aboutsummaryrefslogtreecommitdiffstats
path: root/epan/dissectors/packet-ieee80211-radio.c
blob: d78eaa51350a281573fe7226016f86796b01cadd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
/* packet-ieee80211-radio.c
 * Routines for pseudo 802.11 header dissection and radio packet timing calculation
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * Copyright 2012 Parc Inc and Samsung Electronics
 * Copyright 2015, 2016 & 2017 Cisco Inc
 *
 * Copied from README.developer
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

#include "config.h"

#include <epan/packet.h>
#include <epan/expert.h>
#include <wiretap/wtap.h>
#include <epan/prefs.h>
#include <epan/proto_data.h>
#include <epan/tap.h>

#include "packet-ieee80211.h"
#include "packet-ieee80211-radio.h"
#include "math.h"

void proto_register_ieee80211_radio(void);
void proto_reg_handoff_ieee80211_radio(void);

static dissector_handle_t wlan_radio_handle;
static dissector_handle_t wlan_noqos_radio_handle;
static dissector_handle_t ieee80211_handle;
static dissector_handle_t ieee80211_noqos_handle;

static int proto_wlan_radio = -1;

/* ************************************************************************* */
/*                Header field info values for radio information             */
/* ************************************************************************* */
static int hf_wlan_radio_phy = -1;
static int hf_wlan_radio_11_fhss_hop_set = -1;
static int hf_wlan_radio_11_fhss_hop_pattern = -1;
static int hf_wlan_radio_11_fhss_hop_index = -1;
static int hf_wlan_radio_11a_channel_type = -1;
static int hf_wlan_radio_11a_turbo_type = -1;
static int hf_wlan_radio_11g_mode = -1;
static int hf_wlan_radio_11n_mcs_index = -1;
static int hf_wlan_radio_11n_bandwidth = -1;
static int hf_wlan_radio_11n_short_gi = -1;
static int hf_wlan_radio_11n_greenfield = -1;
static int hf_wlan_radio_11n_fec = -1;
static int hf_wlan_radio_11n_stbc_streams = -1;
static int hf_wlan_radio_11n_ness = -1;
static int hf_wlan_radio_11ac_stbc = -1;
static int hf_wlan_radio_11ac_txop_ps_not_allowed = -1;
static int hf_wlan_radio_11ac_short_gi = -1;
static int hf_wlan_radio_11ac_short_gi_nsym_disambig = -1;
static int hf_wlan_radio_11ac_ldpc_extra_ofdm_symbol = -1;
static int hf_wlan_radio_11ac_beamformed = -1;
static int hf_wlan_radio_11ac_bandwidth = -1;
static int hf_wlan_radio_11ac_user = -1;
static int hf_wlan_radio_11ac_nsts = -1;
static int hf_wlan_radio_11ac_mcs = -1;
static int hf_wlan_radio_11ac_nss = -1;
static int hf_wlan_radio_11ac_fec = -1;
static int hf_wlan_radio_11ac_gid = -1;
static int hf_wlan_radio_11ac_p_aid = -1;
static int hf_wlan_radio_data_rate = -1;
static int hf_wlan_radio_channel = -1;
static int hf_wlan_radio_frequency = -1;
static int hf_wlan_radio_short_preamble = -1;
static int hf_wlan_radio_signal_percent = -1;
static int hf_wlan_radio_signal_db = -1;
static int hf_wlan_radio_signal_dbm = -1;
static int hf_wlan_radio_noise_percent = -1;
static int hf_wlan_radio_noise_db = -1;
static int hf_wlan_radio_noise_dbm = -1;
static int hf_wlan_radio_snr = -1;
static int hf_wlan_radio_timestamp = -1;
static int hf_wlan_last_part_of_a_mpdu = -1;
static int hf_wlan_a_mpdu_delim_crc_error = -1;
static int hf_wlan_a_mpdu_aggregate_id = -1;
static int hf_wlan_radio_duration = -1;
static int hf_wlan_radio_preamble = -1;
static int hf_wlan_radio_aggregate = -1;
static int hf_wlan_radio_aggregate_duration = -1;
static int hf_wlan_radio_ifs = -1;
static int hf_wlan_radio_start_tsf = -1;
static int hf_wlan_radio_end_tsf = -1;
static int hf_wlan_zero_length_psdu_type = -1;

static expert_field ei_wlan_radio_assumed_short_preamble = EI_INIT;
static expert_field ei_wlan_radio_assumed_non_greenfield = EI_INIT;
static expert_field ei_wlan_radio_assumed_no_stbc = EI_INIT;
static expert_field ei_wlan_radio_assumed_no_extension_streams = EI_INIT;
static expert_field ei_wlan_radio_assumed_bcc_fec = EI_INIT;

static int wlan_radio_tap = -1;
static int wlan_radio_timeline_tap = -1;

/* Settings */
static gboolean wlan_radio_always_short_preamble = FALSE;
static gboolean wlan_radio_tsf_at_end = TRUE;
static gboolean wlan_radio_timeline_enabled = FALSE;

static const value_string phy_vals[] = {
    { PHDR_802_11_PHY_11_FHSS,       "802.11 FHSS" },
    { PHDR_802_11_PHY_11_IR,         "802.11 IR" },
    { PHDR_802_11_PHY_11_DSSS,       "802.11 DSSS" },
    { PHDR_802_11_PHY_11B,           "802.11b" },
    { PHDR_802_11_PHY_11A,           "802.11a" },
    { PHDR_802_11_PHY_11G,           "802.11g" },
    { PHDR_802_11_PHY_11N,           "802.11n" },
    { PHDR_802_11_PHY_11AC,          "802.11ac" },
    { 0, NULL }
};

static const value_string channel_type_11a_vals[] = {
    { PHDR_802_11A_CHANNEL_TYPE_NORMAL,          "Normal" },
    { PHDR_802_11A_CHANNEL_TYPE_HALF_CLOCKED,    "Half-clocked" },
    { PHDR_802_11A_CHANNEL_TYPE_QUARTER_CLOCKED, "Quarter-clocked" },
    { 0, NULL }
};

static const value_string turbo_type_11a_vals[] = {
    { PHDR_802_11A_TURBO_TYPE_NORMAL,        "Non-turbo" },
    { PHDR_802_11A_TURBO_TYPE_TURBO,         "Turbo" },
    { PHDR_802_11A_TURBO_TYPE_DYNAMIC_TURBO, "Dynamic turbo" },
    { PHDR_802_11A_TURBO_TYPE_STATIC_TURBO,  "Static turbo" },
    { 0, NULL }
};

static const value_string mode_11g_vals[] = {
    { PHDR_802_11G_MODE_NORMAL,  "None" },
    { PHDR_802_11G_MODE_SUPER_G, "Super G" },
    { 0, NULL }
};

static const value_string bandwidth_vals[] = {
    { PHDR_802_11_BANDWIDTH_20_MHZ,  "20 MHz" },
    { PHDR_802_11_BANDWIDTH_40_MHZ,  "40 MHz" },
    { PHDR_802_11_BANDWIDTH_20_20L,  "20 MHz + 20 MHz lower" },
    { PHDR_802_11_BANDWIDTH_20_20U,  "20 MHz + 20 MHz upper" },
    { PHDR_802_11_BANDWIDTH_80_MHZ,  "80 MHz" },
    { PHDR_802_11_BANDWIDTH_40_40L,  "40 MHz + 40 MHz lower" },
    { PHDR_802_11_BANDWIDTH_40_40U,  "40 MHz + 40 MHz upper" },
    { PHDR_802_11_BANDWIDTH_20LL,    "20 MHz, channel 1/4" },
    { PHDR_802_11_BANDWIDTH_20LU,    "20 MHz, channel 2/4" },
    { PHDR_802_11_BANDWIDTH_20UL,    "20 MHz, channel 3/4" },
    { PHDR_802_11_BANDWIDTH_20UU,    "20 MHz, channel 4/4" },
    { PHDR_802_11_BANDWIDTH_160_MHZ, "160 MHz" },
    { PHDR_802_11_BANDWIDTH_80_80L,  "80 MHz + 80 MHz lower" },
    { PHDR_802_11_BANDWIDTH_80_80U,  "80 MHz + 80 MHz upper" },
    { PHDR_802_11_BANDWIDTH_40LL,    "40 MHz, channel 1/4" },
    { PHDR_802_11_BANDWIDTH_40LU,    "40 MHz, channel 2/4" },
    { PHDR_802_11_BANDWIDTH_40UL,    "40 MHz, channel 3/4" },
    { PHDR_802_11_BANDWIDTH_40UU,    "40 MHz, channel 4/4" },
    { PHDR_802_11_BANDWIDTH_20LLL,   "20 MHz, channel 1/8" },
    { PHDR_802_11_BANDWIDTH_20LLU,   "20 MHz, channel 2/8" },
    { PHDR_802_11_BANDWIDTH_20LUL,   "20 MHz, channel 3/8" },
    { PHDR_802_11_BANDWIDTH_20LUU,   "20 MHz, channel 4/8" },
    { PHDR_802_11_BANDWIDTH_20ULL,   "20 MHz, channel 5/8" },
    { PHDR_802_11_BANDWIDTH_20ULU,   "20 MHz, channel 6/8" },
    { PHDR_802_11_BANDWIDTH_20UUL,   "20 MHz, channel 7/8" },
    { PHDR_802_11_BANDWIDTH_20UUU,   "20 MHz, channel 8/8" },
    { 0, NULL }
};

static const value_string fec_vals[] = {
    { 0, "BEC" },
    { 1, "LDPC" },
    { 0, NULL }
};

static const value_string zero_length_psdu_vals[] = {
	{ 0, "sounding PPDU" },
	{ 1, "data not captured" },
	{ 255, "vendor-specific" },
	{ 0, NULL }
};
/*
 * Lookup for the MCS index (0-76)
 * returning the number of data bits per symbol
 * assumes 52 subcarriers (20MHz)
 * symbols are 4us for long guard interval, 3.6us for short guard interval
 * Note: MCS 32 is special - only valid for 40Mhz channel.
 */
WS_DLL_PUBLIC_DEF const guint16 ieee80211_ht_Dbps[MAX_MCS_INDEX+1] = {
    /* MCS  0 - 1 stream */
    26, 52, 78, 104, 156, 208, 234, 260,

    /* MCS  8 - 2 stream */
    52, 104, 156, 208, 312, 416, 468, 520,

    /* MCS 16 - 3 stream */
    78, 156, 234, 312, 468, 624, 702, 780,

    /* MCS 24 - 4 stream */
    104, 208, 312, 416, 624, 832, 936, 1040,

    /* MCS 32 - 1 stream */
    12, /* only valid for 40Mhz - 11a/g DUP mode */

    /* MCS 33 - 2 stream */
    156, 208, 260, 234, 312, 390,

    /* MCS 39 - 3 stream */
    208, 260, 260, 312, 364, 364, 416, 312, 390, 390, 468, 546, 546, 624,

    /* MCS 53 - 4 stream */
    260, 312, 364, 312, 364, 416, 468, 416, 468, 520, 520, 572,
    390, 468, 546, 468, 546, 624, 702, 624, 702, 780, 780, 858
};

/*
 * Calculates data rate corresponding to a given 802.11n MCS index,
 * bandwidth, and guard interval.
 */
float ieee80211_htrate(int mcs_index, gboolean bandwidth, gboolean short_gi)
{
    return (float)(ieee80211_ht_Dbps[mcs_index] * (bandwidth ? 108 : 52) / 52.0 / (short_gi ? 3.6 : 4.0));
}

static const guint8 ieee80211_ht_streams[MAX_MCS_INDEX+1] = {
       1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,
       1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,
       4,4,4,4,4,4,4,4,4,4,4,4,4
};

static const guint8 ieee80211_ht_Nes[MAX_MCS_INDEX+1] = {
       1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
       1,1,1,1,1,2,2,2, 1,1,1,1,2,2,2,2,
       1,
       1,1,1,1,1,1,
       1,1,1,1,1,1,1,1,1,1,1,1,1,1,
       1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2
};

#define MAX_MCS_VHT_INDEX     9

/*
 * Maps a VHT bandwidth index to ieee80211_vhtinfo.rates index.
 */
static const int ieee80211_vht_bw2rate_index[] = {
  /*  20Mhz total */ 0,
  /*  40Mhz total */ 1, 0, 0,
  /*  80Mhz total */ 2, 1, 1, 0, 0, 0, 0,
  /* 160Mhz total */ 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
};

struct mcs_vht_info {
  const char *modulation;
  const char *coding_rate;
  float data_bits_per_symbol; /* assuming 20MHz / 52 subcarriers */
};

static const struct mcs_vht_info ieee80211_vhtinfo[MAX_MCS_VHT_INDEX+1] = {
  /* MCS  0  */
  { "BPSK",  "1/2", 26 },
  /* MCS  1  */
  { "QPSK",  "1/2", 52 },
  /* MCS  2  */
  { "QPSK",  "3/4", 78 },
  /* MCS  3  */
  { "16-QAM", "1/2", 104 },
  /* MCS  4  */
  { "16-QAM", "3/4", 156 },
  /* MCS  5  */
  { "64-QAM", "2/3", 208 },
  /* MCS  6  */
  { "64-QAM", "3/4", 234 },
  /* MCS  7  */
  { "64-QAM", "5/6", 260 },
  /* MCS  8  */
  { "256-QAM", "3/4", 312 },
  /* MCS  9  */
  { "256-QAM", "5/6", (float)(1040/3.0) }
};

/* map a bandwidth index to the number of data subcarriers */
static const guint subcarriers[4] = { 52, 108, 234, 468 };

#define MAX_VHT_NSS             8

struct mcs_vht_valid {
    gboolean valid[4][MAX_VHT_NSS]; /* indexed by bandwidth and NSS-1 */
};

static const struct mcs_vht_valid ieee80211_vhtvalid[MAX_MCS_VHT_INDEX+1] = {
        /* MCS  0  */
        {
            {   /* 20 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        },
        /* MCS  1  */
        {
            {   /* 20 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        },
        /* MCS  2  */
        {
            {   /* 20 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        },
        /* MCS  3  */
        {
            {   /* 20 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        },
        /* MCS  4  */
        {
            {   /* 20 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        },
        /* MCS  5  */
        {
            {   /* 20 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        },
        /* MCS  6  */
        {
            {   /* 20 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  FALSE, TRUE,  TRUE,  TRUE,  FALSE, TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        },
        /* MCS  7  */
        {
            {   /* 20 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        },
        /* MCS  8  */
        {
            {   /* 20 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        },
        /* MCS  9  */
        {
            {   /* 20 Mhz */  { FALSE, FALSE, TRUE,  FALSE, FALSE, TRUE,  FALSE, FALSE },
                /* 40 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
                /* 80 Mhz */  { TRUE,  TRUE,  TRUE,  TRUE,  TRUE,  FALSE, TRUE,  TRUE },
                /* 160 Mhz */ { TRUE,  TRUE,  FALSE, TRUE,  TRUE,  TRUE,  TRUE,  TRUE },
            }
        }
};

/*
 * Calculates data rate corresponding to a given 802.11ac MCS index,
 * bandwidth, and guard interval.
 */
static float ieee80211_vhtrate(int mcs_index, guint bandwidth_index, gboolean short_gi)
{
    return (float)(ieee80211_vhtinfo[mcs_index].data_bits_per_symbol * subcarriers[bandwidth_index] / (short_gi ? 3.6 : 4.0) / 52.0);
}

static gint ett_wlan_radio = -1;
static gint ett_wlan_radio_11ac_user = -1;
static gint ett_wlan_radio_duration = -1;
static gint ett_wlan_radio_aggregate = -1;

/* previous frame details, for aggregate detection */
struct previous_frame_info {
  gboolean has_tsf_timestamp;
  guint64 tsf_timestamp;
  guint phy;
  union ieee_802_11_phy_info phy_info;
  guint prev_length;
  struct wlan_radio *radio_info;
};

static struct previous_frame_info previous_frame;
static struct aggregate *current_aggregate;
static wmem_list_t *agg_tracker_list;

static guint calculate_11n_duration(guint frame_length,
  struct ieee_802_11n* info_n,
  int stbc_streams)
{
  guint bits;
  guint bits_per_symbol;
  guint Mstbc;
  guint symbols;

  /* data field calculation */
  if (1) {
    /* see ieee80211n-2009 20.3.11 (20-32) - for BCC FEC */
    bits = 8 * frame_length + 16 + ieee80211_ht_Nes[info_n->mcs_index] * 6;
    Mstbc = stbc_streams ? 2 : 1;
    bits_per_symbol = ieee80211_ht_Dbps[info_n->mcs_index] *
        (info_n->bandwidth == PHDR_802_11_BANDWIDTH_40_MHZ ? 2 : 1);
    symbols = bits / (bits_per_symbol * Mstbc);
  } else {
    /* TODO: handle LDPC FEC, it changes the rounding */
  }
  /* round up to whole symbols */
  if ((bits % (bits_per_symbol * Mstbc)) > 0)
    symbols++;

  symbols *= Mstbc;
  return (symbols * (info_n->short_gi ? 36 : 40) + 5) / 10;
}

/* TODO: this is a crude quick hack, need proper calculation of bits/symbols/FEC/etc */
static guint calculate_11ac_duration(guint frame_length, float data_rate)
{
  guint bits = 8 * frame_length + 16;
  return (guint) (bits / data_rate);
}

static void adjust_agg_tsf(gpointer data, gpointer user_data)
{
  struct wlan_radio *wlan_radio_info = (struct wlan_radio *)data;
  guint64 *ppdu_start = (guint64 *)user_data;

  wlan_radio_info->start_tsf += (*ppdu_start);
  wlan_radio_info->end_tsf += (*ppdu_start);
  if (wlan_radio_info->prior_aggregate_data == 0)
	  wlan_radio_info->ifs += (*ppdu_start);
}

/*
 * Dissect 802.11 pseudo-header containing radio information.
 */
static void
dissect_wlan_radio_phdr(tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree, struct ieee_802_11_phdr *phdr)
{
  proto_item *ti;
  proto_tree *radio_tree;
  float data_rate = 0.0f;
  gboolean have_data_rate = FALSE;
  gboolean has_short_preamble = FALSE;
  gboolean short_preamble = TRUE;
  guint bandwidth = 0;
  gboolean can_calculate_rate = FALSE;
  proto_item *p_item;

  guint frame_length = tvb_reported_length(tvb); /* length of 802.11 frame data */

  /* durations in microseconds */
  guint preamble = 0, agg_preamble = 0; /* duration of plcp */
  gboolean have_duration = FALSE;
  guint duration = 0; /* duration of whole frame (plcp + mac data + any trailing parts) */
  guint prior_duration = 0; /* duration of previous part of aggregate */

  struct wlan_radio *wlan_radio_info;
  int phy = phdr->phy;
  union ieee_802_11_phy_info *phy_info = &phdr->phy_info;

  col_set_str(pinfo->cinfo, COL_PROTOCOL, "Radio");
  col_clear(pinfo->cinfo, COL_INFO);

  /* Calculate the data rate, if we have the necessary data */
  if (phdr->has_data_rate) {
    data_rate = phdr->data_rate * 0.5f;
    have_data_rate = TRUE;
  }

  /* this is the first time we are looking at this frame during a
   * capture dissection, so we know the dissection is done in
   * frame order (subsequent dissections may be random access) */
  if (!pinfo->fd->flags.visited) {
    wlan_radio_info = wmem_new0(wmem_file_scope(), struct wlan_radio);
    p_add_proto_data(wmem_file_scope(), pinfo, proto_wlan_radio, 0, wlan_radio_info);

    /* A-MPDU / aggregate detection
     * Different generators need different detection algorithms
     * One common pattern is to report all subframes in the aggregate with the same
     * tsf, referenced to the start of the AMPDU (Broadcom). Another pattern is to
     * report the tsf on the first subframe, then tsf=0 for the rest of the subframes
     * (Intel).
     * Another pattern is to report TSF = -1 for all frames but the last, and the
     * last has the tsf referenced to the end of the PPDU. (QCA)
     */
    /* TODO: add code to work around problem with captures from Macbooks where
     * aggregate subframes frames with FCS errors sometimes have incorrect
     * PHY information.
     */
    if (pinfo->fd->num > 1 &&
        (phdr->phy == PHDR_802_11_PHY_11N || phdr->phy == PHDR_802_11_PHY_11AC) &&
        phdr->phy == previous_frame.phy &&
        phdr->has_tsf_timestamp && previous_frame.has_tsf_timestamp &&
        (phdr->tsf_timestamp == previous_frame.tsf_timestamp || /* find matching TSFs */
         (!current_aggregate && previous_frame.tsf_timestamp && phdr->tsf_timestamp == 0) || /* Intel detect second frame */
         (previous_frame.tsf_timestamp == G_MAXUINT64) /* QCA, detect last frame */
        )) {
      /* we're in an aggregate */
      if (!current_aggregate) {
        /* this is the second frame in an aggregate
         * where we first detect the aggregate */
        current_aggregate = wmem_new0(wmem_file_scope(), struct aggregate);
        current_aggregate->phy = previous_frame.phy;
        current_aggregate->phy_info = previous_frame.phy_info;

        /* go back to the first frame in the aggregate,
         * and mark it as part of this aggregate */
        if (previous_frame.radio_info != NULL)
          previous_frame.radio_info->aggregate = current_aggregate;
      }
      wlan_radio_info->aggregate = current_aggregate;

      /* accumulate the length of the prior subframes in the aggregate.
       * Round up previous frame length (padding) */
      if (previous_frame.prev_length % 4 != 0) {
        previous_frame.prev_length = (previous_frame.prev_length | 3) + 1;
      }
      /* Also add the MPDU delimiter length */
      previous_frame.prev_length += 4;
      /* TODO: add padding to meet minimum subframe timing constraint */
      wlan_radio_info->prior_aggregate_data = previous_frame.prev_length;
      previous_frame.prev_length += frame_length;

      /* work around macbook/QCA FCS error frame PHY rate bug here
       * Some Macbook generators and some QCA generators erroneously report
       * low PHY rates for some subframes within an aggregate that have FCS errors.
       * All subframes must have the same PHY rate.
       * Here we take the highest reported rate for the aggregate. */
      switch (phdr->phy) {
      case PHDR_802_11_PHY_11N:
        {
          struct ieee_802_11n *info_n = &phy_info->info_11n;
          struct ieee_802_11n *agg_info_n = &current_aggregate->phy_info.info_11n;

          if (info_n->has_mcs_index && agg_info_n->has_mcs_index &&
              info_n->mcs_index > agg_info_n->mcs_index)
              current_aggregate->phy_info = *phy_info;
        }
        break;

      case PHDR_802_11_PHY_11AC:
        {
          struct ieee_802_11ac *info_ac = &phy_info->info_11ac;
          struct ieee_802_11ac *agg_info_ac = &current_aggregate->phy_info.info_11ac;

          if (info_ac->mcs[0] > agg_info_ac->mcs[0])
              current_aggregate->phy_info = *phy_info;
        }
        break;
      }
      /* TODO record a warning if the PHY rate does not match the aggregate */
      phy = current_aggregate->phy;
      phy_info = &current_aggregate->phy_info;
    } else {
      current_aggregate = NULL;
      previous_frame.prev_length = frame_length;
    }
    previous_frame.has_tsf_timestamp = phdr->has_tsf_timestamp;
    previous_frame.tsf_timestamp = phdr->tsf_timestamp;
    previous_frame.phy = phdr->phy;
    previous_frame.phy_info = phdr->phy_info;
  } else {
    /* this frame has already been seen, so get its info structure */
    wlan_radio_info = (struct wlan_radio *) p_get_proto_data(wmem_file_scope(), pinfo, proto_wlan_radio, 0);

    if (wlan_radio_info->aggregate) {
      phy = wlan_radio_info->aggregate->phy;
      phy_info = &wlan_radio_info->aggregate->phy_info;
    }
  }

  ti = proto_tree_add_item(tree, proto_wlan_radio, tvb, 0, 0, ENC_NA);
  radio_tree = proto_item_add_subtree (ti, ett_wlan_radio);

  if (phy != PHDR_802_11_PHY_UNKNOWN) {
    proto_tree_add_uint(radio_tree, hf_wlan_radio_phy, tvb, 0, 0, phy);

    switch (phy) {

      case PHDR_802_11_PHY_11_FHSS:
      {
        struct ieee_802_11_fhss *info_fhss = &phy_info->info_11_fhss;

        if (info_fhss->has_hop_set) {
          proto_tree_add_uint(radio_tree, hf_wlan_radio_11_fhss_hop_set, tvb, 0, 0,
                   info_fhss->hop_set);
        }
        if (info_fhss->has_hop_pattern) {
          proto_tree_add_uint(radio_tree, hf_wlan_radio_11_fhss_hop_pattern, tvb, 0, 0,
                   info_fhss->hop_pattern);
        }
        if (info_fhss->has_hop_index) {
          proto_tree_add_uint(radio_tree, hf_wlan_radio_11_fhss_hop_index, tvb, 0, 0,
                   info_fhss->hop_index);
        }
        break;
      }

      case PHDR_802_11_PHY_11B:
      {
        struct ieee_802_11b *info_b = &phy_info->info_11b;

        has_short_preamble = info_b->has_short_preamble;
        short_preamble = info_b->short_preamble;

        if (has_short_preamble) {
          proto_tree_add_boolean(radio_tree, hf_wlan_radio_short_preamble, tvb, 0, 0,
                   short_preamble);
        }
        break;
      }

      case PHDR_802_11_PHY_11A:
      {
        struct ieee_802_11a *info_a = &phy_info->info_11a;

        if (info_a->has_channel_type) {
          proto_tree_add_uint(radio_tree, hf_wlan_radio_11a_channel_type, tvb, 0, 0,
                   info_a->channel_type);
        }
        if (info_a->has_turbo_type) {
          proto_tree_add_uint(radio_tree, hf_wlan_radio_11a_turbo_type, tvb, 0, 0,
                   info_a->turbo_type);
        }
        break;
      }

      case PHDR_802_11_PHY_11G:
      {
        struct ieee_802_11g *info_g = &phy_info->info_11g;

        has_short_preamble = info_g->has_short_preamble;
        short_preamble = info_g->short_preamble;

        if (has_short_preamble) {
          proto_tree_add_boolean(radio_tree, hf_wlan_radio_short_preamble, tvb, 0, 0,
                   short_preamble);
        }
        if (info_g->has_mode) {
          proto_tree_add_uint(radio_tree, hf_wlan_radio_11g_mode, tvb, 0, 0,
                   info_g->mode);
        }
        break;
      }

      case PHDR_802_11_PHY_11N:
        {
          struct ieee_802_11n *info_n = &phy_info->info_11n;
          guint bandwidth_40;

          /*
           * If we have all the fields needed to look up the data rate,
           * do so.
           */
          if (info_n->has_mcs_index &&
              info_n->has_bandwidth &&
              info_n->has_short_gi) {
            bandwidth_40 = (info_n->bandwidth == PHDR_802_11_BANDWIDTH_40_MHZ) ? 1 : 0;
            if (info_n->mcs_index < MAX_MCS_INDEX) {
              data_rate = ieee80211_htrate(info_n->mcs_index, bandwidth_40, info_n->short_gi);
              have_data_rate = TRUE;
            }
          }

          if (info_n->has_mcs_index) {
            proto_tree_add_uint(radio_tree, hf_wlan_radio_11n_mcs_index, tvb, 0, 0,
                     info_n->mcs_index);
          }

          if (info_n->has_bandwidth) {
            proto_tree_add_uint(radio_tree, hf_wlan_radio_11n_bandwidth, tvb, 0, 0,
                     info_n->bandwidth);
          }

          if (info_n->has_short_gi) {
            proto_tree_add_boolean(radio_tree, hf_wlan_radio_11n_short_gi, tvb, 0, 0,
                     info_n->short_gi);
          }

          if (info_n->has_greenfield) {
            proto_tree_add_boolean(radio_tree, hf_wlan_radio_11n_greenfield, tvb, 0, 0,
                     info_n->greenfield);
          }

          if (info_n->has_fec) {
            proto_tree_add_uint(radio_tree, hf_wlan_radio_11n_fec, tvb, 0, 0,
                     info_n->fec);
          }

          if (info_n->has_stbc_streams) {
            proto_tree_add_uint(radio_tree, hf_wlan_radio_11n_stbc_streams, tvb, 0, 0,
                     info_n->stbc_streams);
          }

          if (info_n->has_ness) {
            proto_tree_add_uint(radio_tree, hf_wlan_radio_11n_ness, tvb, 0, 0,
                     info_n->ness);
          }
        }
        break;

      case PHDR_802_11_PHY_11AC:
        {
          struct ieee_802_11ac *info_ac = &phy_info->info_11ac;
          guint i;

          if (info_ac->has_short_gi) {
            can_calculate_rate = TRUE;  /* well, if we also have the bandwidth */
            proto_tree_add_boolean(radio_tree, hf_wlan_radio_11ac_short_gi, tvb, 0, 0, info_ac->short_gi);
          } else {
            can_calculate_rate = FALSE; /* unknown GI length */
          }

          if (info_ac->has_bandwidth) {
            proto_tree_add_uint(radio_tree, hf_wlan_radio_11ac_bandwidth, tvb, 0, 0, info_ac->bandwidth);
            if (info_ac->bandwidth < G_N_ELEMENTS(ieee80211_vht_bw2rate_index))
              bandwidth = ieee80211_vht_bw2rate_index[info_ac->bandwidth];
            else
              can_calculate_rate = FALSE; /* unknown bandwidth */
          } else {
            can_calculate_rate = FALSE;   /* no bandwidth */
          }

          if (info_ac->has_stbc) {
            proto_tree_add_boolean(radio_tree, hf_wlan_radio_11ac_stbc, tvb, 0, 0,
                     info_ac->stbc);
          }

          if (info_ac->has_txop_ps_not_allowed) {
            proto_tree_add_boolean(radio_tree, hf_wlan_radio_11ac_txop_ps_not_allowed, tvb, 0, 0,
                     info_ac->txop_ps_not_allowed);
          }

          if (info_ac->has_short_gi_nsym_disambig) {
            proto_tree_add_boolean(radio_tree, hf_wlan_radio_11ac_short_gi_nsym_disambig, tvb, 0, 0,
                     info_ac->short_gi_nsym_disambig);
          }

          if (info_ac->has_ldpc_extra_ofdm_symbol) {
            proto_tree_add_boolean(radio_tree, hf_wlan_radio_11ac_ldpc_extra_ofdm_symbol, tvb, 0, 0,
                     info_ac->ldpc_extra_ofdm_symbol);
          }

          if (info_ac->has_beamformed) {
            proto_tree_add_boolean(radio_tree, hf_wlan_radio_11ac_beamformed, tvb, 0, 0,
                     info_ac->beamformed);
          }

          for (i = 0; i < 4; i++) {

            if (info_ac->nss[i] != 0) {
              proto_item *it;
              proto_tree *user_tree;

              it = proto_tree_add_item(radio_tree, hf_wlan_radio_11ac_user, tvb, 0, 0, ENC_NA);
              proto_item_append_text(it, " %d: MCS %u", i, info_ac->mcs[i]);
              user_tree = proto_item_add_subtree(it, ett_wlan_radio_11ac_user);

              it = proto_tree_add_uint(user_tree, hf_wlan_radio_11ac_mcs, tvb, 0, 0,
                      info_ac->mcs[i]);
              if (info_ac->mcs[i] > MAX_MCS_VHT_INDEX) {
                proto_item_append_text(it, " (invalid)");
              } else {
                proto_item_append_text(it, " (%s %s)",
                  ieee80211_vhtinfo[info_ac->mcs[i]].modulation,
                  ieee80211_vhtinfo[info_ac->mcs[i]].coding_rate);

                  /*
                   * If we can calculate the data rate for this user, do so.
                   */
                  if (can_calculate_rate) {
                    data_rate = ieee80211_vhtrate(info_ac->mcs[i], bandwidth, info_ac->short_gi) * info_ac->nss[i];
                    have_data_rate = TRUE;
                  }
              }

              proto_tree_add_uint(user_tree, hf_wlan_radio_11ac_nss, tvb, 0, 0, info_ac->nss[i]);
              /*
               * If we don't know whether space-time block coding is being
               * used, we don't know the number of space-time streams.
               */
              if (info_ac->has_stbc) {
                guint nsts;

                if (info_ac->stbc)
                  nsts = 2 * info_ac->nss[i];
                else
                  nsts = info_ac->nss[i];
                proto_tree_add_uint(user_tree, hf_wlan_radio_11ac_nsts, tvb, 0, 0,
                       nsts);
              }
              if (info_ac->has_fec) {
                  proto_tree_add_uint(user_tree, hf_wlan_radio_11ac_fec, tvb, 0, 0,
                           (info_ac->fec >> i) & 0x01);
              }

              /*
               * If we can calculate the data rate for this user, do so.
               */
              if (can_calculate_rate && info_ac->mcs[i] <= MAX_MCS_VHT_INDEX &&
                  info_ac->nss[i] <= MAX_VHT_NSS &&
                  ieee80211_vhtvalid[info_ac->mcs[i]].valid[bandwidth][info_ac->nss[i]-1]) {
                data_rate = ieee80211_vhtrate(info_ac->mcs[i], bandwidth, info_ac->short_gi) * info_ac->nss[i];
                if (data_rate != 0.0f) {
                  proto_tree_add_float_format_value(user_tree, hf_wlan_radio_data_rate, tvb, 0, 0,
                        data_rate,
                        "%.1f Mb/s",
                       data_rate);
                }
              }
            }
          }

          if (info_ac->has_group_id) {
            proto_tree_add_uint(radio_tree, hf_wlan_radio_11ac_gid, tvb, 0, 0, info_ac->group_id);
          }

          if (info_ac->has_partial_aid) {
            proto_tree_add_uint(radio_tree, hf_wlan_radio_11ac_p_aid, tvb, 0, 0, info_ac->partial_aid);
          }
        }
        break;
    }
  }

  if (have_data_rate) {
    col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%.1f", data_rate);
    proto_tree_add_float_format_value(radio_tree, hf_wlan_radio_data_rate, tvb, 0, 0,
               data_rate,
               "%.1f Mb/s",
               data_rate);
  }

  if (phdr->has_channel) {
    col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u", phdr->channel);
    proto_tree_add_uint(radio_tree, hf_wlan_radio_channel, tvb, 0, 0, phdr->channel);
  }

  if (phdr->has_frequency) {
    col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u MHz", phdr->frequency);
    proto_tree_add_uint(radio_tree, hf_wlan_radio_frequency, tvb, 0, 0, phdr->frequency);
  }

  if (phdr->has_signal_percent) {
    col_add_fstr(pinfo->cinfo, COL_RSSI, "%u%%", phdr->signal_percent);
    proto_tree_add_uint(radio_tree, hf_wlan_radio_signal_percent, tvb, 0, 0, phdr->signal_percent);
  }

  if (phdr->has_signal_db) {
    col_add_fstr(pinfo->cinfo, COL_RSSI, "%u dB", phdr->signal_db);
    proto_tree_add_uint(radio_tree, hf_wlan_radio_signal_db, tvb, 0, 0, phdr->signal_db);
  }

  if (phdr->has_signal_dbm) {
    col_add_fstr(pinfo->cinfo, COL_RSSI, "%d dBm", phdr->signal_dbm);
    proto_tree_add_int(radio_tree, hf_wlan_radio_signal_dbm, tvb, 0, 0, phdr->signal_dbm);
  }

  if (phdr->has_noise_percent) {
    proto_tree_add_uint(radio_tree, hf_wlan_radio_noise_percent, tvb, 0, 0, phdr->noise_percent);
  }

  if (phdr->has_noise_db) {
    proto_tree_add_uint(radio_tree, hf_wlan_radio_noise_db, tvb, 0, 0, phdr->noise_db);
  }

  if (phdr->has_noise_dbm) {
    proto_tree_add_int(radio_tree, hf_wlan_radio_noise_dbm, tvb, 0, 0, phdr->noise_dbm);
  }

  if (phdr->has_signal_dbm && phdr->has_noise_dbm) {
    proto_tree_add_int(radio_tree, hf_wlan_radio_snr, tvb, 0, 0, phdr->signal_dbm - phdr->noise_dbm);
  }
  /*
   * XXX - are the signal and noise in dB from a fixed reference point
   * guaranteed to use the *same* fixed reference point?  If so, we could
   * calculate the SNR if they're both present, too.
   */

  if (phdr->has_tsf_timestamp) {
    proto_tree_add_uint64(radio_tree, hf_wlan_radio_timestamp, tvb, 0, 0, phdr->tsf_timestamp);
  }
  if (phdr->has_aggregate_info) {
    proto_tree_add_boolean(radio_tree, hf_wlan_last_part_of_a_mpdu, tvb, 0, 0, phdr->aggregate_flags);
    proto_tree_add_boolean(radio_tree, hf_wlan_a_mpdu_delim_crc_error, tvb, 0, 0, phdr->aggregate_flags);
    proto_tree_add_uint(radio_tree, hf_wlan_a_mpdu_aggregate_id, tvb, 0, 0, phdr->aggregate_id);
  }

  /* make sure frame_length includes the FCS for accurate duration calculation */
  if (pinfo->pseudo_header->ieee_802_11.fcs_len == 0) {
    frame_length += 4;
  }

  if (have_data_rate && data_rate > 0) {
    /* duration calculations */
    gboolean assumed_short_preamble = FALSE;
    gboolean assumed_non_greenfield = FALSE;
    gboolean assumed_no_stbc = FALSE;
    gboolean assumed_no_extension_streams = FALSE;
    gboolean assumed_bcc_fec = FALSE;

    /* some generators report CCK frames as 'dynamic-cck-ofdm', which are converted
     * into the 11g PHY type, so we need to be smart and recognize which ones are
     * DSSS/CCK and which are OFDM. Use the data_rate to do this. */
    if (phy == PHDR_802_11_PHY_11G &&
      (data_rate == 1.0f || data_rate == 2.0f ||
      data_rate == 5.5f || data_rate == 11.0f ||
      data_rate == 22.0f || data_rate == 33.0f)) {
      phy = PHDR_802_11_PHY_11B;
    } else if (phy == PHDR_802_11_PHY_UNKNOWN &&
      (data_rate == 1.0f || data_rate == 2.0f ||
      data_rate == 5.5f || data_rate == 11.0f ||
      data_rate == 22.0f || data_rate == 33.0f)) {
      phy = PHDR_802_11_PHY_11B;
    } else if (phy == PHDR_802_11_PHY_UNKNOWN &&
      (data_rate == 6.0f || data_rate == 9.0f ||
       data_rate == 12.0f || data_rate == 18.0f ||
       data_rate == 24.0f || data_rate == 36.0f ||
       data_rate == 48.0f || data_rate == 54.0f)) {
      phy = PHDR_802_11_PHY_11A;
    }
    switch (phy) {

    case PHDR_802_11_PHY_11_FHSS:
      /* TODO: preamble/duration calc for FHSS */
      break;

    case PHDR_802_11_PHY_11B:
      if (!has_short_preamble || wlan_radio_always_short_preamble) {
          assumed_short_preamble = TRUE;
          short_preamble = TRUE;
      }
      preamble = short_preamble ? 72 + 24 : 144 + 48;

      /* calculation of frame duration
       * Things we need to know to calculate accurate duration
       * 802.11 / 802.11b (DSSS or CCK modulation)
       * - length of preamble
       * - rate
       */
      /* round up to whole microseconds */
      have_duration = TRUE;
      duration = (guint) ceil(preamble + frame_length * 8 / data_rate);
      break;

    case PHDR_802_11_PHY_11A:
    case PHDR_802_11_PHY_11G:
    {
        /* OFDM rate */
      /* calculation of frame duration
       * Things we need to know to calculate accurate duration
       * 802.11a / 802.11g (OFDM modulation)
       * - rate
       */

      /* preamble + signal */
      preamble = 16 + 4;

      /* 16 service bits, data and 6 tail bits */
      guint bits = 16 + 8 * frame_length + 6;
      guint symbols = (guint) ceil(bits / (data_rate * 4));

      have_duration = TRUE;
      duration = preamble + symbols * 4;
      break;
    }

    case PHDR_802_11_PHY_11N:
    {
      struct ieee_802_11n *info_n = &phy_info->info_11n;

      /* We have all the fields required to calculate the duration */
      static const guint Nhtdltf[4] = {1, 2, 4, 4};
      static const guint Nhteltf[4] = {0, 1, 2, 4};
      guint Nsts;
      guint stbc_streams;
      guint ness;

      /*
       * If we don't have necessary fields, or if we have them but
       * they have invalid values, then bail.
       */
      if (!info_n->has_mcs_index ||
        info_n->mcs_index > MAX_MCS_INDEX ||
        !info_n->has_bandwidth ||
        !info_n->has_short_gi)
          break;

      /* calculation of frame duration
       * Things we need to know to calculate accurate duration
       * 802.11n / HT
       * - whether frame preamble is mixed or greenfield, (assume mixed)
       * - guard interval, 800ns or 400ns
       * - bandwidth, 20Mhz or 40Mhz
       * - MCS index - used with previous 2 to calculate rate
       * - how many additional STBC streams are used (assume 0)
       * - how many optional extension spatial streams are used (assume 0)
       * - whether BCC or LDCP coding is used (assume BCC)
       */

      /* preamble duration
       * see ieee802.11n-2009 Figure 20-1 - PPDU format
       * for HT-mixed format
       * L-STF 8us, L-LTF 8us, L-SIG 4us, HT-SIG 8us, HT_STF 4us
       * for HT-greenfield
       * HT-GF-STF 8us, HT-LTF1 8us, HT_SIG 8us
       */
      if (info_n->has_greenfield) {
        preamble = info_n->greenfield ? 24 : 32;
      } else {
        preamble = 32;
        assumed_non_greenfield = TRUE;
      }

      if (info_n->has_stbc_streams) {
        stbc_streams = info_n->stbc_streams;
      } else {
        stbc_streams = 0;
        assumed_no_stbc = TRUE;
      }

      if (info_n->has_ness) {
        ness = info_n->ness;
        if (ness >= G_N_ELEMENTS(Nhteltf)) {
            /* Not valid */
            break;
        }
      } else {
        ness = 0;
        assumed_no_extension_streams = TRUE;
      }

      /* calculate number of HT-LTF training symbols.
       * see ieee80211n-2009 20.3.9.4.6 table 20-11 */
      Nsts = ieee80211_ht_streams[info_n->mcs_index] + stbc_streams;
      if (Nsts == 0 || Nsts - 1 >= G_N_ELEMENTS(Nhtdltf)) {
          /* Not usable */
          break;
      }
      preamble += 4 * (Nhtdltf[Nsts-1] + Nhteltf[ness]);

      if (info_n->has_stbc_streams) {
        stbc_streams = info_n->stbc_streams;
      } else {
        stbc_streams = 0;
        assumed_no_stbc = TRUE;
      }

      if (!info_n->has_ness) {
        assumed_no_extension_streams = TRUE;
      }

      if (!info_n->has_fec) {
        assumed_bcc_fec = TRUE;
      }

      /* data field calculation */
      if (wlan_radio_info->aggregate) {
        agg_preamble = preamble;
        if (wlan_radio_info->prior_aggregate_data != 0) {
          preamble = 0;
        }
        prior_duration = calculate_11n_duration(wlan_radio_info->prior_aggregate_data, info_n, stbc_streams);
        have_duration = TRUE;
        duration = preamble +
          calculate_11n_duration(frame_length + wlan_radio_info->prior_aggregate_data, info_n, stbc_streams)
          - prior_duration;
      } else {
        have_duration = TRUE;
        duration = preamble + calculate_11n_duration(frame_length, info_n, stbc_streams);
      }
      break;
    }

    case PHDR_802_11_PHY_11AC:
    {
      struct ieee_802_11ac *info_ac = &phy_info->info_11ac;

      if (!info_ac->has_stbc) {
        assumed_no_stbc = TRUE;
      }
      preamble = 32 + 4 * info_ac->nss[0] * (info_ac->has_stbc ? info_ac->stbc+1 : 1);

      if (wlan_radio_info->aggregate) {
        agg_preamble = preamble;
        if (wlan_radio_info->prior_aggregate_data != 0) {
          preamble = 0;
        }
        prior_duration = calculate_11ac_duration(wlan_radio_info->prior_aggregate_data, data_rate);
        have_duration = TRUE;
        duration = preamble +
          calculate_11ac_duration(wlan_radio_info->prior_aggregate_data + frame_length, data_rate)
          - prior_duration;
      } else {
        have_duration = TRUE;
        duration = preamble + calculate_11ac_duration(frame_length, data_rate);
      }
      break;
    }
    }

    if (!pinfo->fd->flags.visited && have_duration && phdr->has_tsf_timestamp) {
      if (current_aggregate) {
        current_aggregate->duration = agg_preamble + prior_duration + duration;
        if (previous_frame.radio_info && previous_frame.radio_info->aggregate == current_aggregate)
          previous_frame.radio_info->nav = 0; // don't display NAV except for last frame in an aggregate
      }
      if (phdr->tsf_timestamp == G_MAXUINT64) {
        /* QCA aggregate, we don't know tsf yet */
        wlan_radio_info->start_tsf = prior_duration + (current_aggregate ? agg_preamble : 0);
        wlan_radio_info->end_tsf = prior_duration + duration + (current_aggregate ? agg_preamble : 0);
        if (agg_tracker_list == NULL) {
          agg_tracker_list = wmem_list_new(NULL);
        }
        wmem_list_append(agg_tracker_list, wlan_radio_info);
      } else if (current_aggregate && wlan_radio_tsf_at_end && phdr->tsf_timestamp != G_MAXUINT64) {
        /* QCA aggregate, last frame */
        wlan_radio_info->start_tsf = phdr->tsf_timestamp - duration;
        wlan_radio_info->end_tsf = phdr->tsf_timestamp;
        /* fix up the tsfs for the prior MPDUs */
        if (agg_tracker_list != NULL) {
          guint64 ppdu_start = phdr->tsf_timestamp - (prior_duration + duration + agg_preamble);
          wmem_list_foreach(agg_tracker_list, adjust_agg_tsf, &ppdu_start);
          wmem_destroy_list(agg_tracker_list);
          agg_tracker_list = NULL;
        };
      } else if (wlan_radio_tsf_at_end) {
        wlan_radio_info->start_tsf = phdr->tsf_timestamp - duration;
        wlan_radio_info->end_tsf = phdr->tsf_timestamp;
      } else {
        wlan_radio_info->start_tsf = phdr->tsf_timestamp + prior_duration - preamble;
        wlan_radio_info->end_tsf = phdr->tsf_timestamp + prior_duration + duration - preamble;
      }
      if ((pinfo->fd->num > 1) && (previous_frame.radio_info != NULL)) {
        /* TODO handle intermediate packets without end_tsf correctly */
        wlan_radio_info->ifs = wlan_radio_info->start_tsf - previous_frame.radio_info->end_tsf;
      }
      if (tvb_captured_length(tvb) >= 4) {
        /*
         * Duration/ID field.
         */
        int nav = tvb_get_letohs(tvb, 2);
        if ((nav & 0x8000) == 0) {
          /* Duration */
          wlan_radio_info->nav = nav;
        }
      }
      if (phdr->has_signal_dbm) {
        wlan_radio_info->rssi = phdr->signal_dbm;
        if (current_aggregate)
          current_aggregate->rssi = phdr->signal_dbm;
      }
    }

    if (have_duration) {
      proto_item *item = proto_tree_add_uint(radio_tree, hf_wlan_radio_duration, tvb, 0, 0, duration);
      proto_tree *d_tree = proto_item_add_subtree(item, ett_wlan_radio_duration);
      PROTO_ITEM_SET_GENERATED(item);

      if (assumed_short_preamble)
        expert_add_info(pinfo, item, &ei_wlan_radio_assumed_short_preamble);
      if (assumed_non_greenfield)
        expert_add_info(pinfo, item, &ei_wlan_radio_assumed_non_greenfield);
      if (assumed_no_stbc)
        expert_add_info(pinfo, item, &ei_wlan_radio_assumed_no_stbc);
      if (assumed_no_extension_streams)
        expert_add_info(pinfo, item, &ei_wlan_radio_assumed_no_extension_streams);
      if (assumed_bcc_fec)
        expert_add_info(pinfo, item, &ei_wlan_radio_assumed_bcc_fec);

      if (preamble) {
        p_item = proto_tree_add_uint(d_tree, hf_wlan_radio_preamble, tvb, 0, 0, preamble);
        PROTO_ITEM_SET_GENERATED(p_item);
      }
      if (wlan_radio_info->aggregate) {
        proto_tree *agg_tree;

        p_item = proto_tree_add_none_format(d_tree, hf_wlan_radio_aggregate, tvb, 0, 0,
          "This MPDU is part of an A-MPDU");
        agg_tree = proto_item_add_subtree(item, ett_wlan_radio_aggregate);
        PROTO_ITEM_SET_GENERATED(p_item);
        if (wlan_radio_info->aggregate->duration) {
          proto_item *aitem = proto_tree_add_uint(agg_tree, hf_wlan_radio_aggregate_duration, tvb, 0, 0,
                  wlan_radio_info->aggregate->duration);
          PROTO_ITEM_SET_GENERATED(aitem);
        }
      }
      if (wlan_radio_info->ifs) {
        p_item = proto_tree_add_int64(d_tree, hf_wlan_radio_ifs, tvb, 0, 0, wlan_radio_info->ifs);
        PROTO_ITEM_SET_GENERATED(p_item);
        /* TODO: warnings on unusual IFS values (too small or negative) */
      }
      if (wlan_radio_info->start_tsf) {
        p_item = proto_tree_add_uint64(d_tree, hf_wlan_radio_start_tsf, tvb, 0, 0, wlan_radio_info->start_tsf);
        PROTO_ITEM_SET_GENERATED(p_item);
      }
      if (wlan_radio_info->end_tsf) {
        p_item = proto_tree_add_uint64(d_tree, hf_wlan_radio_end_tsf, tvb, 0, 0, wlan_radio_info->end_tsf);
        PROTO_ITEM_SET_GENERATED(p_item);
      }
    }
  } /* if (have_data_rate) */
  if (phdr->has_zero_length_psdu_type)
    proto_tree_add_uint(radio_tree, hf_wlan_zero_length_psdu_type, tvb, 0, 0, phdr->zero_length_psdu_type);

  tap_queue_packet(wlan_radio_tap, pinfo, phdr);
  if (wlan_radio_timeline_enabled) {
    tap_queue_packet(wlan_radio_timeline_tap, pinfo, wlan_radio_info);
  }

  if (!pinfo->fd->flags.visited) {
    previous_frame.radio_info = wlan_radio_info;
  }
}

/*
 * Dissect 802.11 with a variable-length link-layer header and a pseudo-
 * header containing radio information.
 */
static int
dissect_wlan_radio (tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree, void *data)
{
  struct ieee_802_11_phdr *phdr = (struct ieee_802_11_phdr *)data;

  dissect_wlan_radio_phdr(tvb, pinfo, tree, phdr);

  /* Is there anything there? A 0-length-psdu has no frame data. */
  if (phdr->has_zero_length_psdu_type)
    return tvb_captured_length(tvb);

  /* dissect the 802.11 packet next */
  return call_dissector_with_data(ieee80211_handle, tvb, pinfo, tree, data);
}

/*
 * Dissect 802.11 with a variable-length link-layer header without qos elements and
 * a pseudo-header containing radio information.
 */
static int
dissect_wlan_noqos_radio (tvbuff_t * tvb, packet_info * pinfo, proto_tree * tree, void *data)
{
  struct ieee_802_11_phdr *phdr = (struct ieee_802_11_phdr *)data;

  dissect_wlan_radio_phdr(tvb, pinfo, tree, phdr);

  /* Is there anything there? A 0-length-psdu has no frame data. */
  if (phdr->has_zero_length_psdu_type)
    return tvb_captured_length(tvb);

  /* dissect the 802.11 packet next */
  return call_dissector_with_data(ieee80211_noqos_handle, tvb, pinfo, tree, data);
}

static void
setup_ieee80211_radio(void)
{
  /* start of a new dissection, initialize state variables */
  current_aggregate = NULL;
  agg_tracker_list = NULL;
  memset(&previous_frame, 0, sizeof(previous_frame));
}

static void
cleanup_ieee80211_radio(void)
{
  if (agg_tracker_list != NULL) {
    wmem_destroy_list(agg_tracker_list);
    agg_tracker_list = NULL;
  }
}

void proto_register_ieee80211_radio(void)
{
  static hf_register_info hf_wlan_radio[] = {
    {&hf_wlan_radio_phy,
     {"PHY type", "wlan_radio.phy", FT_UINT32, BASE_DEC, VALS(phy_vals), 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11_fhss_hop_set,
     {"Hop set", "wlan_radio.fhss.hop_set", FT_UINT8, BASE_HEX, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11_fhss_hop_pattern,
     {"Hop pattern", "wlan_radio.fhss.hop_pattern", FT_UINT8, BASE_HEX, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11_fhss_hop_index,
     {"Hop index", "wlan_radio.fhss.hop_index", FT_UINT8, BASE_HEX, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11a_channel_type,
     {"Channel type", "wlan_radio.11a.channel_type", FT_UINT32, BASE_DEC, VALS(channel_type_11a_vals), 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11a_turbo_type,
     {"Turbo type", "wlan_radio.11a.turbo_type", FT_UINT32, BASE_DEC, VALS(turbo_type_11a_vals), 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11g_mode,
     {"Proprietary mode", "wlan_radio.11g.mode", FT_UINT32, BASE_DEC, VALS(mode_11g_vals), 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11n_mcs_index,
     {"MCS index", "wlan_radio.11n.mcs_index", FT_UINT32, BASE_DEC, NULL, 0,
      "Modulation and Coding Scheme index", HFILL }},

    {&hf_wlan_radio_11n_bandwidth,
     {"Bandwidth", "wlan_radio.11n.bandwidth", FT_UINT32, BASE_DEC, VALS(bandwidth_vals), 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11n_short_gi,
     {"Short GI", "wlan_radio.11n.short_gi", FT_BOOLEAN, 0, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11n_greenfield,
     {"Greenfield", "wlan_radio.11n.greenfield", FT_BOOLEAN, BASE_NONE, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11n_fec,
     {"FEC", "wlan_radio.11n.fec", FT_UINT32, BASE_DEC, VALS(fec_vals), 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11n_stbc_streams,
     {"Number of STBC streams", "wlan_radio.11n.stbc_streams", FT_UINT32, BASE_DEC, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11n_ness,
     {"Number of extension spatial streams", "wlan_radio.11n.ness", FT_UINT32, BASE_DEC, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11ac_stbc,
     {"STBC", "wlan_radio.11ac.stbc", FT_BOOLEAN, 0, TFS(&tfs_on_off), 0x0,
      "Space Time Block Coding flag", HFILL }},

    {&hf_wlan_radio_11ac_txop_ps_not_allowed,
     {"TXOP_PS_NOT_ALLOWED", "wlan_radio_11ac.txop_ps_not_allowed", FT_BOOLEAN, 0, NULL, 0x0,
      "Flag indicating whether STAs may doze during TXOP", HFILL }},

    {&hf_wlan_radio_11ac_short_gi,
     {"Short GI", "wlan_radio.11ac.short_gi", FT_BOOLEAN, 0, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11ac_short_gi_nsym_disambig,
     {"Short GI Nsym disambiguation", "wlan_radio.11ac.short_gi_nsym_disambig", FT_BOOLEAN, 0, NULL, 0x0,
      "Short Guard Interval Nsym disambiguation", HFILL }},

    {&hf_wlan_radio_11ac_ldpc_extra_ofdm_symbol,
     {"LDPC extra OFDM symbol", "wlan_radio.11ac.ldpc_extra_ofdm_symbol", FT_BOOLEAN, 0, NULL, 0x0,
      NULL, HFILL }},

    {&hf_wlan_radio_11ac_beamformed,
     {"Beamformed", "wlan_radio.11ac.beamformed", FT_BOOLEAN, 0, NULL, 0x0,
      NULL, HFILL }},

    {&hf_wlan_radio_11ac_bandwidth,
     {"Bandwidth", "wlan_radio.11ac.bandwidth", FT_UINT32, BASE_DEC, VALS(bandwidth_vals), 0,
      NULL, HFILL }},

    {&hf_wlan_radio_11ac_user,
     {"User", "wlan_radio.11ac.user", FT_NONE, BASE_NONE, NULL, 0x0,
      NULL, HFILL }},

    {&hf_wlan_radio_11ac_nsts,
     {"Space-time streams", "wlan_radio.11ac.nsts", FT_UINT32, BASE_DEC, NULL, 0x0,
      "Number of Space-time streams", HFILL }},

    {&hf_wlan_radio_11ac_mcs,
     {"MCS index", "wlan_radio.11ac.mcs", FT_UINT32, BASE_DEC, NULL, 0x0,
      "Modulation and Coding Scheme index", HFILL }},

    {&hf_wlan_radio_11ac_nss,
     {"Spatial streams", "wlan_radio.11ac.nss", FT_UINT32, BASE_DEC, NULL, 0x0,
      "Number of spatial streams", HFILL }},

    {&hf_wlan_radio_11ac_fec,
     {"FEC", "wlan_radio.11ac.fec", FT_UINT32, BASE_DEC, VALS(fec_vals), 0x0,
      "Type of FEC", HFILL }},

    {&hf_wlan_radio_11ac_gid,
     {"Group Id", "wlan_radio.11ac.gid", FT_UINT32, BASE_DEC, NULL, 0x0,
      NULL, HFILL }},

    {&hf_wlan_radio_11ac_p_aid,
     {"Partial AID", "wlan_radio.11ac.paid", FT_UINT16, BASE_DEC, NULL, 0x0,
      NULL, HFILL }},

    {&hf_wlan_radio_data_rate,
     {"Data rate", "wlan_radio.data_rate", FT_FLOAT, BASE_NONE, NULL, 0,
      "Speed at which this frame was sent/received", HFILL }},

    {&hf_wlan_radio_channel,
     {"Channel", "wlan_radio.channel", FT_UINT32, BASE_DEC, NULL, 0,
      "802.11 channel number that this frame was sent/received on", HFILL }},

    {&hf_wlan_radio_frequency,
     {"Frequency", "wlan_radio.frequency", FT_UINT16, BASE_DEC|BASE_UNIT_STRING, &units_mhz, 0,
      "Center frequency of the 802.11 channel that this frame was sent/received on", HFILL }},

    {&hf_wlan_radio_short_preamble,
     {"Short preamble", "wlan_radio.short_preamble", FT_BOOLEAN, BASE_NONE, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_signal_percent,
     {"Signal strength (percentage)", "wlan_radio.signal_percentage", FT_UINT32, BASE_DEC|BASE_UNIT_STRING, &units_percent, 0,
      "Signal strength, as percentage of maximum RSSI", HFILL }},

    {&hf_wlan_radio_signal_db,
     {"Signal strength (dB)", "wlan_radio.signal_db", FT_UINT8, BASE_DEC|BASE_UNIT_STRING, &units_decibels, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_signal_dbm,
     {"Signal strength (dBm)", "wlan_radio.signal_dbm", FT_INT8, BASE_DEC|BASE_UNIT_STRING, &units_dbm, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_noise_percent,
     {"Noise level (percentage)", "wlan_radio.noise_percentage", FT_UINT32, BASE_DEC|BASE_UNIT_STRING, &units_percent, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_noise_db,
     {"Noise level (dB)", "wlan_radio.noise_db", FT_UINT8, BASE_DEC|BASE_UNIT_STRING, &units_decibels, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_noise_dbm,
     {"Noise level (dBm)", "wlan_radio.noise_dbm", FT_INT8, BASE_DEC|BASE_UNIT_STRING, &units_dbm, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_snr,
     {"Signal/noise ratio (dB)", "wlan_radio.snr", FT_INT32, BASE_DEC|BASE_UNIT_STRING, &units_decibels, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_timestamp,
     {"TSF timestamp", "wlan_radio.timestamp", FT_UINT64, BASE_DEC, NULL, 0,
      "Timing Synchronization Function timestamp", HFILL }},

    {&hf_wlan_last_part_of_a_mpdu,
     {"Last part of an A-MPDU", "wlan_radio.last_part_of_an_ampdu", FT_BOOLEAN, 32, NULL, PHDR_802_11_LAST_PART_OF_A_MPDU,
      "This is the last part of an A-MPDU", HFILL }},

    {&hf_wlan_a_mpdu_delim_crc_error,
     {"A-MPDU delimiter CRC error", "wlan_radio.a_mpdu_delim_crc_error", FT_BOOLEAN, 32, NULL, PHDR_802_11_A_MPDU_DELIM_CRC_ERROR,
      NULL, HFILL }},

    {&hf_wlan_a_mpdu_aggregate_id,
     {"A-MPDU aggregate ID", "wlan_radio.a_mpdu_aggregate_id", FT_UINT32, BASE_DEC, NULL, 0,
      NULL, HFILL }},

    {&hf_wlan_radio_duration,
     {"Duration", "wlan_radio.duration", FT_UINT32, BASE_DEC|BASE_UNIT_STRING, &units_microseconds, 0,
      "Total duration of the frame in microseconds, including any preamble or plcp header. "
      "Calculated from the frame length, modulation and other phy data.", HFILL }},

    {&hf_wlan_radio_preamble,
     {"Preamble", "wlan_radio.preamble", FT_UINT32, BASE_DEC|BASE_UNIT_STRING, &units_microseconds, 0,
      "Duration of the PLCP or preamble in microseconds, calculated from PHY data", HFILL }},

    {&hf_wlan_radio_aggregate,
     {"A-MPDU", "wlan_radio.aggregate", FT_NONE, BASE_NONE, NULL, 0,
      "MPDU is part of an A-MPDU", HFILL }},

    {&hf_wlan_radio_ifs,
     {"IFS", "wlan_radio.ifs", FT_INT64, BASE_DEC|BASE_UNIT_STRING, &units_microseconds, 0,
      "Inter Frame Space before this frame in microseconds, calculated from PHY data", HFILL }},

    {&hf_wlan_radio_start_tsf,
     {"Start", "wlan_radio.start_tsf", FT_UINT64, BASE_DEC|BASE_UNIT_STRING, &units_microseconds, 0,
      "Calculated start time of the frame", HFILL }},

    {&hf_wlan_radio_end_tsf,
     {"End", "wlan_radio.end_tsf", FT_UINT64, BASE_DEC|BASE_UNIT_STRING, &units_microseconds, 0,
      "Calculated end time of the frame", HFILL }},

    {&hf_wlan_radio_aggregate_duration,
     {"Duration", "wlan_radio.aggregate.duration", FT_UINT32, BASE_DEC|BASE_UNIT_STRING, &units_microseconds, 0,
      "Total duration of the aggregate in microseconds, including any preamble or plcp header. "
      "Calculated from the total subframe lengths, modulation and other phy data.", HFILL }},

    {&hf_wlan_zero_length_psdu_type,
     {"Zero-length PSDU Type", "wlan_radio.zero_len_psdu.type", FT_UINT8, BASE_HEX, VALS(zero_length_psdu_vals), 0x0,
       "Type of zero-length PSDU", HFILL}},
  };

  static gint *ett[] = {
    &ett_wlan_radio,
    &ett_wlan_radio_11ac_user,
    &ett_wlan_radio_duration,
    &ett_wlan_radio_aggregate
  };

  static ei_register_info ei[] = {
    { &ei_wlan_radio_assumed_short_preamble,
      { "wlan_radio.assumed.short_preamble", PI_ASSUMPTION, PI_WARN,
        "No preamble length information was available, assuming short preamble.", EXPFILL }},

    { &ei_wlan_radio_assumed_non_greenfield,
      { "wlan_radio.assumed.non_greenfield", PI_ASSUMPTION, PI_WARN,
        "No plcp type information was available, assuming non greenfield.", EXPFILL }},

    { &ei_wlan_radio_assumed_no_stbc,
      { "wlan_radio.assumed.no_stbc", PI_ASSUMPTION, PI_WARN,
        "No stbc information was available, assuming no stbc.", EXPFILL }},

    { &ei_wlan_radio_assumed_no_extension_streams,
      { "wlan_radio.assumed.no_extension_streams", PI_ASSUMPTION, PI_WARN,
        "No extension stream information was available, assuming no extension streams.", EXPFILL }},

    { &ei_wlan_radio_assumed_bcc_fec,
      { "wlan_radio.assumed.bcc_fec", PI_ASSUMPTION, PI_WARN,
        "No fec type information was available, assuming bcc fec.", EXPFILL }},
  };

  module_t *wlan_radio_module;
  expert_module_t* expert_wlan_radio;

  proto_wlan_radio = proto_register_protocol("802.11 radio information", "802.11 Radio", "wlan_radio");
  proto_register_field_array(proto_wlan_radio, hf_wlan_radio, array_length(hf_wlan_radio));
  proto_register_subtree_array(ett, array_length(ett));

  expert_wlan_radio = expert_register_protocol(proto_wlan_radio);
  expert_register_field_array(expert_wlan_radio, ei, array_length(ei));

  wlan_radio_handle = register_dissector("wlan_radio", dissect_wlan_radio, proto_wlan_radio);
  wlan_noqos_radio_handle = register_dissector("wlan_noqos_radio", dissect_wlan_noqos_radio, proto_wlan_radio);

  wlan_radio_module = prefs_register_protocol(proto_wlan_radio, NULL);
  prefs_register_bool_preference(wlan_radio_module, "always_short_preamble",
    "802.11/11b preamble length is always short",
    "Some generators incorrectly indicate long preamble when the preamble was actually"
    "short. Always assume short preamble when calculating duration.",
    &wlan_radio_always_short_preamble);
  prefs_register_bool_preference(wlan_radio_module, "tsf_at_end",
    "TSF indicates the end of the PPDU",
    "Some generators timestamp the end of the PPDU rather than the start of the (A)MPDU.",
    &wlan_radio_tsf_at_end);
  prefs_register_bool_preference(wlan_radio_module, "timeline",
    "Enable Wireless Timeline (experimental)",
    "Enables an additional panel for navigating through packets",
    &wlan_radio_timeline_enabled);

  register_init_routine( setup_ieee80211_radio );
  register_cleanup_routine( cleanup_ieee80211_radio );
}

void proto_reg_handoff_ieee80211_radio(void)
{
  /* Register handoff to radio-header dissectors */
  dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE_802_11_WITH_RADIO,
                     wlan_radio_handle);
  ieee80211_handle = find_dissector_add_dependency("wlan", proto_wlan_radio);
  ieee80211_noqos_handle = find_dissector_add_dependency("wlan_noqos", proto_wlan_radio);

  wlan_radio_tap = register_tap("wlan_radio");
  wlan_radio_timeline_tap = register_tap("wlan_radio_timeline");
}

/*
 * Editor modelines
 *
 * Local Variables:
 * c-basic-offset: 2
 * tab-width: 8
 * indent-tabs-mode: nil
 * End:
 *
 * ex: set shiftwidth=2 tabstop=8 expandtab:
 * :indentSize=2:tabSize=8:noTabs=true:
 */