aboutsummaryrefslogtreecommitdiffstats
path: root/sysmoOCTSIM/cuart_driver_asf4_usart_async.c
blob: 21ab5a42abf76219c78f8da61434765b3e8cc019 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/* Card (ICC) UART driver for the Atmel ASF4 asynchronous USART */

#include <errno.h>

#include <osmocom/core/linuxlist.h>
#include <osmocom/core/utils.h>

#include <hal_usart_async.h>
#include <utils_ringbuffer.h>
#include "driver_init.h"

#include "ncn8025.h"

#include "cuart.h"

static struct usart_async_descriptor* SIM_peripheral_descriptors[] = {&SIM0, &SIM1, &SIM2, &SIM3, &SIM4, &SIM5, &SIM6, NULL};

extern struct card_uart *cuart4slot_nr(uint8_t slot_nr);

/***********************************************************************
 * low-level helper routines
 ***********************************************************************/

static void _SIM_rx_cb(const struct usart_async_descriptor *const io_descr, uint8_t slot_nr)
{
	struct card_uart *cuart = cuart4slot_nr(slot_nr);
	int rc;
	OSMO_ASSERT(cuart);

	if (cuart->rx_threshold == 1) {
		/* bypass ringbuffer and report byte directly */
		uint8_t rx[1];
		rc = io_read((struct io_descriptor * const)&io_descr->io, rx, sizeof(rx));
		OSMO_ASSERT(rc == sizeof(rx));
		card_uart_notification(cuart, CUART_E_RX_SINGLE, rx);
	} else {
		/* go via ringbuffer and notify only after threshold */
		if (ringbuffer_num(&io_descr->rx) >= cuart->rx_threshold)
			card_uart_notification(cuart, CUART_E_RX_COMPLETE, NULL);
	}
}

static void _SIM_tx_cb(const struct usart_async_descriptor *const io_descr, uint8_t slot_nr)
{
	struct card_uart *cuart = cuart4slot_nr(slot_nr);
	OSMO_ASSERT(cuart);
	card_uart_notification(cuart, CUART_E_TX_COMPLETE, io_descr->tx_buffer);
}

#include <hpl_usart_async.h>
#include <hpl_usart_sync.h>


static void _SIM_error_cb(const struct usart_async_descriptor *const descr){
	volatile uint32_t status = hri_sercomusart_read_STATUS_reg(descr->device.hw);
	volatile uint32_t data = hri_sercomusart_read_DATA_reg(descr->device.hw);
	volatile uint32_t errrs = hri_sercomusart_read_RXERRCNT_reg(descr->device.hw);
	OSMO_ASSERT(0 == 1)
}

/* the below ugli-ness is required as the usart_async_descriptor doesn't have
 * some kind of 'private' member that could provide the call-back anty kind of
 * context */
static void SIM0_rx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_rx_cb(io_descr, 0);
}
static void SIM1_rx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_rx_cb(io_descr, 1);
}
static void SIM2_rx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_rx_cb(io_descr, 2);
}
static void SIM3_rx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_rx_cb(io_descr, 3);
}
static void SIM4_rx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_rx_cb(io_descr, 4);
}
static void SIM5_rx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_rx_cb(io_descr, 5);
}
static void SIM6_rx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_rx_cb(io_descr, 6);
}
static void SIM7_rx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_rx_cb(io_descr, 7);
}
static usart_cb_t SIM_rx_cb[8] = {
	SIM0_rx_cb, SIM1_rx_cb, SIM2_rx_cb, SIM3_rx_cb,
	SIM4_rx_cb, SIM5_rx_cb, SIM6_rx_cb, SIM7_rx_cb,
};
static void SIM0_tx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_tx_cb(io_descr, 0);
}
static void SIM1_tx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_tx_cb(io_descr, 1);
}
static void SIM2_tx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_tx_cb(io_descr, 2);
}
static void SIM3_tx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_tx_cb(io_descr, 3);
}
static void SIM4_tx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_tx_cb(io_descr, 4);
}
static void SIM5_tx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_tx_cb(io_descr, 5);
}
static void SIM6_tx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_tx_cb(io_descr, 6);
}
static void SIM7_tx_cb(const struct usart_async_descriptor *const io_descr)
{
	_SIM_tx_cb(io_descr, 7);
}
static usart_cb_t SIM_tx_cb[8] = {
	SIM0_tx_cb, SIM1_tx_cb, SIM2_tx_cb, SIM3_tx_cb,
	SIM4_tx_cb, SIM5_tx_cb, SIM6_tx_cb, SIM7_tx_cb,
};

#include <math.h>
#include "atmel_start.h"
#include "atmel_start_pins.h"
#include "config/hpl_gclk_config.h"
#include "iso7816_3.h"

/** possible clock sources for the SERCOM peripheral
 *  warning: the definition must match the GCLK configuration
 */
static const uint8_t sercom_glck_sources[] = {GCLK_PCHCTRL_GEN_GCLK2_Val, GCLK_PCHCTRL_GEN_GCLK4_Val, GCLK_PCHCTRL_GEN_GCLK6_Val};

 /** possible clock frequencies in MHz for the SERCOM peripheral
  *  warning: the definition must match the GCLK configuration
  */
static const double sercom_glck_freqs[] = {100E6 / CONF_GCLK_GEN_2_DIV, 100E6 / CONF_GCLK_GEN_4_DIV, 120E6 / CONF_GCLK_GEN_6_DIV};

/** the GCLK ID for the SERCOM SIM peripherals
 *  @note: used as index for PCHCTRL
 */
static const uint8_t SIM_peripheral_GCLK_ID[] = {SERCOM0_GCLK_ID_CORE, SERCOM1_GCLK_ID_CORE, SERCOM2_GCLK_ID_CORE, SERCOM3_GCLK_ID_CORE, SERCOM4_GCLK_ID_CORE, SERCOM5_GCLK_ID_CORE, SERCOM6_GCLK_ID_CORE, SERCOM7_GCLK_ID_CORE};


/** change baud rate of card slot
 *  @param[in] slotnr slot number for which the baud rate should be set
 *  @param[in] baudrate baud rate in bps to set
 *  @return if the baud rate has been set, else a parameter is out of range
 */
static bool slot_set_baudrate(uint8_t slotnr, uint32_t baudrate)
{
	ASSERT(slotnr < ARRAY_SIZE(SIM_peripheral_descriptors));

	// calculate the error corresponding to the clock sources
	uint16_t bauds[ARRAY_SIZE(sercom_glck_freqs)];
	double errors[ARRAY_SIZE(sercom_glck_freqs)];
	for (uint8_t i = 0; i < ARRAY_SIZE(sercom_glck_freqs); i++) {
		double freq = sercom_glck_freqs[i]; // remember possible SERCOM frequency
		uint32_t min = freq/16. *  (1. - 65535. / 65536.); // calculate the minimum baud rate for this frequency
		uint32_t max = freq/16. *  (1. - 1. / 65536.); // calculate the maximum baud rate for this frequency
		if (baudrate < min || baudrate > max) { // baud rate it out of supported range
			errors[i] = NAN;
		} else {
			uint16_t baud = round(65536. * (1. - 16. * (baudrate/freq)));
			bauds[i] = baud;
			double actual = freq/16. *  (1. - baud / 65536.);
			errors[i] = fabs(1.0 - (actual / baudrate));
		}
	}

	// find the smallest error
	uint8_t best = ARRAY_SIZE(sercom_glck_freqs);
	for (uint8_t i = 0; i < ARRAY_SIZE(sercom_glck_freqs); i++) {
		if (isnan(errors[i])) {
			continue;
		}
		if (best >= ARRAY_SIZE(sercom_glck_freqs)) {
			best = i;
		} else if (errors[i] < errors[best]) {
			best = i;
		}
	}
	if (best >= ARRAY_SIZE(sercom_glck_freqs)) { // found no clock supporting this baud rate
		return false;
	}

	// set clock and baud rate
	struct usart_async_descriptor* slot = SIM_peripheral_descriptors[slotnr]; // get slot
	if (NULL == slot) {
		return false;
	}
	printf("(%u) switching SERCOM clock to GCLK%u (freq = %lu kHz) and baud rate to %lu bps (baud = %u)\r\n", slotnr, (best + 1) * 2, (uint32_t)(round(sercom_glck_freqs[best] / 1000)), baudrate, bauds[best]);
	while (!usart_async_is_tx_empty(slot)); // wait for transmission to complete (WARNING no timeout)
	usart_async_disable(slot); // disable SERCOM peripheral
	hri_gclk_clear_PCHCTRL_reg(GCLK, SIM_peripheral_GCLK_ID[slotnr], (1 << GCLK_PCHCTRL_CHEN_Pos)); // disable clock for this peripheral
	while (hri_gclk_get_PCHCTRL_reg(GCLK, SIM_peripheral_GCLK_ID[slotnr], (1 << GCLK_PCHCTRL_CHEN_Pos))); // wait until clock is really disabled
	// it does not seem we need to completely disable the peripheral using hri_mclk_clear_APBDMASK_SERCOMn_bit
	hri_gclk_write_PCHCTRL_reg(GCLK, SIM_peripheral_GCLK_ID[slotnr], sercom_glck_sources[best] | (1 << GCLK_PCHCTRL_CHEN_Pos)); // set peripheral core clock and re-enable it
	usart_async_set_baud_rate(slot, bauds[best]); // set the new baud rate
	usart_async_enable(slot); // re-enable SERCOM peripheral

	return true;
}

/** change ISO baud rate of card slot
 *  @param[in] slotnr slot number for which the baud rate should be set
 *  @param[in] clkdiv can clock divider
 *  @param[in] f clock rate conversion integer F
 *  @param[in] d baud rate adjustment factor D
 *  @return if the baud rate has been set, else a parameter is out of range
 */
static bool slot_set_isorate(uint8_t slotnr, enum ncn8025_sim_clkdiv clkdiv, uint16_t f, uint8_t d)
{
	// input checks
	ASSERT(slotnr < ARRAY_SIZE(SIM_peripheral_descriptors));
	if (clkdiv != SIM_CLKDIV_1 && clkdiv != SIM_CLKDIV_2 && clkdiv != SIM_CLKDIV_4 && clkdiv != SIM_CLKDIV_8) {
		return false;
	}
	if (!iso7816_3_valid_f(f)) {
		return false;
	}
	if (!iso7816_3_valid_d(d)) {
		return false;
	}

	// set clockdiv
	struct ncn8025_settings settings;
	ncn8025_get(slotnr, &settings);
	if (settings.clkdiv != clkdiv) {
		settings.clkdiv = clkdiv;
		ncn8025_set(slotnr, &settings);
	}

	// calculate desired frequency
	uint32_t freq = 20000000UL; // maximum frequency
	switch (clkdiv) {
	case SIM_CLKDIV_1:
		freq /= 1;
		break;
	case SIM_CLKDIV_2:
		freq /= 2;
		break;
	case SIM_CLKDIV_4:
		freq /= 4;
		break;
	case SIM_CLKDIV_8:
		freq /= 8;
		break;
	}

	// set baud rate
	uint32_t baudrate = (freq * d) / f; // calculate actual baud rate
	return slot_set_baudrate(slotnr, baudrate); // set baud rate
}

/***********************************************************************
 * Interface with card_uart (cuart) core
 ***********************************************************************/

/* forward-declaration */
static struct card_uart_driver asf4_usart_driver;
static int asf4_usart_close(struct card_uart *cuart);

static int asf4_usart_open(struct card_uart *cuart, const char *device_name)
{
	struct usart_async_descriptor *usa_pd;
	int slot_nr = atoi(device_name);

	if (slot_nr >= ARRAY_SIZE(SIM_peripheral_descriptors))
		return -ENODEV;
	usa_pd = SIM_peripheral_descriptors[slot_nr];
	if (!usa_pd)
		return -ENODEV;

	cuart->u.asf4.usa_pd = usa_pd;
	cuart->u.asf4.slot_nr = slot_nr;

	/* in us, 20Mhz with default ncn8025 divider 8, F=372, D=1*/
	cuart->u.asf4.extrawait_after_rx = 1./(20./8/372);

	usart_async_register_callback(usa_pd, USART_ASYNC_RXC_CB, SIM_rx_cb[slot_nr]);
	usart_async_register_callback(usa_pd, USART_ASYNC_TXC_CB, SIM_tx_cb[slot_nr]);
	usart_async_register_callback(usa_pd, USART_ASYNC_ERROR_CB, _SIM_error_cb);
	usart_async_enable(usa_pd);

	// set USART baud rate to match the interface (f = 2.5 MHz) and card default settings (Fd = 372, Dd = 1)
	slot_set_isorate(cuart->u.asf4.slot_nr, SIM_CLKDIV_8, ISO7816_3_DEFAULT_FD, ISO7816_3_DEFAULT_DD);

        return 0;
}

static int asf4_usart_close(struct card_uart *cuart)
{
	struct usart_async_descriptor *usa_pd = cuart->u.asf4.usa_pd;

	OSMO_ASSERT(cuart->driver == &asf4_usart_driver);

	usart_async_disable(usa_pd);

	return 0;
}

static int asf4_usart_async_tx(struct card_uart *cuart, const uint8_t *data, size_t len)
{
	struct usart_async_descriptor *usa_pd = cuart->u.asf4.usa_pd;
	int rc;

	OSMO_ASSERT(cuart->driver == &asf4_usart_driver);
	OSMO_ASSERT(usart_async_is_tx_empty(usa_pd));

	rc = io_write(&usa_pd->io, data, len);
	if (rc < 0)
		return rc;

	cuart->tx_busy = true;

	return rc;
}

static int asf4_usart_async_rx(struct card_uart *cuart, uint8_t *data, size_t len)
{
	struct usart_async_descriptor *usa_pd = cuart->u.asf4.usa_pd;

	OSMO_ASSERT(cuart->driver == &asf4_usart_driver);

	return io_read(&usa_pd->io, data, len);
}

#include "ccid_device.h"
#include "iso7816_3.h"
static int asf4_usart_ctrl(struct card_uart *cuart, enum card_uart_ctl ctl, int arg)
{
	struct ncn8025_settings settings;
	Sercom *sercom = cuart->u.asf4.usa_pd->device.hw;

	switch (ctl) {
	case CUART_CTL_NO_RXTX:
		break;
	case CUART_CTL_RX:
		if (arg){
			sercom->USART.CTRLB.bit.RXEN = 1;
			sercom->USART.CTRLB.bit.TXEN = 0;
		} else {
			delay_us(cuart->u.asf4.extrawait_after_rx);
			sercom->USART.CTRLB.bit.RXEN = 0;
			sercom->USART.CTRLB.bit.TXEN = 1;
		}
		break;
	case CUART_CTL_RST:
		ncn8025_get(cuart->u.asf4.slot_nr, &settings);
		settings.rstin = arg ? true : false;
		ncn8025_set(cuart->u.asf4.slot_nr, &settings);
		usart_async_flush_rx_buffer(cuart->u.asf4.usa_pd);
		break;
	case CUART_CTL_POWER:
		/* in us, 20Mhz with default ncn8025 divider 8, F=372, D=1*/
		cuart->u.asf4.extrawait_after_rx = 1./(20./8/372);

		// set USART baud rate to match the interface (f = 2.5 MHz) and card default settings (Fd = 372, Dd = 1)
		if(arg)
			slot_set_isorate(cuart->u.asf4.slot_nr, SIM_CLKDIV_8, ISO7816_3_DEFAULT_FD, ISO7816_3_DEFAULT_DD);

		ncn8025_get(cuart->u.asf4.slot_nr, &settings);
		settings.cmdvcc = arg ? true : false;
		settings.led = arg ? true : false;
		settings.vsel = SIM_VOLT_5V0;
		ncn8025_set(cuart->u.asf4.slot_nr, &settings);

		break;
	case CUART_CTL_WTIME:
		/* no driver-specific handling of this */
		break;
	case CUART_CTL_CLOCK:
		/* no clock stop support */
		break;
	case CUART_CTL_CLOCK_FREQ:
		ncn8025_get(cuart->u.asf4.slot_nr, &settings);

		/* 2,5/5/10/20 supported by dividers */
		enum ncn8025_sim_clkdiv clkdiv = SIM_CLKDIV_1;
		if(arg < 20000000)
			clkdiv = SIM_CLKDIV_2;
		if(arg < 10000000)
			clkdiv = SIM_CLKDIV_4;
		if(arg < 5000000)
			clkdiv = SIM_CLKDIV_8;
		settings.clkdiv = clkdiv;
		ncn8025_set(cuart->u.asf4.slot_nr, &settings);
		break;
	case CUART_CTL_FD:
		ncn8025_get(cuart->u.asf4.slot_nr, &settings);
		uint8_t divider = ncn8025_div_val[settings.clkdiv];
		uint32_t baudrate = (20e6/divider)/arg;
		cuart->u.asf4.extrawait_after_rx = 1./baudrate * 1000 * 1000;
		slot_set_baudrate(cuart->u.asf4.slot_nr, baudrate);
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

static const struct card_uart_ops asf4_usart_ops = {
	.open = asf4_usart_open,
	.close = asf4_usart_close,
	.async_tx = asf4_usart_async_tx,
	.async_rx = asf4_usart_async_rx,
	.ctrl = asf4_usart_ctrl,
};

static struct card_uart_driver asf4_usart_driver = {
	.name = "asf4",
	.ops = &asf4_usart_ops,
};

static __attribute__((constructor)) void on_dso_load_cuart_asf4(void)
{
	card_uart_driver_register(&asf4_usart_driver);
}