/* packet-sna.c * Routines for SNA * Gilbert Ramirez * * $Id: packet-sna.c,v 1.43 2002/09/23 21:58:22 gram Exp $ * * Ethereal - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include "llcsaps.h" #include "ppptypes.h" #include #include "prefs.h" #include "reassemble.h" /* * http://www.wanresources.com/snacell.html * ftp://ftp.software.ibm.com/networking/pub/standards/aiw/formats/ * */ static int proto_sna = -1; static int hf_sna_th = -1; static int hf_sna_th_0 = -1; static int hf_sna_th_fid = -1; static int hf_sna_th_mpf = -1; static int hf_sna_th_odai = -1; static int hf_sna_th_efi = -1; static int hf_sna_th_daf = -1; static int hf_sna_th_oaf = -1; static int hf_sna_th_snf = -1; static int hf_sna_th_dcf = -1; static int hf_sna_th_lsid = -1; static int hf_sna_th_tg_sweep = -1; static int hf_sna_th_er_vr_supp_ind = -1; static int hf_sna_th_vr_pac_cnt_ind = -1; static int hf_sna_th_ntwk_prty = -1; static int hf_sna_th_tgsf = -1; static int hf_sna_th_mft = -1; static int hf_sna_th_piubf = -1; static int hf_sna_th_iern = -1; static int hf_sna_th_nlpoi = -1; static int hf_sna_th_nlp_cp = -1; static int hf_sna_th_ern = -1; static int hf_sna_th_vrn = -1; static int hf_sna_th_tpf = -1; static int hf_sna_th_vr_cwi = -1; static int hf_sna_th_tg_nonfifo_ind = -1; static int hf_sna_th_vr_sqti = -1; static int hf_sna_th_tg_snf = -1; static int hf_sna_th_vrprq = -1; static int hf_sna_th_vrprs = -1; static int hf_sna_th_vr_cwri = -1; static int hf_sna_th_vr_rwi = -1; static int hf_sna_th_vr_snf_send = -1; static int hf_sna_th_dsaf = -1; static int hf_sna_th_osaf = -1; static int hf_sna_th_snai = -1; static int hf_sna_th_def = -1; static int hf_sna_th_oef = -1; static int hf_sna_th_sa = -1; static int hf_sna_th_cmd_fmt = -1; static int hf_sna_th_cmd_type = -1; static int hf_sna_th_cmd_sn = -1; static int hf_sna_nlp_nhdr = -1; static int hf_sna_nlp_nhdr_0 = -1; static int hf_sna_nlp_sm = -1; static int hf_sna_nlp_tpf = -1; static int hf_sna_nlp_nhdr_1 = -1; static int hf_sna_nlp_ft = -1; static int hf_sna_nlp_tspi = -1; static int hf_sna_nlp_slowdn1 = -1; static int hf_sna_nlp_slowdn2 = -1; static int hf_sna_nlp_fra = -1; static int hf_sna_nlp_anr = -1; static int hf_sna_nlp_frh = -1; static int hf_sna_nlp_thdr = -1; static int hf_sna_nlp_tcid = -1; static int hf_sna_nlp_thdr_8 = -1; static int hf_sna_nlp_setupi = -1; static int hf_sna_nlp_somi = -1; static int hf_sna_nlp_eomi = -1; static int hf_sna_nlp_sri = -1; static int hf_sna_nlp_rasapi = -1; static int hf_sna_nlp_retryi = -1; static int hf_sna_nlp_thdr_9 = -1; static int hf_sna_nlp_lmi = -1; static int hf_sna_nlp_cqfi = -1; static int hf_sna_nlp_osi = -1; static int hf_sna_nlp_offset = -1; static int hf_sna_nlp_dlf = -1; static int hf_sna_nlp_bsn = -1; static int hf_sna_rh = -1; static int hf_sna_rh_0 = -1; static int hf_sna_rh_1 = -1; static int hf_sna_rh_2 = -1; static int hf_sna_rh_rri = -1; static int hf_sna_rh_ru_category = -1; static int hf_sna_rh_fi = -1; static int hf_sna_rh_sdi = -1; static int hf_sna_rh_bci = -1; static int hf_sna_rh_eci = -1; static int hf_sna_rh_dr1 = -1; static int hf_sna_rh_lcci = -1; static int hf_sna_rh_dr2 = -1; static int hf_sna_rh_eri = -1; static int hf_sna_rh_rti = -1; static int hf_sna_rh_rlwi = -1; static int hf_sna_rh_qri = -1; static int hf_sna_rh_pi = -1; static int hf_sna_rh_bbi = -1; static int hf_sna_rh_ebi = -1; static int hf_sna_rh_cdi = -1; static int hf_sna_rh_csi = -1; static int hf_sna_rh_edi = -1; static int hf_sna_rh_pdi = -1; static int hf_sna_rh_cebi = -1; /*static int hf_sna_ru = -1;*/ static gint ett_sna = -1; static gint ett_sna_th = -1; static gint ett_sna_th_fid = -1; static gint ett_sna_nlp_nhdr = -1; static gint ett_sna_nlp_nhdr_0 = -1; static gint ett_sna_nlp_nhdr_1 = -1; static gint ett_sna_nlp_thdr = -1; static gint ett_sna_nlp_thdr_8 = -1; static gint ett_sna_nlp_thdr_9 = -1; static gint ett_sna_rh = -1; static gint ett_sna_rh_0 = -1; static gint ett_sna_rh_1 = -1; static gint ett_sna_rh_2 = -1; static dissector_handle_t data_handle; /* Defragment fragmented SNA BIUs*/ static gboolean sna_defragment = FALSE; static GHashTable *sna_fragment_table = NULL; static GHashTable *sna_reassembled_table = NULL; /* Format Identifier */ static const value_string sna_th_fid_vals[] = { { 0x0, "SNA device <--> Non-SNA Device" }, { 0x1, "Subarea Nodes, without ER or VR" }, { 0x2, "Subarea Node <--> PU2" }, { 0x3, "Subarea Node or SNA host <--> Subarea Node" }, { 0x4, "Subarea Nodes, supporting ER and VR" }, { 0x5, "HPR RTP endpoint nodes" }, { 0xa, "HPR NLP Frame Routing" }, { 0xb, "HPR NLP Frame Routing" }, { 0xc, "HPR NLP Automatic Network Routing" }, { 0xd, "HPR NLP Automatic Network Routing" }, { 0xf, "Adjaced Subarea Nodes, supporting ER and VR" }, { 0x0, NULL } }; /* Mapping Field */ #define MPF_MIDDLE_SEGMENT 0 #define MPF_LAST_SEGMENT 1 #define MPF_FIRST_SEGMENT 2 #define MPF_WHOLE_BIU 3 static const value_string sna_th_mpf_vals[] = { { MPF_MIDDLE_SEGMENT, "Middle segment of a BIU" }, { MPF_LAST_SEGMENT, "Last segment of a BIU" }, { MPF_FIRST_SEGMENT, "First segment of a BIU" }, { MPF_WHOLE_BIU, "Whole BIU" }, { 0, NULL } }; /* Expedited Flow Indicator */ static const value_string sna_th_efi_vals[] = { { 0, "Normal Flow" }, { 1, "Expedited Flow" }, { 0x0, NULL } }; /* Request/Response Indicator */ static const value_string sna_rh_rri_vals[] = { { 0, "Request" }, { 1, "Response" }, { 0x0, NULL } }; /* Request/Response Unit Category */ static const value_string sna_rh_ru_category_vals[] = { { 0, "Function Management Data (FMD)" }, { 1, "Network Control (NC)" }, { 2, "Data Flow Control (DFC)" }, { 3, "Session Control (SC)" }, { 0x0, NULL } }; /* Format Indicator */ static const true_false_string sna_rh_fi_truth = { "FM Header", "No FM Header" }; /* Sense Data Included */ static const true_false_string sna_rh_sdi_truth = { "Included", "Not Included" }; /* Begin Chain Indicator */ static const true_false_string sna_rh_bci_truth = { "First in Chain", "Not First in Chain" }; /* End Chain Indicator */ static const true_false_string sna_rh_eci_truth = { "Last in Chain", "Not Last in Chain" }; /* Lengith-Checked Compression Indicator */ static const true_false_string sna_rh_lcci_truth = { "Compressed", "Not Compressed" }; /* Response Type Indicator */ static const true_false_string sna_rh_rti_truth = { "Negative", "Positive" }; /* Exception Response Indicator */ static const true_false_string sna_rh_eri_truth = { "Exception", "Definite" }; /* Queued Response Indicator */ static const true_false_string sna_rh_qri_truth = { "Enqueue response in TC queues", "Response bypasses TC queues" }; /* Code Selection Indicator */ static const value_string sna_rh_csi_vals[] = { { 0, "EBCDIC" }, { 1, "ASCII" }, { 0x0, NULL } }; /* TG Sweep */ static const value_string sna_th_tg_sweep_vals[] = { { 0, "This PIU may overtake any PU ahead of it." }, { 1, "This PIU does not ovetake any PIU ahead of it." }, { 0x0, NULL } }; /* ER_VR_SUPP_IND */ static const value_string sna_th_er_vr_supp_ind_vals[] = { { 0, "Each node supports ER and VR protocols" }, { 1, "Includes at least one node that does not support ER and VR protocols" }, { 0x0, NULL } }; /* VR_PAC_CNT_IND */ static const value_string sna_th_vr_pac_cnt_ind_vals[] = { { 0, "Pacing count on the VR has not reached 0" }, { 1, "Pacing count on the VR has reached 0" }, { 0x0, NULL } }; /* NTWK_PRTY */ static const value_string sna_th_ntwk_prty_vals[] = { { 0, "PIU flows at a lower priority" }, { 1, "PIU flows at network priority (highest transmission priority)" }, { 0x0, NULL } }; /* TGSF */ static const value_string sna_th_tgsf_vals[] = { { 0, "Not segmented" }, { 1, "Last segment" }, { 2, "First segment" }, { 3, "Middle segment" }, { 0x0, NULL } }; /* PIUBF */ static const value_string sna_th_piubf_vals[] = { { 0, "Single PIU frame" }, { 1, "Last PIU of a multiple PIU frame" }, { 2, "First PIU of a multiple PIU frame" }, { 3, "Middle PIU of a multiple PIU frame" }, { 0x0, NULL } }; /* NLPOI */ static const value_string sna_th_nlpoi_vals[] = { { 0, "NLP starts within this FID4 TH" }, { 1, "NLP byte 0 starts after RH byte 0 following NLP C/P pad" }, { 0x0, NULL } }; /* TPF */ static const value_string sna_th_tpf_vals[] = { { 0, "Low Priority" }, { 1, "Medium Priority" }, { 2, "High Priority" }, { 3, "Network Priority" }, { 0x0, NULL } }; /* VR_CWI */ static const value_string sna_th_vr_cwi_vals[] = { { 0, "Increment window size" }, { 1, "Decrement window size" }, { 0x0, NULL } }; /* TG_NONFIFO_IND */ static const true_false_string sna_th_tg_nonfifo_ind_truth = { "TG FIFO is not required", "TG FIFO is required" }; /* VR_SQTI */ static const value_string sna_th_vr_sqti_vals[] = { { 0, "Non-sequenced, Non-supervisory" }, { 1, "Non-sequenced, Supervisory" }, { 2, "Singly-sequenced" }, { 0x0, NULL } }; /* VRPRQ */ static const true_false_string sna_th_vrprq_truth = { "VR pacing request is sent asking for a VR pacing response", "No VR pacing response is requested", }; /* VRPRS */ static const true_false_string sna_th_vrprs_truth = { "VR pacing response is sent in response to a VRPRQ bit set", "No pacing response sent", }; /* VR_CWRI */ static const value_string sna_th_vr_cwri_vals[] = { { 0, "Increment window size by 1" }, { 1, "Decrement window size by 1" }, { 0x0, NULL } }; /* VR_RWI */ static const true_false_string sna_th_vr_rwi_truth = { "Reset window size to the minimum specified in NC_ACTVR", "Do not reset window size", }; /* Switching Mode */ static const value_string sna_nlp_sm_vals[] = { { 5, "Function routing" }, { 6, "Automatic network routing" }, { 0x0, NULL } }; static const true_false_string sna_nlp_tspi_truth = { "Time sensitive", "Not time sensitive" }; static const true_false_string sna_nlp_slowdn1_truth = { "Minor congestion", "No minor congestion" }; static const true_false_string sna_nlp_slowdn2_truth = { "Major congestion", "No major congestion" }; /* Function Type */ static const value_string sna_nlp_ft_vals[] = { { 0x10, "LDLC" }, { 0x0, NULL } }; static const value_string sna_nlp_frh_vals[] = { { 0x03, "XID complete request" }, { 0x04, "XID complete response" }, { 0x0, NULL } }; static const true_false_string sna_nlp_setupi_truth = { "Connection setup segment present", "Connection setup segment not present" }; static const true_false_string sna_nlp_somi_truth = { "Start of message", "Not start of message" }; static const true_false_string sna_nlp_eomi_truth = { "End of message", "Not end of message" }; static const true_false_string sna_nlp_sri_truth = { "Status requested", "No status requested" }; static const true_false_string sna_nlp_rasapi_truth = { "Reply as soon as possible", "No need to reply as soon as possible" }; static const true_false_string sna_nlp_retryi_truth = { "Undefined", "Sender will retransmit" }; static const true_false_string sna_nlp_lmi_truth = { "Last message", "Not last message" }; static const true_false_string sna_nlp_cqfi_truth = { "CQFI included", "CQFI not included" }; static const true_false_string sna_nlp_osi_truth = { "Optional segments present", "No optional segments present" }; /* Values to direct the top-most dissector what to dissect * after the TH. */ enum next_dissection_enum { stop_here, rh_only, everything }; typedef enum next_dissection_enum next_dissection_t; static int dissect_fid0_1 (tvbuff_t*, packet_info*, proto_tree*); static int dissect_fid2 (tvbuff_t*, packet_info*, proto_tree*, tvbuff_t**, next_dissection_t*); static int dissect_fid3 (tvbuff_t*, proto_tree*); static int dissect_fid4 (tvbuff_t*, packet_info*, proto_tree*); static int dissect_fid5 (tvbuff_t*, proto_tree*); static int dissect_fidf (tvbuff_t*, proto_tree*); static void dissect_fid (tvbuff_t*, packet_info*, proto_tree*, proto_tree*); static void dissect_nlp (tvbuff_t*, packet_info*, proto_tree*, proto_tree*); static void dissect_rh (tvbuff_t*, int, proto_tree*); static unsigned int mpf_value(guint8 th_byte) { return (th_byte & 0x0c) >> 2; } static void dissect_sna(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { guint8 fid; proto_tree *sna_tree = NULL; proto_item *sna_ti = NULL; if (check_col(pinfo->cinfo, COL_PROTOCOL)) col_set_str(pinfo->cinfo, COL_PROTOCOL, "SNA"); if (check_col(pinfo->cinfo, COL_INFO)) col_clear(pinfo->cinfo, COL_INFO); /* SNA data should be printed in EBCDIC, not ASCII */ pinfo->fd->flags.encoding = CHAR_EBCDIC; if (tree) { /* Don't bother setting length. We'll set it later after we find * the lengths of TH/RH/RU */ sna_ti = proto_tree_add_item(tree, proto_sna, tvb, 0, -1, FALSE); sna_tree = proto_item_add_subtree(sna_ti, ett_sna); } /* Transmission Header Format Identifier */ fid = hi_nibble(tvb_get_guint8(tvb, 0)); switch(fid) { case 0xa: /* HPR Network Layer Packet */ case 0xb: case 0xc: case 0xd: dissect_nlp(tvb, pinfo, sna_tree, tree); break; default: dissect_fid(tvb, pinfo, sna_tree, tree); } } #define RH_LEN 3 static void dissect_fid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, proto_tree *parent_tree) { proto_tree *th_tree = NULL, *rh_tree = NULL; proto_item *th_ti = NULL, *rh_ti = NULL; guint8 th_fid; int th_header_len = 0; int offset, rh_offset; tvbuff_t *rh_tvb = NULL; next_dissection_t continue_dissecting = everything; /* Transmission Header Format Identifier */ th_fid = hi_nibble(tvb_get_guint8(tvb, 0)); /* Summary information */ if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, val_to_str(th_fid, sna_th_fid_vals, "Unknown FID: %01x")); if (tree) { /* --- TH --- */ /* Don't bother setting length. We'll set it later after we find * the length of TH */ th_ti = proto_tree_add_item(tree, hf_sna_th, tvb, 0, -1, FALSE); th_tree = proto_item_add_subtree(th_ti, ett_sna_th); } /* Get size of TH */ switch(th_fid) { case 0x0: case 0x1: th_header_len = dissect_fid0_1(tvb, pinfo, th_tree); break; case 0x2: th_header_len = dissect_fid2(tvb, pinfo, th_tree, &rh_tvb, &continue_dissecting); break; case 0x3: th_header_len = dissect_fid3(tvb, th_tree); break; case 0x4: th_header_len = dissect_fid4(tvb, pinfo, th_tree); break; case 0x5: th_header_len = dissect_fid5(tvb, th_tree); break; case 0xf: th_header_len = dissect_fidf(tvb, th_tree); break; default: call_dissector(data_handle, tvb_new_subset(tvb, 1, -1, -1), pinfo, parent_tree); return; } offset = th_header_len; /* Short-circuit ? */ if (continue_dissecting == stop_here) { if (tree) { proto_tree_add_text(tree, tvb, offset, -1, "BIU segment data"); } return; } /* If the FID dissector function didn't create an rh_tvb, then we just * use the rest of our tvbuff as the rh_tvb. */ if (!rh_tvb) { rh_tvb = tvb_new_subset(tvb, offset, -1, -1); } rh_offset = 0; /* Process the rest of the SNA packet, starting with RH */ if (tree) { proto_item_set_len(th_ti, th_header_len); /* --- RH --- */ rh_ti = proto_tree_add_item(tree, hf_sna_rh, rh_tvb, rh_offset, RH_LEN, FALSE); rh_tree = proto_item_add_subtree(rh_ti, ett_sna_rh); dissect_rh(rh_tvb, rh_offset, rh_tree); } rh_offset += RH_LEN; if (tvb_offset_exists(rh_tvb, rh_offset+1)) { /* Short-circuit ? */ if (continue_dissecting == rh_only) { if (tree) { proto_tree_add_text(tree, rh_tvb, rh_offset, -1, "BIU segment data"); } return; } call_dissector(data_handle, tvb_new_subset(rh_tvb, rh_offset, -1, -1), pinfo, parent_tree); } } #define FIRST_FRAG_NUMBER 0 #define MIDDLE_FRAG_NUMBER 1 #define LAST_FRAG_NUMBER 2 /* FID2 is defragged by sequence. The weird thing is that we have neither * absolute sequence numbers, nor byte offets. Other FIDs have byte offsets * (the DCF field), but not FID2. The only thing we have to go with is "FIRST", * "MIDDLE", or "LAST". If the BIU is split into 3 frames, then everything is * fine, * "FIRST", "MIDDLE", and "LAST" map nicely onto frag-number 0, 1, * and 2. However, if the BIU is split into 2 frames, then we only have * "FIRST" and "LAST", and the mapping *should* be frag-number 0 and 1, * *NOT* 0 and 2. * * The SNA docs say "FID2 PIUs cannot be blocked because there is no DCF in the * TH format for deblocking" (note on Figure 4-2 in the IBM SNA documention, * see the FTP URL in the comment near the top of this file). I *think* * this means that the fragmented frames cannot arrive out of order. * Well, I *want* it to mean this, because w/o this limitation, if you * get a "FIRST" frame and a "LAST" frame, how long should you wait to * see if a "MIDDLE" frame every arrives????? Thus, if frames *have* to * arrive in order, then we're saved. * * The problem then boils down to figuring out if "LAST" means frag-number 1 * (in the case of a BIU split into 2 frames) or frag-number 2 * (in the case of a BIU split into 3 frames). * * Assuming fragmented FID2 BIU frames *do* arrive in order, the obvious * way to handle the mapping of "LAST" to either frag-number 1 or * frag-number 2 is to keep a hash which tracks the frames seen, etc. * This consumes resources. A trickier way, but a way which works, is to * always map the "LAST" BIU segment to frag-number 2. Here's the trickery: * if we add frag-number 2, which we know to be the "LAST" BIU segment, * and the reassembly code tells us that the the BIU is still not reassmebled, * then, owing to the, ahem, /fact/, that fragmented BIU segments arrive * in order :), we know that 1) "FIRST" did come, and 2) there's no "MIDDLE", * because this BIU was fragmented into 2 frames, not 3. So, we'll be * tricky and add a zero-length "MIDDLE" BIU frame (i.e, frag-number 1) * to complete the reassembly. */ static tvbuff_t* defragment_by_sequence(packet_info *pinfo, tvbuff_t *tvb, int offset, int mpf, int id) { fragment_data *fd_head; int frag_number = -1; int more_frags = TRUE; tvbuff_t *rh_tvb = NULL; /* Determine frag_number and more_frags */ switch(mpf) { case MPF_WHOLE_BIU: /* nothing */ break; case MPF_FIRST_SEGMENT: frag_number = FIRST_FRAG_NUMBER; break; case MPF_MIDDLE_SEGMENT: frag_number = MIDDLE_FRAG_NUMBER; break; case MPF_LAST_SEGMENT: frag_number = LAST_FRAG_NUMBER; more_frags = FALSE; break; default: g_assert_not_reached(); } /* If sna_defragment is on, and this is a fragment.. */ if (frag_number > -1) { /* XXX - check length ??? */ fd_head = fragment_add_seq(tvb, offset, pinfo, id, sna_fragment_table, frag_number, tvb_length_remaining(tvb, offset), more_frags); /* We added the LAST segment and reassembly didn't complete. Insert * a zero-length MIDDLE segment to turn a 2-frame BIU-fragmentation * into a 3-frame BIU-fragmentation (empty middle frag). * See above long comment about this trickery. */ if (mpf == MPF_LAST_SEGMENT && !fd_head) { fd_head = fragment_add_seq(tvb, offset, pinfo, id, sna_fragment_table, MIDDLE_FRAG_NUMBER, 0, TRUE); } if (fd_head != NULL) { /* We have the complete reassembled payload. */ rh_tvb = tvb_new_real_data(fd_head->data, fd_head->len, fd_head->len); /* Add the tvbuff to the chain of tvbuffs so that * it will get cleaned up too. */ tvb_set_child_real_data_tvbuff(tvb, rh_tvb); /* Add the defragmented data to the data source list. */ add_new_data_source(pinfo, rh_tvb, "Reassembled SNA BIU"); } } return rh_tvb; } #define SNA_FID01_ADDR_LEN 2 /* FID Types 0 and 1 */ static int dissect_fid0_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; const guint8 *ptr; const int bytes_in_header = 10; if (tree) { /* Byte 0 */ th_0 = tvb_get_guint8(tvb, 0); bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0); /* Byte 1 */ proto_tree_add_text(tree, tvb, 1, 1, "Reserved"); /* Bytes 2-3 */ proto_tree_add_item(tree, hf_sna_th_daf, tvb, 2, 2, FALSE); } /* Set DST addr */ ptr = tvb_get_ptr(tvb, 2, SNA_FID01_ADDR_LEN); SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID01_ADDR_LEN, ptr); SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID01_ADDR_LEN, ptr); if (tree) { proto_tree_add_item(tree, hf_sna_th_oaf, tvb, 4, 2, FALSE); } /* Set SRC addr */ ptr = tvb_get_ptr(tvb, 4, SNA_FID01_ADDR_LEN); SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID01_ADDR_LEN, ptr); SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID01_ADDR_LEN, ptr); /* If we're not filling a proto_tree, return now */ if (tree) { return bytes_in_header; } proto_tree_add_item(tree, hf_sna_th_snf, tvb, 6, 2, FALSE); proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 8, 2, FALSE); return bytes_in_header; } #define SNA_FID2_ADDR_LEN 1 /* FID Type 2 */ static int dissect_fid2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, tvbuff_t **rh_tvb_ptr, next_dissection_t *continue_dissecting) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0=0, daf=0, oaf=0; const guint8 *ptr; unsigned int mpf, id; const int bytes_in_header = 6; th_0 = tvb_get_guint8(tvb, 0); mpf = mpf_value(th_0); if (tree) { daf = tvb_get_guint8(tvb, 2); oaf = tvb_get_guint8(tvb, 3); /* Byte 0 */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_odai,tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0); /* Byte 1 */ proto_tree_add_text(tree, tvb, 1, 1, "Reserved"); /* Byte 2 */ proto_tree_add_uint_format(tree, hf_sna_th_daf, tvb, 2, 1, daf, "Destination Address Field: 0x%02x", daf); } /* Set DST addr */ ptr = tvb_get_ptr(tvb, 2, SNA_FID2_ADDR_LEN); SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID2_ADDR_LEN, ptr); SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID2_ADDR_LEN, ptr); if (tree) { /* Byte 3 */ proto_tree_add_uint_format(tree, hf_sna_th_oaf, tvb, 3, 1, oaf, "Origin Address Field: 0x%02x", oaf); } /* Set SRC addr */ ptr = tvb_get_ptr(tvb, 3, SNA_FID2_ADDR_LEN); SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID2_ADDR_LEN, ptr); SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID2_ADDR_LEN, ptr); id = tvb_get_ntohs(tvb, 4); if (tree) { proto_tree_add_uint(tree, hf_sna_th_snf, tvb, 4, 2, id); } if (mpf != MPF_WHOLE_BIU && !sna_defragment) { if (mpf == MPF_FIRST_SEGMENT) { *continue_dissecting = rh_only; } else { *continue_dissecting = stop_here; } } else if (sna_defragment) { *rh_tvb_ptr = defragment_by_sequence(pinfo, tvb, bytes_in_header, mpf, id); } return bytes_in_header; } /* FID Type 3 */ static int dissect_fid3(tvbuff_t *tvb, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; const int bytes_in_header = 2; /* If we're not filling a proto_tree, return now */ if (!tree) { return bytes_in_header; } th_0 = tvb_get_guint8(tvb, 0); /* Create the bitfield tree */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0); proto_tree_add_item(tree, hf_sna_th_lsid, tvb, 1, 1, FALSE); return bytes_in_header; } static int dissect_fid4(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; int offset = 0; guint8 th_byte, mft; guint16 th_word; guint16 def, oef; guint32 dsaf, osaf; static struct sna_fid_type_4_addr src, dst; const int bytes_in_header = 26; /* If we're not filling a proto_tree, return now */ if (!tree) { return bytes_in_header; } if (tree) { th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, offset, 1, th_byte); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 0 */ proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_tg_sweep, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_er_vr_supp_ind, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_vr_pac_cnt_ind, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_ntwk_prty, tvb, offset, 1, th_byte); offset += 1; th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 1, "Transmision Header Byte 1"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 1 */ proto_tree_add_uint(bf_tree, hf_sna_th_tgsf, tvb, offset, 1, th_byte); proto_tree_add_boolean(bf_tree, hf_sna_th_mft, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_piubf, tvb, offset, 1, th_byte); mft = th_byte & 0x04; offset += 1; th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 1, "Transmision Header Byte 2"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 2 */ if (mft) { proto_tree_add_uint(bf_tree, hf_sna_th_nlpoi, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_nlp_cp, tvb, offset, 1, th_byte); } else { proto_tree_add_uint(bf_tree, hf_sna_th_iern, tvb, offset, 1, th_byte); } proto_tree_add_uint(bf_tree, hf_sna_th_ern, tvb, offset, 1, th_byte); offset += 1; th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 1, "Transmision Header Byte 3"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 3 */ proto_tree_add_uint(bf_tree, hf_sna_th_vrn, tvb, offset, 1, th_byte); proto_tree_add_uint(bf_tree, hf_sna_th_tpf, tvb, offset, 1, th_byte); offset += 1; th_word = tvb_get_ntohs(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 2, "Transmision Header Bytes 4-5"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Bytes 4-5 */ proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwi, tvb, offset, 2, th_word); proto_tree_add_boolean(bf_tree, hf_sna_th_tg_nonfifo_ind, tvb, offset, 2, th_word); proto_tree_add_uint(bf_tree, hf_sna_th_vr_sqti, tvb, offset, 2, th_word); /* I'm not sure about byte-order on this one... */ proto_tree_add_uint(bf_tree, hf_sna_th_tg_snf, tvb, offset, 2, th_word); offset += 2; th_word = tvb_get_ntohs(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 2, "Transmision Header Bytes 6-7"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Bytes 6-7 */ proto_tree_add_boolean(bf_tree, hf_sna_th_vrprq, tvb, offset, 2, th_word); proto_tree_add_boolean(bf_tree, hf_sna_th_vrprs, tvb, offset, 2, th_word); proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwri, tvb, offset, 2, th_word); proto_tree_add_boolean(bf_tree, hf_sna_th_vr_rwi, tvb, offset, 2, th_word); /* I'm not sure about byte-order on this one... */ proto_tree_add_uint(bf_tree, hf_sna_th_vr_snf_send, tvb, offset, 2, th_word); offset += 2; } dsaf = tvb_get_ntohl(tvb, 8); if (tree) { /* Bytes 8-11 */ proto_tree_add_uint(tree, hf_sna_th_dsaf, tvb, offset, 4, dsaf); offset += 4; } osaf = tvb_get_ntohl(tvb, 12); if (tree) { /* Bytes 12-15 */ proto_tree_add_uint(tree, hf_sna_th_osaf, tvb, offset, 4, osaf); offset += 4; th_byte = tvb_get_guint8(tvb, offset); /* Create the bitfield tree */ bf_item = proto_tree_add_text(tree, tvb, offset, 2, "Transmision Header Byte 16"); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); /* Byte 16 */ proto_tree_add_boolean(tree, hf_sna_th_snai, tvb, offset, 1, th_byte); /* We luck out here because in their infinite wisdom the SNA * architects placed the MPF and EFI fields in the same bitfield * locations, even though for FID4 they're not in byte 0. * Thank you IBM! */ proto_tree_add_uint(tree, hf_sna_th_mpf, tvb, offset, 1, th_byte); proto_tree_add_uint(tree, hf_sna_th_efi, tvb, offset, 1, th_byte); offset += 2; /* 1 for byte 16, 1 for byte 17 which is reserved */ } def = tvb_get_ntohs(tvb, 18); if (tree) { /* Bytes 18-25 */ proto_tree_add_uint(tree, hf_sna_th_def, tvb, offset, 2, def); } /* Addresses in FID 4 are discontiguous, sigh */ dst.saf = dsaf; dst.ef = def; SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8* )&dst); SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8 *)&dst); oef = tvb_get_ntohs(tvb, 20); if (tree) { proto_tree_add_uint(tree, hf_sna_th_oef, tvb, offset+2, 2, oef); } /* Addresses in FID 4 are discontiguous, sigh */ src.saf = osaf; src.ef = oef; SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8 *)&src); SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8 *)&src); if (tree) { proto_tree_add_item(tree, hf_sna_th_snf, tvb, offset+4, 2, FALSE); proto_tree_add_item(tree, hf_sna_th_dcf, tvb, offset+6, 2, FALSE); } return bytes_in_header; } /* FID Type 5 */ static int dissect_fid5(tvbuff_t *tvb, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; const int bytes_in_header = 12; /* If we're not filling a proto_tree, return now */ if (!tree) { return bytes_in_header; } th_0 = tvb_get_guint8(tvb, 0); /* Create the bitfield tree */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0); proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0); proto_tree_add_text(tree, tvb, 1, 1, "Reserved"); proto_tree_add_item(tree, hf_sna_th_snf, tvb, 2, 2, FALSE); proto_tree_add_item(tree, hf_sna_th_sa, tvb, 4, 8, FALSE); return bytes_in_header; } /* FID Type f */ static int dissect_fidf(tvbuff_t *tvb, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; const int bytes_in_header = 26; /* If we're not filling a proto_tree, return now */ if (!tree) { return bytes_in_header; } th_0 = tvb_get_guint8(tvb, 0); /* Create the bitfield tree */ bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid); proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0); proto_tree_add_text(tree, tvb, 1, 1, "Reserved"); proto_tree_add_item(tree, hf_sna_th_cmd_fmt, tvb, 2, 1, FALSE); proto_tree_add_item(tree, hf_sna_th_cmd_type, tvb, 3, 1, FALSE); proto_tree_add_item(tree, hf_sna_th_cmd_sn, tvb, 4, 2, FALSE); /* Yup, bytes 6-23 are reserved! */ proto_tree_add_text(tree, tvb, 6, 18, "Reserved"); proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 24, 2, FALSE); return bytes_in_header; } /* HPR Network Layer Packet */ static void dissect_nlp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, proto_tree *parent_tree) { proto_tree *nlp_tree, *bf_tree; proto_item *nlp_item, *bf_item, *h_item; guint8 nhdr_0, nhdr_1, nhdr_x, thdr_8, thdr_9; guint32 thdr_len, thdr_dlf, thdr_bsn; int index = 0, counter = 0; nlp_tree = NULL; nlp_item = NULL; nhdr_0 = tvb_get_guint8(tvb, index); nhdr_1 = tvb_get_guint8(tvb, index+1); if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, "HPR NLP Packet"); if (tree) { /* Don't bother setting length. We'll set it later after we find * the lengths of NHDR */ nlp_item = proto_tree_add_item(tree, hf_sna_nlp_nhdr, tvb, index, -1, FALSE); nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_nhdr); bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_nhdr_0, tvb, index, 1, nhdr_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_nhdr_0); proto_tree_add_uint(bf_tree, hf_sna_nlp_sm, tvb, index, 1, nhdr_0); proto_tree_add_uint(bf_tree, hf_sna_nlp_tpf, tvb, index, 1, nhdr_0); bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_nhdr_1, tvb, index+1, 1, nhdr_1); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_nhdr_1); proto_tree_add_uint(bf_tree, hf_sna_nlp_ft, tvb, index+1, 1, nhdr_1); proto_tree_add_boolean(bf_tree, hf_sna_nlp_tspi, tvb, index+1, 1, nhdr_1); proto_tree_add_boolean(bf_tree, hf_sna_nlp_slowdn1, tvb, index+1, 1, nhdr_1); proto_tree_add_boolean(bf_tree, hf_sna_nlp_slowdn2, tvb, index+1, 1, nhdr_1); } /* ANR or FR lists */ index += 2; counter = 0; if ((nhdr_0 & 0xe0) == 0xa0) { do { nhdr_x = tvb_get_guint8(tvb, index + counter); counter ++; } while (nhdr_x != 0xff); if (tree) h_item = proto_tree_add_item(nlp_tree, hf_sna_nlp_fra, tvb, index, counter, FALSE); index += counter; index++; /* 1 Byte Reserved */ if (tree) { proto_item_set_len(nlp_item, index); } if ((nhdr_1 & 0x80) == 0x10) { nhdr_x = tvb_get_guint8(tvb, index); if (tree) { proto_tree_add_uint(tree, hf_sna_nlp_frh, tvb, index, 1, nhdr_x); } index ++; if (tvb_offset_exists(tvb, index+1)) { call_dissector(data_handle, tvb_new_subset(tvb, index, -1, -1), pinfo, parent_tree); } return; } } if ((nhdr_0 & 0xe0) == 0xc0) { do { nhdr_x = tvb_get_guint8(tvb, index + counter); counter ++; } while (nhdr_x != 0xff); if (tree) h_item = proto_tree_add_item(nlp_tree, hf_sna_nlp_anr, tvb, index, counter, FALSE); index += counter; index++; /* 1 Byte Reserved */ if (tree) { proto_item_set_len(nlp_item, index); } } thdr_8 = tvb_get_guint8(tvb, index+8); thdr_9 = tvb_get_guint8(tvb, index+9); thdr_len = tvb_get_ntohs(tvb, index+10); thdr_dlf = tvb_get_ntohl(tvb, index+12); thdr_bsn = tvb_get_ntohl(tvb, index+16); if (tree) { /* Don't bother setting length. We'll set it later after we find * the lengths of NHDR */ nlp_item = proto_tree_add_item(tree, hf_sna_nlp_thdr, tvb, index, -1, FALSE); nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_thdr); bf_item = proto_tree_add_item(nlp_tree, hf_sna_nlp_tcid, tvb, index, 8, FALSE); bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_thdr_8, tvb, index+8, 1, thdr_8); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_setupi, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_somi, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_eomi, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_sri, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_rasapi, tvb, index+8, 1, thdr_8); proto_tree_add_boolean(bf_tree, hf_sna_nlp_retryi, tvb, index+8, 1, thdr_8); bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_thdr_9, tvb, index+9, 1, thdr_9); bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_thdr_9); proto_tree_add_boolean(bf_tree, hf_sna_nlp_lmi, tvb, index+9, 1, thdr_9); proto_tree_add_boolean(bf_tree, hf_sna_nlp_cqfi, tvb, index+9, 1, thdr_9); proto_tree_add_boolean(bf_tree, hf_sna_nlp_osi, tvb, index+9, 1, thdr_9); proto_tree_add_uint(nlp_tree, hf_sna_nlp_offset, tvb, index+10, 2, thdr_len); proto_tree_add_uint(nlp_tree, hf_sna_nlp_dlf, tvb, index+12, 4, thdr_dlf); proto_tree_add_uint(nlp_tree, hf_sna_nlp_bsn, tvb, index+16, 4, thdr_bsn); proto_item_set_len(nlp_item, thdr_len); } index += (thdr_len << 2); if (((thdr_8 & 0x20) == 0) && thdr_dlf) { if (check_col(pinfo->cinfo, COL_INFO)) col_add_str(pinfo->cinfo, COL_INFO, "HPR Fragment"); if (tvb_offset_exists(tvb, index+1)) { call_dissector(data_handle, tvb_new_subset(tvb, index, -1, -1), pinfo, parent_tree); } return; } if (tvb_offset_exists(tvb, index+1)) { dissect_fid(tvb_new_subset(tvb, index, -1, -1), pinfo, tree, parent_tree); } } /* RH */ static void dissect_rh(tvbuff_t *tvb, int offset, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; gboolean is_response; guint8 rh_0, rh_1, rh_2; /* Create the bitfield tree for byte 0*/ rh_0 = tvb_get_guint8(tvb, offset); is_response = (rh_0 & 0x80); bf_item = proto_tree_add_uint(tree, hf_sna_rh_0, tvb, offset, 1, rh_0); bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_0); proto_tree_add_uint(bf_tree, hf_sna_rh_rri, tvb, offset, 1, rh_0); proto_tree_add_uint(bf_tree, hf_sna_rh_ru_category, tvb, offset, 1, rh_0); proto_tree_add_boolean(bf_tree, hf_sna_rh_fi, tvb, offset, 1, rh_0); proto_tree_add_boolean(bf_tree, hf_sna_rh_sdi, tvb, offset, 1, rh_0); proto_tree_add_boolean(bf_tree, hf_sna_rh_bci, tvb, offset, 1, rh_0); proto_tree_add_boolean(bf_tree, hf_sna_rh_eci, tvb, offset, 1, rh_0); offset += 1; rh_1 = tvb_get_guint8(tvb, offset); /* Create the bitfield tree for byte 1*/ bf_item = proto_tree_add_uint(tree, hf_sna_rh_1, tvb, offset, 1, rh_1); bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_1); proto_tree_add_boolean(bf_tree, hf_sna_rh_dr1, tvb, offset, 1, rh_1); if (!is_response) { proto_tree_add_boolean(bf_tree, hf_sna_rh_lcci, tvb, offset, 1, rh_1); } proto_tree_add_boolean(bf_tree, hf_sna_rh_dr2, tvb, offset, 1, rh_1); if (is_response) { proto_tree_add_boolean(bf_tree, hf_sna_rh_rti, tvb, offset, 1, rh_1); } else { proto_tree_add_boolean(bf_tree, hf_sna_rh_eri, tvb, offset, 1, rh_1); proto_tree_add_boolean(bf_tree, hf_sna_rh_rlwi, tvb, offset, 1, rh_1); } proto_tree_add_boolean(bf_tree, hf_sna_rh_qri, tvb, offset, 1, rh_1); proto_tree_add_boolean(bf_tree, hf_sna_rh_pi, tvb, offset, 1, rh_1); offset += 1; rh_2 = tvb_get_guint8(tvb, offset); /* Create the bitfield tree for byte 2*/ bf_item = proto_tree_add_uint(tree, hf_sna_rh_2, tvb, offset, 1, rh_2); if (!is_response) { bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_bbi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_ebi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_cdi, tvb, offset, 1, rh_2); proto_tree_add_uint(bf_tree, hf_sna_rh_csi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_edi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_pdi, tvb, offset, 1, rh_2); proto_tree_add_boolean(bf_tree, hf_sna_rh_cebi, tvb, offset, 1, rh_2); } /* XXX - check for sdi. If TRUE, the next 4 bytes will be sense data */ } static void sna_init(void) { fragment_table_init(&sna_fragment_table); reassembled_table_init(&sna_reassembled_table); } void proto_register_sna(void) { static hf_register_info hf[] = { { &hf_sna_th, { "Transmission Header", "sna.th", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_sna_th_0, { "Transmission Header Byte 0", "sna.th.0", FT_UINT8, BASE_HEX, NULL, 0x0, "Byte 0 of Tranmission Header contains FID, MPF, ODAI," " and EFI as bitfields.", HFILL }}, { &hf_sna_th_fid, { "Format Identifer", "sna.th.fid", FT_UINT8, BASE_HEX, VALS(sna_th_fid_vals), 0xf0, "Format Identification", HFILL }}, { &hf_sna_th_mpf, { "Mapping Field", "sna.th.mpf", FT_UINT8, BASE_DEC, VALS(sna_th_mpf_vals), 0x0c, "The Mapping Field specifies whether the information field" " associated with the TH is a complete or partial BIU.", HFILL }}, { &hf_sna_th_odai, { "ODAI Assignment Indicator", "sna.th.odai", FT_UINT8, BASE_DEC, NULL, 0x02, "The ODAI indicates which node assigned the OAF'-DAF' values" " carried in the TH.", HFILL }}, { &hf_sna_th_efi, { "Expedited Flow Indicator", "sna.th.efi", FT_UINT8, BASE_DEC, VALS(sna_th_efi_vals), 0x01, "The EFI designates whether the PIU belongs to the normal" " or expedited flow.", HFILL }}, { &hf_sna_th_daf, { "Destination Address Field", "sna.th.daf", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_oaf, { "Origin Address Field", "sna.th.oaf", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_snf, { "Sequence Number Field", "sna.th.snf", FT_UINT16, BASE_DEC, NULL, 0x0, "The Sequence Number Field contains a numerical identifier for" " the associated BIU.", HFILL }}, { &hf_sna_th_dcf, { "Data Count Field", "sna.th.dcf", FT_UINT16, BASE_DEC, NULL, 0x0, "A binary count of the number of bytes in the BIU or BIU segment associated " "with the tranmission header. The count does not include any of the bytes " "in the transmission header.", HFILL }}, { &hf_sna_th_lsid, { "Local Session Identification", "sna.th.lsid", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_tg_sweep, { "Transmission Group Sweep", "sna.th.tg_sweep", FT_UINT8, BASE_DEC, VALS(sna_th_tg_sweep_vals), 0x08, "", HFILL }}, { &hf_sna_th_er_vr_supp_ind, { "ER and VR Support Indicator", "sna.th.er_vr_supp_ind", FT_UINT8, BASE_DEC, VALS(sna_th_er_vr_supp_ind_vals), 0x04, "", HFILL }}, { &hf_sna_th_vr_pac_cnt_ind, { "Virtual Route Pacing Count Indicator", "sna.th.vr_pac_cnt_ind", FT_UINT8, BASE_DEC, VALS(sna_th_vr_pac_cnt_ind_vals), 0x02, "", HFILL }}, { &hf_sna_th_ntwk_prty, { "Network Priority", "sna.th.ntwk_prty", FT_UINT8, BASE_DEC, VALS(sna_th_ntwk_prty_vals), 0x01, "", HFILL }}, { &hf_sna_th_tgsf, { "Transmission Group Segmenting Field", "sna.th.tgsf", FT_UINT8, BASE_HEX, VALS(sna_th_tgsf_vals), 0xc0, "", HFILL }}, { &hf_sna_th_mft, { "MPR FID4 Type", "sna.th.mft", FT_BOOLEAN, BASE_NONE, NULL, 0x04, "", HFILL }}, { &hf_sna_th_piubf, { "PIU Blocking Field", "sna.th.piubf", FT_UINT8, BASE_HEX, VALS(sna_th_piubf_vals), 0x03, "Specifies whether this frame contains a single PIU or multiple PIUs.", HFILL }}, { &hf_sna_th_iern, { "Initial Explicit Route Number", "sna.th.iern", FT_UINT8, BASE_DEC, NULL, 0xf0, "", HFILL }}, { &hf_sna_th_nlpoi, { "NLP Offset Indicator", "sna.th.nlpoi", FT_UINT8, BASE_DEC, VALS(sna_th_nlpoi_vals), 0x80, "", HFILL }}, { &hf_sna_th_nlp_cp, { "NLP Count or Padding", "sna.th.nlp_cp", FT_UINT8, BASE_DEC, NULL, 0x70, "", HFILL }}, { &hf_sna_th_ern, { "Explicit Route Number", "sna.th.ern", FT_UINT8, BASE_DEC, NULL, 0x0f, "The ERN in a TH identifies an explicit route direction of flow.", HFILL }}, { &hf_sna_th_vrn, { "Virtual Route Number", "sna.th.vrn", FT_UINT8, BASE_DEC, NULL, 0xf0, "", HFILL }}, { &hf_sna_th_tpf, { "Transmission Priority Field", "sna.th.tpf", FT_UINT8, BASE_HEX, VALS(sna_th_tpf_vals), 0x03, "", HFILL }}, { &hf_sna_th_vr_cwi, { "Virtual Route Change Window Indicator", "sna.th.vr_cwi", FT_UINT16, BASE_DEC, VALS(sna_th_vr_cwi_vals), 0x8000, "Used to change the window size of the virtual route by 1.", HFILL }}, { &hf_sna_th_tg_nonfifo_ind, { "Transmission Group Non-FIFO Indicator", "sna.th.tg_nonfifo_ind", FT_BOOLEAN, 16, TFS(&sna_th_tg_nonfifo_ind_truth), 0x4000, "Indicates whether or not FIFO discipline is to enforced in " "transmitting PIUs through the tranmission groups to prevent the PIUs " "getting out of sequence during transmission over the TGs.", HFILL }}, { &hf_sna_th_vr_sqti, { "Virtual Route Sequence and Type Indicator", "sna.th.vr_sqti", FT_UINT16, BASE_HEX, VALS(sna_th_vr_sqti_vals), 0x3000, "Specifies the PIU type.", HFILL }}, { &hf_sna_th_tg_snf, { "Transmission Group Sequence Number Field", "sna.th.tg_snf", FT_UINT16, BASE_DEC, NULL, 0x0fff, "", HFILL }}, { &hf_sna_th_vrprq, { "Virtual Route Pacing Request", "sna.th.vrprq", FT_BOOLEAN, 16, TFS(&sna_th_vrprq_truth), 0x8000, "", HFILL }}, { &hf_sna_th_vrprs, { "Virtual Route Pacing Response", "sna.th.vrprs", FT_BOOLEAN, 16, TFS(&sna_th_vrprs_truth), 0x4000, "", HFILL }}, { &hf_sna_th_vr_cwri, { "Virtual Route Change Window Reply Indicator", "sna.th.vr_cwri", FT_UINT16, BASE_DEC, VALS(sna_th_vr_cwri_vals), 0x2000, "Permits changing of the window size by 1 for PIUs received by the " "sender of this bit.", HFILL }}, { &hf_sna_th_vr_rwi, { "Virtual Route Reset Window Indicator", "sna.th.vr_rwi", FT_BOOLEAN, 16, TFS(&sna_th_vr_rwi_truth), 0x1000, "Indicates severe congestion in a node on the virtual route.", HFILL }}, { &hf_sna_th_vr_snf_send, { "Virtual Route Send Sequence Number Field", "sna.th.vr_snf_send", FT_UINT16, BASE_DEC, NULL, 0x0fff, "", HFILL }}, { &hf_sna_th_dsaf, { "Destination Subarea Address Field", "sna.th.dsaf", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_osaf, { "Origin Subarea Address Field", "sna.th.osaf", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_snai, { "SNA Indicator", "sna.th.snai", FT_BOOLEAN, 8, NULL, 0x10, "Used to identify whether the PIU originated or is destined for " "an SNA or non-SNA device.", HFILL }}, { &hf_sna_th_def, { "Destination Element Field", "sna.th.def", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_oef, { "Origin Element Field", "sna.th.oef", FT_UINT16, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_sa, { "Session Address", "sna.th.sa", FT_BYTES, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_cmd_fmt, { "Command Format", "sna.th.cmd_fmt", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_cmd_type, { "Command Type", "sna.th.cmd_type", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_th_cmd_sn, { "Command Sequence Number", "sna.th.cmd_sn", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL }}, { &hf_sna_nlp_nhdr, { "Network Layer Packet Header", "sna.nlp.nhdr", FT_NONE, BASE_NONE, NULL, 0x0, "Network Layer Packet Header (NHDR)", HFILL }}, { &hf_sna_nlp_nhdr_0, { "Network Layer Packet Header Byte 0", "sna.nlp.nhdr.0", FT_UINT8, BASE_HEX, NULL, 0x0, "Byte 0 of Network Layer Packet contains SM and TPF", HFILL }}, { &hf_sna_nlp_nhdr_1, { "Network Layer Packet Header Bype 1", "sna.nlp.nhdr.1", FT_UINT8, BASE_HEX, NULL, 0x0, "Byte 1 of Network Layer Packet contains FT," " Time Sensitive Packet Indicator and Congestion Indicator", HFILL }}, { &hf_sna_nlp_sm, { "Switching Mode Field", "sna.nlp.nhdr.sm", FT_UINT8, BASE_HEX, VALS(sna_nlp_sm_vals), 0xe0, "", HFILL }}, { &hf_sna_nlp_tpf, { "Transmission Priority Field", "sna.nlp.nhdr.tpf", FT_UINT8, BASE_HEX, VALS(sna_th_tpf_vals), 0x06, "", HFILL }}, { &hf_sna_nlp_ft, { "Function Type", "sna.nlp.nhdr.ft", FT_UINT8, BASE_HEX, VALS(sna_nlp_ft_vals), 0xF0, "", HFILL }}, { &hf_sna_nlp_tspi, { "Time Sensitive Packet Indicator", "sna.nlp.nhdr.tspi", FT_BOOLEAN, 8, TFS(&sna_nlp_tspi_truth), 0x08, "", HFILL }}, { &hf_sna_nlp_slowdn1, { "Slowdown 1", "sna.nlp.nhdr.slowdn1", FT_BOOLEAN, 8, TFS(&sna_nlp_slowdn1_truth), 0x04, "", HFILL }}, { &hf_sna_nlp_slowdn2, { "Slowdown 2", "sna.nlp.nhdr.slowdn2", FT_BOOLEAN, 8, TFS(&sna_nlp_slowdn2_truth), 0x02, "", HFILL }}, { &hf_sna_nlp_fra, { "Function Routing Address Entry", "sna.nlp.nhdr.fra", FT_BYTES, BASE_NONE, NULL, 0, "", HFILL }}, { &hf_sna_nlp_anr, { "Automatic Network Routing Entry", "sna.nlp.nhdr.anr", FT_BYTES, BASE_HEX, NULL, 0, "", HFILL }}, { &hf_sna_nlp_frh, { "Transmission Priority Field", "sna.nlp.frh", FT_UINT8, BASE_HEX, VALS(sna_nlp_frh_vals), 0, "", HFILL }}, { &hf_sna_nlp_thdr, { "RTP Transport Header", "sna.nlp.thdr", FT_NONE, BASE_NONE, NULL, 0x0, "RTP Transport Header (THDR)", HFILL }}, { &hf_sna_nlp_tcid, { "Transport Connection Identifier", "sna.nlp.thdr.tcid", FT_BYTES, BASE_HEX, NULL, 0x0, "Transport Connection Identifier (TCID)", HFILL }}, { &hf_sna_nlp_thdr_8, { "RTP Transport Packet Header Bype 8", "sna.nlp.thdr.8", FT_UINT8, BASE_HEX, NULL, 0x0, "Byte 8 of RTP Transport Packet Header", HFILL }}, { &hf_sna_nlp_setupi, { "Setup Indicator", "sna.nlp.thdr.setupi", FT_BOOLEAN, 8, TFS(&sna_nlp_setupi_truth), 0x40, "", HFILL }}, { &hf_sna_nlp_somi, { "Start Of Message Indicator", "sna.nlp.thdr.somi", FT_BOOLEAN, 8, TFS(&sna_nlp_somi_truth), 0x20, "", HFILL }}, { &hf_sna_nlp_eomi, { "End Of Message Indicator", "sna.nlp.thdr.eomi", FT_BOOLEAN, 8, TFS(&sna_nlp_eomi_truth), 0x10, "", HFILL }}, { &hf_sna_nlp_sri, { "Session Request Indicator", "sna.nlp.thdr.sri", FT_BOOLEAN, 8, TFS(&sna_nlp_sri_truth), 0x08, "", HFILL }}, { &hf_sna_nlp_rasapi, { "Reply ASAP Indicator", "sna.nlp.thdr.rasapi", FT_BOOLEAN, 8, TFS(&sna_nlp_rasapi_truth), 0x04, "", HFILL }}, { &hf_sna_nlp_retryi, { "Retry Indicator", "sna.nlp.thdr.retryi", FT_BOOLEAN, 8, TFS(&sna_nlp_retryi_truth), 0x02, "", HFILL }}, { &hf_sna_nlp_thdr_9, { "RTP Transport Packet Header Bype 9", "sna.nlp.thdr.9", FT_UINT8, BASE_HEX, NULL, 0x0, "Byte 9 of RTP Transport Packet Header", HFILL }}, { &hf_sna_nlp_lmi, { "Last Message Indicator", "sna.nlp.thdr.lmi", FT_BOOLEAN, 8, TFS(&sna_nlp_lmi_truth), 0x80, "", HFILL }}, { &hf_sna_nlp_cqfi, { "Connection Qualifyer Field Indicator", "sna.nlp.thdr.cqfi", FT_BOOLEAN, 8, TFS(&sna_nlp_cqfi_truth), 0x08, "", HFILL }}, { &hf_sna_nlp_osi, { "Optional Segments Present Indicator", "sna.nlp.thdr.osi", FT_BOOLEAN, 8, TFS(&sna_nlp_osi_truth), 0x04, "", HFILL }}, { &hf_sna_nlp_offset, { "Data Offset/4", "sna.nlp.thdr.offset", FT_UINT16, BASE_HEX, NULL, 0x0, "Data Offset in words", HFILL }}, { &hf_sna_nlp_dlf, { "Data Length Field", "sna.nlp.thdr.dlf", FT_UINT32, BASE_HEX, NULL, 0x0, "Data Length Field", HFILL }}, { &hf_sna_nlp_bsn, { "Byte Sequence Number", "sna.nlp.thdr.bsn", FT_UINT32, BASE_HEX, NULL, 0x0, "Byte Sequence Number", HFILL }}, { &hf_sna_rh, { "Request/Response Header", "sna.rh", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL }}, { &hf_sna_rh_0, { "Request/Response Header Byte 0", "sna.rh.0", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_rh_1, { "Request/Response Header Byte 1", "sna.rh.1", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_rh_2, { "Request/Response Header Byte 2", "sna.rh.2", FT_UINT8, BASE_HEX, NULL, 0x0, "", HFILL }}, { &hf_sna_rh_rri, { "Request/Response Indicator", "sna.rh.rri", FT_UINT8, BASE_DEC, VALS(sna_rh_rri_vals), 0x80, "Denotes whether this is a request or a response.", HFILL }}, { &hf_sna_rh_ru_category, { "Request/Response Unit Category", "sna.rh.ru_category", FT_UINT8, BASE_HEX, VALS(sna_rh_ru_category_vals), 0x60, "", HFILL }}, { &hf_sna_rh_fi, { "Format Indicator", "sna.rh.fi", FT_BOOLEAN, 8, TFS(&sna_rh_fi_truth), 0x08, "", HFILL }}, { &hf_sna_rh_sdi, { "Sense Data Included", "sna.rh.sdi", FT_BOOLEAN, 8, TFS(&sna_rh_sdi_truth), 0x04, "Indicates that a 4-byte sense data field is included in the associated RU.", HFILL }}, { &hf_sna_rh_bci, { "Begin Chain Indicator", "sna.rh.bci", FT_BOOLEAN, 8, TFS(&sna_rh_bci_truth), 0x02, "", HFILL }}, { &hf_sna_rh_eci, { "End Chain Indicator", "sna.rh.eci", FT_BOOLEAN, 8, TFS(&sna_rh_eci_truth), 0x01, "", HFILL }}, { &hf_sna_rh_dr1, { "Definite Response 1 Indicator", "sna.rh.dr1", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_rh_lcci, { "Length-Checked Compression Indicator", "sna.rh.lcci", FT_BOOLEAN, 8, TFS(&sna_rh_lcci_truth), 0x40, "", HFILL }}, { &hf_sna_rh_dr2, { "Definite Response 2 Indicator", "sna.rh.dr2", FT_BOOLEAN, 8, NULL, 0x20, "", HFILL }}, { &hf_sna_rh_eri, { "Exception Response Indicator", "sna.rh.eri", FT_BOOLEAN, 8, NULL, 0x10, "Used in conjunction with DR1I and DR2I to indicate, in a request, " "the form of response requested.", HFILL }}, { &hf_sna_rh_rti, { "Response Type Indicator", "sna.rh.rti", FT_BOOLEAN, 8, TFS(&sna_rh_rti_truth), 0x10, "", HFILL }}, { &hf_sna_rh_rlwi, { "Request Larger Window Indicator", "sna.rh.rlwi", FT_BOOLEAN, 8, NULL, 0x04, "Indicates whether a larger pacing window was requested.", HFILL }}, { &hf_sna_rh_qri, { "Queued Response Indicator", "sna.rh.qri", FT_BOOLEAN, 8, TFS(&sna_rh_qri_truth), 0x02, "", HFILL }}, { &hf_sna_rh_pi, { "Pacing Indicator", "sna.rh.pi", FT_BOOLEAN, 8, NULL, 0x01, "", HFILL }}, { &hf_sna_rh_bbi, { "Begin Bracket Indicator", "sna.rh.bbi", FT_BOOLEAN, 8, NULL, 0x80, "", HFILL }}, { &hf_sna_rh_ebi, { "End Bracket Indicator", "sna.rh.ebi", FT_BOOLEAN, 8, NULL, 0x40, "", HFILL }}, { &hf_sna_rh_cdi, { "Change Direction Indicator", "sna.rh.cdi", FT_BOOLEAN, 8, NULL, 0x20, "", HFILL }}, { &hf_sna_rh_csi, { "Code Selection Indicator", "sna.rh.csi", FT_UINT8, BASE_DEC, VALS(sna_rh_csi_vals), 0x08, "Specifies the encoding used for the associated FMD RU.", HFILL }}, { &hf_sna_rh_edi, { "Enciphered Data Indicator", "sna.rh.edi", FT_BOOLEAN, 8, NULL, 0x04, "Indicates that information in the associated RU is enciphered under " "session-level cryptography protocols.", HFILL }}, { &hf_sna_rh_pdi, { "Padded Data Indicator", "sna.rh.pdi", FT_BOOLEAN, 8, NULL, 0x02, "Indicates that the RU was padded at the end, before encipherment, to the next " "integral multiple of 8 bytes.", HFILL }}, { &hf_sna_rh_cebi, { "Conditional End Bracket Indicator", "sna.rh.cebi", FT_BOOLEAN, 8, NULL, 0x01, "Used to indicate the beginning or end of a group of exchanged " "requests and responses called a bracket. Only used on LU-LU sessions.", HFILL }}, /* { &hf_sna_ru, { "Request/Response Unit", "sna.ru", FT_NONE, BASE_NONE, NULL, 0x0, "", HFILL }},*/ }; static gint *ett[] = { &ett_sna, &ett_sna_th, &ett_sna_th_fid, &ett_sna_nlp_nhdr, &ett_sna_nlp_nhdr_0, &ett_sna_nlp_nhdr_1, &ett_sna_nlp_thdr, &ett_sna_nlp_thdr_8, &ett_sna_nlp_thdr_9, &ett_sna_rh, &ett_sna_rh_0, &ett_sna_rh_1, &ett_sna_rh_2, }; module_t *sna_module; proto_sna = proto_register_protocol("Systems Network Architecture", "SNA", "sna"); proto_register_field_array(proto_sna, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); register_dissector("sna", dissect_sna, proto_sna); /* Register configuration options */ sna_module = prefs_register_protocol(proto_sna, NULL); prefs_register_bool_preference(sna_module, "defragment", "Reassemble fragmented BIUs", "Whether fragmented BIUs should be reassembled", &sna_defragment); } void proto_reg_handoff_sna(void) { dissector_handle_t sna_handle; sna_handle = find_dissector("sna"); dissector_add("llc.dsap", SAP_SNA_PATHCTRL, sna_handle); /* RFC 2043 */ dissector_add("ppp.protocol", PPP_SNA, sna_handle); data_handle = find_dissector("data"); register_init_routine(sna_init); }