aboutsummaryrefslogtreecommitdiffstats
path: root/op25/gr-op25_repeater/lib/dmr_bs_tx_bb_impl.cc
blob: 52972a44db30b2abe9360be44adb94821a2097ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/* -*- c++ -*- */
/* 
 * DMR Encoder (C) Copyright 2017 Max H. Parke KA1RBI
 * 
 * This file is part of OP25
 * 
 * This is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 * 
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this software; see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street,
 * Boston, MA 02110-1301, USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <gnuradio/io_signature.h>
#include "dmr_bs_tx_bb_impl.h"
#include "dmr_const.h"

#include <vector>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>

#if 0
static void print_result(char title[], const uint8_t r[], int len) {
	uint8_t buf[256];
	for (int i=0; i<len; i++){
		buf[i] = r[i] + '0';
	}
	buf[len] = 0;
	printf("%s: %s\n", title, buf);
}
#endif

static uint8_t crc8(const uint8_t bits[], unsigned int len) {
	uint8_t crc=0;
	static const unsigned int K = 8;
	static const uint8_t poly[K+1] = {1,0,0,0,0,0,1,1,1}; // crc8 poly
	uint8_t buf[256];
	if (len+K > sizeof(buf)) {
		fprintf (stderr, "crc8: buffer length %u exceeds maximum %lu\n", len+K, sizeof(buf));
		return 0;
	}
	memset (buf, 0, sizeof(buf));
	for (int i=0; i<len; i++){
		buf[i] = bits[i];
	}
	for (int i=0; i<len; i++)
		if (buf[i])
			for (int j=0; j<K+1; j++)
				buf[i+j] ^= poly[j];
	for (int i=0; i<K; i++){
		crc = (crc << 1) + buf[len + i];
	}
	return crc;
}

static bool crc8_ok(const uint8_t bits[], unsigned int len) {
	uint16_t crc = 0;
	for (int i=0; i < 8; i++) {
		crc = (crc << 1) + bits[len+i];
	}
	return (crc == crc8(bits,len));
}

static inline void store_i(int reg, uint8_t val[], int len) {
	for (int i=0; i<len; i++){
		val[i] = (reg >> (len-1-i)) & 1;
	}
}

static void bits_to_dibits(uint8_t* dest, const uint8_t* src, int n_dibits) {
	for (int i=0; i<n_dibits; i++) {
		dest[i] = src[i*2] * 2 + src[i*2+1];
	}
}

static inline int load_i(const uint8_t val[], int len) {
	int acc = 0;
	for (int i=0; i<len; i++){
		acc = (acc << 1) + (val[i] & 1);
	}
	return acc;
}

static void encode_emb(int cc, int pi, int lcss, uint8_t result[16]) {
	int acc = (cc << 3) | (pi << 2) | lcss;
	acc = hamming_16_7[acc];
	for (int i=0; i<16; i++) {
		result[i] = (acc >> (15-i)) & 1;
	}
}

static void encode_embedded(const uint8_t lc[72], uint8_t result[32*4]) {
	uint8_t encode[16*8];

	static const int lengths[] = {11, 11, 10, 10, 10, 10, 10};

	int s_index = 0;

	uint16_t csum = 0;
	for (int i=0; i<9; i++) {
		csum += load_i(&lc[i*8], 8);
	}
	csum = csum % 31;
	for (int i=0; i<7; i++) {
		memcpy(&encode[16*i], &lc[s_index], lengths[i]);
		s_index += lengths[i];
	}
	for (int i=0; i<5; i++) {
		encode[(i+2)*16+10] = (csum >> (4-i)) & 1;
	}
	for (int i=0; i<7; i++) {
		int acc = load_i(&encode[16*i], 11);
		acc = hamming_16_11[acc];
		for (int j=0; j<5; j++){
			encode[i*16+j+11] = (acc >> (4-j)) & 1;
		}
	}
	for (int i=0; i<16; i++) {
		encode[7*16+i] = (encode[0*16+i] + encode[1*16+i] + encode[2*16+i] + \
		                  encode[3*16+i] + encode[4*16+i] + encode[5*16+i] + \
		                  encode[6*16+i]) & 1;
	}
	int resultp = 0;
	for (int i=0; i<16; i++) {
		for (int j=0; j<8; j++){
			result[resultp++] = encode[i+16*j];
		}
	}
}

static void encode_shortlc(const uint8_t lc[28], uint8_t result[17*4]) {
	uint8_t buffer[36];
	uint8_t encode[17*4];

	memcpy(buffer, lc, 28);
	uint8_t crc = crc8(buffer, 28);
	for (int i=0; i<8; i++) {
		buffer[28+i] = (crc >> (7-i)) & 1;
	}
	//print_result("buffer", buffer, 36);

	for (int i=0; i<3; i++) {
		//print_result("buffer-d", &buffer[i*12], 12);
		int acc = load_i(&buffer[i*12], 12);
		acc = hamming_17_12[acc];
		memcpy(&encode[i*17], &buffer[i*12], 12);
		for (int j=0; j<5; j++){
			encode[i*17+j+12] = (acc >> (4-j)) & 1;
		}
	}
	//print_result("encode-0", &encode[0*17], 17);
	//print_result("encode-1", &encode[1*17], 17);
	//print_result("encode-2", &encode[2*17], 17);
	for (int i=0; i<17; i++) {
		encode[3*17+i] = (encode[0*17+i] + encode[1*17+i] + encode[2*17+i]) & 1;
	}
	//print_result("encode-3", &encode[3*17], 17);
	int resultp = 0;
	for (int i=0; i<17; i++) {
		for (int j=0; j<4; j++){
			result[resultp++] = encode[i+17*j];
		}
	}
}

static void generate_cach(uint8_t at, uint8_t tc, uint8_t lcss, const uint8_t cach_bits[17], uint8_t result[24]) {
	int tact = hamming_7_4[ (at << 3) | (tc << 2) | lcss ];
	//printf ("tact %d %x\n", tact, tact);
	//print_result("cach_payload_bits", cach_bits, 17);
	for (int i=0; i<7; i++) {
		result[cach_tact_bits[i]] = (tact >> (6-i)) & 1;
	}
	for (int i=0; i<17; i++) {
		result[cach_payload_bits[i]] = cach_bits[i];
	}
}

namespace gr {
  namespace op25_repeater {

    dmr_bs_tx_bb::sptr
    dmr_bs_tx_bb::make(int verbose_flag, const char * config_file)
    {
      return gnuradio::get_initial_sptr
        (new dmr_bs_tx_bb_impl(verbose_flag, config_file));
    }

//////////////////////////////////////////////////////////////////////////
// accepts ambe codewords (36 dibits, char format) on two input channels
// input channel 0 --> DMR slot 1
// input channel 1 --> DMR slot 2
// outputs dibits (char format) in range 0-3
// symbols are output in bursts of 144 dibits (288 bits) (1 burst per 30 msec.): 
//    CACH (24)
//    voice (108)
//    SYNC or embedded signalling (48)
//    voice (108)
// reads three ambe codewords (216 bits = 108 dibits) for each output burst
// ref. sec. 5.1.5.1
// output dibit map(144 dibits):
//     00 - 11 CACH(12)
//     12 - 47 VC1(36)
//     48 - 65 VC2 part1(18)
//     66 - 89 sync(24)
//     90 -107 VC2 part2(18)
//     108-143 VC3 (36)

static const int MIN_IN = 2;
static const int MAX_IN = 2;

static const int MIN_OUT = 1;
static const int MAX_OUT = 1;

    /*
     * The private constructor
     */
    dmr_bs_tx_bb_impl::dmr_bs_tx_bb_impl(int verbose_flag, const char * config_file)
      : gr::block("dmr_bs_tx_bb",
              gr::io_signature::make (MIN_IN, MAX_IN, 36),
              gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof(char))),
              d_verbose_flag(verbose_flag),
              d_config_file(config_file),
              d_next_burst(0),
              d_next_slot(0)
    {
	d_ts[0] = 0;
	d_ts[1] = 0;
	d_cc[0] = 0;
	d_cc[1] = 0;
	d_so[0] = 0;
	d_so[1] = 0;
	d_ga[0] = 0;
	d_ga[1] = 0;
	d_sa[0] = 0;
	d_sa[1] = 0;
	d_en[0] = 0;
	d_en[1] = 0;
      set_output_multiple(144);
      set_history(3);
      config();
    }

    /*
     * Our virtual destructor.
     */
    dmr_bs_tx_bb_impl::~dmr_bs_tx_bb_impl()
    {
    }

void
dmr_bs_tx_bb_impl::config()
{
	FILE * fp1 = fopen(d_config_file, "r");
	char line[256];
	char * cp;
	if (!fp1) {
		fprintf(stderr, "dmr_bs_tx_bb_impl:config: failed to open %s\n", d_config_file);
		return;
	}
	for (;;) {
		cp = fgets(line, sizeof(line) - 2, fp1);
		if (!cp) break;
		if (line[0] == '#') continue;
		// cach: hashed addr ts1(8) and hashed addr ts2(8)
		// emb: (one per ch) cc(4)
		// group voice channel user PDU: service options (8), group address(24), source address(24)
		// (one per ch)
		if (memcmp(line, "ts1=", 4) == 0)
			sscanf(&line[4], "%d", &d_ts[0]);
		else if (memcmp(line, "ts2=", 4) == 0)
			sscanf(&line[4], "%d", &d_ts[1]);
		else if (memcmp(line, "cc1=", 4) == 0)
			sscanf(&line[4], "%d", &d_cc[0]);
		else if (memcmp(line, "cc2=", 4) == 0)
			sscanf(&line[4], "%d", &d_cc[1]);
		else if (memcmp(line, "so1=", 4) == 0)
			sscanf(&line[4], "%d", &d_so[0]);
		else if (memcmp(line, "so2=", 4) == 0)
			sscanf(&line[4], "%d", &d_so[1]);
		else if (memcmp(line, "ga1=", 4) == 0)
			sscanf(&line[4], "%d", &d_ga[0]);
		else if (memcmp(line, "ga2=", 4) == 0)
			sscanf(&line[4], "%d", &d_ga[1]);
		else if (memcmp(line, "sa1=", 4) == 0)
			sscanf(&line[4], "%d", &d_sa[0]);
		else if (memcmp(line, "sa2=", 4) == 0)
			sscanf(&line[4], "%d", &d_sa[1]);
		else if (memcmp(line, "en1=", 4) == 0)
			sscanf(&line[4], "%d", &d_en[0]);
		else if (memcmp(line, "en2=", 4) == 0)
			sscanf(&line[4], "%d", &d_en[1]);
	}
	fclose(fp1);

	d_ts[0] &= 0xff;
	d_ts[1] &= 0xff;
	d_cc[0] &= 0xf;
	d_cc[1] &= 0xf;
	d_so[0] &= 0xff;
	d_so[1] &= 0xff;
	d_ga[0] &= 0xffffff;
	d_ga[1] &= 0xffffff;
	d_sa[0] &= 0xffffff;
	d_sa[1] &= 0xffffff;
	d_en[0] &= 0x1;
	d_en[1] &= 0x1;
#if 0
	fprintf(stderr, "dmr_bs_tx_bb_impl:config: ts[0] %d ts[1] %d cc[0] %d cc[1] %d\n", d_ts[0], d_ts[1], d_cc[0], d_cc[1]);
	fprintf(stderr, "dmr_bs_tx_bb_impl:config: so[0] %d so[1] %d ga[0] %d ga[1] %d\n", d_so[0], d_so[1], d_ga[0], d_ga[1]);
	fprintf(stderr, "dmr_bs_tx_bb_impl:config: sa[0] %d sa[1] %d\n", d_sa[0], d_sa[1]);
#endif

	// TODO: allow cach and sync data to be reconfigured at runtime
	static uint8_t lc[28]={
		// activity update vol 2 #7.1.3.2
		0,0,0,1,		// opcode
		1,0,0,0,		// group voice on slot 1
		1,0,0,0,		// group voice on slot 2
		0,0,0,0,0,0,0,0,	// ts[0]
		0,0,0,0,0,0,0,0};	// ts[1]

	store_i(d_ts[0], &lc[12], 8);
	store_i(d_ts[1], &lc[20], 8);
	uint8_t shortlc_result[17*4];
	uint8_t cach_result[24];

	encode_shortlc(lc, shortlc_result);

	generate_cach(1, 0, 1, &shortlc_result[0*17], cach_result);
	bits_to_dibits(d_cach[0], cach_result, 12);

	generate_cach(1, 1, 3, &shortlc_result[1*17], cach_result);
	bits_to_dibits(d_cach[1], cach_result, 12);

	generate_cach(1, 0, 3, &shortlc_result[2*17], cach_result);
	bits_to_dibits(d_cach[2], cach_result, 12);

	generate_cach(1, 1, 2, &shortlc_result[3*17], cach_result);
	bits_to_dibits(d_cach[3], cach_result, 12);

	uint8_t full_lc[2][72]; // group voice channel user lc pdu vol 1 #7.1.1.1
	memset(full_lc[0], 0, 72);
	memset(full_lc[1], 0, 72);

	store_i(d_so[0], &full_lc[0][16], 8);
	store_i(d_so[1], &full_lc[1][16], 8);
	store_i(d_ga[0], &full_lc[0][24], 24);
	store_i(d_ga[1], &full_lc[1][24], 24);
	store_i(d_sa[0], &full_lc[0][48], 24);
	store_i(d_sa[1], &full_lc[1][48], 24);

	uint8_t embedded_result[2][32*4];

	encode_embedded(full_lc[0], embedded_result[0]);
	encode_embedded(full_lc[1], embedded_result[1]);

	uint8_t emb_result[2][16*4];
	encode_emb(d_cc[0], 0, 1, &emb_result[0][0*16]);
	encode_emb(d_cc[0], 0, 3, &emb_result[0][1*16]);
	encode_emb(d_cc[0], 0, 3, &emb_result[0][2*16]);
	encode_emb(d_cc[0], 0, 2, &emb_result[0][3*16]);
	encode_emb(d_cc[1], 0, 1, &emb_result[1][0*16]);
	encode_emb(d_cc[1], 0, 3, &emb_result[1][1*16]);
	encode_emb(d_cc[1], 0, 3, &emb_result[1][2*16]);
	encode_emb(d_cc[1], 0, 2, &emb_result[1][3*16]);
	uint8_t emb_buf[48];
	for (int i=0; i<2; i++) {
		for (int j=0; j<4; j++) {
			memcpy(&emb_buf[0], &emb_result[i][j*16], 8);
			memcpy(&emb_buf[8], &embedded_result[i][j*32], 32);
			memcpy(&emb_buf[40], &emb_result[i][j*16+8], 8);
			bits_to_dibits(&d_embedded[i][j*24], emb_buf, 24);
		}
	}
}

void
dmr_bs_tx_bb_impl::forecast(int nof_output_items, gr_vector_int &nof_input_items_reqd)
{
   // reads three ambe codewords (216 bits = 108 dibits) for each 144 dibit output burst
   // the three codewords though are only read from one of the two inputs per burst
   const size_t nof_inputs = nof_input_items_reqd.size();
   const int nof_bursts = nof_output_items / 144.0;
   const int nof_samples_reqd = 3 * ((nof_bursts+1)>>1);
   std::fill(&nof_input_items_reqd[0], &nof_input_items_reqd[nof_inputs], nof_samples_reqd);
}

int 
dmr_bs_tx_bb_impl::general_work (int noutput_items,
			       gr_vector_int &ninput_items,
			       gr_vector_const_void_star &input_items,
			       gr_vector_void_star &output_items)
{

  static const int burst_schedule[2][6] = {
    // -3: idle SYNC
    // -2: voice SYNC
    // -1: RC
    // 0|1|2|3: segment no. of embedded signalling
    {-2, 0, 1, -1, 2, 3},
    {-1, 2, 3, -2, 0, 1}
  };

  int nconsumed[2] = {0,0};
  uint8_t *in[2];
  in[0] = (uint8_t *) input_items[0];
  in[1] = (uint8_t *) input_items[1];
  uint8_t *out = reinterpret_cast<uint8_t*>(output_items[0]);
  int nframes=0;

  for (int n=0;n < (noutput_items/144);n++) {
    // need (at least) three voice codewords
    if ((ninput_items[d_next_slot] - nconsumed[d_next_slot]) < 3) break;

    int cach_id = ((d_next_burst & 1) << 1) + d_next_slot;
    memcpy(&out[0], d_cach[cach_id], 12);
    memcpy(&out[12], &in[d_next_slot][0], 36);
    memcpy(&out[48], &in[d_next_slot][36], 18);
    int schedule = burst_schedule[d_next_slot][d_next_burst];
    if (schedule == -3 || !d_en[d_next_slot])
      memcpy(&out[66], dmr_bs_idle_sync, 24);
    else if (schedule == -2)
      memcpy(&out[66], dmr_bs_voice_sync, 24);
    else if (schedule == -1)
      memset(&out[66], 0, 24);
    else 
      memcpy(&out[66], &d_embedded[d_next_slot][schedule*24], 24);
    memcpy(&out[90], &in[d_next_slot][36+18], 18);
    memcpy(&out[108], &in[d_next_slot][36+36], 36);
    in[d_next_slot] += 108;
    out += 144;
    nconsumed[d_next_slot] += 3;

    d_next_slot = (d_next_slot + 1) & 1;
    if (d_next_slot == 0) {
      d_next_burst = (d_next_burst + 1) % 6;
    }
    nframes++;
  }

  // Tell runtime system how many input items we consumed on
  // each input stream.

  if (nconsumed[0])
    consume (0, nconsumed[0]);
  if (nconsumed[1])
    consume (1, nconsumed[1]);

  // Tell runtime system how many output items we produced.
  return (nframes * 144);
}

  } /* namespace op25_repeater */
} /* namespace gr */