/* packet-usb-ccid.c * Dissector for the Integrated Circuit Card Interface Device Class * * References: * http://www.usb.org/developers/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf * * Copyright 2011, Tyson Key * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * */ #include "config.h" #include #include #include "packet-usb.h" static int proto_ccid = -1; static int hf_ccid_bMessageType = -1; static int hf_ccid_dwLength = -1; static int hf_ccid_bSlot = -1; static int hf_ccid_bSeq = -1; static int hf_ccid_bStatus = -1; static int hf_ccid_bError = -1; static int hf_ccid_bRFU = -1; static int hf_ccid_abRFU = -1; static int hf_ccid_bChainParameter = -1; static int hf_ccid_bPowerSelect = -1; static int hf_ccid_bClockStatus = -1; static int hf_ccid_bProtocolNum = -1; static int hf_ccid_bBWI = -1; static int hf_ccid_wLevelParameter = -1; static int hf_ccid_bcdCCID = -1; static int hf_ccid_bMaxSlotIndex = -1; static int hf_ccid_bVoltageSupport = -1; static int hf_ccid_bVoltageSupport18 = -1; static int hf_ccid_bVoltageSupport30 = -1; static int hf_ccid_bVoltageSupport50 = -1; static int hf_ccid_dwProtocols = -1; static int hf_ccid_dwProtocols_t0 = -1; static int hf_ccid_dwProtocols_t1 = -1; static int hf_ccid_dwDefaultClock = -1; static int hf_ccid_dwMaximumClock = -1; static int hf_ccid_bNumClockSupported = -1; static int hf_ccid_dwDataRate = -1; static int hf_ccid_dwMaxDataRate = -1; static int hf_ccid_bNumDataRatesSupported = -1; static int hf_ccid_dwSynchProtocols = -1; static int hf_ccid_dwMechanical = -1; static int hf_ccid_dwFeatures = -1; static int hf_ccid_dwFeatures_autoParam = -1; static int hf_ccid_dwFeatures_autoIccActivation = -1; static int hf_ccid_dwFeatures_autoIccClk = -1; static int hf_ccid_dwFeatures_autoBaudRate = -1; static int hf_ccid_dwMaxCCIDMessageLength = -1; static int hf_ccid_bClassGetResponse = -1; static int hf_ccid_bClassEnvelope = -1; static int hf_ccid_wLcdLayout = -1; static int hf_ccid_wLcdLayout_lines = -1; static int hf_ccid_wLcdLayout_chars = -1; static int hf_ccid_bPINSupport = -1; static int hf_ccid_bPINSupport_modify = -1; static int hf_ccid_bPINSupport_vrfy = -1; static int hf_ccid_bMaxCCIDBusySlots = -1; static int hf_ccid_Reserved = -1; static dissector_handle_t usb_ccid_handle; static const int *bVoltageLevel_fields[] = { &hf_ccid_bVoltageSupport18, &hf_ccid_bVoltageSupport30, &hf_ccid_bVoltageSupport50, NULL }; static const int *dwProtocols_fields[] = { &hf_ccid_dwProtocols_t0, &hf_ccid_dwProtocols_t1, NULL }; static const int *bFeatures_fields[] = { /* XXX - add the missing components */ &hf_ccid_dwFeatures_autoIccActivation, &hf_ccid_dwFeatures_autoParam, &hf_ccid_dwFeatures_autoIccClk, &hf_ccid_dwFeatures_autoBaudRate, NULL }; static const int *bPINSupport_fields[] = { &hf_ccid_bPINSupport_modify, &hf_ccid_bPINSupport_vrfy, NULL }; /* smart card descriptor, as defined in section 5.1 of the USB CCID specification */ #define USB_DESC_TYPE_SMARTCARD 0x21 /* Standardised Bulk Out message types */ #define PC_RDR_SET_PARAMS 0x61 #define PC_RDR_ICC_ON 0x62 #define PC_RDR_ICC_OFF 0x63 #define PC_RDR_GET_SLOT_STATUS 0x65 #define PC_RDR_SECURE 0x69 #define PC_RDR_T0APDU 0x6A #define PC_RDR_ESCAPE 0x6B #define PC_RDR_GET_PARAMS 0x6C #define PC_RDR_RESET_PARAMS 0x6D #define PC_RDR_ICC_CLOCK 0x6E #define PC_RDR_XFR_BLOCK 0x6F #define PC_RDR_MECH 0x71 #define PC_RDR_ABORT 0x72 #define PC_RDR_DATA_CLOCK 0x73 /* Standardised Bulk In message types */ #define RDR_PC_DATA_BLOCK 0x80 #define RDR_PC_SLOT_STATUS 0x81 #define RDR_PC_PARAMS 0x82 #define RDR_PC_ESCAPE 0x83 #define RDR_PC_DATA_CLOCK 0x84 void proto_register_ccid(void); void proto_reg_handoff_ccid(void); static const value_string ccid_descriptor_type_vals[] = { {USB_DESC_TYPE_SMARTCARD, "smart card"}, {0,NULL} }; static value_string_ext ccid_descriptor_type_vals_ext = VALUE_STRING_EXT_INIT(ccid_descriptor_type_vals); static const value_string ccid_opcode_vals[] = { /* Standardised Bulk Out message types */ {PC_RDR_SET_PARAMS , "PC_to_RDR_SetParameters"}, {PC_RDR_ICC_ON , "PC_to_RDR_IccPowerOn"}, {PC_RDR_ICC_OFF , "PC_to_RDR_IccPowerOff"}, {PC_RDR_GET_SLOT_STATUS , "PC_to_RDR_GetSlotStatus"}, {PC_RDR_SECURE , "PC_to_RDR_Secure"}, {PC_RDR_T0APDU , "PC_to_RDR_T0APDU"}, {PC_RDR_ESCAPE , "PC_to_RDR_Escape"}, {PC_RDR_GET_PARAMS , "PC_to_RDR_GetParameters"}, {PC_RDR_RESET_PARAMS , "PC_to_RDR_ResetParameters"}, {PC_RDR_ICC_CLOCK , "PC_to_RDR_IccClock"}, {PC_RDR_XFR_BLOCK , "PC_to_RDR_XfrBlock"}, {PC_RDR_MECH , "PC_to_RDR_Mechanical"}, {PC_RDR_ABORT , "PC_to_RDR_Abort"}, {PC_RDR_DATA_CLOCK , "PC_to_RDR_SetDataRateAndClockFrequency"}, /* Standardised Bulk In message types */ {RDR_PC_DATA_BLOCK , "RDR_to_PC_DataBlock"}, {RDR_PC_SLOT_STATUS , "RDR_to_PC_SlotStatus"}, {RDR_PC_PARAMS , "RDR_to_PC_Parameters"}, {RDR_PC_ESCAPE , "RDR_to_PC_Escape"}, {RDR_PC_DATA_CLOCK , "RDR_to_PC_DataRateAndClockFrequency"}, /* End of message types */ {0x00, NULL} }; static const value_string ccid_messagetypes_vals[] = { /* Standardised Bulk Out message types */ {PC_RDR_SET_PARAMS , "PC to Reader: Set Parameters"}, {PC_RDR_ICC_ON , "PC to Reader: ICC Power On"}, {PC_RDR_ICC_OFF , "PC to Reader: ICC Power Off"}, {PC_RDR_GET_SLOT_STATUS , "PC to Reader: Get Slot Status"}, {PC_RDR_SECURE , "PC to Reader: Secure"}, {PC_RDR_T0APDU , "PC to Reader: T=0 APDU"}, {PC_RDR_ESCAPE , "PC to Reader: Escape"}, {PC_RDR_GET_PARAMS , "PC to Reader: Get Parameters"}, {PC_RDR_RESET_PARAMS , "PC to Reader: Reset Parameters"}, {PC_RDR_ICC_CLOCK , "PC to Reader: ICC Clock"}, {PC_RDR_XFR_BLOCK , "PC to Reader: Transfer Block"}, {PC_RDR_MECH , "PC to Reader: Mechanical"}, {PC_RDR_ABORT , "PC to Reader: Abort"}, {PC_RDR_DATA_CLOCK , "PC to Reader: Set Data Rate and Clock Frequency"}, /* Standardised Bulk In message types */ {RDR_PC_DATA_BLOCK , "Reader to PC: Data Block"}, {RDR_PC_SLOT_STATUS , "Reader to PC: Slot Status"}, {RDR_PC_PARAMS , "Reader to PC: Parameters"}, {RDR_PC_ESCAPE , "Reader to PC: Escape"}, {RDR_PC_DATA_CLOCK , "Reader to PC: Data Rate and Clock Frequency"}, /* End of message types */ {0x00, NULL} }; static const value_string ccid_voltage_levels_vals[] = { /* Standardised voltage levels */ {0x00, "Automatic Voltage Selection"}, {0x01, "5.0 volts"}, {0x02, "3.0 volts"}, {0x03, "1.8 volts"}, /* End of voltage levels */ {0x00, NULL} }; static const value_string ccid_clock_states_vals[] = { /* Standardised clock states */ {0x00, "Clock running"}, {0x01, "Clock stopped in state L"}, {0x02, "Clock stopped in state H"}, {0x03, "Clock stopped in an unknown state"}, /* End of clock states */ {0x00, NULL} }; static const value_string ccid_proto_structs_vals[] = { /* Standardised clock states */ {0x00, "Structure for protocol T=0"}, {0x01, "Structure for protocol T=1"}, /* Marked as RFU, but added for completeness: */ {0x80, "Structure for 2-wire protocol"}, {0x81, "Structure for 3-wire protocol"}, {0x82, "Structure for I2C protocol"}, /* End of protocol structures */ {0x00, NULL} }; /* Subtree handles: set by register_subtree_array */ static gint ett_ccid = -1; static gint ett_ccid_desc = -1; static gint ett_ccid_voltage_level = -1; static gint ett_ccid_protocols = -1; static gint ett_ccid_features = -1; static gint ett_ccid_lcd_layout = -1; static gint ett_ccid_pin_support = -1; /* Table of payload types - adapted from the I2C dissector */ enum { SUB_DATA = 0, SUB_ISO7816, SUB_GSM_SIM_CMD, SUB_PN532, SUB_ACR122_PN532, SUB_GSM_SIM_RSP, SUB_MAX }; typedef gboolean (*sub_checkfunc_t)(packet_info *); static dissector_handle_t sub_handles[SUB_MAX]; static gint sub_selected = SUB_DATA; static gint dissect_usb_ccid_descriptor(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_) { gint offset = 0; guint8 descriptor_type; guint8 descriptor_len; proto_item *freq_item; proto_tree *desc_tree; guint8 num_clock_supp; proto_item *lcd_layout_item; proto_tree *lcd_layout_tree; descriptor_len = tvb_get_guint8(tvb, offset); descriptor_type = tvb_get_guint8(tvb, offset+1); if (descriptor_type!=USB_DESC_TYPE_SMARTCARD) return 0; desc_tree = proto_tree_add_subtree(tree, tvb, offset, descriptor_len, ett_ccid_desc, NULL, "SMART CARD DEVICE CLASS DESCRIPTOR"); dissect_usb_descriptor_header(desc_tree, tvb, offset, &ccid_descriptor_type_vals_ext); offset += 2; proto_tree_add_item(desc_tree, hf_ccid_bcdCCID, tvb, offset, 2, ENC_LITTLE_ENDIAN); offset += 2; proto_tree_add_item(desc_tree, hf_ccid_bMaxSlotIndex, tvb, offset, 1, ENC_LITTLE_ENDIAN); offset++; proto_tree_add_bitmask(desc_tree, tvb, offset, hf_ccid_bVoltageSupport, ett_ccid_voltage_level, bVoltageLevel_fields, ENC_LITTLE_ENDIAN); offset++; proto_tree_add_bitmask(desc_tree, tvb, offset, hf_ccid_dwProtocols, ett_ccid_protocols, dwProtocols_fields, ENC_LITTLE_ENDIAN); offset += 4; freq_item = proto_tree_add_item(desc_tree, hf_ccid_dwDefaultClock, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_item_append_text(freq_item, " kHz"); offset += 4; freq_item = proto_tree_add_item(desc_tree, hf_ccid_dwMaximumClock, tvb, offset, 4, ENC_LITTLE_ENDIAN); proto_item_append_text(freq_item, " kHz"); offset += 4; num_clock_supp = tvb_get_guint8(tvb, offset); freq_item = proto_tree_add_item(desc_tree, hf_ccid_bNumClockSupported, tvb, offset, 1, ENC_LITTLE_ENDIAN); if (num_clock_supp==0) proto_item_append_text(freq_item, " (only default and maximum)"); offset++; proto_tree_add_item(desc_tree, hf_ccid_dwDataRate, tvb, offset, 4, ENC_LITTLE_ENDIAN); offset += 4; proto_tree_add_item(desc_tree, hf_ccid_dwMaxDataRate, tvb, offset, 4, ENC_LITTLE_ENDIAN); offset += 4; proto_tree_add_item(desc_tree, hf_ccid_bNumDataRatesSupported, tvb, offset, 1, ENC_LITTLE_ENDIAN); offset++; /* skip dwMaxIFSD */ offset += 4; proto_tree_add_item(desc_tree, hf_ccid_dwSynchProtocols, tvb, offset, 4, ENC_LITTLE_ENDIAN); offset += 4; proto_tree_add_item(desc_tree, hf_ccid_dwMechanical, tvb, offset, 4, ENC_LITTLE_ENDIAN); offset += 4; proto_tree_add_bitmask(desc_tree, tvb, offset, hf_ccid_dwFeatures, ett_ccid_features, bFeatures_fields, ENC_LITTLE_ENDIAN); offset += 4; proto_tree_add_item(desc_tree, hf_ccid_dwMaxCCIDMessageLength, tvb, offset, 4, ENC_LITTLE_ENDIAN); offset += 4; proto_tree_add_item(desc_tree, hf_ccid_bClassGetResponse, tvb, offset, 1, ENC_LITTLE_ENDIAN); offset++; proto_tree_add_item(desc_tree, hf_ccid_bClassEnvelope, tvb, offset, 1, ENC_LITTLE_ENDIAN); offset++; lcd_layout_item = proto_tree_add_item(desc_tree, hf_ccid_wLcdLayout, tvb, offset, 2, ENC_LITTLE_ENDIAN); lcd_layout_tree = proto_item_add_subtree( lcd_layout_item, ett_ccid_lcd_layout); proto_tree_add_item(lcd_layout_tree, hf_ccid_wLcdLayout_lines, tvb, offset+1, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(lcd_layout_tree, hf_ccid_wLcdLayout_chars, tvb, offset, 1, ENC_LITTLE_ENDIAN); offset += 2; proto_tree_add_bitmask(desc_tree, tvb, offset, hf_ccid_bPINSupport, ett_ccid_pin_support, bPINSupport_fields, ENC_LITTLE_ENDIAN); offset++; proto_tree_add_item(desc_tree, hf_ccid_bMaxCCIDBusySlots, tvb, offset, 1, ENC_LITTLE_ENDIAN); offset++; return offset; } static gint dissect_ccid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) { proto_item *item; proto_tree *ccid_tree; guint8 cmd; tvbuff_t *next_tvb; usb_conv_info_t *usb_conv_info; /* Reject the packet if data is NULL */ if (data == NULL) return 0; usb_conv_info = (usb_conv_info_t *)data; col_set_str(pinfo->cinfo, COL_PROTOCOL, "USBCCID"); col_set_str(pinfo->cinfo, COL_INFO, "CCID Packet"); /* Start with a top-level item to add everything else to */ item = proto_tree_add_item(tree, proto_ccid, tvb, 0, 10, ENC_NA); ccid_tree = proto_item_add_subtree(item, ett_ccid); proto_tree_add_item(ccid_tree, hf_ccid_bMessageType, tvb, 0, 1, ENC_LITTLE_ENDIAN); cmd = tvb_get_guint8(tvb, 0); col_append_fstr(pinfo->cinfo, COL_INFO, " - %s", val_to_str_const(cmd, ccid_messagetypes_vals, "Unknown")); switch (cmd) { case PC_RDR_SET_PARAMS: proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bProtocolNum, tvb, 7, 1, ENC_LITTLE_ENDIAN); /* Placeholder for abRFU */ proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 8, 2, ENC_LITTLE_ENDIAN); if (tvb_get_letohl(tvb, 1) != 0) { next_tvb = tvb_new_subset_remaining(tvb, 10); call_dissector(sub_handles[SUB_DATA], next_tvb, pinfo, tree); } break; case PC_RDR_ICC_ON: proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bPowerSelect, tvb, 7, 1, ENC_LITTLE_ENDIAN); /* Placeholder for abRFU */ proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 8, 2, ENC_LITTLE_ENDIAN); break; case PC_RDR_ICC_OFF: proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN); /* Placeholder for abRFU */ proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 7, 3, ENC_LITTLE_ENDIAN); break; case PC_RDR_GET_SLOT_STATUS: proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN); /* Placeholder for abRFU */ proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 7, 3, ENC_LITTLE_ENDIAN); break; case PC_RDR_GET_PARAMS: proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN); /* Placeholder for abRFU */ proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 7, 3, ENC_LITTLE_ENDIAN); break; case PC_RDR_XFR_BLOCK: case PC_RDR_ESCAPE: proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN); if (cmd == PC_RDR_ESCAPE) { proto_tree_add_item(ccid_tree, hf_ccid_abRFU, tvb, 7, 3, ENC_NA); } else { proto_tree_add_item(ccid_tree, hf_ccid_bBWI, tvb, 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_wLevelParameter, tvb, 8, 2, ENC_LITTLE_ENDIAN); } if (tvb_get_letohl(tvb, 1) != 0) { next_tvb = tvb_new_subset_remaining(tvb, 10); /* See if the dissector isn't Data */ if (sub_selected != SUB_DATA) { if (sub_selected == SUB_PN532) { call_dissector_with_data(sub_handles[sub_selected], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info); } else if (sub_selected == SUB_ACR122_PN532) { pinfo->p2p_dir = P2P_DIR_SENT; call_dissector_with_data(sub_handles[sub_selected], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info); } else if (sub_selected == SUB_ISO7816) { /* sent/received is from the perspective of the card reader */ pinfo->p2p_dir = P2P_DIR_SENT; call_dissector(sub_handles[SUB_ISO7816], next_tvb, pinfo, tree); } else { /* The user probably wanted GSM SIM, or something else */ call_dissector(sub_handles[sub_selected], next_tvb, pinfo, tree); } } else if (usb_conv_info->deviceVendor == 0x072F && usb_conv_info->deviceProduct == 0x2200) { pinfo->p2p_dir = P2P_DIR_SENT; call_dissector_with_data(sub_handles[SUB_ACR122_PN532], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info); } else { /* The user only wants plain data */ call_dissector(sub_handles[SUB_DATA], next_tvb, pinfo, tree); } } break; case RDR_PC_DATA_BLOCK: case RDR_PC_ESCAPE: proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bStatus, tvb, 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bError, tvb, 8, 1, ENC_LITTLE_ENDIAN); if (cmd == RDR_PC_ESCAPE) proto_tree_add_item(ccid_tree, hf_ccid_bRFU, tvb, 9, 1, ENC_LITTLE_ENDIAN); else proto_tree_add_item(ccid_tree, hf_ccid_bChainParameter, tvb, 9, 1, ENC_LITTLE_ENDIAN); if (tvb_get_letohl(tvb, 1) != 0) { next_tvb = tvb_new_subset_remaining(tvb, 10); if (sub_selected == SUB_PN532) { next_tvb= tvb_new_subset_length(tvb, 10, tvb_get_guint8(tvb, 1)); call_dissector_with_data(sub_handles[SUB_PN532], next_tvb, pinfo, tree, usb_conv_info); } else if (sub_selected == SUB_ACR122_PN532) { pinfo->p2p_dir = P2P_DIR_RECV; call_dissector_with_data(sub_handles[SUB_ACR122_PN532], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info); } else if (sub_selected == SUB_GSM_SIM_CMD) { /* Try to dissect responses to GSM SIM packets */ call_dissector(sub_handles[SUB_GSM_SIM_RSP], next_tvb, pinfo, tree); } else if (sub_selected == SUB_ISO7816) { pinfo->p2p_dir = P2P_DIR_RECV; call_dissector(sub_handles[SUB_ISO7816], next_tvb, pinfo, tree); } else if (usb_conv_info->deviceVendor == 0x072F && usb_conv_info->deviceProduct == 0x2200) { pinfo->p2p_dir = P2P_DIR_RECV; call_dissector_with_data(sub_handles[SUB_ACR122_PN532], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info); } else { call_dissector(sub_handles[SUB_DATA], next_tvb, pinfo, tree); } } break; case RDR_PC_SLOT_STATUS: proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bStatus, tvb, 7, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bError, tvb, 8, 1, ENC_LITTLE_ENDIAN); proto_tree_add_item(ccid_tree, hf_ccid_bClockStatus, tvb, 9, 1, ENC_LITTLE_ENDIAN); break; } /* TODO: Try use "offset" instead of hardcoded constants */ return tvb_captured_length(tvb); } void proto_register_ccid(void) { static hf_register_info hf[] = { {&hf_ccid_bMessageType, { "Message Type", "usbccid.bMessageType", FT_UINT8, BASE_HEX, VALS(ccid_opcode_vals), 0x0, NULL, HFILL }}, {&hf_ccid_dwLength, { "Packet Length", "usbccid.dwLength", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bSlot, { "Slot", "usbccid.bSlot", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bSeq, { "Sequence", "usbccid.bSeq", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bStatus, { "Status", "usbccid.bStatus", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bError, { "Error", "usbccid.bError", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bRFU, { "RFU", "usbccid.bRFU", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_abRFU, { "RFU", "usbccid.abRFU", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bChainParameter, { "Chain Parameter", "usbccid.bChainParameter", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bPowerSelect, { "Voltage Level", "usbccid.bPowerSelect", FT_UINT8, BASE_HEX, VALS(ccid_voltage_levels_vals), 0x0, NULL, HFILL }}, {&hf_ccid_bClockStatus, { "Clock Status", "usbccid.bClockStatus", FT_UINT8, BASE_HEX, VALS(ccid_clock_states_vals), 0x0, NULL, HFILL }}, {&hf_ccid_bProtocolNum, { "Data Structure Type", "usbccid.bProtocolNum", FT_UINT8, BASE_HEX, VALS(ccid_proto_structs_vals), 0x0, NULL, HFILL }}, {&hf_ccid_bBWI, { "Block Wait Time Integer", "usbccid.bBWI", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_wLevelParameter, { "Level Parameter", "usbccid.wLevelParameter", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bcdCCID, { "bcdCCID", "usbccid.bcdCCID", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bMaxSlotIndex, { "max slot index", "usbccid.bMaxSlotIndex", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bVoltageSupport, { "voltage support", "usbccid.bVoltageSupport", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bVoltageSupport18, { "1.8V", "usbccid.bVoltageSupport.18", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x04, NULL, HFILL }}, {&hf_ccid_bVoltageSupport30, { "3.0V", "usbccid.bVoltageSupport.30", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x02, NULL, HFILL }}, {&hf_ccid_bVoltageSupport50, { "5.0V", "usbccid.bVoltageSupport.50", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x01, NULL, HFILL }}, {&hf_ccid_dwProtocols, { "dwProtocols", "usbccid.dwProtocols", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_dwProtocols_t0, { "T=0", "usbccid.dwProtocols.t0", FT_BOOLEAN, 32, TFS(&tfs_supported_not_supported), 0x01, NULL, HFILL }}, {&hf_ccid_dwProtocols_t1, { "T=1", "usbccid.dwProtocols.t1", FT_BOOLEAN, 32, TFS(&tfs_supported_not_supported), 0x02, NULL, HFILL }}, {&hf_ccid_dwDefaultClock, { "default clock frequency", "usbccid.dwDefaultClock", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_dwMaximumClock, { "maximum clock frequency", "usbccid.dwMaximumClock", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bNumClockSupported, { "number of supported clock frequencies", "usbccid.bNumClockSupported", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_dwDataRate, { "default ICC I/O data rate in bps", "usbccid.dwDataRate", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_dwMaxDataRate, { "maximum ICC I/O data rate in bps", "usbccid.dwMaxDataRate", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bNumDataRatesSupported, { "number of supported data rates", "usbccid.bNumDataRatesSupported", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_dwSynchProtocols, { "supported protocol types", "usbccid.dwSynchProtocols", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_dwMechanical, { "mechanical characteristics", "usbccid.dwMechanical", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_dwFeatures, { "intelligent features", "usbccid.dwFeatures", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_dwFeatures_autoIccActivation, { "Automatic activation of ICC on inserting", "usbccid.dwFeatures.autoIccActivation", FT_BOOLEAN, 32, TFS(&tfs_supported_not_supported), 0x04, NULL, HFILL }}, {&hf_ccid_dwFeatures_autoParam, { "Automatic parameter configuration based on ATR", "usbccid.dwFeatures.autoParam", FT_BOOLEAN, 32, TFS(&tfs_supported_not_supported), 0x02, NULL, HFILL }}, {&hf_ccid_dwFeatures_autoIccClk, { "Automatic ICC clock frequency change", "usbccid.dwFeatures.autoIccClk", FT_BOOLEAN, 32, TFS(&tfs_supported_not_supported), 0x10, NULL, HFILL }}, {&hf_ccid_dwFeatures_autoBaudRate, { "Automatic baud rate change", "usbccid.dwFeatures.autoBaudRate", FT_BOOLEAN, 32, TFS(&tfs_supported_not_supported), 0x20, NULL, HFILL }}, {&hf_ccid_dwMaxCCIDMessageLength, { "maximum CCID message length", "usbccid.dwMaxCCIDMessageLength", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bClassGetResponse, { "default class for Get Response", "usbccid.hf_ccid_bClassGetResponse", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bClassEnvelope, { "default class for Envelope", "usbccid.hf_ccid_bClassEnvelope", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_wLcdLayout, { "LCD layout", "usbccid.hf_ccid_wLcdLayout", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_wLcdLayout_lines, { "Lines", "usbccid.hf_ccid_wLcdLayout.lines", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_wLcdLayout_chars, { "Characters per line", "usbccid.hf_ccid_wLcdLayout.chars", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bPINSupport, { "PIN support", "usbccid.hf_ccid_bPINSupport", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_bPINSupport_modify, { "PIN modification", "usbccid.hf_ccid_bPINSupport.modify", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x02, NULL, HFILL }}, {&hf_ccid_bPINSupport_vrfy, { "PIN verification", "usbccid.hf_ccid_bPINSupport.verify", FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x01, NULL, HFILL }}, {&hf_ccid_bMaxCCIDBusySlots, { "maximum number of busy slots", "usbccid.hf_ccid_bMaxCCIDBusySlots", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, {&hf_ccid_Reserved, { "Reserved for Future Use", "usbccid.hf_ccid_Reserved", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }} }; static gint *ett[] = { &ett_ccid, &ett_ccid_desc, &ett_ccid_voltage_level, &ett_ccid_protocols, &ett_ccid_features, &ett_ccid_lcd_layout, &ett_ccid_pin_support }; static const enum_val_t sub_enum_vals[] = { { "data", "Data", SUB_DATA }, { "iso7816", "Generic ISO 7816", SUB_ISO7816 }, { "gsm_sim", "GSM SIM", SUB_GSM_SIM_CMD }, { "pn532", "NXP PN532", SUB_PN532}, { "acr122", "ACR122 PN532", SUB_ACR122_PN532}, { NULL, NULL, 0 } }; module_t *pref_mod; proto_ccid = proto_register_protocol("USB CCID", "USBCCID", "usbccid"); proto_register_field_array(proto_ccid, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); pref_mod = prefs_register_protocol(proto_ccid, NULL); prefs_register_enum_preference(pref_mod, "prtype", "PC -> Reader Payload Type", "How commands from the PC to the reader are interpreted", &sub_selected, sub_enum_vals, FALSE); usb_ccid_handle = register_dissector("usbccid", dissect_ccid, proto_ccid); } /* Handler registration */ void proto_reg_handoff_ccid(void) { dissector_handle_t usb_ccid_descr_handle; usb_ccid_descr_handle = create_dissector_handle( dissect_usb_ccid_descriptor, proto_ccid); dissector_add_uint("usb.descriptor", IF_CLASS_SMART_CARD, usb_ccid_descr_handle); dissector_add_uint("usb.bulk", IF_CLASS_SMART_CARD, usb_ccid_handle); dissector_add_for_decode_as("usb.device", usb_ccid_handle); dissector_add_for_decode_as("usb.product", usb_ccid_handle); dissector_add_for_decode_as("usb.protocol", usb_ccid_handle); sub_handles[SUB_DATA] = find_dissector("data"); sub_handles[SUB_ISO7816] = find_dissector_add_dependency("iso7816", proto_ccid); sub_handles[SUB_GSM_SIM_CMD] = find_dissector_add_dependency("gsm_sim.command", proto_ccid); sub_handles[SUB_PN532] = find_dissector_add_dependency("pn532", proto_ccid); sub_handles[SUB_ACR122_PN532] = find_dissector_add_dependency("acr122", proto_ccid); sub_handles[SUB_GSM_SIM_RSP] = find_dissector_add_dependency("gsm_sim.response", proto_ccid); } /* * Editor modelines - http://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 4 * tab-width: 8 * indent-tabs-mode: nil * End: * * ex: set shiftwidth=4 tabstop=8 expandtab: * :indentSize=4:tabSize=8:noTabs=true: */