/* packet-sna.c * Routines for SNA * Gilbert Ramirez * * $Id: packet-sna.c,v 1.1 1999/10/12 06:20:17 gram Exp $ * * Ethereal - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #ifdef HAVE_SYS_TYPES_H # include #endif #include #include "packet.h" /* * http://www.wanresources.com/snacell.html * */ static int proto_sna = -1; static int hf_sna_th = -1; static int hf_sna_th_0 = -1; static int hf_sna_th_fid = -1; static int hf_sna_th_mpf = -1; static int hf_sna_th_odai = -1; static int hf_sna_th_efi = -1; static int hf_sna_th_daf = -1; static int hf_sna_th_oaf = -1; static int hf_sna_th_snf = -1; static int hf_sna_th_dcf = -1; static int hf_sna_th_lsid = -1; static int hf_sna_rh = -1; static int hf_sna_rh_0 = -1; static int hf_sna_rh_1 = -1; static int hf_sna_rh_2 = -1; static int hf_sna_rh_rri = -1; static int hf_sna_rh_ru_category = -1; static int hf_sna_rh_fi = -1; static int hf_sna_rh_sdi = -1; static int hf_sna_rh_bci = -1; static int hf_sna_rh_eci = -1; static int hf_sna_rh_dr1 = -1; static int hf_sna_rh_lcci = -1; static int hf_sna_rh_dr2 = -1; static int hf_sna_rh_eri = -1; static int hf_sna_rh_rti = -1; static int hf_sna_rh_rlwi = -1; static int hf_sna_rh_qri = -1; static int hf_sna_rh_pi = -1; static int hf_sna_rh_bbi = -1; static int hf_sna_rh_ebi = -1; static int hf_sna_rh_cdi = -1; static int hf_sna_rh_csi = -1; static int hf_sna_rh_edi = -1; static int hf_sna_rh_pdi = -1; static int hf_sna_rh_cebi = -1; static int hf_sna_ru = -1; /* Format Identifier */ static const value_string sna_th_fid_vals[] = { { 0x0, "SNA device <--> Non-SNA Device" }, { 0x1, "Subarea Node <--> Subarea Node" }, { 0x2, "Subarea Node <--> PU2" }, { 0x3, "Subarea Node or SNA host <--> Subarea Node" }, { 0x4, "?" }, { 0x5, "?" }, { 0xf, "Adjaced Subarea Nodes" }, { 0x0, NULL } }; /* Mapping Field */ static const value_string sna_th_mpf_vals[] = { { 0, "Middle segment of a BIU" }, { 1, "Last segment of a BIU" }, { 2, "First segment of a BIU" }, { 3 , "Whole BIU" }, { 0, NULL } }; /* Expedited Flow Indicator */ static const value_string sna_th_efi_vals[] = { { 0, "Normal Flow" }, { 1, "Expedited Flow" } }; /* Request/Response Indicator */ static const value_string sna_rh_rri_vals[] = { { 0, "Request" }, { 1, "Response" } }; /* Request/Response Unit Category */ static const value_string sna_rh_ru_category_vals[] = { { 0x00, "Function Management Data (FMD)" }, { 0x01, "Network Control (NC)" }, { 0x10, "Data Flow Control (DFC)" }, { 0x11, "Session Control (SC)" }, }; /* Format Indicator */ static const true_false_string sna_rh_fi_truth = { "FM Header", "No FM Header" }; /* Sense Data Included */ static const true_false_string sna_rh_sdi_truth = { "Included", "Not Included" }; /* Begin Chain Indicator */ static const true_false_string sna_rh_bci_truth = { "First in Chain", "Not First in Chain" }; /* End Chain Indicator */ static const true_false_string sna_rh_eci_truth = { "Last in Chain", "Not Last in Chain" }; /* Lengith-Checked Compression Indicator */ static const true_false_string sna_rh_lcci_truth = { "Compressed", "Not Compressed" }; /* Response Type Indicator */ static const true_false_string sna_rh_rti_truth = { "Negative", "Positive" }; /* Exception Response Indicator */ static const true_false_string sna_rh_eri_truth = { "Exception", "Definite" }; /* Queued Response Indicator */ static const true_false_string sna_rh_qri_truth = { "Enqueue response in TC queues", "Response bypasses TC queues" }; /* Code Selection Indicator */ static const value_string sna_rh_csi_vals[] = { { 0, "EBCDIC" }, { 1, "ASCII" } }; static int dissect_fid0_1 (const u_char*, int, frame_data*, proto_tree*); static int dissect_fid2 (const u_char*, int, frame_data*, proto_tree*); static int dissect_fid3 (const u_char*, int, frame_data*, proto_tree*); static void dissect_rh (const u_char*, int, frame_data*, proto_tree*); void dissect_sna(const u_char *pd, int offset, frame_data *fd, proto_tree *tree) { proto_tree *sna_tree = NULL, *th_tree = NULL, *rh_tree = NULL; proto_item *sna_ti, *th_ti, *rh_ti; guint8 th_fid; int sna_header_len = 0, th_header_len = 0; if (IS_DATA_IN_FRAME(offset)) { /* Transmission Header Format Identifier */ th_fid = hi_nibble(pd[offset]); } else { /* If our first byte isn't here, stop dissecting */ return; } /* Summary information */ if (check_col(fd, COL_PROTOCOL)) col_add_str(fd, COL_PROTOCOL, "SNA"); if (check_col(fd, COL_INFO)) col_add_str(fd, COL_INFO, val_to_str(th_fid, sna_th_fid_vals, "Unknown FID: %01x")); if (tree) { /* Don't bother setting length. We'll set it later after we find * the lengths of TH/RH/RU */ sna_ti = proto_tree_add_item(tree, proto_sna, offset, 0, NULL); sna_tree = proto_item_add_subtree(sna_ti, ETT_SNA); /* --- TH --- */ /* Don't bother setting length. We'll set it later after we find * the length of TH */ th_ti = proto_tree_add_item(sna_tree, hf_sna_th, offset, 0, NULL); th_tree = proto_item_add_subtree(th_ti, ETT_SNA_TH); switch(th_fid) { case 0x0: case 0x1: th_header_len = dissect_fid0_1(pd, offset, fd, th_tree); break; case 0x2: th_header_len = dissect_fid2(pd, offset, fd, th_tree); break; case 0x3: th_header_len = dissect_fid3(pd, offset, fd, th_tree); break; default: dissect_data(pd, offset+1, fd, tree); } sna_header_len += th_header_len; offset += th_header_len; proto_item_set_len(th_ti, th_header_len); /* --- RH --- */ if (BYTES_ARE_IN_FRAME(offset, 3)) { rh_ti = proto_tree_add_item(sna_tree, hf_sna_rh, offset, 3, NULL); rh_tree = proto_item_add_subtree(rh_ti, ETT_SNA_RH); dissect_rh(pd, offset, fd, rh_tree); sna_header_len += 3; offset += 3; } else { /* If our first byte isn't here, stop dissecting */ return; } proto_item_set_len(sna_ti, sna_header_len); } if (IS_DATA_IN_FRAME(offset+1)) { dissect_data(pd, offset, fd, tree); } } /* FID Types 0 and 1 */ static int dissect_fid0_1 (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; guint16 daf, oaf, snf, dcf; static int bytes_in_header = 10; if (!BYTES_ARE_IN_FRAME(offset, bytes_in_header)) { return 0; } th_0 = pd[offset+0]; daf = pntohs(&pd[offset+2]); oaf = pntohs(&pd[offset+4]); snf = pntohs(&pd[offset+6]); dcf = pntohs(&pd[offset+8]); /* Create the bitfield tree */ bf_item = proto_tree_add_item(tree, hf_sna_th_0, offset, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ETT_SNA_TH_FID); proto_tree_add_item(bf_tree, hf_sna_th_fid, offset, 1, th_0); proto_tree_add_item(bf_tree, hf_sna_th_mpf, offset, 1, th_0); proto_tree_add_item(bf_tree, hf_sna_th_efi ,offset, 1, th_0); proto_tree_add_text(tree, offset+1, 1, "Reserved"); proto_tree_add_item(tree, hf_sna_th_daf ,offset+2, 1, daf); proto_tree_add_item(tree, hf_sna_th_oaf ,offset+4, 1, oaf); proto_tree_add_item(tree, hf_sna_th_snf ,offset+6, 2, snf); proto_tree_add_item(tree, hf_sna_th_dcf ,offset+8, 2, dcf); if (check_col(fd, COL_RES_DL_DST)) col_add_fstr(fd, COL_RES_DL_DST, "%02X", daf); if (check_col(fd, COL_RES_DL_SRC)) col_add_fstr(fd, COL_RES_DL_SRC, "%02X", oaf); return bytes_in_header; } /* FID Type 2 */ static int dissect_fid2 (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0, daf, oaf; guint16 snf; static int bytes_in_header = 6; if (!BYTES_ARE_IN_FRAME(offset, bytes_in_header)) { return 0; } th_0 = pd[offset+0]; daf = pd[offset+2]; oaf = pd[offset+3]; snf = pntohs(&pd[offset+4]); /* Create the bitfield tree */ bf_item = proto_tree_add_item(tree, hf_sna_th_0, offset, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ETT_SNA_TH_FID); proto_tree_add_item(bf_tree, hf_sna_th_fid, offset, 1, th_0); proto_tree_add_item(bf_tree, hf_sna_th_mpf, offset, 1, th_0); proto_tree_add_item(bf_tree, hf_sna_th_odai ,offset, 1, th_0); proto_tree_add_item(bf_tree, hf_sna_th_efi ,offset, 1, th_0); proto_tree_add_text(tree, offset+1, 1, "Reserved"); proto_tree_add_item(tree, hf_sna_th_daf ,offset+2, 1, daf); proto_tree_add_item(tree, hf_sna_th_oaf ,offset+3, 1, oaf); proto_tree_add_item(tree, hf_sna_th_snf ,offset+4, 2, snf); if (check_col(fd, COL_RES_DL_DST)) col_add_fstr(fd, COL_RES_DL_DST, "%02X", daf); if (check_col(fd, COL_RES_DL_SRC)) col_add_fstr(fd, COL_RES_DL_SRC, "%02X", oaf); return bytes_in_header; } /* FID Type 3 */ static int dissect_fid3 (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; guint8 th_0; guint8 lsid; static int bytes_in_header = 2; if (!BYTES_ARE_IN_FRAME(offset, bytes_in_header)) { return 0; } th_0 = pd[offset+0]; lsid = pd[offset+1]; /* Create the bitfield tree */ bf_item = proto_tree_add_item(tree, hf_sna_th_0, offset, 1, th_0); bf_tree = proto_item_add_subtree(bf_item, ETT_SNA_TH_FID); proto_tree_add_item(bf_tree, hf_sna_th_fid, offset, 1, th_0); proto_tree_add_item(bf_tree, hf_sna_th_mpf, offset, 1, th_0); proto_tree_add_item(bf_tree, hf_sna_th_efi ,offset, 1, th_0); proto_tree_add_item(tree, hf_sna_th_lsid ,offset+1, 1, lsid); return bytes_in_header; } /* RH */ static void dissect_rh (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) { proto_tree *bf_tree; proto_item *bf_item; gboolean is_response; guint8 rh_0, rh_1, rh_2; rh_0 = pd[offset+0]; rh_1 = pd[offset+1]; rh_2 = pd[offset+2]; is_response = (rh_0 & 0x80); /* Create the bitfield tree for byte 0*/ bf_item = proto_tree_add_item(tree, hf_sna_rh_0, offset, 1, rh_0); bf_tree = proto_item_add_subtree(bf_item, ETT_SNA_RH_0); proto_tree_add_item(bf_tree, hf_sna_rh_rri, offset, 1, rh_0); proto_tree_add_item(bf_tree, hf_sna_rh_ru_category, offset, 1, rh_0); proto_tree_add_item(bf_tree, hf_sna_rh_fi, offset, 1, rh_0); proto_tree_add_item(bf_tree, hf_sna_rh_sdi, offset, 1, rh_0); if (is_response) { proto_tree_add_item(bf_tree, hf_sna_rh_bci, offset, 1, rh_0); proto_tree_add_item(bf_tree, hf_sna_rh_eci, offset, 1, rh_0); } offset += 1; /* Create the bitfield tree for byte 1*/ bf_item = proto_tree_add_item(tree, hf_sna_rh_1, offset, 1, rh_1); bf_tree = proto_item_add_subtree(bf_item, ETT_SNA_RH_1); proto_tree_add_item(bf_tree, hf_sna_rh_dr1, offset, 1, rh_1); if (!is_response) { proto_tree_add_item(bf_tree, hf_sna_rh_lcci, offset, 1, rh_1); } proto_tree_add_item(bf_tree, hf_sna_rh_dr2, offset, 1, rh_1); if (is_response) { proto_tree_add_item(bf_tree, hf_sna_rh_rti, offset, 1, rh_1); } else { proto_tree_add_item(bf_tree, hf_sna_rh_eri, offset, 1, rh_1); proto_tree_add_item(bf_tree, hf_sna_rh_rlwi, offset, 1, rh_1); } proto_tree_add_item(bf_tree, hf_sna_rh_qri, offset, 1, rh_1); proto_tree_add_item(bf_tree, hf_sna_rh_pi, offset, 1, rh_1); offset += 1; /* Create the bitfield tree for byte 2*/ bf_item = proto_tree_add_item(tree, hf_sna_rh_2, offset, 1, rh_2); if (!is_response) { bf_tree = proto_item_add_subtree(bf_item, ETT_SNA_RH_2); proto_tree_add_item(bf_tree, hf_sna_rh_bbi, offset, 1, rh_2); proto_tree_add_item(bf_tree, hf_sna_rh_ebi, offset, 1, rh_2); proto_tree_add_item(bf_tree, hf_sna_rh_cdi, offset, 1, rh_2); proto_tree_add_item(bf_tree, hf_sna_rh_csi, offset, 1, rh_2); proto_tree_add_item(bf_tree, hf_sna_rh_edi, offset, 1, rh_2); proto_tree_add_item(bf_tree, hf_sna_rh_pdi, offset, 1, rh_2); proto_tree_add_item(bf_tree, hf_sna_rh_cebi, offset, 1, rh_2); } /* XXX - check for sdi. If TRUE, the next 4 bytes will be sense data */ } void proto_register_sna(void) { static hf_register_info hf[] = { { &hf_sna_th, { "Transmission Header", "sna.th", FT_NONE, BASE_NONE, NULL, 0x0, "" }}, { &hf_sna_th_0, { "Transmission Header Byte 0", "sna.th.0", FT_UINT8, BASE_HEX, NULL, 0x0, "Byte 0 of Tranmission Header contains FID, MPF, ODAI," " and EFI as bitfields." }}, { &hf_sna_th_fid, { "Format Identifer", "sna.th.fid", FT_UINT8, BASE_HEX, VALS(sna_th_fid_vals), 0xf0, "Format Identification" }}, { &hf_sna_th_mpf, { "Mapping Field", "sna.th.mpf", FT_UINT8, BASE_NONE, VALS(sna_th_mpf_vals), 0x0c, "The Mapping Field specifies whether the information field" " associated with the TH is a complete or partial BIU." }}, { &hf_sna_th_odai, { "ODAI Assignment Indicator", "sna.th.odai", FT_UINT8, BASE_DEC, NULL, 0x02, "The ODAI indicates which node assigned the OAF'-DAF' values" " carried in the TH." }}, { &hf_sna_th_efi, { "Expedited Flow Indicator", "sna.th.efi", FT_UINT8, BASE_DEC, VALS(sna_th_efi_vals), 0x01, "The EFI designates whether the PIU belongs to the normal" " or expedited flow." }}, { &hf_sna_th_daf, { "Destination Address Field", "sna.th.daf", FT_UINT16, BASE_HEX, NULL, 0x0, "" }}, { &hf_sna_th_oaf, { "Origin Address Field", "sna.th.oaf", FT_UINT16, BASE_HEX, NULL, 0x0, "" }}, { &hf_sna_th_snf, { "Sequence Number Field", "sna.th.snf", FT_UINT16, BASE_NONE, NULL, 0x0, "The Sequence Number Field contains a numerical identifier for" " the associated BIU."}}, { &hf_sna_th_dcf, { "Data Count Field", "sna.th.dcf", FT_UINT16, BASE_DEC, NULL, 0x0, "A binary count of the number of bytes in the BIU or BIU segment associated " "with the tranmission header. The count does not include any of the bytes " "in the transmission header."}}, { &hf_sna_th_lsid, { "Local Session Identification", "sna.th.lsid", FT_UINT8, BASE_HEX, NULL, 0x0, "" }}, { &hf_sna_rh, { "Request/Response Header", "sna.rh", FT_NONE, BASE_NONE, NULL, 0x0, "" }}, { &hf_sna_rh_0, { "Request/Response Header Byte 0", "sna.rh.0", FT_UINT8, BASE_HEX, NULL, 0x0, "" }}, { &hf_sna_rh_1, { "Request/Response Header Byte 1", "sna.rh.1", FT_UINT8, BASE_HEX, NULL, 0x0, "" }}, { &hf_sna_rh_2, { "Request/Response Header Byte 2", "sna.rh.2", FT_UINT8, BASE_HEX, NULL, 0x0, "" }}, { &hf_sna_rh_rri, { "Request/Response Indicator", "sna.rh.rri", FT_UINT8, BASE_DEC, VALS(sna_rh_rri_vals), 0x80, "Denotes whether this is a request or a response." }}, { &hf_sna_rh_ru_category, { "Request/Response Unit Category", "sna.rh.ru_category", FT_UINT8, BASE_HEX, VALS(sna_rh_ru_category_vals), 0x60, "" }}, { &hf_sna_rh_fi, { "Format Indicator", "sna.rh.fi", FT_BOOLEAN, 8, TFS(&sna_rh_fi_truth), 0x08, "" }}, { &hf_sna_rh_sdi, { "Sense Data Included", "sna.rh.sdi", FT_BOOLEAN, 8, TFS(&sna_rh_sdi_truth), 0x04, "Indicates that a 4-byte sense data field is included in the associated RU." }}, { &hf_sna_rh_bci, { "Begin Chain Indicator", "sna.rh.bci", FT_BOOLEAN, 8, TFS(&sna_rh_bci_truth), 0x02, "" }}, { &hf_sna_rh_eci, { "End Chain Indicator", "sna.rh.eci", FT_BOOLEAN, 8, TFS(&sna_rh_eci_truth), 0x01, "" }}, { &hf_sna_rh_dr1, { "Definite Response 1 Indicator", "sna.rh.dr1", FT_BOOLEAN, 8, NULL, 0x80, "" }}, { &hf_sna_rh_lcci, { "Length-Checked Compression Indicator", "sna.rh.lcci", FT_BOOLEAN, 8, TFS(&sna_rh_lcci_truth), 0x40, "" }}, { &hf_sna_rh_dr2, { "Definite Response 2 Indicator", "sna.rh.dr2", FT_BOOLEAN, 8, NULL, 0x20, "" }}, { &hf_sna_rh_eri, { "Exception Response Indicator", "sna.rh.eri", FT_BOOLEAN, 8, NULL, 0x10, "Used in conjunction with DR1I and DR2I to indicate, in a request, " "the form of response requested." }}, { &hf_sna_rh_rti, { "Response Type Indicator", "sna.rh.rti", FT_BOOLEAN, 8, TFS(&sna_rh_rti_truth), 0x10, "" }}, { &hf_sna_rh_rlwi, { "Request Larger Window Indicator", "sna.rh.rlwi", FT_BOOLEAN, 8, NULL, 0x04, "Indicates whether a larger pacing window was requested." }}, { &hf_sna_rh_qri, { "Queued Response Indicator", "sna.rh.qri", FT_BOOLEAN, 8, TFS(&sna_rh_qri_truth), 0x02, "" }}, { &hf_sna_rh_pi, { "Pacing Indicator", "sna.rh.pi", FT_BOOLEAN, 8, NULL, 0x01, "" }}, { &hf_sna_rh_bbi, { "Begin Bracket Indicator", "sna.rh.bbi", FT_BOOLEAN, 8, NULL, 0x80, "" }}, { &hf_sna_rh_ebi, { "End Bracket Indicator", "sna.rh.ebi", FT_BOOLEAN, 8, NULL, 0x40, "" }}, { &hf_sna_rh_cdi, { "Change Direction Indicator", "sna.rh.cdi", FT_BOOLEAN, 8, NULL, 0x20, "" }}, { &hf_sna_rh_csi, { "Code Selection Indicator", "sna.rh.csi", FT_BOOLEAN, 8, VALS(sna_rh_csi_vals), 0x08, "Specifies the encoding used for the associated FMD RU." }}, { &hf_sna_rh_edi, { "Enciphered Data Indicator", "sna.rh.edi", FT_BOOLEAN, 8, NULL, 0x04, "Indicates that information in the associated RU is enciphered under " "session-level cryptography protocols." }}, { &hf_sna_rh_pdi, { "Padded Data Indicator", "sna.rh.pdi", FT_BOOLEAN, 8, NULL, 0x02, "Indicates that the RU was padded at the end, before encipherment, to the next " "integral multiple of 8 bytes." }}, { &hf_sna_rh_cebi, { "Conditional End Bracket Indicator", "sna.rh.cebi", FT_BOOLEAN, 8, NULL, 0x01, "Used to indicate the beginning or end of a group of exchanged " "requests and responses called a bracket. Only used on LU-LU sessions." }}, { &hf_sna_ru, { "Request/Response Unit", "sna.ru", FT_NONE, BASE_NONE, NULL, 0x0, ""}}, }; proto_sna = proto_register_protocol("Systems Network Architecture", "sna"); proto_register_field_array(proto_sna, hf, array_length(hf)); }