s_ptr[FLOWID_OFF] << 16) | (s_ptr[FLOWID_OFF + 1] << 8) |
+ s_ptr[FLOWID_OFF + 2];
+
+ /* for tx latency is duration, for rx latency is timestamp */
+ /* get 64-bit latency value */
+ tsid = (s_ptr[LATVAL_OFF + 6] << 8) | (s_ptr[LATVAL_OFF + 7]);
+ for (i = 0; i < 4; i++)
+ tsid = (tsid << 8) | s_ptr[LATVAL_OFF + i];
+
+
+ l4id = (s_ptr[L4ID_OFF] << 8) + s_ptr[L4ID_OFF + 1];
+
+ /* calculate start & end times (in sec/usec), converting 64-bit times to usec */
+ for (i = 0; i < 4; i++) /* 64-bit times are "Corey-endian" */
+ s_time = (s_time << 8) | s_ptr[STARTT_OFF + i + 4];
+ for (i = 0; i < 4; i++)
+ s_time = (s_time << 8) | s_ptr[STARTT_OFF + i];
+ for (i = 0; i < 4; i++)
+ e_time = (e_time << 8) | s_ptr[ENDT_OFF + i + 4];
+ for (i = 0; i < 4; i++)
+ e_time = (e_time << 8) | s_ptr[ENDT_OFF + i];
+
+ /* find the packet duration (difference between start and end times) */
+ d_time = (guint32)((e_time - s_time)); /* find diff, leaving in nsec for Ethernet */
+
+ /* also convert the packet start time to seconds and microseconds */
+ start_time = s_time / NS_IN_US; /* convert to microseconds first */
+ s_sec = (start_time / US_IN_SEC); /* get the number of seconds */
+ s_usec = start_time - (s_sec * US_IN_SEC); /* get the number of microseconds */
+
+ /* also convert the packet end time to seconds and microseconds */
+ end_time = e_time / NS_IN_US; /* convert to microseconds first */
+ e_sec = (end_time / US_IN_SEC); /* get the number of seconds */
+ e_usec = end_time - (e_sec * US_IN_SEC); /* get the number of microseconds */
+
+ if (frame_type & IS_TCP) /* signature offset for TCP frame */
+ {
+ pay_off = mac_len + 40;
+ }
+ else if (frame_type & IS_UDP) /* signature offset for UDP frame */
+ {
+ pay_off = mac_len + 28;
+ }
+ else if (frame_type & IS_ICMP) /* signature offset for ICMP frame */
+ {
+ pay_off = mac_len + 24;
+ }
+ else if (frame_type & IS_IGMP) /* signature offset for IGMPv2 frame */
+ {
+ pay_off = mac_len + 28;
+ }
+ else /* signature offset for raw IP frame */
+ {
+ pay_off = mac_len + 20;
+ }
+
+ sig_off = find_signature(m_ptr, pay_off, flow_id, flow_seq);
+ if ((m_ptr[sig_off] == 0xdd) && (sig_off + 15 <= msdu_length) && (f_flow != 0))
+ sig_ts = get_signature_ts(m_ptr, sig_off);
+ else
+ sig_ts = 0;
+
+ /* Set latency based on rx/tx and signature timestamp */
+ if (!IS_TX) {
+ if (sig_ts < s_time) {
+ latency = (guint32)(s_time - sig_ts);
+ } else {
+ /* Account for the rollover case. Since we cannot use 0x100000000 - l_time + s_time */
+ /* we look for a large difference between l_time and s_time. */
+ delta_b = sig_ts - s_time;
+ if (delta_b > 0x10000000) {
+
+ latency = 0;
+
+ } else
+ latency = (guint32)delta_b;
+ }
+ }
+ /* fill up the per-packet header (amazingly like a PCAP packet header! ;-) */
+ /* frames are always wired ethernet with a wired ethernettap header */
+ /* caplen is the length that is captured into the file (i.e., the written-out frame */
+ /* block), and should always represent the actual number of bytes in the file */
+ /* len is the length of the original packet before truncation*/
+ /* the FCS is NEVER included */
+ e_hdr_len = sizeof(common_hdr) + sizeof(etap_hdr);
+ wth->phdr.len = (actual_octets - 4) + e_hdr_len;
+ wth->phdr.caplen = (msdu_length - 4) + e_hdr_len;
+
+ wth->phdr.presence_flags = WTAP_HAS_TS;
+
+ wth->phdr.ts.secs = (time_t)s_sec;
+ wth->phdr.ts.nsecs = (long)(s_usec * 1000);
+ wth->phdr.pkt_encap = WTAP_ENCAP_IXVERIWAVE;
+
+ /* generate and write out the ETHERNETTAP header, set the version number to 1 */
+ common_hdr.vw_port_type = 1;
+ common_hdr.it_len = sizeof(common_hdr);
+ etap_hdr.it_len = sizeof(etap_hdr);
+
+ etap_hdr.vw_errors = (guint32)errors;
+ etap_hdr.vw_info = (guint16)info;
+ common_hdr.vw_msdu_length = (guint16)msdu_length;
+ /*etap_hdr.vw_ip_length = (guint16)ip_len;*/
+
+ common_hdr.vw_flowid = (guint32)flow_id;
+ common_hdr.vw_vcid = (guint16)vc_id;
+ common_hdr.vw_seqnum = (guint16)flow_seq;
+
+ if (!IS_TX && (sig_ts != 0))
+ common_hdr.vw_latency = (guint32)latency;
+ else
+ common_hdr.vw_latency = 0;
+ common_hdr.vw_pktdur = (guint32)d_time;
+ etap_hdr.vw_l4id = (guint32)l4id;
+ etap_hdr.vw_flags = 0;
+ if (IS_TX)
+ etap_hdr.vw_flags |= RADIOTAP_VWF_TXF;
+ if (errors & FCS_ERROR)
+ etap_hdr.vw_flags |= RADIOTAP_VWF_FCSERR;
+ common_hdr.vw_startt = start_time; /* record start & end times of frame */
+ common_hdr.vw_endt = end_time;
+ common_hdr.vw_sig_ts = (guint32)(sig_ts);
+
+ etap_hdr.it_pad2 = 0;
+
+ memcpy(&data_ptr[bytes_written], &common_hdr, sizeof(common_hdr));
+ bytes_written += sizeof(common_hdr);
+ memcpy(&data_ptr[bytes_written], &etap_hdr, sizeof(etap_hdr));
+ bytes_written += sizeof(etap_hdr);
+
+ /* finally, dump the whole MAC frame to file as-is; ALWAYS exclude 4-byte FCS */
+ if ( rec_size < ((int)actual_octets + (int)STATS_LEN) )
+ /*something's been truncated, DUMP AS-IS*/
+ memcpy(&data_ptr[bytes_written], m_ptr, msdu_length);
+ else if (msdu_length >= 4)
+ memcpy(&data_ptr[bytes_written], m_ptr, msdu_length - 4);
+ else
+ memcpy(&data_ptr[bytes_written], m_ptr, msdu_length);
+}
+
+/*--------------------------------------------------------------------------------------*/
+/* utility to split up and decode a 16-byte message record */
+
+static int decode_msg(guint8 *rec, int *v_type)
+{
+ guint8 cmd; /* components of message */
+ guint32 wd2, wd3;
+ int v_size = 0; /* size of var-len message */
+ /* assume it's zero */
+
+ /* break up the message record into its pieces */
+ cmd = rec[0];
+ wd2 = ((guint32)rec[8] << 24) | ((guint32)rec[9] << 16) | ((guint32)rec[10] << 8) |
+ (guint32)rec[11];
+ wd3 = ((guint32)rec[12] << 24) | ((guint32)rec[13] << 16) | ((guint32)rec[14] << 8) |
+ (guint32)rec[15];
+
+ if ((cmd & HEADER_IS_TX) == HEADER_IS_TX)
+ IS_TX = 1;
+ else if ((cmd & HEADER_IS_RX) == HEADER_IS_RX)
+ IS_TX = 0;
+ else IS_TX = 2; /*NULL case*/
+ /* now decode based on the command byte */
+ switch (cmd) {
+ case 0x21:
+ case 0x31:
+ v_size = (int)(wd2 & 0xffff);
+ *v_type = VT_FRAME;
+ break;
+
+ case 0xc1:
+ case 0x8b:
+ v_size = (int)(wd2 & 0xffff);
+ *v_type = VT_CPMSG;
+ break;
+
+ case 0xfe:
+ v_size = (int)(wd3 & 0xffff);
+ *v_type = VT_CPMSG;
+ break;
+
+ default:
+ break;
+ }
+
+ return(v_size);
+}
+
+
+/*--------------------------------------------------------------------------------------*/
+/* utilities to extract and decode the PHY bit rate from 802.11 PLCP headers (OFDM/CCK) */
+/* they are passed a pointer to 4 or 6 consecutive bytes of PLCP header */
+/* the integer returned by the get_xxx_rate() functions is in units of 0.5 Mb/s */
+/* The string returned by the decode_xxx_rate() functions is 3 characters wide */
+
+static guint8 get_ofdm_rate(guint8 *plcp)
+{
+ /* extract the RATE field (LS nibble of first byte) then decode it */
+ switch (plcp[0] & 0x0f) {
+ case 0x0b: return(6 * 2);
+ case 0x0f: return(9 * 2);
+ case 0x0a: return(12 * 2);
+ case 0x0e: return(18 * 2);
+ case 0x09: return(24 * 2);
+ case 0x0d: return(36 * 2);
+ case 0x08: return(48 * 2);
+ case 0x0c: return(54 * 2);
+ default: return(0);
+ }
+}
+
+static guint8 get_cck_rate(guint8 *plcp)
+{
+ /* extract rate from the SIGNAL field, 1 byte */
+ switch (plcp[0]) {
+ case 0x0a: return(1 * 2);
+ case 0x14: return(2 * 2);
+ case 0x37: return(11); /* 5.5 Mb/s */
+ case 0x6e: return(11 * 2);
+ default: return(0);
+ }
+}
+
+/*--------------------------------------------------------------------------------------*/
+/* utility to set up offsets and bitmasks for decoding the stats blocks */
+
+static void setup_defaults( guint16 fpga)
+{
+ switch (fpga) {
+ /* WLAN frames */
+ case vVW510021_W_FPGA:
+ STATS_LEN = vVW510021_W_STATS_LEN;
+
+ VALID_OFF = vVW510021_W_VALID_OFF;
+ MTYPE_OFF = vVW510021_W_MTYPE_OFF;
+ VCID_OFF = vVW510021_W_VCID_OFF;
+ FLOWSEQ_OFF = vVW510021_W_FLOWSEQ_OFF;
+ FLOWID_OFF = vVW510021_W_FLOWID_OFF;
+
+ /*OCTET_OFF = v22_W_OCTET_OFF;*/
+
+ ERRORS_OFF = vVW510021_W_ERRORS_OFF;
+ PATN_OFF = vVW510021_W_MATCH_OFF;
+ RSSI_OFF = vVW510021_W_RSSI_TXPOWER_OFF;
+ STARTT_OFF = vVW510021_W_STARTT_OFF;
+ ENDT_OFF = vVW510021_W_ENDT_OFF;
+ LATVAL_OFF = vVW510021_W_LATVAL_OFF;
+ INFO_OFF = vVW510021_W_INFO_OFF;
+ FPGA_VERSION_OFF = vVW510021_W_FPGA_VERSION_OFF;
+ HEADER_VERSION_OFF = vVW510021_W_HEADER_VERSION_OFF;
+ OCTET_OFF = vVW510021_W_MSDU_LENGTH_OFF;
+ L1P_1_OFF = vVW510021_W_L1P_1_OFF;
+ L1P_2_OFF = vVW510021_W_L1P_2_OFF;
+ L4ID_OFF = vVW510021_W_L4ID_OFF;
+ IPLEN_OFF = vVW510021_W_IPLEN_OFF;
+ PLCP_LENGTH_OFF = vVW510021_W_PLCP_LENGTH_OFF;
+
+ HEADER_IS_RX = vVW510021_W_HEADER_IS_RX;
+ HEADER_IS_TX = vVW510021_W_HEADER_IS_TX;
+ MT_MASK = vVW510021_W_SEL_MASK;
+ MCS_INDEX_MASK = vVW510021_W_MCS_MASK;
+ PREAMBLE_MASK = vVW510021_W_PREAMBLE_MASK;
+ VCID_MASK = 0xffff;
+ FLOW_VALID = vVW510021_W_FLOW_VALID;
+ STATS_START_OFF = vVW510021_W_HEADER_LEN;
+ FCS_ERROR = vVW510021_W_FCS_ERROR;
+ CRYPTO_ERR = v22_W_CRYPTO_ERR;
+ RETRY_ERR = v22_W_RETRY_ERR;
+
+ /*STATS_START_OFF = 0;*/
+
+ RXTX_OFF = vVW510021_W_RXTX_OFF;
+
+ MT_10_HALF = 0;
+ MT_10_FULL = 0;
+ MT_100_HALF = 0;
+ MT_100_FULL = 0;
+ MT_1G_HALF = 0;
+ MT_1G_FULL = 0;
+ MT_CCKL = v22_W_MT_CCKL;
+ MT_CCKS = v22_W_MT_CCKS;
+ /*MT_OFDM = vVW510021_W_MT_OFDM;*/
+
+ WEPTYPE = vVW510021_W_WEPTYPE;
+ TKIPTYPE = vVW510021_W_TKIPTYPE;
+ CCMPTYPE = vVW510021_W_CCMPTYPE;
+
+ FRAME_TYPE_OFF = vVW510021_W_FRAME_TYPE_OFF;
+ IS_TCP = vVW510021_W_IS_TCP;
+ IS_UDP = vVW510021_W_IS_UDP;
+ IS_ICMP = vVW510021_W_IS_ICMP;
+ IS_IGMP = vVW510021_W_IS_IGMP;
+ IS_QOS = vVW510021_W_QOS_VALID;
+
+ break;
+
+ /* Ethernet frames */
+ case vVW510012_E_FPGA:
+ STATS_LEN = v22_E_STATS_LEN;
+
+ VALID_OFF = v22_E_VALID_OFF;
+ MTYPE_OFF = v22_E_MTYPE_OFF;
+ VCID_OFF = v22_E_VCID_OFF;
+ FLOWSEQ_OFF = v22_E_FLOWSEQ_OFF;
+ FLOWID_OFF = v22_E_FLOWID_OFF;
+ OCTET_OFF = v22_E_OCTET_OFF;
+ ERRORS_OFF = v22_E_ERRORS_OFF;
+ PATN_OFF = v22_E_PATN_OFF;
+ RSSI_OFF = v22_E_RSSI_OFF;
+ STARTT_OFF = v22_E_STARTT_OFF;
+ ENDT_OFF = v22_E_ENDT_OFF;
+ LATVAL_OFF = v22_E_LATVAL_OFF;
+ INFO_OFF = v22_E_INFO_OFF;
+ L4ID_OFF = v22_E_L4ID_OFF;
+
+ HEADER_IS_RX = v22_E_HEADER_IS_RX;
+ HEADER_IS_TX = v22_E_HEADER_IS_TX;
+
+ IS_RX = v22_E_IS_RX;
+ MT_MASK = v22_E_MT_MASK;
+ VCID_MASK = v22_E_VCID_MASK;
+ FLOW_VALID = v22_E_FLOW_VALID;
+ FCS_ERROR = v22_E_FCS_ERROR;
+
+ RX_DECRYPTS = v22_E_RX_DECRYPTS;
+ TX_DECRYPTS = v22_E_TX_DECRYPTS;
+ FC_PROT_BIT = v22_E_FC_PROT_BIT;
+
+ MT_10_HALF = v22_E_MT_10_HALF;
+ MT_10_FULL = v22_E_MT_10_FULL;
+ MT_100_HALF = v22_E_MT_100_HALF;
+ MT_100_FULL = v22_E_MT_100_FULL;
+ MT_1G_HALF = v22_E_MT_1G_HALF;
+ MT_1G_FULL = v22_E_MT_1G_FULL;
+ MT_CCKL = 0;
+ MT_CCKS = 0;
+ MT_OFDM = 0;
+
+ FRAME_TYPE_OFF = v22_E_FRAME_TYPE_OFF;
+ IS_TCP = v22_E_IS_TCP;
+ IS_UDP = v22_E_IS_UDP;
+ IS_ICMP = v22_E_IS_ICMP;
+ IS_IGMP = v22_E_IS_IGMP;
+ IS_QOS = v22_E_IS_QOS;
+ IS_VLAN = v22_E_IS_VLAN;
+
+ break;
+
+ /* WLAN frames */
+ case vVW510006_W_FPGA:
+ STATS_LEN = v22_W_STATS_LEN;
+
+ MTYPE_OFF = v22_W_MTYPE_OFF;
+ VALID_OFF = v22_W_VALID_OFF;
+ VCID_OFF = v22_W_VCID_OFF;
+ FLOWSEQ_OFF = v22_W_FLOWSEQ_OFF;
+ FLOWID_OFF = v22_W_FLOWID_OFF;
+ OCTET_OFF = v22_W_OCTET_OFF;
+ ERRORS_OFF = v22_W_ERRORS_OFF;
+ PATN_OFF = v22_W_PATN_OFF;
+ RSSI_OFF = v22_W_RSSI_OFF;
+ STARTT_OFF = v22_W_STARTT_OFF;
+ ENDT_OFF = v22_W_ENDT_OFF;
+ LATVAL_OFF = v22_W_LATVAL_OFF;
+ INFO_OFF = v22_W_INFO_OFF;
+ L4ID_OFF = v22_W_L4ID_OFF;
+ IPLEN_OFF = v22_W_IPLEN_OFF;
+ PLCP_LENGTH_OFF = v22_W_PLCP_LENGTH_OFF;
+
+ FCS_ERROR = v22_W_FCS_ERROR;
+ CRYPTO_ERR = v22_W_CRYPTO_ERR;
+ PAYCHK_ERR = v22_W_PAYCHK_ERR;
+ RETRY_ERR = v22_W_RETRY_ERR;
+ IS_RX = v22_W_IS_RX;
+ MT_MASK = v22_W_MT_MASK;
+ VCID_MASK = v22_W_VCID_MASK;
+ FLOW_VALID = v22_W_FLOW_VALID;
+
+ HEADER_IS_RX = v22_W_HEADER_IS_RX;
+ HEADER_IS_TX = v22_W_HEADER_IS_TX;
+
+ RX_DECRYPTS = v22_W_RX_DECRYPTS;
+ TX_DECRYPTS = v22_W_TX_DECRYPTS;
+ FC_PROT_BIT = v22_W_FC_PROT_BIT;
+
+ MT_10_HALF = 0;
+ MT_10_FULL = 0;
+ MT_100_HALF = 0;
+ MT_100_FULL = 0;
+ MT_1G_HALF = 0;
+ MT_1G_FULL = 0;
+ MT_CCKL = v22_W_MT_CCKL;
+ MT_CCKS = v22_W_MT_CCKS;
+ MT_OFDM = v22_W_MT_OFDM;
+
+ WEPTYPE = v22_W_WEPTYPE;
+ TKIPTYPE = v22_W_TKIPTYPE;
+ CCMPTYPE = v22_W_CCMPTYPE;
+
+ FRAME_TYPE_OFF = v22_W_FRAME_TYPE_OFF;
+ IS_TCP = v22_W_IS_TCP;
+ IS_UDP = v22_W_IS_UDP;
+ IS_ICMP = v22_W_IS_ICMP;
+ IS_IGMP = v22_W_IS_IGMP;
+ IS_QOS = v22_W_IS_QOS;
+
+ break;
+
+ /* Ethernet frames */
+ case vVW510024_E_FPGA:
+ STATS_LEN = vVW510024_E_STATS_LEN;
+
+ VALID_OFF = vVW510024_E_VALID_OFF;
+ VCID_OFF = vVW510024_E_VCID_OFF;
+ FLOWSEQ_OFF = vVW510024_E_FLOWSEQ_OFF;
+ FLOWID_OFF = vVW510024_E_FLOWID_OFF;
+ OCTET_OFF = vVW510024_E_MSDU_LENGTH_OFF;
+ ERRORS_OFF = vVW510024_E_ERRORS_OFF;
+ PATN_OFF = vVW510024_E_MATCH_OFF;
+ STARTT_OFF = vVW510024_E_STARTT_OFF;
+ ENDT_OFF = vVW510024_E_ENDT_OFF;
+ LATVAL_OFF = vVW510024_E_LATVAL_OFF;
+ INFO_OFF = vVW510024_E_INFO_OFF;
+ L4ID_OFF = vVW510024_E_L4ID_OFF;
+ IPLEN_OFF = vVW510024_E_IPLEN_OFF;
+
+ FPGA_VERSION_OFF = vVW510024_E_FPGA_VERSION_OFF;
+ HEADER_VERSION_OFF = vVW510024_E_HEADER_VERSION_OFF;
+
+ HEADER_IS_RX = vVW510024_E_HEADER_IS_RX;
+ HEADER_IS_TX = vVW510024_E_HEADER_IS_TX;
+
+ VCID_MASK = vVW510024_E_VCID_MASK;
+ FLOW_VALID = vVW510024_E_FLOW_VALID;
+ FCS_ERROR = v22_E_FCS_ERROR;
+
+ FRAME_TYPE_OFF = vVW510024_E_FRAME_TYPE_OFF;
+ IS_TCP = vVW510024_E_IS_TCP;
+ IS_UDP = vVW510024_E_IS_UDP;
+ IS_ICMP = vVW510024_E_IS_ICMP;
+ IS_IGMP = vVW510024_E_IS_IGMP;
+ IS_QOS = vVW510024_E_QOS_VALID;
+ IS_VLAN = vVW510024_E_IS_VLAN;
+
+ break;
+ }
+}
+#define SIG_SCAN_RANGE 64 /* range of signature scanning region */
+
+/* utility routine: check that signature is at specified location; scan for it if not */
+/* if we can't find a signature at all, then simply return the originally supplied offset */
+int find_signature(guint8 *m_ptr, int pay_off, guint32 flow_id, guint8 flow_seq)
+{
+ int tgt; /* temps */
+ guint32 fid;
+
+ /* initial check is very simple: look for a '0xdd' at the target location */
+ if (m_ptr[pay_off] == 0xdd) /* if magic byte is present */
+ return(pay_off); /* got right offset, return it */
+
+ /* hmmm, signature magic byte is not where it is supposed to be; scan from start of */
+ /* payload until maximum scan range exhausted to see if we can find it */
+ /* the scanning process consists of looking for a '0xdd', then checking for the correct */
+ /* flow ID and sequence number at the appropriate offsets */
+ for (tgt = pay_off; tgt < (pay_off + SIG_SCAN_RANGE); tgt++) {
+ if (m_ptr[tgt] == 0xdd) { /* found magic byte? check fields */
+ if (m_ptr[tgt + 15] == 0xe2) {
+ if (m_ptr[tgt + 4] != flow_seq)
+ continue;
+
+ fid = m_ptr[tgt + 1] | (m_ptr[tgt + 2] << 8) |
+ (m_ptr[tgt + 3] << 16);
+
+ if (fid != flow_id)
+ continue;
+
+ return (tgt);
+ }
+ else
+ { /* out which one... */
+ if (m_ptr[tgt + SIG_FSQ_OFF] != flow_seq) /* check sequence number */
+ continue; /* if failed, keep scanning */
+
+ fid = m_ptr[tgt + SIG_FID_OFF] | (m_ptr[tgt + SIG_FID_OFF + 1] << 8) |
+ (m_ptr[tgt + SIG_FID_OFF + 2] << 16); /* assemble flow ID from signature */
+ if (fid != flow_id) /* check flow ID against expected */
+ continue; /* if failed, keep scanning */
+
+ /* matched magic byte, sequence number, flow ID; found the signature */
+ return (tgt); /* return offset of signature */
+ }
+ }
+ }
+
+ /* failed to find the signature, return the original offset as default */
+ return(pay_off);
+}
+
+/* utility routine: harvest the signature time stamp from the data frame */
+guint64 get_signature_ts(guint8 *m_ptr,int sig_off)
+{
+ int ts_offset;
+ guint64 sig_ts;
+
+ if (m_ptr[sig_off + 15] == 0xe2)
+ ts_offset = 5;
+ else
+ ts_offset = 8;
+
+ sig_ts = (m_ptr[sig_off + ts_offset + 3] << 24) | (m_ptr[sig_off + ts_offset + 2] << 16) |
+ (m_ptr[sig_off + ts_offset + 1] << 8) | (m_ptr[sig_off + ts_offset + 0]);
+
+ return(sig_ts & 0xffffffff);
+}
+