/* packet-pn-rt.c * Routines for pn-rt (PROFINET Real-Time) packet dissection. * This is the base for other PROFINET protocols like IO, CBA, DCP, ... * (the "content subdissectors" will register themselves using a heuristic) * * $Id$ * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1999 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_NETINET_IN_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "packet-pn.h" void proto_reg_handoff_pn_rt(void); /* Define the pn-rt proto */ static int proto_pn_rt = -1; /* Define many header fields for pn-rt */ static int hf_pn_rt_frame_id = -1; static int hf_pn_rt_cycle_counter = -1; static int hf_pn_rt_transfer_status = -1; static int hf_pn_rt_data_status = -1; static int hf_pn_rt_data_status_res67 = -1; static int hf_pn_rt_data_status_ok = -1; static int hf_pn_rt_data_status_operate = -1; static int hf_pn_rt_data_status_res3 = -1; static int hf_pn_rt_data_status_valid = -1; static int hf_pn_rt_data_status_res1 = -1; static int hf_pn_rt_data_status_primary = -1; /* * Define the trees for pn-rt * We need one tree for pn-rt itself and one for the pn-rt data status subtree */ static int ett_pn_rt = -1; static int ett_pn_rt_data_status = -1; /* * Here are the global variables associated with * the various user definable characteristics of the dissection */ /* Place summary in proto tree */ static gboolean pn_rt_summary_in_tree = TRUE; /* heuristic to find the right pn-rt payload dissector */ static heur_dissector_list_t heur_subdissector_list; /* * dissect_pn_rt - The dissector for the Soft-Real-Time protocol */ static void dissect_pn_rt(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { gint tvb_len; gint data_len; guint16 u16FrameID; guint8 u8DataStatus; guint8 u8TransferStatus; guint16 u16CycleCounter; const gchar *pszProtAddInfo; const gchar *pszProtShort; const gchar *pszProtSummary; const gchar *pszProtComment; proto_item *item = NULL; proto_tree *ds_tree = NULL; proto_tree *pn_rt_tree, *ti; gchar szFieldSummary[100]; tvbuff_t *next_tvb; gboolean bCyclic; /* The PN-RT protocol uses status values at the end of the Ethernet frame. * Unfortunately it doesn't contain a length field in the PN-RT protocol itself, * so we must depend on the tvb length. This is sometimes is a bit confusing * wether the length of the tvb contains the optional FCS at the end or not * therefore the following heuristic ... */ if(pinfo->fd->lnk_t == WTAP_ENCAP_IEEE_802_11_WITH_RADIO) { /* 802.11: at least when using AiroPeek to capture, * the 802.11 dissector already has stripped the FCS from the tvb. * XXX - we might need to add other 802.11 encaps here as well */ tvb_len = tvb_length(tvb); } else { /* Ethernet: subtract (optional) FCS or trailer len * (fcs_len -1 means we don't know if FCS is appended, we assume it's not) */ tvb_len = tvb_length(tvb) - ((pinfo->pseudo_header->eth.fcs_len != -1) ? pinfo->pseudo_header->eth.fcs_len : 0); } tvb_set_reported_length(tvb, tvb_len); /* Initialize variables */ pn_rt_tree = NULL; ds_tree = NULL; ti = NULL; /* * Set the columns now, so that they'll be set correctly if we throw * an exception. We can set them (or append things) later again .... */ if (check_col(pinfo->cinfo, COL_PROTOCOL)) col_add_str(pinfo->cinfo, COL_PROTOCOL, "PN-RT"); if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, "PROFINET Real-Time"); if (tvb_len < 6) { dissect_pn_malformed(tvb, 0, pinfo, tree, tvb_len); return; } /* build some "raw" data */ u16FrameID = tvb_get_ntohs(tvb, 0); if (u16FrameID < 0x0040) { pszProtShort = "PN-PTCP"; pszProtAddInfo = "Synchronization, "; pszProtSummary = "Real-Time"; pszProtComment = "0x0000-0x003F: Real-Time: Sync (with follow up)"; bCyclic = FALSE; } else if (u16FrameID < 0x0080) { pszProtShort = "PN-RT"; pszProtAddInfo = "reserved, "; pszProtSummary = "Real-Time"; pszProtComment = "0x0040-0x007F: Reserved ID"; bCyclic = FALSE; } else if (u16FrameID < 0x0100) { pszProtShort = "PN-PTCP"; pszProtAddInfo = "Synchronization, "; pszProtSummary = "Isochronous-Real-Time"; pszProtComment = "0x0080-0x00FF: Real-Time: Sync (without follow up)"; bCyclic = FALSE; } else if (u16FrameID < 0x8000){ pszProtShort = "PN-RTC3"; pszProtAddInfo = "RTC3, "; pszProtSummary = "Isochronous-Real-Time"; pszProtComment = "0x0100-0x7FFF: Isochronous-Real-Time(class=3): Cyclic"; bCyclic = TRUE; } else if (u16FrameID < 0xbf00){ pszProtShort = "PN-RTC2"; pszProtAddInfo = "RTC2, "; pszProtSummary = "cyclic Real-Time"; pszProtComment = "0x8000-0xBEFF: Real-Time(class=2): Cyclic"; bCyclic = TRUE; } else if (u16FrameID < 0xc000){ pszProtShort = "PN-RTC2"; pszProtAddInfo = "Multicast, "; pszProtSummary = "cyclic Real-Time"; pszProtComment = "0xBF00-0xBFFF: Real-Time(class=2 multicast): Cyclic"; bCyclic = TRUE; } else if (u16FrameID < 0xfb00){ pszProtShort = "PN-RTC1"; pszProtAddInfo = "RTC1, "; pszProtSummary = "cyclic Real-Time"; pszProtComment = "0xC000-0xFAFF: Real-Time(class=1): Cyclic"; bCyclic = TRUE; } else if (u16FrameID < 0xfc00){ pszProtShort = "PN-RTC1"; pszProtAddInfo = "Multicast, "; pszProtSummary = "cyclic Real-Time"; pszProtComment = "0xFB00-0xFBFF: Real-Time(class=1 multicast): Cyclic"; bCyclic = TRUE; } else if (u16FrameID < 0xfe00){ pszProtShort = "PN-RTA"; pszProtAddInfo = "Reserved, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFC00-0xFDFF: Real-Time: Acyclic high priority"; bCyclic = FALSE; if (u16FrameID == 0xfc01) { pszProtShort = "PN-RTA"; pszProtAddInfo = "Alarm High, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: Acyclic PN-IO Alarm high priority"; } } else if (u16FrameID < 0xff00){ pszProtShort = "PN-RTA"; pszProtAddInfo = "Reserved, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFE00-0xFEFF: Real-Time: Acyclic low priority"; bCyclic = FALSE; if (u16FrameID == 0xfe01) { pszProtShort = "PN-RTA"; pszProtAddInfo = "Alarm Low, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: Acyclic PN-IO Alarm low priority"; } if (u16FrameID == FRAME_ID_DCP_GETORSET) { pszProtShort = "PN-RTA"; pszProtAddInfo = ""; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: DCP (Dynamic Configuration Protocol)"; } if (u16FrameID == FRAME_ID_DCP_IDENT_REQ) { pszProtShort = "PN-RTA"; pszProtAddInfo = ""; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: DCP (Dynamic Configuration Protocol) identify multicast request"; } if (u16FrameID == FRAME_ID_DCP_IDENT_RES) { pszProtShort = "PN-RTA"; pszProtAddInfo = ""; pszProtSummary = "acyclic Real-Time"; pszProtComment = "Real-Time: DCP (Dynamic Configuration Protocol) identify response"; } } else if (u16FrameID < 0xff20){ pszProtShort = "PN-PTCP"; pszProtAddInfo = "RTA Sync, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFF00-0xFF1F: Acyclic Real-Time: RTA sync"; bCyclic = FALSE; } else if (u16FrameID < 0xff40){ pszProtShort = "PN-PTCP"; pszProtAddInfo = "Follow Up, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFF20-0xFF3F: Acyclic Real-Time: Follow Up"; bCyclic = FALSE; } else if (u16FrameID < 0xff43){ pszProtShort = "PN-PTCP"; pszProtAddInfo = "Delay, "; pszProtSummary = "acyclic Real-Time"; pszProtComment = "0xFF40-0xFF42: Acyclic Real-Time: Delay"; bCyclic = FALSE; } else { pszProtShort = "PN-RT"; pszProtAddInfo = "Reserved, "; pszProtSummary = "Real-Time"; pszProtComment = "0xFF43-0xFFFF: reserved ID"; bCyclic = FALSE; } /* decode optional cyclic fields at the packet end and build the summary line */ if (bCyclic) { /* cyclic transfer has cycle counter, data status and transfer status fields at the end */ u16CycleCounter = tvb_get_ntohs(tvb, tvb_len - 4); u8DataStatus = tvb_get_guint8(tvb, tvb_len - 2); u8TransferStatus = tvb_get_guint8(tvb, tvb_len - 1); g_snprintf (szFieldSummary, sizeof(szFieldSummary), "%sID:0x%04x, Len:%4u, Cycle:%5u (%s,%s,%s,%s)", pszProtAddInfo, u16FrameID, tvb_len - 2 - 4, u16CycleCounter, (u8DataStatus & 0x04) ? "Valid" : "Invalid", (u8DataStatus & 0x01) ? "Primary" : "Backup", (u8DataStatus & 0x20) ? "Ok" : "Problem", (u8DataStatus & 0x10) ? "Run" : "Stop"); /* user data length is packet len - frame id - optional cyclic status fields */ data_len = tvb_len - 2 - 4; } else { /* satisfy the gcc compiler, so it won't throw an "uninitialized" warning */ u16CycleCounter = 0; u8DataStatus = 0; u8TransferStatus = 0; /* acyclic transfer has no fields at the end */ g_snprintf (szFieldSummary, sizeof(szFieldSummary), "%sID:0x%04x, Len:%4u", pszProtAddInfo, u16FrameID, tvb_len - 2); /* user data length is packet len - frame id field */ data_len = tvb_len - 2; } /* build protocol tree only, if tree is really used */ if (tree) { /* build pn_rt protocol tree with summary line */ if (pn_rt_summary_in_tree) { ti = proto_tree_add_protocol_format(tree, proto_pn_rt, tvb, 0, tvb_len, "PROFINET %s, %s", pszProtSummary, szFieldSummary); } else { ti = proto_tree_add_item(tree, proto_pn_rt, tvb, 0, tvb_len, FALSE); } pn_rt_tree = proto_item_add_subtree(ti, ett_pn_rt); /* add frame ID */ proto_tree_add_uint_format(pn_rt_tree, hf_pn_rt_frame_id, tvb, 0, 2, u16FrameID, "FrameID: 0x%04x (%s)", u16FrameID, pszProtComment); if (bCyclic) { /* add cycle counter */ proto_tree_add_uint_format(pn_rt_tree, hf_pn_rt_cycle_counter, tvb, tvb_len - 4, 2, u16CycleCounter, "CycleCounter: %u", u16CycleCounter); /* add data status subtree */ item = proto_tree_add_uint_format(pn_rt_tree, hf_pn_rt_data_status, tvb, tvb_len - 2, 1, u8DataStatus, "DataStatus: 0x%02x (Frame: %s and %s, Provider: %s and %s)", u8DataStatus, (u8DataStatus & 0x04) ? "Valid" : "Invalid", (u8DataStatus & 0x01) ? "Primary" : "Backup", (u8DataStatus & 0x20) ? "Ok" : "Problem", (u8DataStatus & 0x10) ? "Run" : "Stop"); ds_tree = proto_item_add_subtree(item, ett_pn_rt_data_status); proto_tree_add_uint(ds_tree, hf_pn_rt_data_status_res67, tvb, tvb_len - 2, 1, u8DataStatus); proto_tree_add_uint(ds_tree, hf_pn_rt_data_status_ok, tvb, tvb_len - 2, 1, u8DataStatus); proto_tree_add_uint(ds_tree, hf_pn_rt_data_status_operate, tvb, tvb_len - 2, 1, u8DataStatus); proto_tree_add_uint(ds_tree, hf_pn_rt_data_status_res3, tvb, tvb_len - 2, 1, u8DataStatus); proto_tree_add_uint(ds_tree, hf_pn_rt_data_status_valid, tvb, tvb_len - 2, 1, u8DataStatus); proto_tree_add_uint(ds_tree, hf_pn_rt_data_status_res1, tvb, tvb_len - 2, 1, u8DataStatus); proto_tree_add_uint(ds_tree, hf_pn_rt_data_status_primary, tvb, tvb_len - 2, 1, u8DataStatus); /* add transfer status */ if (u8TransferStatus) { proto_tree_add_uint_format(pn_rt_tree, hf_pn_rt_transfer_status, tvb, tvb_len - 1, 1, u8TransferStatus, "TransferStatus: 0x%02x (ignore this frame)", u8TransferStatus); } else { proto_tree_add_uint_format(pn_rt_tree, hf_pn_rt_transfer_status, tvb, tvb_len - 1, 1, u8TransferStatus, "TransferStatus: 0x%02x (OK)", u8TransferStatus); } } } /* update column info now */ if (check_col(pinfo->cinfo, COL_INFO)) col_add_fstr(pinfo->cinfo, COL_INFO, szFieldSummary); if (check_col(pinfo->cinfo, COL_PROTOCOL)) col_add_str(pinfo->cinfo, COL_PROTOCOL, pszProtShort); pinfo->private_data = GUINT_TO_POINTER( (guint32) u16FrameID); /* get frame user data tvb (without header and footer) */ next_tvb = tvb_new_subset(tvb, 2, data_len, data_len); /* ask heuristics, if some sub-dissector is interested in this packet payload */ if(!dissector_try_heuristic(heur_subdissector_list, next_tvb, pinfo, tree)) { /*if (check_col(pinfo->cinfo, COL_INFO)) col_add_fstr(pinfo->cinfo, COL_INFO, "Unknown");*/ /* Oh, well, we don't know this; dissect it as data. */ dissect_pn_undecoded(next_tvb, 0, pinfo, tree, tvb_length(next_tvb)); } } /* Register all the bits needed by the filtering engine */ void proto_register_pn_rt(void) { static hf_register_info hf[] = { { &hf_pn_rt_frame_id, { "FrameID", "pn_rt.frame_id", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_pn_rt_cycle_counter, { "CycleCounter", "pn_rt.cycle_counter", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_pn_rt_data_status, { "DataStatus", "pn_rt.ds", FT_UINT8, BASE_HEX, 0, 0x0, "", HFILL }}, { &hf_pn_rt_data_status_res67, { "Reserved (should be zero)", "pn_rt.ds_res67", FT_UINT8, BASE_HEX, 0, 0xc0, "", HFILL }}, { &hf_pn_rt_data_status_ok, { "StationProblemIndicator (1:Ok/0:Problem)", "pn_rt.ds_ok", FT_UINT8, BASE_HEX, 0, 0x20, "", HFILL }}, { &hf_pn_rt_data_status_operate, { "ProviderState (1:Run/0:Stop)", "pn_rt.ds_operate", FT_UINT8, BASE_HEX, 0, 0x10, "", HFILL }}, { &hf_pn_rt_data_status_res3, { "Reserved (should be zero)", "pn_rt.ds_res3", FT_UINT8, BASE_HEX, 0, 0x08, "", HFILL }}, { &hf_pn_rt_data_status_valid, { "DataValid (1:Valid/0:Invalid)", "pn_rt.ds_valid", FT_UINT8, BASE_HEX, 0, 0x04, "", HFILL }}, { &hf_pn_rt_data_status_res1, { "Reserved (should be zero)", "pn_rt.ds_res1", FT_UINT8, BASE_HEX, 0, 0x02, "", HFILL }}, { &hf_pn_rt_data_status_primary, { "State (1:Primary/0:Backup)", "pn_rt.ds_primary", FT_UINT8, BASE_HEX, 0, 0x01, "", HFILL }}, { &hf_pn_rt_transfer_status, { "TransferStatus", "pn_rt.transfer_status", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, }; static gint *ett[] = { &ett_pn_rt, &ett_pn_rt_data_status, }; module_t *pn_rt_module; proto_pn_rt = proto_register_protocol("PROFINET Real-Time Protocol", "PN-RT", "pn_rt"); proto_register_field_array(proto_pn_rt, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); /* Register our configuration options */ pn_rt_module = prefs_register_protocol(proto_pn_rt, proto_reg_handoff_pn_rt); prefs_register_bool_preference(pn_rt_module, "summary_in_tree", "Show PN-RT summary in protocol tree", "Whether the PN-RT summary line should be shown in the protocol tree", &pn_rt_summary_in_tree); /* register heuristics anchor for payload dissectors */ register_heur_dissector_list("pn_rt", &heur_subdissector_list); init_pn (proto_pn_rt); } /* The registration hand-off routine * Is called at startup, and everytime the preferences of this protocol changed. */ void proto_reg_handoff_pn_rt(void) { static int pn_rt_prefs_initialized = FALSE; static dissector_handle_t pn_rt_handle; if (!pn_rt_prefs_initialized) { pn_rt_handle = create_dissector_handle(dissect_pn_rt, proto_pn_rt); pn_rt_prefs_initialized = TRUE; } else { dissector_delete("ethertype", ETHERTYPE_PROFINET, pn_rt_handle); dissector_delete("udp.port", 0x8892, pn_rt_handle); } dissector_add("ethertype", ETHERTYPE_PROFINET, pn_rt_handle); dissector_add("udp.port", 0x8892, pn_rt_handle); }