/* packet-sna.c * Routines for SNA * Gilbert Ramirez * Jochen Friedrich * * $Id: packet-sna.c,v 1.46 2003/03/05 07:17:50 guy Exp $ * * Ethereal - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include "llcsaps.h" #include "ppptypes.h" #include #include "prefs.h" #include "reassemble.h" #include "util.h" /* * http://www.wanresources.com/snacell.html * ftp://ftp.software.ibm.com/networking/pub/standards/aiw/formats/ * */ static int proto_sna = -1; static int proto_sna_xid = -1; static int hf_sna_th = -1; static int hf_sna_th_0 = -1; static int hf_sna_th_fid = -1; static int hf_sna_th_mpf = -1; static int hf_sna_th_odai = -1; static int hf_sna_th_efi = -1; static int hf_sna_th_daf = -1; static int hf_sna_th_oaf = -1; static int hf_sna_th_snf = -1; static int hf_sna_th_dcf = -1; static int hf_sna_th_lsid = -1; static int hf_sna_th_tg_sweep = -1; static int hf_sna_th_er_vr_supp_ind = -1; static int hf_sna_th_vr_pac_cnt_ind = -1; static int hf_sna_th_ntwk_prty = -1; static int hf_sna_th_tgsf = -1; static int hf_sna_th_mft = -1; static int hf_sna_th_piubf = -1; static int hf_sna_th_iern = -1; static int hf_sna_th_nlpoi = -1; static int hf_sna_th_nlp_cp = -1; static int hf_sna_th_ern = -1; static int hf_sna_th_vrn = -1; static int hf_sna_th_tpf = -1; static int hf_sna_th_vr_cwi = -1; static int hf_sna_th_tg_nonfifo_ind = -1; static int hf_sna_th_vr_sqti = -1; static int hf_sna_th_tg_snf = -1; static int hf_sna_th_vrprq = -1; static int hf_sna_th_vrprs = -1; static int hf_sna_th_vr_cwri = -1; static int hf_sna_th_vr_rwi = -1; static int hf_sna_th_vr_snf_send = -1; static int hf_sna_th_dsaf = -1; static int hf_sna_th_osaf = -1; static int hf_sna_th_snai = -1; static int hf_sna_th_def = -1; static int hf_sna_th_oef = -1; static int hf_sna_th_sa = -1; static int hf_sna_th_cmd_fmt = -1; static int hf_sna_th_cmd_type = -1; static int hf_sna_th_cmd_sn = -1; static int hf_sna_nlp_nhdr = -1; static int hf_sna_nlp_nhdr_0 = -1; static int hf_sna_nlp_sm = -1; static int hf_sna_nlp_tpf = -1; static int hf_sna_nlp_nhdr_1 = -1; static int hf_sna_nlp_ft = -1; static int hf_sna_nlp_tspi = -1; static int hf_sna_nlp_slowdn1 = -1; static int hf_sna_nlp_slowdn2 = -1; static int hf_sna_nlp_fra = -1; static int hf_sna_nlp_anr = -1; static int hf_sna_nlp_frh = -1; static int hf_sna_nlp_thdr = -1; static int hf_sna_nlp_tcid = -1; static int hf_sna_nlp_thdr_8 = -1; static int hf_sna_nlp_setupi = -1; static int hf_sna_nlp_somi = -1; static int hf_sna_nlp_eomi = -1; static int hf_sna_nlp_sri = -1; static int hf_sna_nlp_rasapi = -1; static int hf_sna_nlp_retryi = -1; static int hf_sna_nlp_thdr_9 = -1; static int hf_sna_nlp_lmi = -1; static int hf_sna_nlp_cqfi = -1; static int hf_sna_nlp_osi = -1; static int hf_sna_nlp_offset = -1; static int hf_sna_nlp_dlf = -1; static int hf_sna_nlp_bsn = -1; static int hf_sna_nlp_opti_len = -1; static int hf_sna_nlp_opti_type = -1; static int hf_sna_nlp_opti_0d_version = -1; static int hf_sna_nlp_opti_0d_4 = -1; static int hf_sna_nlp_opti_0d_target = -1; static int hf_sna_nlp_opti_0d_arb = -1; static int hf_sna_nlp_opti_0d_reliable = -1; static int hf_sna_nlp_opti_0d_dedicated = -1; static int hf_sna_nlp_opti_0e_stat = -1; static int hf_sna_nlp_opti_0e_gap = -1; static int hf_sna_nlp_opti_0e_idle = -1; static int hf_sna_nlp_opti_0e_nabsp = -1; static int hf_sna_nlp_opti_0e_sync = -1; static int hf_sna_nlp_opti_0e_echo = -1; static int hf_sna_nlp_opti_0e_rseq = -1; static int hf_sna_nlp_opti_0e_abspbeg = -1; static int hf_sna_nlp_opti_0e_abspend = -1; static int hf_sna_nlp_opti_0f_bits = -1; static int hf_sna_nlp_opti_10_tcid = -1; static int hf_sna_nlp_opti_12_sense = -1; static int hf_sna_nlp_opti_14_si_len = -1; static int hf_sna_nlp_opti_14_si_key = -1; static int hf_sna_nlp_opti_14_si_2 = -1; static int hf_sna_nlp_opti_14_si_refifo = -1; static int hf_sna_nlp_opti_14_si_mobility = -1; static int hf_sna_nlp_opti_14_si_dirsearch = -1; static int hf_sna_nlp_opti_14_si_limitres = -1; static int hf_sna_nlp_opti_14_si_ncescope = -1; static int hf_sna_nlp_opti_14_si_mnpsrscv = -1; static int hf_sna_nlp_opti_14_si_maxpsize = -1; static int hf_sna_nlp_opti_14_si_switch = -1; static int hf_sna_nlp_opti_14_si_alive = -1; static int hf_sna_nlp_opti_14_rr_len = -1; static int hf_sna_nlp_opti_14_rr_key = -1; static int hf_sna_nlp_opti_14_rr_2 = -1; static int hf_sna_nlp_opti_14_rr_bfe = -1; static int hf_sna_nlp_opti_14_rr_num = -1; static int hf_sna_nlp_opti_22_2 = -1; static int hf_sna_nlp_opti_22_type = -1; static int hf_sna_nlp_opti_22_raa = -1; static int hf_sna_nlp_opti_22_parity = -1; static int hf_sna_nlp_opti_22_arb = -1; static int hf_sna_nlp_opti_22_3 = -1; static int hf_sna_nlp_opti_22_ratereq = -1; static int hf_sna_nlp_opti_22_raterep = -1; static int hf_sna_nlp_opti_22_field1 = -1; static int hf_sna_nlp_opti_22_field2 = -1; static int hf_sna_nlp_opti_22_field3 = -1; static int hf_sna_nlp_opti_22_field4 = -1; static int hf_sna_rh = -1; static int hf_sna_rh_0 = -1; static int hf_sna_rh_1 = -1; static int hf_sna_rh_2 = -1; static int hf_sna_rh_rri = -1; static int hf_sna_rh_ru_category = -1; static int hf_sna_rh_fi = -1; static int hf_sna_rh_sdi = -1; static int hf_sna_rh_bci = -1; static int hf_sna_rh_eci = -1; static int hf_sna_rh_dr1 = -1; static int hf_sna_rh_lcci = -1; static int hf_sna_rh_dr2 = -1; static int hf_sna_rh_eri = -1; static int hf_sna_rh_rti = -1; static int hf_sna_rh_rlwi = -1; static int hf_sna_rh_qri = -1; static int hf_sna_rh_pi = -1; static int hf_sna_rh_bbi = -1; static int hf_sna_rh_ebi = -1; static int hf_sna_rh_cdi = -1; static int hf_sna_rh_csi = -1; static int hf_sna_rh_edi = -1; static int hf_sna_rh_pdi = -1; static int hf_sna_rh_cebi = -1; /*static int hf_sna_ru = -1;*/ static int hf_sna_gds = -1; static int hf_sna_gds_len = -1; static int hf_sna_gds_type = -1; static int hf_sna_gds_cont = -1; static int hf_sna_xid = -1; static int hf_sna_xid_0 = -1; static int hf_sna_xid_id = -1; static int hf_sna_xid_format = -1; static int hf_sna_xid_type = -1; static int hf_sna_xid_len = -1; static int hf_sna_xid_idblock = -1; static int hf_sna_xid_idnum = -1; static int hf_sna_xid_3_8 = -1; static int hf_sna_xid_3_init_self = -1; static int hf_sna_xid_3_stand_bind = -1; static int hf_sna_xid_3_gener_bind = -1; static int hf_sna_xid_3_recve_bind = -1; static int hf_sna_xid_3_actpu = -1; static int hf_sna_xid_3_nwnode = -1; static int hf_sna_xid_3_cp = -1; static int hf_sna_xid_3_cpcp = -1; static int hf_sna_xid_3_state = -1; static int hf_sna_xid_3_nonact = -1; static int hf_sna_xid_3_cpchange = -1; static int hf_sna_xid_3_10 = -1; static int hf_sna_xid_3_asend_bind = -1; static int hf_sna_xid_3_arecv_bind = -1; static int hf_sna_xid_3_quiesce = -1; static int hf_sna_xid_3_pucap = -1; static int hf_sna_xid_3_pbn = -1; static int hf_sna_xid_3_pacing = -1; static int hf_sna_xid_3_11 = -1; static int hf_sna_xid_3_tgshare = -1; static int hf_sna_xid_3_dedsvc = -1; static int hf_sna_xid_3_12 = -1; static int hf_sna_xid_3_negcsup = -1; static int hf_sna_xid_3_negcomp = -1; static int hf_sna_xid_3_15 = -1; static int hf_sna_xid_3_partg = -1; static int hf_sna_xid_3_dlur = -1; static int hf_sna_xid_3_dlus = -1; static int hf_sna_xid_3_exbn = -1; static int hf_sna_xid_3_genodai = -1; static int hf_sna_xid_3_branch = -1; static int hf_sna_xid_3_brnn = -1; static int hf_sna_xid_3_tg = -1; static int hf_sna_xid_3_dlc = -1; static int hf_sna_xid_3_dlen = -1; static int hf_sna_control_len = -1; static int hf_sna_control_key = -1; static int hf_sna_control_hprkey = -1; static int hf_sna_control_05_delay = -1; static int hf_sna_control_05_type = -1; static int hf_sna_control_05_ptp = -1; static int hf_sna_control_0e_type = -1; static int hf_sna_control_0e_value = -1; static gint ett_sna = -1; static gint ett_sna_th = -1; static gint ett_sna_th_fid = -1; static gint ett_sna_nlp_nhdr = -1; static gint ett_sna_nlp_nhdr_0 = -1; static gint ett_sna_nlp_nhdr_1 = -1; static gint ett_sna_nlp_thdr = -1; static gint ett_sna_nlp_thdr_8 = -1; static gint ett_sna_nlp_thdr_9 = -1; static gint ett_sna_nlp_opti_un = -1; static gint ett_sna_nlp_opti_0d = -1; static gint ett_sna_nlp_opti_0d_4 = -1; static gint ett_sna_nlp_opti_0e = -1; static gint ett_sna_nlp_opti_0e_stat = -1; static gint ett_sna_nlp_opti_0e_absp = -1; static gint ett_sna_nlp_opti_0f = -1; static gint ett_sna_nlp_opti_10 = -1; static gint ett_sna_nlp_opti_12 = -1; static gint ett_sna_nlp_opti_14 = -1; static gint ett_sna_nlp_opti_14_si = -1; static gint ett_sna_nlp_opti_14_si_2 = -1; static gint ett_sna_nlp_opti_14_rr = -1; static gint ett_sna_nlp_opti_14_rr_2 = -1; static gint ett_sna_nlp_opti_22 = -1; static gint ett_sna_nlp_opti_22_2 = -1; static gint ett_sna_nlp_opti_22_3 = -1; static gint ett_sna_rh = -1; static gint ett_sna_rh_0 = -1; static gint ett_sna_rh_1 = -1; static gint ett_sna_rh_2 = -1; static gint ett_sna_gds = -1; static gint ett_sna_xid_0 = -1; static gint ett_sna_xid_id = -1; static gint ett_sna_xid_3_8 = -1; static gint ett_sna_xid_3_10 = -1; static gint ett_sna_xid_3_11 = -1; static gint ett_sna_xid_3_12 = -1; static gint ett_sna_xid_3_15 = -1; static gint ett_sna_control_un = -1; static gint ett_sna_control_05 = -1; static gint ett_sna_control_05hpr = -1; static gint ett_sna_control_05hpr_type = -1; static gint ett_sna_control_0e = -1; static dissector_handle_t data_handle; /* Defragment fragmented SNA BIUs*/ static gboolean sna_defragment = FALSE; static GHashTable *sna_fragment_table = NULL; static GHashTable *sna_reassembled_table = NULL; /* Format Identifier */ static const value_string sna_th_fid_vals[] = { { 0x0, "SNA device <--> Non-SNA Device" }, { 0x1, "Subarea Nodes, without ER or VR" }, { 0x2, "Subarea Node <--> PU2" }, { 0x3, "Subarea Node or SNA host <--> Subarea Node" }, { 0x4, "Subarea Nodes, supporting ER and VR" }, { 0x5, "HPR RTP endpoint nodes" }, { 0xa, "HPR NLP Frame Routing" }, { 0xb, "HPR NLP Frame Routing" }, { 0xc, "HPR NLP Automatic Network Routing" }, { 0xd, "HPR NLP Automatic Network Routing" }, { 0xf, "Adjaced Subarea Nodes, supporting ER and VR" }, { 0x0, NULL } }; /* Mapping Field */ #define MPF_MIDDLE_SEGMENT 0 #define MPF_LAST_SEGMENT 1 #define MPF_FIRST_SEGMENT 2 #define MPF_WHOLE_BIU 3 static const value_string sna_th_mpf_vals[] = { { MPF_MIDDLE_SEGMENT, "Middle segment of a BIU" }, { MPF_LAST_SEGMENT, "Last segment of a BIU" }, { MPF_FIRST_SEGMENT, "First segment of a BIU" }, { MPF_WHOLE_BIU, "Whole BIU" }, { 0, NULL } }; /* Expedited Flow Indicator */ static const value_string sna_th_efi_vals[] = { { 0, "Normal Flow" }, { 1, "Expedited Flow" }, { 0x0, NULL } }; /* Request/Response Indicator */ static const value_string sna_rh_rri_vals[] = { { 0, "Request" }, { 1, "Response" }, { 0x0, NULL } }; /* Request/Response Unit Category */ static const value_string sna_rh_ru_category_vals[] = { { 0, "Function Management Data (FMD)" }, { 1, "Network Control (NC)" }, { 2, "Data Flow Control (DFC)" }, { 3, "Session Control (SC)" }, { 0x0, NULL } }; /* Format Indicator */ static const true_false_string sna_rh_fi_truth = { "FM Header", "No FM Header" }; /* Sense Data Included */ static const true_false_string sna_rh_sdi_truth = { "Included", "Not Included" }; /* Begin Chain Indicator */ static const true_false_string sna_rh_bci_truth = { "First in Chain", "Not First in Chain" }; /* End Chain Indicator */ static const true_false_string sna_rh_eci_truth = { "Last in Chain", "Not Last in Chain" }; /* Lengith-Checked Compression Indicator */ static const true_false_string sna_rh_lcci_truth = { "Compressed", "Not Compressed" }; /* Response Type Indicator */ static const true_false_string sna_rh_rti_truth = { "Negative", "Positive" }; /* Exception Response Indicator */ static const true_false_string sna_rh_eri_truth = { "Exception", "Definite" }; /* Queued Response Indicator */ static const true_false_string sna_rh_qri_truth = { "Enqueue response in TC queues", "Response bypasses TC queues" }; /* Code Selection Indicator */ static const value_string sna_rh_csi_vals[] = { { 0, "EBCDIC" }, { 1, "ASCII" }, { 0x0, NULL } }; /* TG Sweep */ static const value_string sna_th_tg_sweep_vals[] = { { 0, "This PIU may overtake any PU ahead of it." }, { 1, "This PIU does not ovetake any PIU ahead of it." }, { 0x0, NULL } }; /* ER_VR_SUPP_IND */ static const value_string sna_th_er_vr_supp_ind_vals[] = { { 0, "Each node supports ER and VR protocols" }, { 1, "Includes at least one node that does not support ER and VR" " protocols" }, { 0x0, NULL } }; /* VR_PAC_CNT_IND */ static const value_string sna_th_vr_pac_cnt_ind_vals[] = { { 0, "Pacing count on the VR has not reached 0" }, { 1, "Pacing count on the VR has reached 0" }, { 0x0, NULL } }; /* NTWK_PRTY */ static const value_string sna_th_ntwk_prty_vals[] = { { 0, "PIU flows at a lower priority" }, { 1, "PIU flows at network priority (highest transmission priority)" }, { 0x0, NULL } }; /* TGSF */ static const value_string sna_th_tgsf_vals[] = { { 0, "Not segmented" }, { 1, "Last segment" }, { 2, "First segment" }, { 3, "Middle segment" }, { 0x0, NULL } }; /* PIUBF */ static const value_string sna_th_piubf_vals[] = { { 0, "Single PIU frame" }, { 1, "Last PIU of a multiple PIU frame" }, { 2, "First PIU of a multiple PIU frame" }, { 3, "Middle PIU of a multiple PIU frame" }, { 0x0, NULL } }; /* NLPOI */ static const value_string sna_th_nlpoi_vals[] = { { 0, "NLP starts within this FID4 TH" }, { 1, "NLP byte 0 starts after RH byte 0 following NLP C/P pad" }, { 0x0, NULL } }; /* TPF */ static const value_string sna_th_tpf_vals[] = { { 0, "Low Priority" }, { 1, "Medium Priority" }, { 2, "High Priority" }, { 3, "Network Priority" }, { 0x0, NULL } }; /* VR_CWI */ static const value_string sna_th_vr_cwi_vals[] = { { 0, "Increment window size" }, { 1, "Decrement window size" }, { 0x0, NULL } }; /* TG_NONFIFO_IND */ static const true_false_string sna_th_tg_nonfifo_ind_truth = { "TG FIFO is not required", "TG FIFO is required" }; /* VR_SQTI */ static const value_string sna_th_vr_sqti_vals[] = { { 0, "Non-sequenced, Non-supervisory" }, { 1, "Non-sequenced, Supervisory" }, { 2, "Singly-sequenced" }, { 0x0, NULL } }; /* VRPRQ */ static const true_false_string sna_th_vrprq_truth = { "VR pacing request is sent asking for a VR pacing response", "No VR pacing response is requested", }; /* VRPRS */ static const true_false_string sna_th_vrprs_truth = { "VR pacing response is sent in response to a VRPRQ bit set", "No pacing response sent", }; /* VR_CWRI */ static const value_string sna_th_vr_cwri_vals[] = { { 0, "Increment window size by 1" }, { 1, "Decrement window size by 1" }, { 0x0, NULL } }; /* VR_RWI */ static const true_false_string sna_th_vr_rwi_truth = { "Reset window size to the minimum specified in NC_ACTVR", "Do not reset window size", }; /* Switching Mode */ static const value_string sna_nlp_sm_vals[] = { { 5, "Function routing" }, { 6, "Automatic network routing" }, { 0x0, NULL } }; static const true_false_string sna_nlp_tspi_truth = { "Time sensitive", "Not time sensitive" }; static const true_false_string sna_nlp_slowdn1_truth = { "Minor congestion", "No minor congestion" }; static const true_false_string sna_nlp_slowdn2_truth = { "Major congestion", "No major congestion" }; /* Function Type */ static const value_string sna_nlp_ft_vals[] = { { 0x10, "LDLC" }, { 0x0, NULL } }; static const value_string sna_nlp_frh_vals[] = { { 0x03, "XID complete request" }, { 0x04, "XID complete response" }, { 0x0, NULL } }; static const true_false_string sna_nlp_setupi_truth = { "Connection setup segment present", "Connection setup segment not" " present" }; static const true_false_string sna_nlp_somi_truth = { "Start of message", "Not start of message" }; static const true_false_string sna_nlp_eomi_truth = { "End of message", "Not end of message" }; static const true_false_string sna_nlp_sri_truth = { "Status requested", "No status requested" }; static const true_false_string sna_nlp_rasapi_truth = { "Reply as soon as possible", "No need to reply as soon as possible" }; static const true_false_string sna_nlp_retryi_truth = { "Undefined", "Sender will retransmit" }; static const true_false_string sna_nlp_lmi_truth = { "Last message", "Not last message" }; static const true_false_string sna_nlp_cqfi_truth = { "CQFI included", "CQFI not included" }; static const true_false_string sna_nlp_osi_truth = { "Optional segments present", "No optional segments present" }; static const value_string sna_xid_3_state_vals[] = { { 0x00, "Exchange state indicators not supported" }, { 0x01, "Negotiation-proceeding exchange" }, { 0x02, "Prenegotiation exchange" }, { 0x03, "Nonactivation exchange" }, { 0x0, NULL } }; static const value_string sna_xid_3_branch_vals[] = { { 0x00, "Sender does not support branch extender" }, { 0x01, "TG is branch uplink" }, { 0x02, "TG is branch downlink" }, { 0x03, "TG is neither uplink nor downlink" }, { 0x0, NULL } }; static const value_string sna_xid_type_vals[] = { { 0x01, "T1 node" }, { 0x02, "T2.0 or T2.1 node" }, { 0x03, "Reserved" }, { 0x04, "T4 or T5 node" }, { 0x0, NULL } }; static const value_string sna_nlp_opti_vals[] = { { 0x0d, "Connection Setup Segment" }, { 0x0e, "Status Segment" }, { 0x0f, "Client Out Of Band Bits Segment" }, { 0x10, "Connection Identifier Exchange Segment" }, { 0x12, "Connection Fault Segment" }, { 0x14, "Switching Information Segment" }, { 0x22, "Adaptive Rate-Based Segment" }, { 0x0, NULL } }; static const value_string sna_nlp_opti_0d_version_vals[] = { { 0x0101, "Version 1.1" }, { 0x0, NULL } }; static const value_string sna_nlp_opti_0f_bits_vals[] = { { 0x0001, "Request Deactivation" }, { 0x8000, "Reply - OK" }, { 0x8004, "Reply - Reject" }, { 0x0, NULL } }; static const value_string sna_nlp_opti_22_type_vals[] = { { 0x00, "Setup" }, { 0x01, "Rate Reply" }, { 0x02, "Rate Request" }, { 0x03, "Rate Request/Rate Reply" }, { 0x0, NULL } }; static const value_string sna_nlp_opti_22_raa_vals[] = { { 0x00, "Normal" }, { 0x01, "Restraint" }, { 0x02, "Slowdown1" }, { 0x03, "Slowdown2" }, { 0x04, "Critical" }, { 0x0, NULL } }; static const value_string sna_nlp_opti_22_arb_vals[] = { { 0x00, "Base Mode ARB" }, { 0x01, "Responsive Mode ARB" }, { 0x0, NULL } }; /* GDS Variable Type */ static const value_string sna_gds_var_vals[] = { { 0x1210, "Change Number Of Sessions" }, { 0x1211, "Exchange Log Name" }, { 0x1212, "Control Point Management Services Unit" }, { 0x1213, "Compare States" }, { 0x1214, "LU Names Position" }, { 0x1215, "LU Name" }, { 0x1217, "Do Know" }, { 0x1218, "Partner Restart" }, { 0x1219, "Don't Know" }, { 0x1220, "Sign-Off" }, { 0x1221, "Sign-On" }, { 0x1222, "SNMP-over-SNA" }, { 0x1223, "Node Address Service" }, { 0x12C1, "CP Capabilities" }, { 0x12C2, "Topology Database Update" }, { 0x12C3, "Register Resource" }, { 0x12C4, "Locate" }, { 0x12C5, "Cross-Domain Initiate" }, { 0x12C9, "Delete Resource" }, { 0x12CA, "Find Resource" }, { 0x12CB, "Found Resource" }, { 0x12CC, "Notify" }, { 0x12CD, "Initiate-Other Cross-Domain" }, { 0x12CE, "Route Setup" }, { 0x12E1, "Error Log" }, { 0x12F1, "Null Data" }, { 0x12F2, "User Control Date" }, { 0x12F3, "Map Name" }, { 0x12F4, "Error Data" }, { 0x12F6, "Authentication Token Data" }, { 0x12F8, "Service Flow Authentication Token Data" }, { 0x12FF, "Application Data" }, { 0x1310, "MDS Message Unit" }, { 0x1311, "MDS Routing Information" }, { 0x1500, "FID2 Encapsulation" }, { 0x0, NULL } }; /* Control Vector Type */ static const value_string sna_control_vals[] = { { 0x00, "SSCP-LU Session Capabilities Control Vector" }, { 0x01, "Date-Time Control Vector" }, { 0x02, "Subarea Routing Control Vector" }, { 0x03, "SDLC Secondary Station Control Vector" }, { 0x04, "LU Control Vector" }, { 0x05, "Channel Control Vector" }, { 0x06, "Cross-Domain Resource Manager (CDRM) Control Vector" }, { 0x07, "PU FMD-RU-Usage Control Vector" }, { 0x08, "Intensive Mode Control Vector" }, { 0x09, "Activation Request / Response Sequence Identifier Control" " Vector" }, { 0x0a, "User Request Correlator Control Vector" }, { 0x0b, "SSCP-PU Session Capabilities Control Vector" }, { 0x0c, "LU-LU Session Capabilities Control Vector" }, { 0x0d, "Mode / Class-of-Service / Virtual-Route-Identifier List" " Control Vector" }, { 0x0e, "Network Name Control Vector" }, { 0x0f, "Link Capabilities and Status Control Vector" }, { 0x10, "Product Set ID Control Vector" }, { 0x11, "Load Module Correlation Control Vector" }, { 0x12, "Network Identifier Control Vector" }, { 0x13, "Gateway Support Capabilities Control Vector" }, { 0x14, "Session Initiation Control Vector" }, { 0x15, "Network-Qualified Address Pair Control Vector" }, { 0x16, "Names Substitution Control Vector" }, { 0x17, "SSCP Identifier Control Vector" }, { 0x18, "SSCP Name Control Vector" }, { 0x19, "Resource Identifier Control Vector" }, { 0x1a, "NAU Address Control Vector" }, { 0x1b, "VRID List Control Vector" }, { 0x1c, "Network-Qualified Name Pair Control Vector" }, { 0x1e, "VR-ER Mapping Data Control Vector" }, { 0x1f, "ER Configuration Control Vector" }, { 0x23, "Local-Form Session Identifier Control Vector" }, { 0x24, "IPL Load Module Request Control Vector" }, { 0x25, "Security ID Control Control Vector" }, { 0x26, "Network Connection Endpoint Identifier Control Vector" }, { 0x27, "XRF Session Activation Control Vector" }, { 0x28, "Related Session Identifier Control Vector" }, { 0x29, "Session State Data Control Vector" }, { 0x2a, "Session Information Control Vector" }, { 0x2b, "Route Selection Control Vector" }, { 0x2c, "COS/TPF Control Vector" }, { 0x2d, "Mode Control Vector" }, { 0x2f, "LU Definition Control Vector" }, { 0x30, "Assign LU Characteristics Control Vector" }, { 0x31, "BIND Image Control Vector" }, { 0x32, "Short-Hold Mode Control Vector" }, { 0x33, "ENCP Search Control Control Vector" }, { 0x34, "LU Definition Override Control Vector" }, { 0x35, "Extended Sense Data Control Vector" }, { 0x36, "Directory Error Control Vector" }, { 0x37, "Directory Entry Correlator Control Vector" }, { 0x38, "Short-Hold Mode Emulation Control Vector" }, { 0x39, "Network Connection Endpoint (NCE) Instance Identifier" " Control Vector" }, { 0x3a, "Route Status Data Control Vector" }, { 0x3b, "VR Congestion Data Control Vector" }, { 0x3c, "Associated Resource Entry Control Vector" }, { 0x3d, "Directory Entry Control Vector" }, { 0x3e, "Directory Entry Characteristic Control Vector" }, { 0x3f, "SSCP (SLU) Capabilities Control Vector" }, { 0x40, "Real Associated Resource Control Vector" }, { 0x41, "Station Parameters Control Vector" }, { 0x42, "Dynamic Path Update Data Control Vector" }, { 0x43, "Extended SDLC Station Control Vector" }, { 0x44, "Node Descriptor Control Vector" }, { 0x45, "Node Characteristics Control Vector" }, { 0x46, "TG Descriptor Control Vector" }, { 0x47, "TG Characteristics Control Vector" }, { 0x48, "Topology Resource Descriptor Control Vector" }, { 0x49, "Multinode Persistent Sessions (MNPS) LU Names Control" " Vector" }, { 0x4a, "Real Owning Control Point Control Vector" }, { 0x4b, "RTP Transport Connection Identifier Control Vector" }, { 0x51, "DLUR/S Capabilities Control Vector" }, { 0x52, "Primary Send Pacing Window Size Control Vector" }, { 0x56, "Call Security Verification Control Vector" }, { 0x57, "DLC Connection Data Control Vector" }, { 0x59, "Installation-Defined CDINIT Data Control Vector" }, { 0x5a, "Session Services Extension Support Control Vector" }, { 0x5b, "Interchange Node Support Control Vector" }, { 0x5c, "APPN Message Transport Control Vector" }, { 0x5d, "Subarea Message Transport Control Vector" }, { 0x5e, "Related Request Control Vector" }, { 0x5f, "Extended Fully Qualified PCID Control Vector" }, { 0x60, "Fully Qualified PCID Control Vector" }, { 0x61, "HPR Capabilities Control Vector" }, { 0x62, "Session Address Control Vector" }, { 0x63, "Cryptographic Key Distribution Control Vector" }, { 0x64, "TCP/IP Information Control Vector" }, { 0x65, "Device Characteristics Control Vector" }, { 0x66, "Length-Checked Compression Control Vector" }, { 0x67, "Automatic Network Routing (ANR) Path Control Vector" }, { 0x68, "XRF/Session Cryptography Control Vector" }, { 0x69, "Switched Parameters Control Vector" }, { 0x6a, "ER Congestion Data Control Vector" }, { 0x71, "Triple DES Cryptography Key Continuation Control Vector" }, { 0xfe, "Control Vector Keys Not Recognized" }, { 0x0, NULL } }; static const value_string sna_control_hpr_vals[] = { { 0x00, "Node Identifier Control Vector" }, { 0x03, "Network ID Control Vector" }, { 0x05, "Network Address Control Vector" }, { 0x0, NULL } }; static const value_string sna_control_0e_type_vals[] = { { 0xF1, "PU Name" }, { 0xF3, "LU Name" }, { 0xF4, "CP Name" }, { 0xF5, "SSCP Name" }, { 0xF6, "NNCP Name" }, { 0xF7, "Link Station Name" }, { 0xF8, "CP Name of CP(PLU)" }, { 0xF9, "CP Name of CP(SLU)" }, { 0xFA, "Generic Name" }, { 0x0, NULL } }; /* Values to direct the top-most dissector what to dissect * after the TH. */ enum next_dissection_enum { stop_here, rh_only, everything }; enum parse { LT, KL }; typedef enum next_dissection_enum next_dissection_t; static void dissect_xid (tvbuff_t*, packet_info*, proto_tree*, proto_tree*); static void dissect_fid (tvbuff_t*, packet_info*, proto_tree*, proto_tree*); static void dissect_nlp (tvbuff_t*, packet_info*, proto_tree*, proto_tree*); static void dissect_gds (tvbuff_t*, packet_info*, proto_tree*, proto_tree*); static void dissect_rh (tvbuff_t*, int, proto_tree*); static void dissect_control(tvbuff_t*, proto_tree*, int, enum parse); /* -------------------------------------------------------------------- * Chapter 2 High-Performance Routing (HPR) Headers * -------------------------------------------------------------------- */ static void dissect_optional_0d(tvbuff_t *tvb, proto_tree *tree) { int bits, offset, len, pad; proto_tree *sub_tree; proto_item *sub_ti = NULL; if (!tree) return; proto_tree_add_item(tree, hf_sna_nlp_opti_0d_version, tvb, 2, 2, FALSE); bits = tvb_get_guint8(tvb, 4); sub_ti = proto_tree_add_uint(tree, hf_sna_nlp_opti_0d_4, tvb, 4, 1, bits); sub_tree = proto_item_add_subtree(sub_ti, ett_sna_nlp_opti_0d_4); proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0d_target, tvb, 4, 1, bits); proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0d_arb, tvb, 4, 1, bits); proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0d_reliable, tvb, 4, 1, bits); proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0d_dedicated, tvb, 4, 1, bits); proto_tree_add_text(tree, tvb, 5, 3, "Reserved"); offset = 8; while (tvb_offset_exists(tvb, offset)) { len = tvb_get_guint8(tvb, offset+0); if (len) { dissect_control(tvb_new_subset(tvb, offset, len, -1), tree, 1, LT); pad = (len+3) & 0xfffc; if (pad > len) proto_tree_add_text(tree, tvb, offset+len, pad-len, "Padding"); offset += pad; } else { /* Avoid endless loop */ return; } } } static void dissect_optional_0e(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { int bits, offset; proto_tree *sub_tree; proto_item *sub_ti = NULL; bits = tvb_get_guint8(tvb, 2); offset = 20; if (tree) { sub_ti = proto_tree_add_item(tree, hf_sna_nlp_opti_0e_stat, tvb, 2, 1, FALSE); sub_tree = proto_item_add_subtree(sub_ti, ett_sna_nlp_opti_0e_stat); proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0e_gap, tvb, 2, 1, bits); proto_tree_add_boolean(sub_tree, hf_sna_nlp_opti_0e_idle, tvb, 2, 1, bits); proto_tree_add_item(tree, hf_sna_nlp_opti_0e_nabsp, tvb, 3, 1, FALSE); proto_tree_add_item(tree, hf_sna_nlp_opti_0e_sync, tvb, 4, 2, FALSE); proto_tree_add_item(tree, hf_sna_nlp_opti_0e_echo, tvb, 6, 2, FALSE); proto_tree_add_item(tree, hf_sna_nlp_opti_0e_rseq, tvb, 8, 4, FALSE); proto_tree_add_text(tree, tvb, 12, 8, "Reserved"); if (tvb_offset_exists(tvb, offset)) call_dissector(data_handle, tvb_new_subset(tvb, 4, -1, -1), pinfo, tree); } if (bits & 0x40) { if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, "HPR Idle Message"); } else { if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, "HPR Status Message"); } } static void dissect_optional_0f(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { if (!tree) return; proto_tree_add_item(tree, hf_sna_nlp_opti_0f_bits, tvb, 2, 2, FALSE); if (tvb_offset_exists(tvb, 4)) call_dissector(data_handle, tvb_new_subset(tvb, 4, -1, -1), pinfo, tree); } static void dissect_optional_10(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { if (!tree) return; proto_tree_add_text(tree, tvb, 2, 2, "Reserved"); proto_tree_add_item(tree, hf_sna_nlp_opti_10_tcid, tvb, 4, 8, FALSE); if (tvb_offset_exists(tvb, 12)) call_dissector(data_handle, tvb_new_subset(tvb, 12, -1, -1), pinfo, tree); } static void dissect_optional_12(tvbuff_t *tvb, proto_tree *tree) { if (!tree) return; proto_tree_add_text(tree, tvb, 2, 2, "Reserved"); proto_tree_add_item(tree, hf_sna_nlp_opti_12_sense, tvb, 4, -1, FALSE); } static void dissect_optional_14(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_tree *sub_tree, *bf_tree; proto_item *sub_item, *bf_item; int len, pad, type, bits, offset, num, sublen; if (!tree) return; proto_tree_add_text(tree, tvb, 2, 2, "Reserved"); offset = 4; len = tvb_get_guint8(tvb, offset); type = tvb_get_guint8(tvb, offset+1); if ((type != 0x83) || (len <= 16)) { /* Invalid */ call_dissector(data_handle, tvb_new_subset(tvb, offset, -1, -1), pinfo, tree); return; } sub_item = proto_tree_add_text(tree, tvb, offset, len, "Switching Information Control Vector"); sub_tree = proto_item_add_subtree(sub_item, ett_sna_nlp_opti_14_si); proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_si_len, tvb, offset, 1, len); proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_si_key, tvb, offset+1, 1, type); bits = tvb_get_guint8(tvb, offset+2); bf_item = proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_si_2, tvb, offset+2, 1, bits); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_opti_14_si_2); proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_refifo, tvb, offset+2, 1, bits); proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_mobility, tvb, offset+2, 1, bits); proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_dirsearch, tvb, offset+2, 1, bits); proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_limitres, tvb, offset+2, 1, bits); proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_ncescope, tvb, offset+2, 1, bits); proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_si_mnpsrscv, tvb, offset+2, 1, bits); proto_tree_add_text(sub_tree, tvb, offset+3, 1, "Reserved"); proto_tree_add_item(sub_tree, hf_sna_nlp_opti_14_si_maxpsize, tvb, offset+4, 4, FALSE); proto_tree_add_item(sub_tree, hf_sna_nlp_opti_14_si_switch, tvb, offset+8, 4, FALSE); proto_tree_add_item(sub_tree, hf_sna_nlp_opti_14_si_alive, tvb, offset+12, 4, FALSE); dissect_control(tvb_new_subset(tvb, offset+16, len-16, -1), sub_tree, 1, LT); pad = (len+3) & 0xfffc; if (pad > len) proto_tree_add_text(sub_tree, tvb, offset+len, pad-len, "Padding"); offset += pad; len = tvb_get_guint8(tvb, offset); type = tvb_get_guint8(tvb, offset+1); if ((type != 0x85) || ( len < 4)) { /* Invalid */ call_dissector(data_handle, tvb_new_subset(tvb, offset, -1, -1), pinfo, tree); return; } sub_item = proto_tree_add_text(tree, tvb, offset, len, "Return Route TG Descriptor Control Vector"); sub_tree = proto_item_add_subtree(sub_item, ett_sna_nlp_opti_14_rr); proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_len, tvb, offset, 1, len); proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_key, tvb, offset+1, 1, type); bits = tvb_get_guint8(tvb, offset+2); bf_item = proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_2, tvb, offset+2, 1, bits); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_opti_14_rr_2); proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_14_rr_bfe, tvb, offset+2, 1, bits); num = tvb_get_guint8(tvb, offset+3); proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_num, tvb, offset+3, 1, num); offset += 4; while (num) { sublen = tvb_get_guint8(tvb, offset); if (sublen) { dissect_control(tvb_new_subset(tvb, offset, sublen, -1), sub_tree, 1, LT); } else { /* Invalid */ call_dissector(data_handle, tvb_new_subset(tvb, offset, -1, -1), pinfo, tree); return; } /* No padding here */ offset += sublen; num--; } } static void dissect_optional_22(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; int bits, type; if (!tree) return; bits = tvb_get_guint8(tvb, 2); type = (bits & 0xc0) >> 6; bf_item = proto_tree_add_uint(tree, hf_sna_nlp_opti_22_2, tvb, 2, 1, bits); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_opti_22_2); proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_type, tvb, 2, 1, bits); proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_raa, tvb, 2, 1, bits); proto_tree_add_boolean(bf_tree, hf_sna_nlp_opti_22_parity, tvb, 2, 1, bits); proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_arb, tvb, 2, 1, bits); bits = tvb_get_guint8(tvb, 3); bf_item = proto_tree_add_uint(tree, hf_sna_nlp_opti_22_3, tvb, 3, 1, bits); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_opti_22_3); proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_ratereq, tvb, 3, 1, bits); proto_tree_add_uint(bf_tree, hf_sna_nlp_opti_22_raterep, tvb, 3, 1, bits); proto_tree_add_item(tree, hf_sna_nlp_opti_22_field1, tvb, 4, 4, FALSE); proto_tree_add_item(tree, hf_sna_nlp_opti_22_field2, tvb, 8, 4, FALSE); if (type == 0) { proto_tree_add_item(tree, hf_sna_nlp_opti_22_field3, tvb, 12, 4, FALSE); proto_tree_add_item(tree, hf_sna_nlp_opti_22_field4, tvb, 16, 4, FALSE); if (tvb_offset_exists(tvb, 20)) call_dissector(data_handle, tvb_new_subset(tvb, 20, -1, -1), pinfo, tree); } else { if (tvb_offset_exists(tvb, 12)) call_dissector(data_handle, tvb_new_subset(tvb, 12, -1, -1), pinfo, tree); } } static void dissect_optional(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_tree *sub_tree; proto_item *sub_item; int offset, type, len; gint ett; sub_tree = NULL; offset = 0; while (tvb_offset_exists(tvb, offset)) { len = tvb_get_guint8(tvb, offset); type = tvb_get_guint8(tvb, offset+1); /* Prevent loop for invalid crap in packet */ if (len == 0) { if (tree) call_dissector(data_handle, tvb_new_subset(tvb, offset, -1, -1), pinfo, tree); return; } ett = ett_sna_nlp_opti_un; if(type == 0x0d) ett = ett_sna_nlp_opti_0d; if(type == 0x0e) ett = ett_sna_nlp_opti_0e; if(type == 0x0f) ett = ett_sna_nlp_opti_0f; if(type == 0x10) ett = ett_sna_nlp_opti_10; if(type == 0x12) ett = ett_sna_nlp_opti_12; if(type == 0x14) ett = ett_sna_nlp_opti_14; if(type == 0x22) ett = ett_sna_nlp_opti_22; if (tree) { sub_item = proto_tree_add_text(tree, tvb, offset, len << 2, val_to_str(type, sna_nlp_opti_vals, "Unknown Segment Type")); sub_tree = proto_item_add_subtree(sub_item, ett); proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_len, tvb, offset, 1, len); proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_type, tvb, offset+1, 1, type); } switch(type) { case 0x0d: dissect_optional_0d(tvb_new_subset(tvb, offset, len << 2, -1), sub_tree); break; case 0x0e: dissect_optional_0e(tvb_new_subset(tvb, offset, len << 2, -1), pinfo, sub_tree); break; case 0x0f: dissect_optional_0f(tvb_new_subset(tvb, offset, len << 2, -1), pinfo, sub_tree); break; case 0x10: dissect_optional_10(tvb_new_subset(tvb, offset, len << 2, -1), pinfo, sub_tree); break; case 0x12: dissect_optional_12(tvb_new_subset(tvb, offset, len << 2, -1), sub_tree); break; case 0x14: dissect_optional_14(tvb_new_subset(tvb, offset, len << 2, -1), pinfo, sub_tree); break; case 0x22: dissect_optional_22(tvb_new_subset(tvb, offset, len << 2, -1), pinfo, sub_tree); break; default: call_dissector(data_handle, tvb_new_subset(tvb, offset, len << 2, -1), pinfo, sub_tree); } offset += (len << 2); } } static void dissect_nlp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, proto_tree *parent_tree) { proto_tree *nlp_tree, *bf_tree; proto_item *nlp_item, *bf_item, *h_item; guint8 nhdr_0, nhdr_1, nhdr_x, thdr_8, thdr_9, fid; guint32 thdr_len, thdr_dlf; guint16 subindex; int index = 0, counter = 0; nlp_tree = NULL; nlp_item = NULL; nhdr_0 = tvb_get_guint8(tvb, index); nhdr_1 = tvb_get_guint8(tvb, index+1); if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, "HPR NLP Packet"); if (tree) { /* Don't bother setting length. We'll set it later after we * find the lengths of NHDR */ nlp_item = proto_tree_add_item(tree, hf_sna_nlp_nhdr, tvb, index, -1, FALSE); nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_nhdr); bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_nhdr_0, tvb, index, 1, nhdr_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_nhdr_0); proto_tree_add_uint(bf_tree, hf_sna_nlp_sm, tvb, index, 1, nhdr_0); proto_tree_add_uint(bf_tree, hf_sna_nlp_tpf, tvb, index, 1, nhdr_0); bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_nhdr_1, tvb, index+1, 1, nhdr_1); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_nhdr_1); proto_tree_add_uint(bf_tree, hf_sna_nlp_ft, tvb, index+1, 1, nhdr_1); proto_tree_add_boolean(bf_tree, hf_sna_nlp_tspi, tvb, index+1, 1, nhdr_1); proto_tree_add_boolean(bf_tree, hf_sna_nlp_slowdn1, tvb, index+1, 1, nhdr_1); proto_tree_add_boolean(bf_tree, hf_sna_nlp_slowdn2, tvb, index+1, 1, nhdr_1); } /* ANR or FR lists */ index += 2; counter = 0; if ((nhdr_0 & 0xe0) == 0xa0) { do { nhdr_x = tvb_get_guint8(tvb, index + counter); counter ++; } while (nhdr_x != 0xff); if (tree) h_item = proto_tree_add_item(nlp_tree, hf_sna_nlp_fra, tvb, index, counter, FALSE); index += counter; if (tree) proto_tree_add_text(nlp_tree, tvb, index, 1, "Reserved"); index++; if (tree) proto_item_set_len(nlp_item, index); if ((nhdr_1 & 0xf0) == 0x10) { nhdr_x = tvb_get_guint8(tvb, index); if (tree) proto_tree_add_uint(tree, hf_sna_nlp_frh, tvb, index, 1, nhdr_x); index ++; if (tvb_offset_exists(tvb, index)) call_dissector(data_handle, tvb_new_subset(tvb, index, -1, -1), pinfo, parent_tree); return; } } if ((nhdr_0 & 0xe0) == 0xc0) { do { nhdr_x = tvb_get_guint8(tvb, index + counter); counter ++; } while (nhdr_x != 0xff); if (tree) h_item = proto_tree_add_item(nlp_tree, hf_sna_nlp_anr, tvb, index, counter, FALSE); index += counter; if (tree) proto_tree_add_text(nlp_tree, tvb, index, 1, "Reserved"); index++; if (tree) proto_item_set_len(nlp_item, index); } thdr_8 = tvb_get_guint8(tvb, index+8); thdr_9 = tvb_get_guint8(tvb, index+9); thdr_len = tvb_get_ntohs(tvb, index+10); thdr_dlf = tvb_get_ntohl(tvb, index+12); if (tree) { nlp_item = proto_tree_add_item(tree, hf_sna_nlp_thdr, tvb, index, thdr_len << 2, FALSE); nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_thdr); proto_tree_add_item(nlp_tree, hf_sna_nlp_tcid, tvb, index, 8, FALSE); bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_thdr_8, tvb, index+8, 1, thdr_8); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_setupi, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_somi, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_eomi, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_sri, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_rasapi, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_retryi, tvb, index+8, 1, thdr_8); bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_thdr_9, tvb, index+9, 1, thdr_9); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_thdr_9); proto_tree_add_boolean(bf_tree, hf_sna_nlp_lmi, tvb, index+9, 1, thdr_9); proto_tree_add_boolean(bf_tree, hf_sna_nlp_cqfi, tvb, index+9, 1, thdr_9); proto_tree_add_boolean(bf_tree, hf_sna_nlp_osi, tvb, index+9, 1, thdr_9); proto_tree_add_uint(nlp_tree, hf_sna_nlp_offset, tvb, index+10, 2, thdr_len); proto_tree_add_uint(nlp_tree, hf_sna_nlp_dlf, tvb, index+12, 4, thdr_dlf); proto_tree_add_item(nlp_tree, hf_sna_nlp_bsn, tvb, index+16, 4, FALSE); } subindex = 20; if (((thdr_9 & 0x18) == 0x08) && ((thdr_len << 2) > subindex)) { counter = tvb_get_guint8(tvb, index + subindex); if (tvb_get_guint8(tvb, index+subindex+1) == 5) dissect_control( tvb_new_subset(tvb, index + subindex, counter+2, -1), nlp_tree, 1, LT); else call_dissector(data_handle, tvb_new_subset(tvb, index + subindex, counter+2, -1), pinfo, nlp_tree); subindex += (counter+2); } if ((thdr_9 & 0x04) && ((thdr_len << 2) > subindex)) dissect_optional( tvb_new_subset(tvb, index + subindex, (thdr_len << 2) - subindex, -1), pinfo, nlp_tree); index += (thdr_len << 2); if (((thdr_8 & 0x20) == 0) && thdr_dlf) { if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, "HPR Fragment"); if (tvb_offset_exists(tvb, index)) { call_dissector(data_handle, tvb_new_subset(tvb, index, -1, -1), pinfo, parent_tree); } return; } if (tvb_offset_exists(tvb, index)) { /* Transmission Header Format Identifier */ fid = hi_nibble(tvb_get_guint8(tvb, index)); if (fid == 5) /* Only FID5 allowed for HPR */ dissect_fid(tvb_new_subset(tvb, index, -1, -1), pinfo, tree, parent_tree); else { if (tvb_get_ntohs(tvb, index+2) == 0x12ce) { /* Route Setup */ if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, "HPR Route Setup"); dissect_gds(tvb_new_subset(tvb, index, -1, -1), pinfo, tree, parent_tree); } else call_dissector(data_handle, tvb_new_subset(tvb, index, -1, -1), pinfo, parent_tree); } } } /* -------------------------------------------------------------------- * Chapter 3 Exchange Identification (XID) Information Fields * -------------------------------------------------------------------- */ static void dissect_xid1(tvbuff_t *tvb, proto_tree *tree) { if (!tree) return; proto_tree_add_text(tree, tvb, 0, 2, "Reserved"); } static void dissect_xid2(tvbuff_t *tvb, proto_tree *tree) { guint dlen, offset; if (!tree) return; dlen = tvb_get_guint8(tvb, 0); offset = dlen; while (tvb_offset_exists(tvb, offset)) { dlen = tvb_get_guint8(tvb, offset+1); dissect_control(tvb_new_subset(tvb, offset, dlen+2, -1), tree, 0, KL); offset += (dlen + 2); } } static void dissect_xid3(tvbuff_t *tvb, proto_tree *tree) { proto_tree *sub_tree; proto_item *sub_ti = NULL; guint val, dlen, offset; if (!tree) return; proto_tree_add_text(tree, tvb, 0, 2, "Reserved"); val = tvb_get_ntohs(tvb, 2); sub_ti = proto_tree_add_uint(tree, hf_sna_xid_3_8, tvb, 2, 2, val); sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_8); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_init_self, tvb, 2, 2, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_stand_bind, tvb, 2, 2, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_gener_bind, tvb, 2, 2, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_recve_bind, tvb, 2, 2, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_actpu, tvb, 2, 2, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_nwnode, tvb, 2, 2, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_cp, tvb, 2, 2, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_cpcp, tvb, 2, 2, val); proto_tree_add_uint(sub_tree, hf_sna_xid_3_state, tvb, 2, 2, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_nonact, tvb, 2, 2, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_cpchange, tvb, 2, 2, val); val = tvb_get_guint8(tvb, 4); sub_ti = proto_tree_add_uint(tree, hf_sna_xid_3_10, tvb, 4, 1, val); sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_10); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_asend_bind, tvb, 4, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_arecv_bind, tvb, 4, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_quiesce, tvb, 4, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_pucap, tvb, 4, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_pbn, tvb, 4, 1, val); proto_tree_add_uint(sub_tree, hf_sna_xid_3_pacing, tvb, 4, 1, val); val = tvb_get_guint8(tvb, 5); sub_ti = proto_tree_add_uint(tree, hf_sna_xid_3_11, tvb, 5, 1, val); sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_11); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_tgshare, tvb, 5, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_dedsvc, tvb, 5, 1, val); val = tvb_get_guint8(tvb, 6); sub_ti = proto_tree_add_item(tree, hf_sna_xid_3_12, tvb, 6, 1, FALSE); sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_12); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_negcsup, tvb, 6, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_negcomp, tvb, 6, 1, val); proto_tree_add_text(tree, tvb, 7, 2, "Reserved"); val = tvb_get_guint8(tvb, 9); sub_ti = proto_tree_add_item(tree, hf_sna_xid_3_15, tvb, 9, 1, FALSE); sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_3_15); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_partg, tvb, 9, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_dlur, tvb, 9, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_dlus, tvb, 9, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_exbn, tvb, 9, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_genodai, tvb, 9, 1, val); proto_tree_add_uint(sub_tree, hf_sna_xid_3_branch, tvb, 9, 1, val); proto_tree_add_boolean(sub_tree, hf_sna_xid_3_brnn, tvb, 9, 1, val); proto_tree_add_item(tree, hf_sna_xid_3_tg, tvb, 10, 1, FALSE); proto_tree_add_item(tree, hf_sna_xid_3_dlc, tvb, 11, 1, FALSE); dlen = tvb_get_guint8(tvb, 12); proto_tree_add_uint(tree, hf_sna_xid_3_dlen, tvb, 12, 1, dlen); /* FIXME: DLC Dependent Data Go Here */ offset = 12 + dlen; while (tvb_offset_exists(tvb, offset)) { dlen = tvb_get_guint8(tvb, offset+1); dissect_control(tvb_new_subset(tvb, offset, dlen+2, -1), tree, 0, KL); offset += (dlen+2); } } static void dissect_xid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, proto_tree *parent_tree) { proto_tree *sub_tree; proto_item *sub_ti = NULL; int format, type, len; guint32 id; len = tvb_get_guint8(tvb, 1); type = tvb_get_guint8(tvb, 0); id = tvb_get_ntohl(tvb, 2); format = hi_nibble(type); /* Summary information */ if (check_col(pinfo->cinfo, COL_INFO)) col_add_fstr(pinfo->cinfo, COL_INFO, "SNA XID Format:%d Type:%s", format, val_to_str(lo_nibble(type), sna_xid_type_vals, "Unknown Type")); if (tree) { sub_ti = proto_tree_add_item(tree, hf_sna_xid_0, tvb, 0, 1, FALSE); sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_0); proto_tree_add_uint(sub_tree, hf_sna_xid_format, tvb, 0, 1, type); proto_tree_add_uint(sub_tree, hf_sna_xid_type, tvb, 0, 1, type); proto_tree_add_uint(tree, hf_sna_xid_len, tvb, 1, 1, len); sub_ti = proto_tree_add_item(tree, hf_sna_xid_id, tvb, 2, 4, FALSE); sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_id); proto_tree_add_uint(sub_tree, hf_sna_xid_idblock, tvb, 2, 4, id); proto_tree_add_uint(sub_tree, hf_sna_xid_idnum, tvb, 2, 4, id); switch(format) { case 0: break; case 1: dissect_xid1(tvb_new_subset(tvb, 6, len-6, -1), tree); break; case 2: dissect_xid2(tvb_new_subset(tvb, 6, len-6, -1), tree); break; case 3: dissect_xid3(tvb_new_subset(tvb, 6, len-6, -1), tree); break; default: /* external standards organizations */ call_dissector(data_handle, tvb_new_subset(tvb, 6, len-6, -1), pinfo, tree); } } if (format == 0) len = 6; if (tvb_offset_exists(tvb, len)) call_dissector(data_handle, tvb_new_subset(tvb, len, -1, -1), pinfo, parent_tree); } /* -------------------------------------------------------------------- * Chapter 4 Transmission Headers (THs) * -------------------------------------------------------------------- */ #define RH_LEN 3 static unsigned int mpf_value(guint8 th_byte) { return (th_byte & 0x0c) >> 2; } #define FIRST_FRAG_NUMBER 0 #define MIDDLE_FRAG_NUMBER 1 #define LAST_FRAG_NUMBER 2 /* FID2 is defragged by sequence. The weird thing is that we have neither * absolute sequence numbers, nor byte offets. Other FIDs have byte offsets * (the DCF field), but not FID2. The only thing we have to go with is "FIRST", * "MIDDLE", or "LAST". If the BIU is split into 3 frames, then everything is * fine, * "FIRST", "MIDDLE", and "LAST" map nicely onto frag-number 0, 1, * and 2. However, if the BIU is split into 2 frames, then we only have * "FIRST" and "LAST", and the mapping *should* be frag-number 0 and 1, * *NOT* 0 and 2. * * The SNA docs say "FID2 PIUs cannot be blocked because there is no DCF in the * TH format for deblocking" (note on Figure 4-2 in the IBM SNA documention, * see the FTP URL in the comment near the top of this file). I *think* * this means that the fragmented frames cannot arrive out of order. * Well, I *want* it to mean this, because w/o this limitation, if you * get a "FIRST" frame and a "LAST" frame, how long should you wait to * see if a "MIDDLE" frame every arrives????? Thus, if frames *have* to * arrive in order, then we're saved. * * The problem then boils down to figuring out if "LAST" means frag-number 1 * (in the case of a BIU split into 2 frames) or frag-number 2 * (in the case of a BIU split into 3 frames). * * Assuming fragmented FID2 BIU frames *do* arrive in order, the obvious * way to handle the mapping of "LAST" to either frag-number 1 or * frag-number 2 is to keep a hash which tracks the frames seen, etc. * This consumes resources. A trickier way, but a way which works, is to * always map the "LAST" BIU segment to frag-number 2. Here's the trickery: * if we add frag-number 2, which we know to be the "LAST" BIU segment, * and the reassembly code tells us that the the BIU is still not reassmebled, * then, owing to the, ahem, /fact/, that fragmented BIU segments arrive * in order :), we know that 1) "FIRST" did come, and 2) there's no "MIDDLE", * because this BIU was fragmented into 2 frames, not 3. So, we'll be * tricky and add a zero-length "MIDDLE" BIU frame (i.e, frag-number 1) * to complete the reassembly. */ static tvbuff_t* defragment_by_sequence(packet_info *pinfo, tvbuff_t *tvb, int offset, int mpf, int id) { fragment_data *fd_head; int frag_number = -1; int more_frags = TRUE; tvbuff_t *rh_tvb = NULL; gint frag_len; /* Determine frag_number and more_frags */ switch(mpf) { case MPF_WHOLE_BIU: /* nothing */ break; case MPF_FIRST_SEGMENT: frag_number = FIRST_FRAG_NUMBER; break; case MPF_MIDDLE_SEGMENT: frag_number = MIDDLE_FRAG_NUMBER; break; case MPF_LAST_SEGMENT: frag_number = LAST_FRAG_NUMBER; more_frags = FALSE; break; default: g_assert_not_reached(); } /* If sna_defragment is on, and this is a fragment.. */ if (frag_number > -1) { /* XXX - check length ??? */ frag_len = tvb_reported_length_remaining(tvb, offset); if (tvb_bytes_exist(tvb, offset, frag_len)) { fd_head = fragment_add_seq(tvb, offset, pinfo, id, sna_fragment_table, frag_number, frag_len, more_frags); /* We added the LAST segment and reassembly didn't * complete. Insert a zero-length MIDDLE segment to * turn a 2-frame BIU-fragmentation into a 3-frame * BIU-fragmentation (empty middle frag). * See above long comment about this trickery. */ if (mpf == MPF_LAST_SEGMENT && !fd_head) { fd_head = fragment_add_seq(tvb, offset, pinfo, id, sna_fragment_table, MIDDLE_FRAG_NUMBER, 0, TRUE); } if (fd_head != NULL) { /* We have the complete reassembled payload. */ rh_tvb = tvb_new_real_data(fd_head->data, fd_head->len, fd_head->len); /* Add the tvbuff to the chain of tvbuffs * so that it will get cleaned up too. */ tvb_set_child_real_data_tvbuff(tvb, rh_tvb); /* Add the defragmented data to the data * source list. */ add_new_data_source(pinfo, rh_tvb, "Reassembled SNA BIU"); } } } return rh_tvb; } #define SNA_FID01_ADDR_LEN 2 /* FID Types 0 and 1 */ static int dissect_fid0_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; const guint8 *ptr; const int bytes_in_header = 10; if (tree) { /* Byte 0 */ th_0 = tvb_get_guint8(tvb, 0); bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0); /* Byte 1 */ proto_tree_add_text(tree, tvb, 1, 1, "Reserved"); /* Bytes 2-3 */ proto_tree_add_item(tree, hf_sna_th_daf, tvb, 2, 2, FALSE); } /* Set DST addr */ ptr = tvb_get_ptr(tvb, 2, SNA_FID01_ADDR_LEN); SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID01_ADDR_LEN, ptr); SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID01_ADDR_LEN, ptr); if (tree) proto_tree_add_item(tree, hf_sna_th_oaf, tvb, 4, 2, FALSE); /* Set SRC addr */ ptr = tvb_get_ptr(tvb, 4, SNA_FID01_ADDR_LEN); SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID01_ADDR_LEN, ptr); SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID01_ADDR_LEN, ptr); /* If we're not filling a proto_tree, return now */ if (tree) return bytes_in_header; proto_tree_add_item(tree, hf_sna_th_snf, tvb, 6, 2, FALSE); proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 8, 2, FALSE); return bytes_in_header; } #define SNA_FID2_ADDR_LEN 1 /* FID Type 2 */ static int dissect_fid2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, tvbuff_t **rh_tvb_ptr, next_dissection_t *continue_dissecting) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0=0, daf=0, oaf=0; const guint8 *ptr; unsigned int mpf, id; const int bytes_in_header = 6; th_0 = tvb_get_guint8(tvb, 0); mpf = mpf_value(th_0); if (tree) { daf = tvb_get_guint8(tvb, 2); oaf = tvb_get_guint8(tvb, 3); /* Byte 0 */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_odai,tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0); /* Byte 1 */ proto_tree_add_text(tree, tvb, 1, 1, "Reserved"); /* Byte 2 */ proto_tree_add_uint_format(tree, hf_sna_th_daf, tvb, 2, 1, daf, "Destination Address Field: 0x%02x", daf); } /* Set DST addr */ ptr = tvb_get_ptr(tvb, 2, SNA_FID2_ADDR_LEN); SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID2_ADDR_LEN, ptr); SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID2_ADDR_LEN, ptr); if (tree) { /* Byte 3 */ proto_tree_add_uint_format(tree, hf_sna_th_oaf, tvb, 3, 1, oaf, "Origin Address Field: 0x%02x", oaf); } /* Set SRC addr */ ptr = tvb_get_ptr(tvb, 3, SNA_FID2_ADDR_LEN); SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID2_ADDR_LEN, ptr); SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID2_ADDR_LEN, ptr); id = tvb_get_ntohs(tvb, 4); if (tree) proto_tree_add_uint(tree, hf_sna_th_snf, tvb, 4, 2, id); if (mpf != MPF_WHOLE_BIU && !sna_defragment) { if (mpf == MPF_FIRST_SEGMENT) { *continue_dissecting = rh_only; } else { *continue_dissecting = stop_here; } } else if (sna_defragment) { *rh_tvb_ptr = defragment_by_sequence(pinfo, tvb, bytes_in_header, mpf, id); } return bytes_in_header; } /* FID Type 3 */ static int dissect_fid3(tvbuff_t *tvb, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; const int bytes_in_header = 2; /* If we're not filling a proto_tree, return now */ if (!tree) return bytes_in_header; th_0 = tvb_get_guint8(tvb, 0); /* Create the bitfield tree */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0); proto_tree_add_item(tree, hf_sna_th_lsid, tvb, 1, 1, FALSE); return bytes_in_header; } static int dissect_fid4(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; int offset = 0; guint8 th_byte, mft; guint16 th_word; guint16 def, oef; guint32 dsaf, osaf; static struct sna_fid_type_4_addr src, dst; const int bytes_in_header = 26; /* If we're not filling a proto_tree, return now */ if (!tree) return bytes_in_header; th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, offset, 1, th_byte); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 0 */ proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_tg_sweep, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_er_vr_supp_ind, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_vr_pac_cnt_ind, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_ntwk_prty, tvb, offset, 1, th_byte); offset += 1; th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 1, "Transmision Header Byte 1"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 1 */ proto_tree_add_uint(bf_tree, hf_sna_th_tgsf, tvb, offset, 1, th_byte); proto_tree_add_boolean(bf_tree, hf_sna_th_mft, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_piubf, tvb, offset, 1, th_byte); mft = th_byte & 0x04; offset += 1; th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 1, "Transmision Header Byte 2"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 2 */ if (mft) { proto_tree_add_uint(bf_tree, hf_sna_th_nlpoi, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_nlp_cp, tvb, offset, 1, th_byte); } else { proto_tree_add_uint(bf_tree, hf_sna_th_iern, tvb, offset, 1, th_byte); } proto_tree_add_uint(bf_tree, hf_sna_th_ern, tvb, offset, 1, th_byte); offset += 1; th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 1, "Transmision Header Byte 3"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 3 */ proto_tree_add_uint(bf_tree, hf_sna_th_vrn, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_tpf, tvb, offset, 1, th_byte); offset += 1; th_word = tvb_get_ntohs(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 2, "Transmision Header Bytes 4-5"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Bytes 4-5 */ proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwi, tvb, offset, 2, th_word); proto_tree_add_boolean(bf_tree, hf_sna_th_tg_nonfifo_ind, tvb, offset, 2, th_word); proto_tree_add_uint(bf_tree, hf_sna_th_vr_sqti, tvb, offset, 2, th_word); /* I'm not sure about byte-order on this one... */ proto_tree_add_uint(bf_tree, hf_sna_th_tg_snf, tvb, offset, 2, th_word); offset += 2; th_word = tvb_get_ntohs(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 2, "Transmision Header Bytes 6-7"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Bytes 6-7 */ proto_tree_add_boolean(bf_tree, hf_sna_th_vrprq, tvb, offset, 2, th_word); proto_tree_add_boolean(bf_tree, hf_sna_th_vrprs, tvb, offset, 2, th_word); proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwri, tvb, offset, 2, th_word); proto_tree_add_boolean(bf_tree, hf_sna_th_vr_rwi, tvb, offset, 2, th_word); /* I'm not sure about byte-order on this one... */ proto_tree_add_uint(bf_tree, hf_sna_th_vr_snf_send, tvb, offset, 2, th_word); offset += 2; dsaf = tvb_get_ntohl(tvb, 8); /* Bytes 8-11 */ proto_tree_add_uint(tree, hf_sna_th_dsaf, tvb, offset, 4, dsaf); offset += 4; osaf = tvb_get_ntohl(tvb, 12); /* Bytes 12-15 */ proto_tree_add_uint(tree, hf_sna_th_osaf, tvb, offset, 4, osaf); offset += 4; th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 2, "Transmision Header Byte 16"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 16 */ proto_tree_add_boolean(tree, hf_sna_th_snai, tvb, offset, 1, th_byte); /* We luck out here because in their infinite wisdom the SNA * architects placed the MPF and EFI fields in the same bitfield * locations, even though for FID4 they're not in byte 0. * Thank you IBM! */ proto_tree_add_uint(tree, hf_sna_th_mpf, tvb, offset, 1, th_byte); proto_tree_add_uint(tree, hf_sna_th_efi, tvb, offset, 1, th_byte); offset += 2; /* 1 for byte 16, 1 for byte 17 which is reserved */ def = tvb_get_ntohs(tvb, 18); /* Bytes 18-25 */ proto_tree_add_uint(tree, hf_sna_th_def, tvb, offset, 2, def); /* Addresses in FID 4 are discontiguous, sigh */ dst.saf = dsaf; dst.ef = def; SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8* )&dst); SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8 *)&dst); oef = tvb_get_ntohs(tvb, 20); proto_tree_add_uint(tree, hf_sna_th_oef, tvb, offset+2, 2, oef); /* Addresses in FID 4 are discontiguous, sigh */ src.saf = osaf; src.ef = oef; SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8 *)&src); SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8 *)&src); proto_tree_add_item(tree, hf_sna_th_snf, tvb, offset+4, 2, FALSE); proto_tree_add_item(tree, hf_sna_th_dcf, tvb, offset+6, 2, FALSE); return bytes_in_header; } /* FID Type 5 */ static int dissect_fid5(tvbuff_t *tvb, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; const int bytes_in_header = 12; /* If we're not filling a proto_tree, return now */ if (!tree) return bytes_in_header; th_0 = tvb_get_guint8(tvb, 0); /* Create the bitfield tree */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0); proto_tree_add_text(tree, tvb, 1, 1, "Reserved"); proto_tree_add_item(tree, hf_sna_th_snf, tvb, 2, 2, FALSE); proto_tree_add_item(tree, hf_sna_th_sa, tvb, 4, 8, FALSE); return bytes_in_header; } /* FID Type f */ static int dissect_fidf(tvbuff_t *tvb, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; const int bytes_in_header = 26; /* If we're not filling a proto_tree, return now */ if (!tree) return bytes_in_header; th_0 = tvb_get_guint8(tvb, 0); /* Create the bitfield tree */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_text(tree, tvb, 1, 1, "Reserved"); proto_tree_add_item(tree, hf_sna_th_cmd_fmt, tvb, 2, 1, FALSE); proto_tree_add_item(tree, hf_sna_th_cmd_type, tvb, 3, 1, FALSE); proto_tree_add_item(tree, hf_sna_th_cmd_sn, tvb, 4, 2, FALSE); /* Yup, bytes 6-23 are reserved! */ proto_tree_add_text(tree, tvb, 6, 18, "Reserved"); proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 24, 2, FALSE); return bytes_in_header; } static void dissect_fid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, proto_tree *parent_tree) { proto_tree *th_tree = NULL, *rh_tree = NULL; proto_item *th_ti = NULL, *rh_ti = NULL; guint8 th_fid; int th_header_len = 0; int offset, rh_offset; tvbuff_t *rh_tvb = NULL; next_dissection_t continue_dissecting = everything; /* Transmission Header Format Identifier */ th_fid = hi_nibble(tvb_get_guint8(tvb, 0)); /* Summary information */ if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, val_to_str(th_fid, sna_th_fid_vals, "Unknown FID: %01x")); if (tree) { /* --- TH --- */ /* Don't bother setting length. We'll set it later after we * find the length of TH */ th_ti = proto_tree_add_item(tree, hf_sna_th, tvb, 0, -1, FALSE); th_tree = proto_item_add_subtree(th_ti, ett_sna_th); } /* Get size of TH */ switch(th_fid) { case 0x0: case 0x1: th_header_len = dissect_fid0_1(tvb, pinfo, th_tree); break; case 0x2: th_header_len = dissect_fid2(tvb, pinfo, th_tree, &rh_tvb, &continue_dissecting); break; case 0x3: th_header_len = dissect_fid3(tvb, th_tree); break; case 0x4: th_header_len = dissect_fid4(tvb, pinfo, th_tree); break; case 0x5: th_header_len = dissect_fid5(tvb, th_tree); break; case 0xf: th_header_len = dissect_fidf(tvb, th_tree); break; default: call_dissector(data_handle, tvb_new_subset(tvb, 1, -1, -1), pinfo, parent_tree); return; } offset = th_header_len; /* Short-circuit ? */ if (continue_dissecting == stop_here) { if (tree) { proto_tree_add_text(tree, tvb, offset, -1, "BIU segment data"); } return; } /* If the FID dissector function didn't create an rh_tvb, then we just * use the rest of our tvbuff as the rh_tvb. */ if (!rh_tvb) rh_tvb = tvb_new_subset(tvb, offset, -1, -1); rh_offset = 0; /* Process the rest of the SNA packet, starting with RH */ if (tree) { proto_item_set_len(th_ti, th_header_len); /* --- RH --- */ rh_ti = proto_tree_add_item(tree, hf_sna_rh, rh_tvb, rh_offset, RH_LEN, FALSE); rh_tree = proto_item_add_subtree(rh_ti, ett_sna_rh); dissect_rh(rh_tvb, rh_offset, rh_tree); } rh_offset += RH_LEN; if (tvb_offset_exists(rh_tvb, rh_offset)) { /* Short-circuit ? */ if (continue_dissecting == rh_only) { if (tree) proto_tree_add_text(tree, rh_tvb, rh_offset, -1, "BIU segment data"); return; } call_dissector(data_handle, tvb_new_subset(rh_tvb, rh_offset, -1, -1), pinfo, parent_tree); } } /* -------------------------------------------------------------------- * Chapter 5 Request/Response Headers (RHs) * -------------------------------------------------------------------- */ static void dissect_rh(tvbuff_t *tvb, int offset, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; gboolean is_response; guint8 rh_0, rh_1, rh_2; if (!tree) return; /* Create the bitfield tree for byte 0*/ rh_0 = tvb_get_guint8(tvb, offset); is_response = (rh_0 & 0x80); bf_item = proto_tree_add_uint(tree, hf_sna_rh_0, tvb, offset, 1, rh_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_0); proto_tree_add_uint(bf_tree, hf_sna_rh_rri, tvb, offset, 1, rh_0); proto_tree_add_uint(bf_tree, hf_sna_rh_ru_category, tvb, offset, 1, rh_0); proto_tree_add_boolean(bf_tree, hf_sna_rh_fi, tvb, offset, 1, rh_0); proto_tree_add_boolean(bf_tree, hf_sna_rh_sdi, tvb, offset, 1, rh_0); proto_tree_add_boolean(bf_tree, hf_sna_rh_bci, tvb, offset, 1, rh_0); proto_tree_add_boolean(bf_tree, hf_sna_rh_eci, tvb, offset, 1, rh_0); offset += 1; rh_1 = tvb_get_guint8(tvb, offset); /* Create the bitfield tree for byte 1*/ bf_item = proto_tree_add_uint(tree, hf_sna_rh_1, tvb, offset, 1, rh_1); bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_1); proto_tree_add_boolean(bf_tree, hf_sna_rh_dr1, tvb, offset, 1, rh_1); if (!is_response) proto_tree_add_boolean(bf_tree, hf_sna_rh_lcci, tvb, offset, 1, rh_1); proto_tree_add_boolean(bf_tree, hf_sna_rh_dr2, tvb, offset, 1, rh_1); if (is_response) { proto_tree_add_boolean(bf_tree, hf_sna_rh_rti, tvb, offset, 1, rh_1); } else { proto_tree_add_boolean(bf_tree, hf_sna_rh_eri, tvb, offset, 1, rh_1); proto_tree_add_boolean(bf_tree, hf_sna_rh_rlwi, tvb, offset, 1, rh_1); } proto_tree_add_boolean(bf_tree, hf_sna_rh_qri, tvb, offset, 1, rh_1); proto_tree_add_boolean(bf_tree, hf_sna_rh_pi, tvb, offset, 1, rh_1); offset += 1; rh_2 = tvb_get_guint8(tvb, offset); /* Create the bitfield tree for byte 2*/ bf_item = proto_tree_add_uint(tree, hf_sna_rh_2, tvb, offset, 1, rh_2); if (!is_response) { bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_bbi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_ebi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_cdi, tvb, offset, 1, rh_2); proto_tree_add_uint(bf_tree, hf_sna_rh_csi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_edi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_pdi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_cebi, tvb, offset, 1, rh_2); } /* XXX - check for sdi. If TRUE, the next 4 bytes will be sense data */ } /* -------------------------------------------------------------------- * Chapter 6 Request/Response Units (RUs) * -------------------------------------------------------------------- */ /* -------------------------------------------------------------------- * Chapter 9 Common Fields * -------------------------------------------------------------------- */ static void dissect_control_05hpr(tvbuff_t *tvb, proto_tree *tree, int hpr, enum parse parse) { proto_tree *bf_tree; proto_item *bf_item; guint8 type; guint16 offset, len, pad; if (!tree) return; type = tvb_get_guint8(tvb, 2); bf_item = proto_tree_add_uint(tree, hf_sna_control_05_type, tvb, 2, 1, type); bf_tree = proto_item_add_subtree(bf_item, ett_sna_control_05hpr_type); proto_tree_add_boolean(bf_tree, hf_sna_control_05_ptp, tvb, 2, 1, type); proto_tree_add_text(tree, tvb, 3, 1, "Reserved"); offset = 4; while (tvb_offset_exists(tvb, offset)) { if (parse == LT) { len = tvb_get_guint8(tvb, offset+0); } else { len = tvb_get_guint8(tvb, offset+1); } if (len) { dissect_control(tvb_new_subset(tvb, offset, len, -1), tree, hpr, parse); pad = (len+3) & 0xfffc; if (pad > len) proto_tree_add_text(tree, tvb, offset+len, pad-len, "Padding"); offset += pad; } else { return; } } } static void dissect_control_05(tvbuff_t *tvb, proto_tree *tree) { if(!tree) return; proto_tree_add_item(tree, hf_sna_control_05_delay, tvb, 2, 2, FALSE); } static void dissect_control_0e(tvbuff_t *tvb, proto_tree *tree) { guint len; guint8 *buf; if (!tree) return; proto_tree_add_item(tree, hf_sna_control_0e_type, tvb, 2, 1, FALSE); len = tvb_length(tvb) - 3; if (len <= 0) return; buf = g_malloc(len+1); tvb_memcpy (tvb, buf, 3, len); EBCDIC_to_ASCII(buf, len); buf[len] = 0; proto_tree_add_string(tree, hf_sna_control_0e_value, tvb, 3, len, buf); g_free(buf); } static void dissect_control(tvbuff_t *tvb, proto_tree *tree, int hpr, enum parse parse) { proto_tree *sub_tree; proto_item *sub_item; int len, key; gint ett; sub_tree = NULL; if (parse == LT) { len = tvb_get_guint8(tvb, 0); key = tvb_get_guint8(tvb, 1); } else { key = tvb_get_guint8(tvb, 0); len = tvb_get_guint8(tvb, 1); } ett = ett_sna_control_un; if (tree) { if (key == 5) { if (hpr) ett = ett_sna_control_05hpr; else ett = ett_sna_control_05; } if (key == 0x0e) ett = ett_sna_control_0e; if (((key == 0) || (key == 3) || (key == 5)) && hpr) sub_item = proto_tree_add_text(tree, tvb, 0, -1, val_to_str(key, sna_control_hpr_vals, "Unknown Control Vector")); else sub_item = proto_tree_add_text(tree, tvb, 0, -1, val_to_str(key, sna_control_vals, "Unknown Control Vector")); sub_tree = proto_item_add_subtree(sub_item, ett); if (parse == LT) { proto_tree_add_uint(sub_tree, hf_sna_control_len, tvb, 0, 1, len); if (((key == 0) || (key == 3) || (key == 5)) && hpr) proto_tree_add_uint(sub_tree, hf_sna_control_hprkey, tvb, 1, 1, key); else proto_tree_add_uint(sub_tree, hf_sna_control_key, tvb, 1, 1, key); } else { if (((key == 0) || (key == 3) || (key == 5)) && hpr) proto_tree_add_uint(sub_tree, hf_sna_control_hprkey, tvb, 0, 1, key); else proto_tree_add_uint(sub_tree, hf_sna_control_key, tvb, 0, 1, key); proto_tree_add_uint(sub_tree, hf_sna_control_len, tvb, 1, 1, len); } } switch(key) { case 0x05: if (hpr) dissect_control_05hpr(tvb, sub_tree, hpr, parse); else dissect_control_05(tvb, sub_tree); break; case 0x0e: dissect_control_0e(tvb, sub_tree); break; } } /* -------------------------------------------------------------------- * Chapter 11 Function Management (FM) Headers * -------------------------------------------------------------------- */ /* -------------------------------------------------------------------- * Chapter 12 Presentation Services (PS) Headers * -------------------------------------------------------------------- */ /* -------------------------------------------------------------------- * Chapter 13 GDS Variables * -------------------------------------------------------------------- */ static void dissect_gds(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, proto_tree *parent_tree) { guint16 length; guint16 type; int cont; int offset; proto_tree *gds_tree; proto_item *gds_item; offset = 0; cont = 1; type = tvb_get_ntohs(tvb, offset+2); while (cont) { length = tvb_get_ntohs(tvb, offset) & 0x7fff; cont = (tvb_get_ntohs(tvb, offset) & 0x8000) ? 1 : 0; type = tvb_get_ntohs(tvb, offset+2); if (length < 2 ) /* escape sequence ? */ return; if (tree) { gds_item = proto_tree_add_item(tree, hf_sna_gds, tvb, offset, length, FALSE); gds_tree = proto_item_add_subtree(gds_item, ett_sna_gds); proto_tree_add_uint(gds_tree, hf_sna_gds_len, tvb, offset, 2, length); proto_tree_add_boolean(gds_tree, hf_sna_gds_cont, tvb, offset, 2, cont); proto_tree_add_uint(gds_tree, hf_sna_gds_type, tvb, offset+2, 2, type); } offset += length; } if (tvb_offset_exists(tvb, offset)) call_dissector(data_handle, tvb_new_subset(tvb, offset, -1, -1), pinfo, parent_tree); }; /* -------------------------------------------------------------------- * General stuff * -------------------------------------------------------------------- */ static void dissect_sna(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { guint8 fid; proto_tree *sna_tree = NULL; proto_item *sna_ti = NULL; if (check_col(pinfo->cinfo, COL_PROTOCOL)) col_set_str(pinfo->cinfo, COL_PROTOCOL, "SNA"); if (check_col(pinfo->cinfo, COL_INFO)) col_clear(pinfo->cinfo, COL_INFO); /* SNA data should be printed in EBCDIC, not ASCII */ pinfo->fd->flags.encoding = CHAR_EBCDIC; if (tree) { /* Don't bother setting length. We'll set it later after we find * the lengths of TH/RH/RU */ sna_ti = proto_tree_add_item(tree, proto_sna, tvb, 0, -1, FALSE); sna_tree = proto_item_add_subtree(sna_ti, ett_sna); } /* Transmission Header Format Identifier */ fid = hi_nibble(tvb_get_guint8(tvb, 0)); switch(fid) { case 0xa: /* HPR Network Layer Packet */ case 0xb: case 0xc: case 0xd: dissect_nlp(tvb, pinfo, sna_tree, tree); break; default: dissect_fid(tvb, pinfo, sna_tree, tree); } } static void dissect_sna_xid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_tree *sna_tree = NULL; proto_item *sna_ti = NULL; if (check_col(pinfo->cinfo, COL_PROTOCOL)) col_set_str(pinfo->cinfo, COL_PROTOCOL, "SNA"); if (check_col(pinfo->cinfo, COL_INFO)) col_clear(pinfo->cinfo, COL_INFO); /* SNA data should be printed in EBCDIC, not ASCII */ pinfo->fd->flags.encoding = CHAR_EBCDIC; if (tree) { /* Don't bother setting length. We'll set it later after we find * the lengths of XID */ sna_ti = proto_tree_add_item(tree, proto_sna_xid, tvb, 0, -1, FALSE); sna_tree = proto_item_add_subtree(sna_ti, ett_sna); } dissect_xid(tvb, pinfo, sna_tree, tree); } static void sna_init(void) { fragment_table_init(&sna_fragment_table); reassembled_table_init(&sna_reassembled_table); } void proto_register_sna(void) { static hf_register_info hf[] = { { &hf_sna_th, { "Transmission Header", "sna.th", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_sna_th_0, { "Transmission Header Byte 0", "sna.th.0", FT_UINT8, BASE_HEX, NULL, 0x0, "TH Byte 0", HFILL }}, { &hf_sna_th_fid, { "Format Identifer", "sna.th.fid", FT_UINT8, BASE_HEX, VALS(sna_th_fid_vals), 0xf0, "", HFILL }}, { &hf_sna_th_mpf, { "Mapping Field", "sna.th.mpf", FT_UINT8, BASE_DEC, VALS(sna_th_mpf_vals), 0x0c, "", HFILL }}, { &hf_sna_th_odai, { "ODAI Assignment Indicator", "sna.th.odai", FT_UINT8, BASE_DEC, NULL, 0x02, "", HFILL }}, { &hf_sna_th_efi, { "Expedited Flow Indicator", "sna.th.efi", FT_UINT8, BASE_DEC, VALS(sna_th_efi_vals), 0x01, "", HFILL }}, { &hf_sna_th_daf, { "Destination Address Field", "sna.th.daf", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_oaf, { "Origin Address Field", "sna.th.oaf", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_snf, { "Sequence Number Field", "sna.th.snf", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_th_dcf, { "Data Count Field", "sna.th.dcf", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_th_lsid, { "Local Session Identification", "sna.th.lsid", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_tg_sweep, { "Transmission Group Sweep", "sna.th.tg_sweep", FT_UINT8, BASE_DEC, VALS(sna_th_tg_sweep_vals), 0x08, "", HFILL }}, { &hf_sna_th_er_vr_supp_ind, { "ER and VR Support Indicator", "sna.th.er_vr_supp_ind", FT_UINT8, BASE_DEC, VALS(sna_th_er_vr_supp_ind_vals), 0x04, "", HFILL }}, { &hf_sna_th_vr_pac_cnt_ind, { "Virtual Route Pacing Count Indicator", "sna.th.vr_pac_cnt_ind", FT_UINT8, BASE_DEC, VALS(sna_th_vr_pac_cnt_ind_vals), 0x02, "", HFILL }}, { &hf_sna_th_ntwk_prty, { "Network Priority", "sna.th.ntwk_prty", FT_UINT8, BASE_DEC, VALS(sna_th_ntwk_prty_vals), 0x01, "", HFILL }}, { &hf_sna_th_tgsf, { "Transmission Group Segmenting Field", "sna.th.tgsf", FT_UINT8, BASE_HEX, VALS(sna_th_tgsf_vals), 0xc0, "", HFILL }}, { &hf_sna_th_mft, { "MPR FID4 Type", "sna.th.mft", FT_BOOLEAN, BASE_NONE, NULL, 0x04, "", HFILL }}, { &hf_sna_th_piubf, { "PIU Blocking Field", "sna.th.piubf", FT_UINT8, BASE_HEX, VALS(sna_th_piubf_vals), 0x03, "", HFILL }}, { &hf_sna_th_iern, { "Initial Explicit Route Number", "sna.th.iern", FT_UINT8, BASE_DEC, NULL, 0xf0, "", HFILL }}, { &hf_sna_th_nlpoi, { "NLP Offset Indicator", "sna.th.nlpoi", FT_UINT8, BASE_DEC, VALS(sna_th_nlpoi_vals), 0x80, "", HFILL }}, { &hf_sna_th_nlp_cp, { "NLP Count or Padding", "sna.th.nlp_cp", FT_UINT8, BASE_DEC, NULL, 0x70, "", HFILL }}, { &hf_sna_th_ern, { "Explicit Route Number", "sna.th.ern", FT_UINT8, BASE_DEC, NULL, 0x0f, "", HFILL }}, { &hf_sna_th_vrn, { "Virtual Route Number", "sna.th.vrn", FT_UINT8, BASE_DEC, NULL, 0xf0, "", HFILL }}, { &hf_sna_th_tpf, { "Transmission Priority Field", "sna.th.tpf", FT_UINT8, BASE_HEX, VALS(sna_th_tpf_vals), 0x03, "", HFILL }}, { &hf_sna_th_vr_cwi, { "Virtual Route Change Window Indicator", "sna.th.vr_cwi", FT_UINT16, BASE_DEC, VALS(sna_th_vr_cwi_vals), 0x8000, "Change Window Indicator", HFILL }}, { &hf_sna_th_tg_nonfifo_ind, { "Transmission Group Non-FIFO Indicator", "sna.th.tg_nonfifo_ind", FT_BOOLEAN, 16, TFS(&sna_th_tg_nonfifo_ind_truth), 0x4000, "", HFILL }}, { &hf_sna_th_vr_sqti, { "Virtual Route Sequence and Type Indicator", "sna.th.vr_sqti", FT_UINT16, BASE_HEX, VALS(sna_th_vr_sqti_vals), 0x3000, "Route Sequence and Type", HFILL }}, { &hf_sna_th_tg_snf, { "Transmission Group Sequence Number Field", "sna.th.tg_snf", FT_UINT16, BASE_DEC, NULL, 0x0fff, "", HFILL }}, { &hf_sna_th_vrprq, { "Virtual Route Pacing Request", "sna.th.vrprq", FT_BOOLEAN, 16, TFS(&sna_th_vrprq_truth), 0x8000, "", HFILL }}, { &hf_sna_th_vrprs, { "Virtual Route Pacing Response", "sna.th.vrprs", FT_BOOLEAN, 16, TFS(&sna_th_vrprs_truth), 0x4000, "", HFILL }}, { &hf_sna_th_vr_cwri, { "Virtual Route Change Window Reply Indicator", "sna.th.vr_cwri", FT_UINT16, BASE_DEC, VALS(sna_th_vr_cwri_vals), 0x2000, "", HFILL }}, { &hf_sna_th_vr_rwi, { "Virtual Route Reset Window Indicator", "sna.th.vr_rwi", FT_BOOLEAN, 16, TFS(&sna_th_vr_rwi_truth), 0x1000, "", HFILL }}, { &hf_sna_th_vr_snf_send, { "Virtual Route Send Sequence Number Field", "sna.th.vr_snf_send", FT_UINT16, BASE_DEC, NULL, 0x0fff, "Send Sequence Number Field", HFILL }}, { &hf_sna_th_dsaf, { "Destination Subarea Address Field", "sna.th.dsaf", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_osaf, { "Origin Subarea Address Field", "sna.th.osaf", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_snai, { "SNA Indicator", "sna.th.snai", FT_BOOLEAN, 8, NULL, 0x10, "Used to identify whether the PIU originated or is destined" " for an SNA or non-SNA device.", HFILL }}, { &hf_sna_th_def, { "Destination Element Field", "sna.th.def", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_oef, { "Origin Element Field", "sna.th.oef", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_sa, { "Session Address", "sna.th.sa", FT_BYTES, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_cmd_fmt, { "Command Format", "sna.th.cmd_fmt", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_cmd_type, { "Command Type", "sna.th.cmd_type", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_cmd_sn, { "Command Sequence Number", "sna.th.cmd_sn", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_nhdr, { "Network Layer Packet Header", "sna.nlp.nhdr", FT_NONE, BASE_NONE, NULL, 0x0, "NHDR", HFILL }}, { &hf_sna_nlp_nhdr_0, { "Network Layer Packet Header Byte 0", "sna.nlp.nhdr.0", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_nhdr_1, { "Network Layer Packet Header Byte 1", "sna.nlp.nhdr.1", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_sm, { "Switching Mode Field", "sna.nlp.nhdr.sm", FT_UINT8, BASE_HEX, VALS(sna_nlp_sm_vals), 0xe0, "", HFILL }}, { &hf_sna_nlp_tpf, { "Transmission Priority Field", "sna.nlp.nhdr.tpf", FT_UINT8, BASE_HEX, VALS(sna_th_tpf_vals), 0x06, "", HFILL }}, { &hf_sna_nlp_ft, { "Function Type", "sna.nlp.nhdr.ft", FT_UINT8, BASE_HEX, VALS(sna_nlp_ft_vals), 0xF0, "", HFILL }}, { &hf_sna_nlp_tspi, { "Time Sensitive Packet Indicator", "sna.nlp.nhdr.tspi", FT_BOOLEAN, 8, TFS(&sna_nlp_tspi_truth), 0x08, "", HFILL }}, { &hf_sna_nlp_slowdn1, { "Slowdown 1", "sna.nlp.nhdr.slowdn1", FT_BOOLEAN, 8, TFS(&sna_nlp_slowdn1_truth), 0x04, "", HFILL }}, { &hf_sna_nlp_slowdn2, { "Slowdown 2", "sna.nlp.nhdr.slowdn2", FT_BOOLEAN, 8, TFS(&sna_nlp_slowdn2_truth), 0x02, "", HFILL }}, { &hf_sna_nlp_fra, { "Function Routing Address Entry", "sna.nlp.nhdr.fra", FT_BYTES, BASE_NONE, NULL, 0, "", HFILL }}, { &hf_sna_nlp_anr, { "Automatic Network Routing Entry", "sna.nlp.nhdr.anr", FT_BYTES, BASE_HEX, NULL, 0, "", HFILL }}, { &hf_sna_nlp_frh, { "Transmission Priority Field", "sna.nlp.frh", FT_UINT8, BASE_HEX, VALS(sna_nlp_frh_vals), 0, "", HFILL }}, { &hf_sna_nlp_thdr, { "RTP Transport Header", "sna.nlp.thdr", FT_NONE, BASE_NONE, NULL, 0x0, "THDR", HFILL }}, { &hf_sna_nlp_tcid, { "Transport Connection Identifier", "sna.nlp.thdr.tcid", FT_BYTES, BASE_HEX, NULL, 0x0, "TCID", HFILL }}, { &hf_sna_nlp_thdr_8, { "RTP Transport Packet Header Byte 8", "sna.nlp.thdr.8", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_setupi, { "Setup Indicator", "sna.nlp.thdr.setupi", FT_BOOLEAN, 8, TFS(&sna_nlp_setupi_truth), 0x40, "", HFILL }}, { &hf_sna_nlp_somi, { "Start Of Message Indicator", "sna.nlp.thdr.somi", FT_BOOLEAN, 8, TFS(&sna_nlp_somi_truth), 0x20, "", HFILL }}, { &hf_sna_nlp_eomi, { "End Of Message Indicator", "sna.nlp.thdr.eomi", FT_BOOLEAN, 8, TFS(&sna_nlp_eomi_truth), 0x10, "", HFILL }}, { &hf_sna_nlp_sri, { "Session Request Indicator", "sna.nlp.thdr.sri", FT_BOOLEAN, 8, TFS(&sna_nlp_sri_truth), 0x08, "", HFILL }}, { &hf_sna_nlp_rasapi, { "Reply ASAP Indicator", "sna.nlp.thdr.rasapi", FT_BOOLEAN, 8, TFS(&sna_nlp_rasapi_truth), 0x04, "", HFILL }}, { &hf_sna_nlp_retryi, { "Retry Indicator", "sna.nlp.thdr.retryi", FT_BOOLEAN, 8, TFS(&sna_nlp_retryi_truth), 0x02, "", HFILL }}, { &hf_sna_nlp_thdr_9, { "RTP Transport Packet Header Byte 9", "sna.nlp.thdr.9", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_lmi, { "Last Message Indicator", "sna.nlp.thdr.lmi", FT_BOOLEAN, 8, TFS(&sna_nlp_lmi_truth), 0x80, "", HFILL }}, { &hf_sna_nlp_cqfi, { "Connection Qualifyer Field Indicator", "sna.nlp.thdr.cqfi", FT_BOOLEAN, 8, TFS(&sna_nlp_cqfi_truth), 0x08, "", HFILL }}, { &hf_sna_nlp_osi, { "Optional Segments Present Indicator", "sna.nlp.thdr.osi", FT_BOOLEAN, 8, TFS(&sna_nlp_osi_truth), 0x04, "", HFILL }}, { &hf_sna_nlp_offset, { "Data Offset/4", "sna.nlp.thdr.offset", FT_UINT16, BASE_HEX, NULL, 0x0, "Data Offset in Words", HFILL }}, { &hf_sna_nlp_dlf, { "Data Length Field", "sna.nlp.thdr.dlf", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_bsn, { "Byte Sequence Number", "sna.nlp.thdr.bsn", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_len, { "Optional Segment Length/4", "sna.nlp.thdr.optional.len", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_type, { "Optional Segment Type", "sna.nlp.thdr.optional.type", FT_UINT8, BASE_HEX, VALS(sna_nlp_opti_vals), 0x0, "", HFILL }}, { &hf_sna_nlp_opti_0d_version, { "Version", "sna.nlp.thdr.optional.0d.version", FT_UINT16, BASE_HEX, VALS(sna_nlp_opti_0d_version_vals), 0, "", HFILL }}, { &hf_sna_nlp_opti_0d_4, { "Connection Setup Byte 4", "sna.nlp.thdr.optional.0e.4", FT_UINT8, BASE_HEX, NULL, 0, "", HFILL }}, { &hf_sna_nlp_opti_0d_target, { "Target Resource ID Present", "sna.nlp.thdr.optional.0d.target", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_nlp_opti_0d_arb, { "ARB Flow Control", "sna.nlp.thdr.optional.0d.arb", FT_BOOLEAN, 8, NULL, 0x10, "", HFILL }}, { &hf_sna_nlp_opti_0d_reliable, { "Reliable Connection", "sna.nlp.thdr.optional.0d.reliable", FT_BOOLEAN, 8, NULL, 0x08, "", HFILL }}, { &hf_sna_nlp_opti_0d_dedicated, { "Dedicated RTP Connection", "sna.nlp.thdr.optional.0d.dedicated", FT_BOOLEAN, 8, NULL, 0x04, "", HFILL }}, { &hf_sna_nlp_opti_0e_stat, { "Status", "sna.nlp.thdr.optional.0e.stat", FT_UINT8, BASE_HEX, NULL, 0, "", HFILL }}, { &hf_sna_nlp_opti_0e_gap, { "Gap Detected", "sna.nlp.thdr.optional.0e.gap", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_nlp_opti_0e_idle, { "RTP Idle Packet", "sna.nlp.thdr.optional.0e.idle", FT_BOOLEAN, 8, NULL, 0x40, "", HFILL }}, { &hf_sna_nlp_opti_0e_nabsp, { "Number Of ABSP", "sna.nlp.thdr.optional.0e.nabsp", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_0e_sync, { "Status Report Number", "sna.nlp.thdr.optional.0e.sync", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_0e_echo, { "Status Acknowledge Number", "sna.nlp.thdr.optional.0e.echo", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_0e_rseq, { "Received Sequence Number", "sna.nlp.thdr.optional.0e.rseq", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_0e_abspbeg, { "ABSP Begin", "sna.nlp.thdr.optional.0e.abspbeg", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_0e_abspend, { "ABSP End", "sna.nlp.thdr.optional.0e.abspend", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_0f_bits, { "Client Bits", "sna.nlp.thdr.optional.0f.bits", FT_UINT8, BASE_HEX, VALS(sna_nlp_opti_0f_bits_vals), 0x0, "", HFILL }}, { &hf_sna_nlp_opti_10_tcid, { "Transport Connection Identifier", "sna.nlp.thdr.optional.10.tcid", FT_BYTES, BASE_HEX, NULL, 0x0, "TCID", HFILL }}, { &hf_sna_nlp_opti_12_sense, { "Sense Data", "sna.nlp.thdr.optional.12.sense", FT_BYTES, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_si_len, { "Length", "sna.nlp.thdr.optional.14.si.len", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_si_key, { "Key", "sna.nlp.thdr.optional.14.si.key", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_si_2, { "Switching Information Byte 2", "sna.nlp.thdr.optional.14.si.2", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_si_refifo, { "Resequencing (REFIFO) Indicator", "sna.nlp.thdr.optional.14.si.refifo", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_nlp_opti_14_si_mobility, { "Mobility Indicator", "sna.nlp.thdr.optional.14.si.mobility", FT_BOOLEAN, 8, NULL, 0x40, "", HFILL }}, { &hf_sna_nlp_opti_14_si_dirsearch, { "Directory Search Required on Path Switch Indicator", "sna.nlp.thdr.optional.14.si.dirsearch", FT_BOOLEAN, 8, NULL, 0x20, "", HFILL }}, { &hf_sna_nlp_opti_14_si_limitres, { "Limited Resource Link Indicator", "sna.nlp.thdr.optional.14.si.limitres", FT_BOOLEAN, 8, NULL, 0x10, "", HFILL }}, { &hf_sna_nlp_opti_14_si_ncescope, { "NCE Scope Indicator", "sna.nlp.thdr.optional.14.si.ncescope", FT_BOOLEAN, 8, NULL, 0x08, "", HFILL }}, { &hf_sna_nlp_opti_14_si_mnpsrscv, { "MNPS RSCV Retention Indicator", "sna.nlp.thdr.optional.14.si.mnpsrscv", FT_BOOLEAN, 8, NULL, 0x04, "", HFILL }}, { &hf_sna_nlp_opti_14_si_maxpsize, { "Maximum Packet Size On Return Path", "sna.nlp.thdr.optional.14.si.maxpsize", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_si_switch, { "Path Switch Time", "sna.nlp.thdr.optional.14.si.switch", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_si_alive, { "RTP Alive Timer", "sna.nlp.thdr.optional.14.si.alive", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_rr_len, { "Length", "sna.nlp.thdr.optional.14.rr.len", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_rr_key, { "Key", "sna.nlp.thdr.optional.14.rr.key", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_rr_2, { "Return Route TG Descriptor Byte 2", "sna.nlp.thdr.optional.14.rr.2", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_14_rr_bfe, { "BF Entry Indicator", "sna.nlp.thdr.optional.14.rr.bfe", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_nlp_opti_14_rr_num, { "Number Of TG Control Vectors", "sna.nlp.thdr.optional.14.rr.num", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_22_2, { "Adaptive Rate Based Segment Byte 2", "sna.nlp.thdr.optional.22.2", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_22_type, { "Message Type", "sna.nlp.thdr.optional.22.type", FT_UINT8, BASE_HEX, VALS(sna_nlp_opti_22_type_vals), 0xc0, "", HFILL }}, { &hf_sna_nlp_opti_22_raa, { "Rate Adjustment Action", "sna.nlp.thdr.optional.22.raa", FT_UINT8, BASE_HEX, VALS(sna_nlp_opti_22_raa_vals), 0x38, "", HFILL }}, { &hf_sna_nlp_opti_22_parity, { "Parity Indicator", "sna.nlp.thdr.optional.22.parity", FT_BOOLEAN, 8, NULL, 0x04, "", HFILL }}, { &hf_sna_nlp_opti_22_arb, { "ARB Mode", "sna.nlp.thdr.optional.22.arb", FT_UINT8, BASE_HEX, VALS(sna_nlp_opti_22_arb_vals), 0x03, "", HFILL }}, { &hf_sna_nlp_opti_22_3, { "Adaptive Rate Based Segment Byte 3", "sna.nlp.thdr.optional.22.3", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_22_ratereq, { "Rate Request Correlator", "sna.nlp.thdr.optional.22.ratereq", FT_UINT8, BASE_DEC, NULL, 0xf0, "", HFILL }}, { &hf_sna_nlp_opti_22_raterep, { "Rate Reply Correlator", "sna.nlp.thdr.optional.22.raterep", FT_UINT8, BASE_DEC, NULL, 0x0f, "", HFILL }}, { &hf_sna_nlp_opti_22_field1, { "Field 1", "sna.nlp.thdr.optional.22.field1", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_22_field2, { "Field 2", "sna.nlp.thdr.optional.22.field2", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_22_field3, { "Field 3", "sna.nlp.thdr.optional.22.field3", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_opti_22_field4, { "Field 4", "sna.nlp.thdr.optional.22.field4", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_rh, { "Request/Response Header", "sna.rh", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_sna_rh_0, { "Request/Response Header Byte 0", "sna.rh.0", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_rh_1, { "Request/Response Header Byte 1", "sna.rh.1", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_rh_2, { "Request/Response Header Byte 2", "sna.rh.2", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_rh_rri, { "Request/Response Indicator", "sna.rh.rri", FT_UINT8, BASE_DEC, VALS(sna_rh_rri_vals), 0x80, "", HFILL }}, { &hf_sna_rh_ru_category, { "Request/Response Unit Category", "sna.rh.ru_category", FT_UINT8, BASE_HEX, VALS(sna_rh_ru_category_vals), 0x60, "", HFILL }}, { &hf_sna_rh_fi, { "Format Indicator", "sna.rh.fi", FT_BOOLEAN, 8, TFS(&sna_rh_fi_truth), 0x08, "", HFILL }}, { &hf_sna_rh_sdi, { "Sense Data Included", "sna.rh.sdi", FT_BOOLEAN, 8, TFS(&sna_rh_sdi_truth), 0x04, "", HFILL }}, { &hf_sna_rh_bci, { "Begin Chain Indicator", "sna.rh.bci", FT_BOOLEAN, 8, TFS(&sna_rh_bci_truth), 0x02, "", HFILL }}, { &hf_sna_rh_eci, { "End Chain Indicator", "sna.rh.eci", FT_BOOLEAN, 8, TFS(&sna_rh_eci_truth), 0x01, "", HFILL }}, { &hf_sna_rh_dr1, { "Definite Response 1 Indicator", "sna.rh.dr1", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_rh_lcci, { "Length-Checked Compression Indicator", "sna.rh.lcci", FT_BOOLEAN, 8, TFS(&sna_rh_lcci_truth), 0x40, "", HFILL }}, { &hf_sna_rh_dr2, { "Definite Response 2 Indicator", "sna.rh.dr2", FT_BOOLEAN, 8, NULL, 0x20, "", HFILL }}, { &hf_sna_rh_eri, { "Exception Response Indicator", "sna.rh.eri", FT_BOOLEAN, 8, NULL, 0x10, "", HFILL }}, { &hf_sna_rh_rti, { "Response Type Indicator", "sna.rh.rti", FT_BOOLEAN, 8, TFS(&sna_rh_rti_truth), 0x10, "", HFILL }}, { &hf_sna_rh_rlwi, { "Request Larger Window Indicator", "sna.rh.rlwi", FT_BOOLEAN, 8, NULL, 0x04, "", HFILL }}, { &hf_sna_rh_qri, { "Queued Response Indicator", "sna.rh.qri", FT_BOOLEAN, 8, TFS(&sna_rh_qri_truth), 0x02, "", HFILL }}, { &hf_sna_rh_pi, { "Pacing Indicator", "sna.rh.pi", FT_BOOLEAN, 8, NULL, 0x01, "", HFILL }}, { &hf_sna_rh_bbi, { "Begin Bracket Indicator", "sna.rh.bbi", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_rh_ebi, { "End Bracket Indicator", "sna.rh.ebi", FT_BOOLEAN, 8, NULL, 0x40, "", HFILL }}, { &hf_sna_rh_cdi, { "Change Direction Indicator", "sna.rh.cdi", FT_BOOLEAN, 8, NULL, 0x20, "", HFILL }}, { &hf_sna_rh_csi, { "Code Selection Indicator", "sna.rh.csi", FT_UINT8, BASE_DEC, VALS(sna_rh_csi_vals), 0x08, "", HFILL }}, { &hf_sna_rh_edi, { "Enciphered Data Indicator", "sna.rh.edi", FT_BOOLEAN, 8, NULL, 0x04, "", HFILL }}, { &hf_sna_rh_pdi, { "Padded Data Indicator", "sna.rh.pdi", FT_BOOLEAN, 8, NULL, 0x02, "", HFILL }}, { &hf_sna_rh_cebi, { "Conditional End Bracket Indicator", "sna.rh.cebi", FT_BOOLEAN, 8, NULL, 0x01, "", HFILL }}, /* { &hf_sna_ru, { "Request/Response Unit", "sna.ru", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL }},*/ { &hf_sna_gds, { "GDS Variable", "sna.gds", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_sna_gds_len, { "GDS Variable Length", "sna.gds.len", FT_UINT16, BASE_DEC, NULL, 0x7fff, "", HFILL }}, { &hf_sna_gds_cont, { "Continuation Flag", "sna.gds.cont", FT_BOOLEAN, 16, NULL, 0x8000, "", HFILL }}, { &hf_sna_gds_type, { "Type of Variable", "sna.gds.type", FT_UINT16, BASE_HEX, VALS(sna_gds_var_vals), 0x0, "", HFILL }}, { &hf_sna_xid, { "XID", "sna.xid", FT_NONE, BASE_NONE, NULL, 0x0, "XID Frame", HFILL }}, { &hf_sna_xid_0, { "XID Byte 0", "sna.xid.0", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_format, { "XID Format", "sna.xid.format", FT_UINT8, BASE_DEC, NULL, 0xf0, "", HFILL }}, { &hf_sna_xid_type, { "XID Type", "sna.xid.type", FT_UINT8, BASE_DEC, VALS(sna_xid_type_vals), 0x0f, "", HFILL }}, { &hf_sna_xid_len, { "XID Length", "sna.xid.len", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_id, { "Node Identification", "sna.xid.id", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_idblock, { "ID Block", "sna.xid.idblock", FT_UINT32, BASE_HEX, NULL, 0xfff00000, "", HFILL }}, { &hf_sna_xid_idnum, { "ID Number", "sna.xid.idnum", FT_UINT32, BASE_HEX, NULL, 0x0fffff, "", HFILL }}, { &hf_sna_xid_3_8, { "Characteristics of XID sender", "sna.xid.type3.8", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_3_init_self, { "INIT-SELF support", "sna.xid.type3.initself", FT_BOOLEAN, 16, NULL, 0x8000, "", HFILL }}, { &hf_sna_xid_3_stand_bind, { "Stand-Alone BIND Support", "sna.xid.type3.stand_bind", FT_BOOLEAN, 16, NULL, 0x4000, "", HFILL }}, { &hf_sna_xid_3_gener_bind, { "Whole BIND PIU generated indicator", "sna.xid.type3.gener_bind", FT_BOOLEAN, 16, NULL, 0x2000, "Whole BIND PIU generated", HFILL }}, { &hf_sna_xid_3_recve_bind, { "Whole BIND PIU required indicator", "sna.xid.type3.recve_bind", FT_BOOLEAN, 16, NULL, 0x1000, "Whole BIND PIU required", HFILL }}, { &hf_sna_xid_3_actpu, { "ACTPU suppression indicator", "sna.xid.type3.actpu", FT_BOOLEAN, 16, NULL, 0x0080, "", HFILL }}, { &hf_sna_xid_3_nwnode, { "Sender is network node", "sna.xid.type3.nwnode", FT_BOOLEAN, 16, NULL, 0x0040, "", HFILL }}, { &hf_sna_xid_3_cp, { "Control Point Services", "sna.xid.type3.cp", FT_BOOLEAN, 16, NULL, 0x0020, "", HFILL }}, { &hf_sna_xid_3_cpcp, { "CP-CP session support", "sna.xid.type3.cpcp", FT_BOOLEAN, 16, NULL, 0x0010, "", HFILL }}, { &hf_sna_xid_3_state, { "XID exchange state indicator", "sna.xid.type3.state", FT_UINT16, BASE_HEX, VALS(sna_xid_3_state_vals), 0x000c, "", HFILL }}, { &hf_sna_xid_3_nonact, { "Nonactivation Exchange", "sna.xid.type3.nonact", FT_BOOLEAN, 16, NULL, 0x0002, "", HFILL }}, { &hf_sna_xid_3_cpchange, { "CP name change support", "sna.xid.type3.cpchange", FT_BOOLEAN, 16, NULL, 0x0001, "", HFILL }}, { &hf_sna_xid_3_10, { "XID Type 3 Byte 10", "sna.xid.type3.10", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_3_asend_bind, { "Adaptive BIND pacing support as sender", "sna.xid.type3.asend_bind", FT_BOOLEAN, 8, NULL, 0x80, "Pacing support as sender", HFILL }}, { &hf_sna_xid_3_arecv_bind, { "Adaptive BIND pacing support as receiver", "sna.xid.type3.asend_recv", FT_BOOLEAN, 8, NULL, 0x40, "Pacing support as receive", HFILL }}, { &hf_sna_xid_3_quiesce, { "Quiesce TG Request", "sna.xid.type3.quiesce", FT_BOOLEAN, 8, NULL, 0x20, "", HFILL }}, { &hf_sna_xid_3_pucap, { "PU Capabilities", "sna.xid.type3.pucap", FT_BOOLEAN, 8, NULL, 0x10, "", HFILL }}, { &hf_sna_xid_3_pbn, { "Peripheral Border Node", "sna.xid.type3.pbn", FT_BOOLEAN, 8, NULL, 0x08, "", HFILL }}, { &hf_sna_xid_3_pacing, { "Qualifier for adaptive BIND pacing support", "sna.xid.type3.pacing", FT_UINT8, BASE_HEX, NULL, 0x03, "", HFILL }}, { &hf_sna_xid_3_11, { "XID Type 3 Byte 11", "sna.xid.type3.11", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_3_tgshare, { "TG Sharing Prohibited Indicator", "sna.xid.type3.tgshare", FT_BOOLEAN, 8, NULL, 0x40, "", HFILL }}, { &hf_sna_xid_3_dedsvc, { "Dedicated SVC Idicator", "sna.xid.type3.dedsvc", FT_BOOLEAN, 8, NULL, 0x20, "", HFILL }}, { &hf_sna_xid_3_12, { "XID Type 3 Byte 12", "sna.xid.type3.12", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_3_negcsup, { "Negotiation Complete Supported", "sna.xid.type3.negcsup", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_xid_3_negcomp, { "Negotiation Complete", "sna.xid.type3.negcomp", FT_BOOLEAN, 8, NULL, 0x40, "", HFILL }}, { &hf_sna_xid_3_15, { "XID Type 3 Byte 15", "sna.xid.type3.15", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_3_partg, { "Parallel TG Support", "sna.xid.type3.partg", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_xid_3_dlur, { "Dependent LU Requester Indicator", "sna.xid.type3.dlur", FT_BOOLEAN, 8, NULL, 0x40, "", HFILL }}, { &hf_sna_xid_3_dlus, { "DLUS Served LU Registration Indicator", "sna.xid.type3.dlus", FT_BOOLEAN, 8, NULL, 0x20, "", HFILL }}, { &hf_sna_xid_3_exbn, { "Extended HPR Border Node", "sna.xid.type3.exbn", FT_BOOLEAN, 8, NULL, 0x10, "", HFILL }}, { &hf_sna_xid_3_genodai, { "Generalized ODAI Usage Option", "sna.xid.type3.genodai", FT_BOOLEAN, 8, NULL, 0x08, "", HFILL }}, { &hf_sna_xid_3_branch, { "Branch Indicator", "sna.xid.type3.branch", FT_UINT8, BASE_HEX, VALS(sna_xid_3_branch_vals), 0x06, "", HFILL }}, { &hf_sna_xid_3_brnn, { "Option Set 1123 Indicator", "sna.xid.type3.brnn", FT_BOOLEAN, 8, NULL, 0x01, "", HFILL }}, { &hf_sna_xid_3_tg, { "XID TG", "sna.xid.type3.tg", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_3_dlc, { "XID DLC", "sna.xid.type3.dlc", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_xid_3_dlen, { "DLC Dependent Section Length", "sna.xid.type3.dlen", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_control_len, { "Control Vector Length", "sna.control.len", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_control_key, { "Control Vector Key", "sna.control.key", FT_UINT8, BASE_HEX, VALS(sna_control_vals), 0x0, "", HFILL }}, { &hf_sna_control_hprkey, { "Control Vector HPR Key", "sna.control.hprkey", FT_UINT8, BASE_HEX, VALS(sna_control_hpr_vals), 0x0, "", HFILL }}, { &hf_sna_control_05_delay, { "Channel Delay", "sna.control.05.delay", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_control_05_type, { "Network Address Type", "sna.control.05.type", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_control_05_ptp, { "Point-to-point", "sna.control.05.ptp", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_control_0e_type, { "Type", "sna.control.0e.type", FT_UINT8, BASE_HEX, VALS(sna_control_0e_type_vals), 0, "", HFILL }}, { &hf_sna_control_0e_value, { "Value", "sna.control.0e.value", FT_STRING, BASE_NONE, NULL, 0, "", HFILL }}, }; static gint *ett[] = { &ett_sna, &ett_sna_th, &ett_sna_th_fid, &ett_sna_nlp_nhdr, &ett_sna_nlp_nhdr_0, &ett_sna_nlp_nhdr_1, &ett_sna_nlp_thdr, &ett_sna_nlp_thdr_8, &ett_sna_nlp_thdr_9, &ett_sna_nlp_opti_un, &ett_sna_nlp_opti_0d, &ett_sna_nlp_opti_0d_4, &ett_sna_nlp_opti_0e, &ett_sna_nlp_opti_0e_stat, &ett_sna_nlp_opti_0e_absp, &ett_sna_nlp_opti_0f, &ett_sna_nlp_opti_10, &ett_sna_nlp_opti_12, &ett_sna_nlp_opti_14, &ett_sna_nlp_opti_14_si, &ett_sna_nlp_opti_14_si_2, &ett_sna_nlp_opti_14_rr, &ett_sna_nlp_opti_14_rr_2, &ett_sna_nlp_opti_22, &ett_sna_nlp_opti_22_2, &ett_sna_nlp_opti_22_3, &ett_sna_rh, &ett_sna_rh_0, &ett_sna_rh_1, &ett_sna_rh_2, &ett_sna_gds, &ett_sna_xid_0, &ett_sna_xid_id, &ett_sna_xid_3_8, &ett_sna_xid_3_10, &ett_sna_xid_3_11, &ett_sna_xid_3_12, &ett_sna_xid_3_15, &ett_sna_control_un, &ett_sna_control_05, &ett_sna_control_05hpr, &ett_sna_control_05hpr_type, &ett_sna_control_0e, }; module_t *sna_module; proto_sna = proto_register_protocol("Systems Network Architecture", "SNA", "sna"); proto_register_field_array(proto_sna, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); register_dissector("sna", dissect_sna, proto_sna); proto_sna_xid = proto_register_protocol( "Systems Network Architecture XID", "SNA XID", "sna_xid"); register_dissector("sna_xid", dissect_sna_xid, proto_sna_xid); /* Register configuration options */ sna_module = prefs_register_protocol(proto_sna, NULL); prefs_register_bool_preference(sna_module, "defragment", "Reassemble fragmented BIUs", "Whether fragmented BIUs should be reassembled", &sna_defragment); } void proto_reg_handoff_sna(void) { dissector_handle_t sna_handle; dissector_handle_t sna_xid_handle; sna_handle = find_dissector("sna"); sna_xid_handle = find_dissector("sna_xid"); dissector_add("llc.dsap", SAP_SNA_PATHCTRL, sna_handle); dissector_add("llc.dsap", SAP_SNA1, sna_handle); dissector_add("llc.dsap", SAP_SNA2, sna_handle); dissector_add("llc.dsap", SAP_SNA3, sna_handle); dissector_add("llc.xid_dsap", SAP_SNA_PATHCTRL, sna_xid_handle); dissector_add("llc.xid_dsap", SAP_SNA1, sna_xid_handle); dissector_add("llc.xid_dsap", SAP_SNA2, sna_xid_handle); dissector_add("llc.xid_dsap", SAP_SNA3, sna_xid_handle); /* RFC 2043 */ dissector_add("ppp.protocol", PPP_SNA, sna_handle); data_handle = find_dissector("data"); register_init_routine(sna_init); }