/* packet-selfm.c * Routines for Schweitzer Engineering Laboratories Fast Message Protocol (SEL FM) Dissection * By Chris Bontje (cbontje[AT]gmail.com * Copyright Nov/Dec 2012, * * $Id$ * * Schweitzer Engineering Labs manufactures and sells digital protective relay equipment for * use in industrial high-voltage installations. SEL FM protocol evolved over time as a * (semi)proprietary method for auto-configuration of connected SEL devices for retrieval of * analog and digital status data. The protocol itself supports embedded binary messages * (which are what this dissector looks for) slip-streamed in the data stream with normal * ASCII text data. A combination of both are used for full auto-configuration of devices, * but a wealth of information can be extracted from the binary messages alone. * * Documentation on Fast Meter and Fast SER messages available from www.selinc.com in * SEL Application Guides AG95-10_20091109.pdf and AG_200214.pdf ************************************************************************************************ * Dissector Notes: * * 1) SEL Fast Message protocol over TCP is normally tunneled via a Telnet connection. As Telnet * has special handling for the 0xFF character ("IAC"), normally a pair of 0xFF's are inserted * to represent an actual payload byte of 0xFF. A function from the packet-telnet.c dissector has * been borrowed to automatically pre-process any Ethernet-based packet and remove these 'extra' * 0xFF bytes. Wireshark Notes on Telnet 0xFF doubling are discussed here: * http://www.wireshark.org/lists/wireshark-bugs/201204/msg00198.html * * 2) As the presence of 0xFF pad bytes can render the "length" byte of a response message inaccurate * (as the 'length' does not compensate for these extra bytes) it can be difficult to accurately determine * the proper length of a message when attempting to do TCP reassembly. The get_selfm_len function * does a best-guess, based on evidence observed from multiple packet captures from different devices. * What would be ideal would be to: * a) Attempt initial PDU re-assembly based on length byte * b) Detect if a 0xFF pair is found in the payload and add 1 byte to the PDU length * c) Continue re-assembly based on revised length. * d) Once full re-assembly of (actual length) TCP data is done, pass off full frame to selfm * dissector to have 0xFF pairs stripped and the protocol dissected as per normal. * I'm not sure if tcp_dissect_pdus already supports this functionality, but I didn't see any examples? * * 3) Generally, the auto-configuration process itself will exchange several "configuration" messages * that describe various data regions (METER, DEMAND, PEAK, etc) that will later have corresponding * "data" messages. This dissector code will currently save and accurately retrieve one set of these * exchanges (0xA5C1, 0xA5D1, "METER" region) using the GArray and conversation functions built into * Wireshark. That said, a future modification would be nice to capture and retrieve multiple sets * of configuration messages to be able to decode all the different "data" messages encountered in * future exchanges. * ************************************************************************************************ * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "config.h" #include #include "packet-tcp.h" #include #include #include #include /* Initialize the protocol and registered fields */ static int proto_selfm = -1; static int hf_selfm_msgtype = -1; static int hf_selfm_relaydef_len = -1; static int hf_selfm_relaydef_numproto = -1; static int hf_selfm_relaydef_numfm = -1; static int hf_selfm_relaydef_numflags = -1; static int hf_selfm_relaydef_fmcfg_cmd = -1; static int hf_selfm_relaydef_fmdata_cmd = -1; static int hf_selfm_relaydef_statbit = -1; static int hf_selfm_relaydef_statbit_cmd = -1; static int hf_selfm_relaydef_proto = -1; static int hf_selfm_fmconfig_len = -1; static int hf_selfm_fmconfig_numflags = -1; static int hf_selfm_fmconfig_loc_sf = -1; static int hf_selfm_fmconfig_num_sf = -1; static int hf_selfm_fmconfig_num_ai = -1; static int hf_selfm_fmconfig_num_samp = -1; static int hf_selfm_fmconfig_num_dig = -1; static int hf_selfm_fmconfig_num_calc = -1; static int hf_selfm_fmconfig_ofs_ai = -1; static int hf_selfm_fmconfig_ofs_ts = -1; static int hf_selfm_fmconfig_ofs_dig = -1; static int hf_selfm_fmconfig_ai_type = -1; static int hf_selfm_fmconfig_ai_sf_type = -1; static int hf_selfm_fmconfig_ai_sf_ofs = -1; static int hf_selfm_fmdata_len = -1; static int hf_selfm_fmdata_flagbyte = -1; static int hf_selfm_fmdata_dig_b0 = -1; static int hf_selfm_fmdata_dig_b1 = -1; static int hf_selfm_fmdata_dig_b2 = -1; static int hf_selfm_fmdata_dig_b3 = -1; static int hf_selfm_fmdata_dig_b4 = -1; static int hf_selfm_fmdata_dig_b5 = -1; static int hf_selfm_fmdata_dig_b6 = -1; static int hf_selfm_fmdata_dig_b7 = -1; static int hf_selfm_fmdata_ai_sf_fp = -1; static int hf_selfm_foconfig_len = -1; static int hf_selfm_foconfig_num_brkr = -1; static int hf_selfm_foconfig_num_rb = -1; static int hf_selfm_foconfig_prb_supp = -1; static int hf_selfm_foconfig_reserved = -1; static int hf_selfm_foconfig_brkr_open = -1; static int hf_selfm_foconfig_brkr_close = -1; static int hf_selfm_foconfig_rb_cmd = -1; static int hf_selfm_fastop_len = -1; static int hf_selfm_fastop_rb_code = -1; static int hf_selfm_fastop_br_code = -1; static int hf_selfm_fastop_valid = -1; static int hf_selfm_fastser_len = -1; static int hf_selfm_fastser_routing_addr = -1; static int hf_selfm_fastser_status = -1; static int hf_selfm_fastser_funccode = -1; static int hf_selfm_fastser_seq = -1; static int hf_selfm_fastser_seq_fir = -1; static int hf_selfm_fastser_seq_fin = -1; static int hf_selfm_fastser_seq_cnt = -1; static int hf_selfm_fastser_resp_num = -1; static int hf_selfm_fastser_crc16 = -1; static int hf_selfm_fastser_def_route_sup = -1; static int hf_selfm_fastser_def_rx_stat = -1; static int hf_selfm_fastser_def_tx_stat = -1; static int hf_selfm_fastser_def_rx_maxfr = -1; static int hf_selfm_fastser_def_tx_maxfr = -1; static int hf_selfm_fastser_def_rx_num_fc = -1; static int hf_selfm_fastser_def_rx_fc = -1; static int hf_selfm_fastser_def_tx_num_fc = -1; static int hf_selfm_fastser_def_tx_fc = -1; static int hf_selfm_fastser_uns_en_fc = -1; static int hf_selfm_fastser_uns_en_fc_data = -1; static int hf_selfm_fastser_uns_dis_fc = -1; static int hf_selfm_fastser_uns_dis_fc_data = -1; static int hf_selfm_fastser_read_baseaddr = -1; static int hf_selfm_fastser_read_numaddr = -1; static int hf_selfm_fastser_datafmt_resp_num_tag = -1; static int hf_selfm_fastser_datafmt_resp_tag_qty = -1; static int hf_selfm_fastser_datafmt_resp_tag_type = -1; static int hf_selfm_fastser_devdesc_num_reg = -1; static int hf_selfm_fastser_unsresp_orig = -1; static int hf_selfm_fastser_unsresp_doy = -1; static int hf_selfm_fastser_unsresp_year = -1; static int hf_selfm_fastser_unsresp_todms = -1; static int hf_selfm_fastser_unsresp_num_elmt = -1; static int hf_selfm_fastser_unsresp_elmt_idx = -1; static int hf_selfm_fastser_unsresp_elmt_ts_ofs = -1; static int hf_selfm_fastser_unsresp_elmt_status = -1; static int hf_selfm_fastser_unsresp_eor = -1; static int hf_selfm_fastser_unsresp_elmt_statword = -1; static int hf_selfm_fastser_unswrite_addr1 = -1; static int hf_selfm_fastser_unswrite_addr2 = -1; static int hf_selfm_fastser_unswrite_num_reg = -1; static int hf_selfm_fastser_unswrite_reg_val = -1; /* Initialize the subtree pointers */ static gint ett_selfm = -1; static gint ett_selfm_relaydef = -1; static gint ett_selfm_relaydef_fm = -1; static gint ett_selfm_relaydef_proto = -1; static gint ett_selfm_relaydef_flags = -1; static gint ett_selfm_fmconfig = -1; static gint ett_selfm_fmconfig_ai = -1; static gint ett_selfm_foconfig = -1; static gint ett_selfm_foconfig_brkr = -1; static gint ett_selfm_foconfig_rb = -1; static gint ett_selfm_fastop = -1; static gint ett_selfm_fmdata = -1; static gint ett_selfm_fmdata_ai = -1; static gint ett_selfm_fmdata_dig = -1; static gint ett_selfm_fmdata_ai_ch = -1; static gint ett_selfm_fmdata_dig_ch = -1; static gint ett_selfm_fastser = -1; static gint ett_selfm_fastser_seq = -1; static gint ett_selfm_fastser_def_fc = -1; static gint ett_selfm_fastser_datareg = -1; static gint ett_selfm_fastser_tag = -1; static gint ett_selfm_fastser_element_list = -1; static gint ett_selfm_fastser_element = -1; #define PORT_SELFM 0 #define CMD_FAST_SER 0xA546 #define CMD_CLEAR_STATBIT 0xA5B9 #define CMD_RELAY_DEF 0xA5C0 #define CMD_FM_CONFIG 0xA5C1 #define CMD_DFM_CONFIG 0xA5C2 #define CMD_PDFM_CONFIG 0xA5C3 #define CMD_FASTOP_RESETDEF 0xA5CD #define CMD_FASTOP_CONFIG 0xA5CE #define CMD_FASTOP_CONFIG_ALT 0xA5CF #define CMD_FM_DATA 0xA5D1 #define CMD_DFM_DATA 0xA5D2 #define CMD_PDFM_DATA 0xA5D3 #define CMD_FASTOP_RB_CTRL 0xA5E0 #define CMD_FASTOP_BR_CTRL 0xA5E3 #define CMD_FASTOP_RESET 0xA5ED #define RELAYDEF_PROTO_SEL 0x0000 #define RELAYDEF_PROTO_SEL_FO 0x0100 #define RELAYDEF_PROTO_SEL_FM 0x0200 #define RELAYDEF_PROTO_SEL_FO_FM 0x0300 #define RELAYDEF_PROTO_LMD 0x0001 #define RELAYDEF_PROTO_LMD_FO 0x0101 #define RELAYDEF_PROTO_LMD_FO_FM 0x0301 #define RELAYDEF_PROTO_MODBUS 0x0002 #define RELAYDEF_PROTO_SYMAX 0x0003 #define RELAYDEF_PROTO_R2R 0x0004 #define RELAYDEF_PROTO_DNP3 0x0005 #define RELAYDEF_PROTO_MB 0x0006 #define RELAYDEF_PROTO_C37_118 0x0007 #define RELAYDEF_PROTO_61850 0x0008 #define FM_CONFIG_SF_LOC_FM 0 #define FM_CONFIG_SF_LOC_CFG 1 #define FM_CONFIG_ANA_CHNAME_LEN 6 #define FM_CONFIG_ANA_CHTYPE_INT16 0x00 #define FM_CONFIG_ANA_CHTYPE_INT16_LEN 2 #define FM_CONFIG_ANA_CHTYPE_FP 0x01 #define FM_CONFIG_ANA_CHTYPE_FP_LEN 4 #define FM_CONFIG_ANA_CHTYPE_FPD 0x02 #define FM_CONFIG_ANA_CHTYPE_FPD_LEN 8 #define FM_CONFIG_ANA_CHTYPE_TS 0x03 #define FM_CONFIG_ANA_CHTYPE_TS_LEN 8 #define FM_CONFIG_ANA_SFTYPE_INT16 0x00 #define FM_CONFIG_ANA_SFTYPE_FP 0x01 #define FM_CONFIG_ANA_SFTYPE_FPD 0x02 #define FM_CONFIG_ANA_SFTYPE_TS 0x03 #define FM_CONFIG_ANA_SFTYPE_NONE 0xFF #define FO_CONFIG_PRB_SUPP_NO 0 #define FO_CONFIG_PRB_SUPP_YES 1 /* Fast SER Function Codes, "response" or "ACK" messages are the same as the request, but have the MSB set */ #define FAST_SER_MESSAGE_DEF 0x00 #define FAST_SER_MESSAGE_DEF_ACK 0x80 #define FAST_SER_EN_UNS_DATA 0x01 #define FAST_SER_EN_UNS_DATA_ACK 0x81 #define FAST_SER_DIS_UNS_DATA 0x02 #define FAST_SER_DIS_UNS_DATA_ACK 0x82 #define FAST_SER_PING 0x05 #define FAST_SER_PING_ACK 0x85 #define FAST_SER_READ_REQ 0x10 /* Limited Public Documentation... */ #define FAST_SER_READ_RESP 0x90 /* Limited Public Documentation... */ #define FAST_SER_GEN_UNS_DATA 0x12 /* Limited Public Documentation... */ #define FAST_SER_SOE_STATE_REQ 0x16 /* Limited Public Documentation... */ #define FAST_SER_SOE_STATE_RESP 0x96 /* Limited Public Documentation... */ #define FAST_SER_UNS_RESP 0x18 #define FAST_SER_UNS_RESP_ACK 0x98 #define FAST_SER_UNS_WRITE 0x20 #define FAST_SER_UNS_WRITE_REQ 0x21 /* Limited Public Documentation... */ #define FAST_SER_DEVDESC_REQ 0x30 /* Limited Public Documentation... */ #define FAST_SER_DEVDESC_RESP 0xB0 /* Limited Public Documentation... */ #define FAST_SER_DATAFMT_REQ 0x31 /* Limited Public Documentation... */ #define FAST_SER_DATAFMT_RESP 0xB1 /* Limited Public Documentation... */ #define FAST_SER_UNS_DATAFMT_RESP 0x32 /* Limited Public Documentation... */ #define FAST_SER_BITLABEL_REQ 0x33 /* Limited Public Documentation... */ #define FAST_SER_BITLABEL_RESP 0xB3 /* Limited Public Documentation... */ #define FAST_SER_MGMT_REQ 0x40 /* Limited Public Documentation... */ /* Fast SER Sequence Byte Masks Observation suggests a similar format to the DNP3 Transport Layer byte */ #define FAST_SER_SEQ_FIR 0x80 #define FAST_SER_SEQ_FIN 0x40 #define FAST_SER_SEQ_CNT 0x3f /* Fast SER Tag Data Types, unknown exact formatting but observation suggests the following */ /* 32-bit Float 01 00 41 */ /* 2 x 32-bit Float 02 00 41 */ /* 32-bit Integer 01 00 34 */ /* 16-bit Integer 01 00 32 */ /* 22-byte string 0B 00 12 */ /* 4-byte string 02 00 12 */ /* TARGETS 80 00 21 , address 0x3004 -> 0x3183 , 384 rows */ #define FAST_SER_TAGTYPE_FLOAT 0x41 #define FAST_SER_TAGTYPE_INT32 0x34 #define FAST_SER_TAGTYPE_INT16 0x32 #define FAST_SER_TAGTYPE_DIGWORD 0x21 #define FAST_SER_TAGTYPE_CHAR16 0x12 #define FAST_SER_UNSWRITE_COM01 0x0100 #define FAST_SER_UNSWRITE_COM02 0x0200 #define FAST_SER_UNSWRITE_COM03 0x0300 #define FAST_SER_UNSWRITE_COM04 0x0400 #define FAST_SER_UNSWRITE_COM05 0x0500 #define FAST_SER_UNSWRITE_COM06 0x0600 #define FAST_SER_UNSWRITE_COM07 0x0700 #define FAST_SER_UNSWRITE_COM08 0x0800 #define FAST_SER_UNSWRITE_COM09 0x0900 #define FAST_SER_UNSWRITE_COM10 0x0A00 #define FAST_SER_UNSWRITE_COM11 0x0B00 #define FAST_SER_UNSWRITE_COM12 0x0C00 #define FAST_SER_UNSWRITE_COM13 0x0D00 #define FAST_SER_UNSWRITE_COM14 0x0E00 #define FAST_SER_UNSWRITE_COM15 0x0F00 #define FASTOP_BR1_OPEN 0x31 #define FASTOP_BR1_CLOSE 0x11 #define FASTOP_BR2_OPEN 0x32 #define FASTOP_BR2_CLOSE 0x12 #define FASTOP_BR3_OPEN 0x33 #define FASTOP_BR3_CLOSE 0x13 #define FASTOP_BR4_OPEN 0x34 #define FASTOP_BR4_CLOSE 0x14 #define FASTOP_RB01_CLEAR 0x00 #define FASTOP_RB01_SET 0x20 #define FASTOP_RB01_PULSE 0x40 #define FASTOP_RB02_CLEAR 0x01 #define FASTOP_RB02_SET 0x21 #define FASTOP_RB02_PULSE 0x41 #define FASTOP_RB03_CLEAR 0x02 #define FASTOP_RB03_SET 0x22 #define FASTOP_RB03_PULSE 0x42 #define FASTOP_RB04_CLEAR 0x03 #define FASTOP_RB04_SET 0x23 #define FASTOP_RB04_PULSE 0x43 #define FASTOP_RB05_CLEAR 0x04 #define FASTOP_RB05_SET 0x24 #define FASTOP_RB05_PULSE 0x44 #define FASTOP_RB06_CLEAR 0x05 #define FASTOP_RB06_SET 0x25 #define FASTOP_RB06_PULSE 0x45 #define FASTOP_RB07_CLEAR 0x06 #define FASTOP_RB07_SET 0x26 #define FASTOP_RB07_PULSE 0x46 #define FASTOP_RB08_CLEAR 0x07 #define FASTOP_RB08_SET 0x27 #define FASTOP_RB08_PULSE 0x47 #define FASTOP_RB09_CLEAR 0x08 #define FASTOP_RB09_SET 0x28 #define FASTOP_RB09_PULSE 0x48 #define FASTOP_RB10_CLEAR 0x09 #define FASTOP_RB10_SET 0x29 #define FASTOP_RB10_PULSE 0x49 #define FASTOP_RB11_CLEAR 0x0A #define FASTOP_RB11_SET 0x2A #define FASTOP_RB11_PULSE 0x4A #define FASTOP_RB12_CLEAR 0x0B #define FASTOP_RB12_SET 0x2B #define FASTOP_RB12_PULSE 0x4B #define FASTOP_RB13_CLEAR 0x0C #define FASTOP_RB13_SET 0x2C #define FASTOP_RB13_PULSE 0x4C #define FASTOP_RB14_CLEAR 0x0D #define FASTOP_RB14_SET 0x2D #define FASTOP_RB14_PULSE 0x4D #define FASTOP_RB15_CLEAR 0x0E #define FASTOP_RB15_SET 0x2E #define FASTOP_RB15_PULSE 0x4E #define FASTOP_RB16_CLEAR 0x0F #define FASTOP_RB16_SET 0x2F #define FASTOP_RB16_PULSE 0x4F #define FASTOP_RB17_CLEAR 0x10 #define FASTOP_RB17_SET 0x30 #define FASTOP_RB17_PULSE 0x50 #define FASTOP_RB18_CLEAR 0x11 #define FASTOP_RB18_SET 0x31 #define FASTOP_RB18_PULSE 0x51 #define FASTOP_RB19_CLEAR 0x12 #define FASTOP_RB19_SET 0x32 #define FASTOP_RB19_PULSE 0x52 #define FASTOP_RB20_CLEAR 0x13 #define FASTOP_RB20_SET 0x33 #define FASTOP_RB20_PULSE 0x53 #define FASTOP_RB21_CLEAR 0x14 #define FASTOP_RB21_SET 0x34 #define FASTOP_RB21_PULSE 0x54 #define FASTOP_RB22_CLEAR 0x15 #define FASTOP_RB22_SET 0x35 #define FASTOP_RB22_PULSE 0x55 #define FASTOP_RB23_CLEAR 0x16 #define FASTOP_RB23_SET 0x36 #define FASTOP_RB23_PULSE 0x56 #define FASTOP_RB24_CLEAR 0x17 #define FASTOP_RB24_SET 0x37 #define FASTOP_RB24_PULSE 0x57 #define FASTOP_RB25_CLEAR 0x18 #define FASTOP_RB25_SET 0x38 #define FASTOP_RB25_PULSE 0x58 #define FASTOP_RB26_CLEAR 0x19 #define FASTOP_RB26_SET 0x39 #define FASTOP_RB26_PULSE 0x59 #define FASTOP_RB27_CLEAR 0x1A #define FASTOP_RB27_SET 0x3A #define FASTOP_RB27_PULSE 0x5A #define FASTOP_RB28_CLEAR 0x1B #define FASTOP_RB28_SET 0x3B #define FASTOP_RB28_PULSE 0x5B #define FASTOP_RB29_CLEAR 0x1C #define FASTOP_RB29_SET 0x3C #define FASTOP_RB29_PULSE 0x5C #define FASTOP_RB30_CLEAR 0x1D #define FASTOP_RB30_SET 0x3D #define FASTOP_RB30_PULSE 0x5D #define FASTOP_RB31_CLEAR 0x1E #define FASTOP_RB31_SET 0x3E #define FASTOP_RB31_PULSE 0x5E #define FASTOP_RB32_CLEAR 0x1F #define FASTOP_RB32_SET 0x3F #define FASTOP_RB32_PULSE 0x5F /* Globals for SEL Protocol Preferences */ static gboolean selfm_desegment = TRUE; static gboolean selfm_telnet_clean = TRUE; static guint global_selfm_tcp_port = PORT_SELFM; /* Port 0, by default */ /***************************************************************************************/ /* Fast Meter Message structs */ /***************************************************************************************/ /* Holds Configuration Information required to decode a Fast Meter analog value */ typedef struct { gchar name[FM_CONFIG_ANA_CHNAME_LEN+1]; /* Name of Analog Channel, 6 char + a null */ guint8 type; /* Analog Channel Type, Int, FP, etc */ guint8 sf_type; /* Analog Scale Factor Type, none, etc */ guint16 sf_offset; /* Analog Scale Factor Offset */ } fm_analog_info; /* Holds Information from a single "Fast Meter Configuration" frame. Required to dissect subsequent "Data" frames. */ typedef struct { guint32 fnum; /* frame number */ guint16 cfg_cmd; /* holds ID of config command, ie: 0xa5c1 */ guint8 num_flags; /* Number of Flag Bytes */ guint8 num_ai; /* Number of Analog Inputs */ guint8 num_ai_samples; /* Number samples per Analog Input */ guint16 offset_ai; /* Start Offset of Analog Inputs */ guint8 num_dig; /* Number of Digital Input Blocks */ guint16 offset_dig; /* Start Offset of Digital Inputs */ guint16 offset_ts; /* Start Offset of Time Stamp */ guint8 num_calc; /* Number of Calculations */ fm_analog_info *analogs; /* Array of fm_analog_infos */ } fm_config_frame; typedef struct { wmem_slist_t *fm_config_frames; /* Contains a fm_config_data struct for the information in the Fast Meter configuration frame */ } fm_conversation; /**************************************************************************************/ /* Fast SER Message structs */ /**************************************************************************************/ /* Holds Configuration Information required to decode a Fast SER Data Tag */ /* Each data region format is returned as a sequential list of tags, w/o reference to */ /* an absolute address. We can determine an address based on the sequence byte count */ /* when the tag was encountered and the index position within the data format message */ typedef struct { gchar name[11]; /* Name of Data Tag, 11 chars, null-terminated */ guint8 seq_count; /* Sequence count of data format message (0,1,2,3,4,etc) */ guint8 index_pos; /* Index Offset Position within data format message (1-16) */ guint8 quantity; /* Quantity of values within tag */ guint8 type; /* Data Tag Type, Int, FP, etc */ } fastser_tag; /* Holds Configuration Information required to decode a Fast SER Data Region */ typedef struct { gchar name[12]; /* Name of Data Region, 12 chars, null-terminated */ guint8 base_addr; /* Base address offset of region (0x3000, etc) */ guint8 qty_addr; /* Quantity of 16-bit addresses within region */ GArray *tags; /* Array of fastser_tags */ } fastser_region; typedef struct { guint32 fnum; /* frame number */ GArray *fastser_region_blocks; /* Contains a fastser_region struct for the information in the Fast SER configuration frame */ } fastser_config_frame; static const value_string selfm_msgtype_vals[] = { { CMD_CLEAR_STATBIT, "Clear Status Bits Command" }, { CMD_FAST_SER, "Fast SER Block" }, { CMD_FASTOP_BR_CTRL, "Fast Operate Breaker Bit Control" }, { CMD_FASTOP_RB_CTRL, "Fast Operate Remote Bit Control" }, { CMD_FASTOP_CONFIG, "Fast Operate Configuration" }, { CMD_FASTOP_CONFIG_ALT, "Fast Operate Configuration (alt)" }, { CMD_FASTOP_RESET, "Fast Operate Reset" }, { CMD_FASTOP_RESETDEF, "Fast Operate Reset Definition" }, { CMD_RELAY_DEF, "Relay Definition Block" }, { CMD_FM_CONFIG, "Fast Meter Configuration Block" }, { CMD_FM_DATA, "Fast Meter Data Block" }, { CMD_DFM_CONFIG, "Demand Fast Meter Configuration Block" }, { CMD_DFM_DATA, "Demand Fast Meter Data Block" }, { CMD_PDFM_CONFIG, "Peak Demand Fast Meter Configuration Block" }, { CMD_PDFM_DATA, "Peak Demand Fast Meter Data Block" }, { 0, NULL } }; static value_string_ext selfm_msgtype_vals_ext = VALUE_STRING_EXT_INIT(selfm_msgtype_vals); static const value_string selfm_relaydef_proto_vals[] = { { RELAYDEF_PROTO_SEL, "SEL Fast Meter" }, { RELAYDEF_PROTO_SEL_FO, "SEL Fast Meter w/ Fast Operate" }, { RELAYDEF_PROTO_SEL_FM, "SEL Fast Meter w/ Fast SER" }, { RELAYDEF_PROTO_SEL_FO_FM, "SEL Fast Meter w/ Fast Operate and Fast SER" }, { RELAYDEF_PROTO_LMD, "SEL Limited Multidrop (LMD)" }, { RELAYDEF_PROTO_LMD_FO, "SEL Limited Multidrop (LMD) w/ Fast Operate" }, { RELAYDEF_PROTO_LMD_FO_FM, "SEL Limited Multidrop (LMD) w/ Fast Operate and Fast SER" }, { RELAYDEF_PROTO_MODBUS, "Modbus" }, { RELAYDEF_PROTO_SYMAX, "SY/MAX" }, { RELAYDEF_PROTO_R2R, "SEL Relay-to-Relay" }, { RELAYDEF_PROTO_DNP3, "DNP 3.0" }, { RELAYDEF_PROTO_MB, "SEL Mirrored Bits" }, { RELAYDEF_PROTO_C37_118, "IEEE 37.118 Synchrophasors" }, { RELAYDEF_PROTO_61850, "IEC 61850" }, { 0, NULL } }; static value_string_ext selfm_relaydef_proto_vals_ext = VALUE_STRING_EXT_INIT(selfm_relaydef_proto_vals); static const value_string selfm_fmconfig_ai_chtype_vals[] = { { FM_CONFIG_ANA_CHTYPE_INT16, "16-Bit Integer" }, { FM_CONFIG_ANA_CHTYPE_FP, "IEEE Floating Point" }, { FM_CONFIG_ANA_CHTYPE_FPD, "IEEE Floating Point (Double)" }, { FM_CONFIG_ANA_CHTYPE_TS, "8-byte Time Stamp" }, { 0, NULL } }; static const value_string selfm_fmconfig_ai_sftype_vals[] = { { FM_CONFIG_ANA_SFTYPE_INT16, "16-Bit Integer" }, { FM_CONFIG_ANA_SFTYPE_FP, "IEEE Floating Point" }, { FM_CONFIG_ANA_SFTYPE_FPD, "IEEE Floating Point (Double)" }, { FM_CONFIG_ANA_SFTYPE_TS, "8-byte Time Stamp" }, { FM_CONFIG_ANA_SFTYPE_NONE, "None" }, { 0, NULL } }; static const value_string selfm_fmconfig_sfloc_vals[] = { { FM_CONFIG_SF_LOC_FM, "In Fast Meter Message" }, { FM_CONFIG_SF_LOC_CFG, "In Configuration Message" }, { 0, NULL } }; /* Depending on number of analog samples present in Fast Meter Messages, identification of data will change */ static const value_string selfm_fmconfig_numsamples1_vals[] = { { 1, "Magnitudes Only" }, { 0, NULL } }; static const value_string selfm_fmconfig_numsamples2_vals[] = { { 1, "Imaginary Components" }, { 2, "Real Components" }, { 0, NULL } }; static const value_string selfm_fmconfig_numsamples4_vals[] = { { 1, "1st Quarter Cycle Data" }, { 2, "2nd Quarter Cycle Data" }, { 3, "5th Quarter-Cycle Data" }, { 4, "6th Quarter-Cycle Data" }, { 0, NULL } }; static const value_string selfm_foconfig_prb_supp_vals[] = { { FO_CONFIG_PRB_SUPP_NO, "No" }, { FO_CONFIG_PRB_SUPP_YES, "Yes" }, { 0, NULL } }; static const value_string selfm_ser_status_vals[] = { { 0, "Deasserted" }, { 1, "Asserted" }, { 0, NULL } }; static const value_string selfm_fo_rb_vals[] = { { FASTOP_RB01_CLEAR, "RB01 Clear" }, { FASTOP_RB01_SET, "RB01 Set" }, { FASTOP_RB01_PULSE, "RB01 Pulse" }, { FASTOP_RB02_CLEAR, "RB02 Clear" }, { FASTOP_RB02_SET, "RB02 Set" }, { FASTOP_RB02_PULSE, "RB02 Pulse" }, { FASTOP_RB03_CLEAR, "RB03 Clear" }, { FASTOP_RB03_SET, "RB03 Set" }, { FASTOP_RB03_PULSE, "RB03 Pulse" }, { FASTOP_RB04_CLEAR, "RB04 Clear" }, { FASTOP_RB04_SET, "RB04 Set" }, { FASTOP_RB04_PULSE, "RB04 Pulse" }, { FASTOP_RB05_CLEAR, "RB05 Clear" }, { FASTOP_RB05_SET, "RB05 Set" }, { FASTOP_RB05_PULSE, "RB05 Pulse" }, { FASTOP_RB06_CLEAR, "RB06 Clear" }, { FASTOP_RB06_SET, "RB06 Set" }, { FASTOP_RB06_PULSE, "RB06 Pulse" }, { FASTOP_RB07_CLEAR, "RB07 Clear" }, { FASTOP_RB07_SET, "RB07 Set" }, { FASTOP_RB07_PULSE, "RB07 Pulse" }, { FASTOP_RB08_CLEAR, "RB08 Clear" }, { FASTOP_RB08_SET, "RB08 Set" }, { FASTOP_RB08_PULSE, "RB08 Pulse" }, { FASTOP_RB09_CLEAR, "RB09 Clear" }, { FASTOP_RB09_SET, "RB09 Set" }, { FASTOP_RB09_PULSE, "RB09 Pulse" }, { FASTOP_RB10_CLEAR, "RB10 Clear" }, { FASTOP_RB10_SET, "RB10 Set" }, { FASTOP_RB10_PULSE, "RB10 Pulse" }, { FASTOP_RB11_CLEAR, "RB11 Clear" }, { FASTOP_RB11_SET, "RB11 Set" }, { FASTOP_RB11_PULSE, "RB11 Pulse" }, { FASTOP_RB12_CLEAR, "RB12 Clear" }, { FASTOP_RB12_SET, "RB12 Set" }, { FASTOP_RB12_PULSE, "RB12 Pulse" }, { FASTOP_RB13_CLEAR, "RB13 Clear" }, { FASTOP_RB13_SET, "RB13 Set" }, { FASTOP_RB13_PULSE, "RB13 Pulse" }, { FASTOP_RB14_CLEAR, "RB14 Clear" }, { FASTOP_RB14_SET, "RB14 Set" }, { FASTOP_RB14_PULSE, "RB14 Pulse" }, { FASTOP_RB15_CLEAR, "RB15 Clear" }, { FASTOP_RB15_SET, "RB15 Set" }, { FASTOP_RB15_PULSE, "RB15 Pulse" }, { FASTOP_RB16_CLEAR, "RB16 Clear" }, { FASTOP_RB16_SET, "RB16 Set" }, { FASTOP_RB16_PULSE, "RB16 Pulse" }, { FASTOP_RB17_CLEAR, "RB17 Clear" }, { FASTOP_RB17_SET, "RB17 Set" }, { FASTOP_RB17_PULSE, "RB17 Pulse" }, { FASTOP_RB18_CLEAR, "RB18 Clear" }, { FASTOP_RB18_SET, "RB18 Set" }, { FASTOP_RB18_PULSE, "RB18 Pulse" }, { FASTOP_RB19_CLEAR, "RB19 Clear" }, { FASTOP_RB19_SET, "RB19 Set" }, { FASTOP_RB19_PULSE, "RB19 Pulse" }, { FASTOP_RB20_CLEAR, "RB20 Clear" }, { FASTOP_RB20_SET, "RB20 Set" }, { FASTOP_RB20_PULSE, "RB20 Pulse" }, { FASTOP_RB21_CLEAR, "RB21 Clear" }, { FASTOP_RB21_SET, "RB21 Set" }, { FASTOP_RB21_PULSE, "RB21 Pulse" }, { FASTOP_RB22_CLEAR, "RB22 Clear" }, { FASTOP_RB22_SET, "RB22 Set" }, { FASTOP_RB22_PULSE, "RB22 Pulse" }, { FASTOP_RB23_CLEAR, "RB23 Clear" }, { FASTOP_RB23_SET, "RB23 Set" }, { FASTOP_RB23_PULSE, "RB23 Pulse" }, { FASTOP_RB24_CLEAR, "RB24 Clear" }, { FASTOP_RB24_SET, "RB24 Set" }, { FASTOP_RB24_PULSE, "RB24 Pulse" }, { FASTOP_RB25_CLEAR, "RB25 Clear" }, { FASTOP_RB25_SET, "RB25 Set" }, { FASTOP_RB25_PULSE, "RB25 Pulse" }, { FASTOP_RB26_CLEAR, "RB26 Clear" }, { FASTOP_RB26_SET, "RB26 Set" }, { FASTOP_RB26_PULSE, "RB26 Pulse" }, { FASTOP_RB27_CLEAR, "RB27 Clear" }, { FASTOP_RB27_SET, "RB27 Set" }, { FASTOP_RB27_PULSE, "RB27 Pulse" }, { FASTOP_RB28_CLEAR, "RB28 Clear" }, { FASTOP_RB28_SET, "RB28 Set" }, { FASTOP_RB28_PULSE, "RB28 Pulse" }, { FASTOP_RB29_CLEAR, "RB29 Clear" }, { FASTOP_RB29_SET, "RB29 Set" }, { FASTOP_RB29_PULSE, "RB29 Pulse" }, { FASTOP_RB30_CLEAR, "RB30 Clear" }, { FASTOP_RB30_SET, "RB30 Set" }, { FASTOP_RB30_PULSE, "RB30 Pulse" }, { FASTOP_RB31_CLEAR, "RB31 Clear" }, { FASTOP_RB31_SET, "RB31 Set" }, { FASTOP_RB31_PULSE, "RB31 Pulse" }, { FASTOP_RB32_CLEAR, "RB32 Clear" }, { FASTOP_RB32_SET, "RB32 Set" }, { FASTOP_RB32_PULSE, "RB32 Pulse" }, { 0, NULL } }; static const value_string selfm_fo_br_vals[] = { { FASTOP_BR1_OPEN, "Breaker Bit 1 Open (OC/OC1)" }, { FASTOP_BR1_CLOSE, "Breaker Bit 1 Close (CC/CC1)" }, { FASTOP_BR2_OPEN, "Breaker Bit 2 Open (OC2)" }, { FASTOP_BR2_CLOSE, "Breaker Bit 2 Close (CC2)" }, { FASTOP_BR3_OPEN, "Breaker Bit 3 Open (OC3)" }, { FASTOP_BR3_CLOSE, "Breaker Bit 3 Close (CC3)" }, { FASTOP_BR4_OPEN, "Breaker Bit 4 Open (OC4)" }, { FASTOP_BR4_CLOSE, "Breaker Bit 4 Close (CC4)" }, { 0, NULL } }; static const value_string selfm_fastser_func_code_vals[] = { { FAST_SER_MESSAGE_DEF, "Fast SER Message Definition Block" }, { FAST_SER_MESSAGE_DEF_ACK, "Fast SER Message Definition Block ACK" }, { FAST_SER_EN_UNS_DATA, "Enable Unsolicited Data" }, { FAST_SER_EN_UNS_DATA_ACK, "Enable Unsolicited Data ACK" }, { FAST_SER_DIS_UNS_DATA, "Disable Unsolicited Data" }, { FAST_SER_DIS_UNS_DATA_ACK, "Disable Unsolicited Data ACK" }, { FAST_SER_PING, "Ping Message" }, { FAST_SER_PING_ACK, "Ping Message ACK" }, { FAST_SER_READ_REQ, "Read Request" }, { FAST_SER_READ_RESP, "Read Response" }, { FAST_SER_GEN_UNS_DATA, "Generic Unsolicited Data" }, { FAST_SER_SOE_STATE_REQ, "SOE Present State Request" }, { FAST_SER_SOE_STATE_RESP, "SOE Present State Response" }, { FAST_SER_UNS_RESP, "Unsolicited Fast SER Data Response" }, { FAST_SER_UNS_RESP_ACK, "Unsolicited Fast SER Data Response ACK" }, { FAST_SER_UNS_WRITE, "Unsolicited Write" }, { FAST_SER_UNS_WRITE_REQ, "Unsolicited Write Request" }, { FAST_SER_DEVDESC_REQ, "Device Description Request" }, { FAST_SER_DEVDESC_RESP, "Device Description Response" }, { FAST_SER_DATAFMT_REQ, "Data Format Request" }, { FAST_SER_DATAFMT_RESP, "Data Format Response" }, { FAST_SER_UNS_DATAFMT_RESP, "Unsolicited Data Format Response" }, { FAST_SER_BITLABEL_REQ, "Bit Label Request" }, { FAST_SER_BITLABEL_RESP, "Bit Label Response" }, { FAST_SER_MGMT_REQ, "Management Request" }, { 0, NULL } }; static const value_string selfm_fastser_seq_vals[] = { { FAST_SER_SEQ_FIN, "FIN" }, { FAST_SER_SEQ_FIR, "FIR" }, { 0, NULL } }; static const value_string selfm_fastser_tagtype_vals[] = { { FAST_SER_TAGTYPE_FLOAT, "IEEE Floating Point" }, { FAST_SER_TAGTYPE_INT32, "32-bit Integer" }, { FAST_SER_TAGTYPE_INT16, "16-bit Integer" }, { FAST_SER_TAGTYPE_DIGWORD, "Digital Word" }, { FAST_SER_TAGTYPE_CHAR16, "16-bit Character Array" }, { 0, NULL } }; static const value_string selfm_fastser_unswrite_com_vals[] = { { FAST_SER_UNSWRITE_COM01, "COM01" }, { FAST_SER_UNSWRITE_COM02, "COM02" }, { FAST_SER_UNSWRITE_COM03, "COM03" }, { FAST_SER_UNSWRITE_COM04, "COM04" }, { FAST_SER_UNSWRITE_COM05, "COM05" }, { FAST_SER_UNSWRITE_COM06, "COM06" }, { FAST_SER_UNSWRITE_COM07, "COM07" }, { FAST_SER_UNSWRITE_COM08, "COM08" }, { FAST_SER_UNSWRITE_COM09, "COM09" }, { FAST_SER_UNSWRITE_COM10, "COM10" }, { FAST_SER_UNSWRITE_COM11, "COM11" }, { FAST_SER_UNSWRITE_COM12, "COM12" }, { FAST_SER_UNSWRITE_COM13, "COM13" }, { FAST_SER_UNSWRITE_COM14, "COM14" }, { FAST_SER_UNSWRITE_COM15, "COM15" }, { 0, NULL } }; /**********************************************************************************************************/ /* Clean all instances of 0xFFFF from Telnet payload to compensate for IAC control code (replace w/ 0xFF) */ /* Function Duplicated from packet-telnet.c (unescape_and_tvbuffify_telnet_option) */ /**********************************************************************************************************/ static tvbuff_t * clean_telnet_iac(packet_info *pinfo, tvbuff_t *tvb, int offset, int len) { tvbuff_t *telnet_tvb; guint8 *buf; const guint8 *spos; guint8 *dpos; int skip, l; spos=tvb_get_ptr(tvb, offset, len); buf=g_malloc(len); dpos=buf; skip=0; l=len; while(l>0){ if((spos[0]==0xff) && (spos[1]==0xff)){ skip++; l-=2; *(dpos++)=0xff; spos+=2; continue; } *(dpos++)=*(spos++); l--; } telnet_tvb = tvb_new_child_real_data(tvb, buf, len-skip, len-skip); tvb_set_free_cb(telnet_tvb, g_free); add_new_data_source(pinfo, telnet_tvb, "Processed Telnet Data"); return telnet_tvb; } /******************************************************************************************************/ /* Execute dissection of Fast Meter configuration rames independent of any GUI access of said frames */ /* Load configuration information into fm_config_frame struct */ /******************************************************************************************************/ static fm_config_frame* fmconfig_frame_fast(tvbuff_t *tvb) { /* Set up structures needed to add the protocol subtree and manage it */ guint count, offset = 0; fm_config_frame *frame; /* get a new frame and initialize it */ frame = wmem_alloc(wmem_file_scope(), sizeof(fm_config_frame)); /* Get data packet setup information from config message and copy into ai_info (if required) */ frame->cfg_cmd = tvb_get_ntohs(tvb, offset); /* skip length byte, position offset+2 */ frame->num_flags = tvb_get_guint8(tvb, offset+3); /* skip scale factor location, position offset+4 */ /* skip number of scale factors, position offset+5 */ frame->num_ai = tvb_get_guint8(tvb, offset+6); frame->num_ai_samples = tvb_get_guint8(tvb, offset+7); frame->num_dig = tvb_get_guint8(tvb, offset+8); frame->num_calc = tvb_get_guint8(tvb, offset+9); /* Update offset pointer */ offset += 10; /* Get data packet analog/timestamp/digital offsets and copy into ai_info */ frame->offset_ai = tvb_get_ntohs(tvb, offset); frame->offset_ts = tvb_get_ntohs(tvb, offset+2); frame->offset_dig = tvb_get_ntohs(tvb, offset+4); /* Update offset pointer */ offset += 6; frame->analogs = wmem_alloc(wmem_file_scope(), frame->num_ai * sizeof(fm_analog_info)); /* Get AI Channel Details and copy into ai_info */ for (count = 0; count < frame->num_ai; count++) { fm_analog_info *analog = &(frame->analogs[count]); tvb_memcpy(tvb, analog->name, offset, FM_CONFIG_ANA_CHNAME_LEN); analog->name[FM_CONFIG_ANA_CHNAME_LEN] = '\0'; /* Put a terminating null onto the end of the AI Channel name */ analog->type = tvb_get_guint8(tvb, offset+6); analog->sf_type = tvb_get_guint8(tvb, offset+7); analog->sf_offset = tvb_get_ntohs(tvb, offset+8); offset += 10; } return frame; } /******************************************************************************************************/ /* Code to Dissect Relay Definition Frames */ /******************************************************************************************************/ static int dissect_relaydef_frame(tvbuff_t *tvb, proto_tree *tree, int offset) { /* Set up structures needed to add the protocol subtree and manage it */ proto_item *relaydef_item, *relaydef_fm_item, *relaydef_flags_item, *relaydef_proto_item; proto_tree *relaydef_tree, *relaydef_fm_tree, *relaydef_flags_tree, *relaydef_proto_tree; guint8 len, num_proto, num_fm, num_flags; int count; len = tvb_get_guint8(tvb, offset); num_proto = tvb_get_guint8(tvb, offset+1); num_fm = tvb_get_guint8(tvb, offset+2); num_flags = tvb_get_guint8(tvb, offset+3); /* Add items to protocol tree specific to Relay Definition Block */ relaydef_item = proto_tree_add_text(tree, tvb, offset, len-2, "Relay Definition Block Details"); relaydef_tree = proto_item_add_subtree(relaydef_item, ett_selfm_relaydef); /* Reported length */ proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_len, tvb, offset, 1, ENC_BIG_ENDIAN); /* Reported Number of Protocols Supported */ relaydef_proto_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numproto, tvb, offset+1, 1, ENC_BIG_ENDIAN); relaydef_proto_tree = proto_item_add_subtree(relaydef_proto_item, ett_selfm_relaydef_proto); /* Reported Number of Fast Meter Commands Supported */ relaydef_fm_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numfm, tvb, offset+2, 1, ENC_BIG_ENDIAN); relaydef_fm_tree = proto_item_add_subtree(relaydef_fm_item, ett_selfm_relaydef_fm); /* Reported Number of Status Bit Flags Supported */ relaydef_flags_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numflags, tvb, offset+3, 1, ENC_BIG_ENDIAN); relaydef_flags_tree = proto_item_add_subtree(relaydef_flags_item, ett_selfm_relaydef_flags); /* Get our offset up-to-date */ offset += 4; /* Add each reported Fast Meter cfg/data message */ for (count = 1; count <= num_fm; count++) { proto_tree_add_item(relaydef_fm_tree, hf_selfm_relaydef_fmcfg_cmd, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(relaydef_fm_tree, hf_selfm_relaydef_fmdata_cmd, tvb, offset+2, 2, ENC_BIG_ENDIAN); offset += 4; } /* Add each reported status bit flag, along with corresponding response command */ for (count = 1; count <= num_flags; count++) { proto_tree_add_item(relaydef_flags_tree, hf_selfm_relaydef_statbit, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(relaydef_flags_tree, hf_selfm_relaydef_statbit_cmd, tvb, offset+2, 6, ENC_NA); offset += 8; } /* Add each supported protocol */ for (count = 1; count <= num_proto; count++) { proto_tree_add_item(relaydef_proto_tree, hf_selfm_relaydef_proto, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; } return tvb_length(tvb); } /******************************************************************************************************/ /* Code to dissect Fast Meter Configuration Frames */ /******************************************************************************************************/ static int dissect_fmconfig_frame(tvbuff_t *tvb, proto_tree *tree, int offset) { /* Set up structures needed to add the protocol subtree and manage it */ proto_item *fmconfig_item, *fmconfig_ai_item=NULL; proto_tree *fmconfig_tree, *fmconfig_ai_tree=NULL; guint count; guint8 len, num_ai; gchar ai_name[FM_CONFIG_ANA_CHNAME_LEN+1]; /* 6 Characters + a Null */ len = tvb_get_guint8(tvb, offset); /* skip num_flags, position offset+1 */ /* skip sf_loc, position offset+2 */ /* skip num_sf, position offset+3 */ num_ai = tvb_get_guint8(tvb, offset+4); /* skip num_samp, position offset+5 */ /* skip num_dig, position offset+6 */ /* skip num_calc, position offset+7 */ fmconfig_item = proto_tree_add_text(tree, tvb, offset, len, "Fast Meter Configuration Details"); fmconfig_tree = proto_item_add_subtree(fmconfig_item, ett_selfm_fmconfig); /* Add items to protocol tree specific to Fast Meter Configuration Block */ /* Get Setup Information for FM Config Block */ proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_numflags, tvb, offset+1, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_loc_sf, tvb, offset+2, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_sf, tvb, offset+3, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_ai, tvb, offset+4, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_samp, tvb, offset+5, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_dig, tvb, offset+6, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_calc, tvb, offset+7, 1, ENC_BIG_ENDIAN); /* Update offset pointer */ offset += 8; /* Add data packet offsets to tree and update offset pointer */ proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_ai, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_ts, tvb, offset+2, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_dig, tvb, offset+4, 2, ENC_BIG_ENDIAN); offset += 6; /* Get AI Channel Details */ for (count = 0; count < num_ai; count++) { tvb_memcpy(tvb, &ai_name, offset, 6); ai_name[FM_CONFIG_ANA_CHNAME_LEN] = '\0'; /* Put a terminating null onto the end of the AI name, in case none exists */ fmconfig_ai_item = proto_tree_add_text(fmconfig_tree, tvb, offset, 10, "Analog Channel: %s", ai_name); fmconfig_ai_tree = proto_item_add_subtree(fmconfig_ai_item, ett_selfm_fmconfig_ai); /* Add Channel Name, Channel Data Type, Scale Factor Type and Scale Factor Offset to tree */ proto_tree_add_text(fmconfig_ai_tree, tvb, offset, 6, "Analog Channel Name: %s", ai_name); proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_type, tvb, offset+6, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_sf_type, tvb, offset+7, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_sf_ofs, tvb, offset+8, 2, ENC_BIG_ENDIAN); /* Update Offset Pointer */ offset += 10; } /* XXX - Need to decode any Calculation block instances here in a future version, based on num_calc */ return tvb_length(tvb); } /******************************************************************************************************/ /* Code to dissect Fast Meter Data Frames */ /* Formatting depends heavily on previously-encountered Configuration Frames so search array instances for them */ /******************************************************************************************************/ static int dissect_fmdata_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset, guint16 config_cmd_match) { /* Set up structures needed to add the protocol subtree and manage it */ proto_item *fmdata_item, *fmdata_ai_item=NULL, *fmdata_dig_item=NULL, *fmdata_ai_ch_item=NULL, *fmdata_dig_ch_item=NULL; proto_tree *fmdata_tree, *fmdata_ai_tree=NULL, *fmdata_dig_tree=NULL, *fmdata_ai_ch_tree=NULL, *fmdata_dig_ch_tree=NULL; guint8 len, i=0, j=0, ts_mon, ts_day, ts_year, ts_hour, ts_min, ts_sec; guint16 config_cmd, ts_msec, ai_int16val; gfloat ai_fpval, ai_sf_fp; gdouble ai_fpd_val; gboolean config_found = FALSE; fm_conversation *conv; fm_config_frame *cfg_data; gint cnt = 0, ch_size=0; len = tvb_get_guint8(tvb, offset); fmdata_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast Meter Data Details"); fmdata_tree = proto_item_add_subtree(fmdata_item, ett_selfm_fmdata); /* Reported length */ proto_tree_add_item(fmdata_tree, hf_selfm_fmdata_len, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* Search for previously-encountered Configuration information to dissect the frame */ { conv = p_get_proto_data(pinfo->fd, proto_selfm); if (conv) { wmem_slist_frame_t *frame = wmem_slist_front(conv->fm_config_frames); /* Cycle through possible instances of multiple fm_config_data_blocks, looking for match */ while (frame && !config_found) { cfg_data = wmem_slist_frame_data(frame); config_cmd = cfg_data->cfg_cmd; /* If the stored config_cmd matches the expected one we are looking for, mark that the config data was found */ if (config_cmd == config_cmd_match) { proto_item_append_text(fmdata_item, ", using frame number %"G_GUINT32_FORMAT" as Configuration Frame", cfg_data->fnum); config_found = TRUE; } frame = wmem_slist_frame_next(frame); } if (config_found) { /* Retrieve number of Status Flag bytes and setup tree */ if (cfg_data->num_flags == 1){ proto_tree_add_item(fmdata_tree, hf_selfm_fmdata_flagbyte, tvb, offset, 1, ENC_BIG_ENDIAN); /*offset += 1;*/ } cnt = cfg_data->num_ai; /* actual number of analog values to available to dissect */ /* Update our current tvb offset to the actual AI offset saved the Configuration message */ offset = cfg_data->offset_ai; /* Check that we actually have analog data to dissect */ if (cnt > 0) { /* Include decoding for each Sample provided for the Analog Channels */ for (j=0; j < cfg_data->num_ai_samples; j++) { /* Use different lookup strings, depending on how many samples are available per Analog Channel */ if (cfg_data->num_ai_samples == 1) { fmdata_ai_item = proto_tree_add_text(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples), "Analog Channels (%d), Sample: %d (%s)", cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples1_vals, "Unknown")); fmdata_ai_tree = proto_item_add_subtree(fmdata_ai_item, ett_selfm_fmdata_ai); } else if (cfg_data->num_ai_samples == 2) { fmdata_ai_item = proto_tree_add_text(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples), "Analog Channels (%d), Sample: %d (%s)", cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples2_vals, "Unknown")); fmdata_ai_tree = proto_item_add_subtree(fmdata_ai_item, ett_selfm_fmdata_ai); } else if (cfg_data->num_ai_samples == 4) { fmdata_ai_item = proto_tree_add_text(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples), "Analog Channels (%d), Sample: %d (%s)", cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples4_vals, "Unknown")); fmdata_ai_tree = proto_item_add_subtree(fmdata_ai_item, ett_selfm_fmdata_ai); } /* For each analog channel we encounter... */ for (i = 0; i < cnt; i++) { fm_analog_info *ai = &(cfg_data->analogs[i]); /* Channel size (in bytes) determined by data type */ switch (ai->type) { case FM_CONFIG_ANA_CHTYPE_INT16: ch_size = FM_CONFIG_ANA_CHTYPE_INT16_LEN; /* 2 bytes */ break; case FM_CONFIG_ANA_CHTYPE_FP: ch_size = FM_CONFIG_ANA_CHTYPE_FP_LEN; /* 4 bytes */ break; case FM_CONFIG_ANA_CHTYPE_FPD: ch_size = FM_CONFIG_ANA_CHTYPE_FPD_LEN; /* 8 bytes */ break; default: break; } /* Build sub-tree for each Analog Channel */ fmdata_ai_ch_item = proto_tree_add_text(fmdata_ai_tree, tvb, offset, ch_size, "Analog Channel %d: %s", i+1, ai->name); fmdata_ai_ch_tree = proto_item_add_subtree(fmdata_ai_ch_item, ett_selfm_fmdata_ai_ch); /* XXX - Need more decoding options here for different data types, but I need packet capture examples first */ /* Decode analog value appropriately, according to data type */ switch (ai->type) { /* Channel type is 16-bit Integer */ case FM_CONFIG_ANA_CHTYPE_INT16: ai_int16val = tvb_get_ntohs(tvb, offset); /* If we've got a scale factor offset, apply it before printing the analog */ if ((ai->sf_offset != 0) && (ai->sf_type == FM_CONFIG_ANA_SFTYPE_FP)){ ai_sf_fp = tvb_get_ntohieee_float(tvb, ai->sf_offset); proto_tree_add_float(fmdata_ai_ch_tree, hf_selfm_fmdata_ai_sf_fp, tvb, ai->sf_offset, 4, ai_sf_fp); } else { ai_sf_fp = 1; } proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value (Raw): %d", ai_int16val); proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value (w/ Scale Factor): %f", ((gfloat)ai_int16val*ai_sf_fp)); offset += ch_size; break; /* Channel type is IEEE Floating point */ case FM_CONFIG_ANA_CHTYPE_FP: ai_fpval = tvb_get_ntohieee_float(tvb, offset); proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value: %f", ai_fpval); offset += ch_size; break; /* Channel type is Double IEEE Floating point */ case FM_CONFIG_ANA_CHTYPE_FPD: ai_fpd_val = tvb_get_ntohieee_double(tvb, offset); proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value: %f", ai_fpd_val); offset += ch_size; break; } /* channel type */ } /* number of analog channels */ } /* number of samples */ } /* there were analogs */ /* Check if we have a time-stamp in this message */ if (cfg_data->offset_ts != 0xFFFF) { /* Retrieve timestamp from 8-byte format */ /* Stored as: month, day, year (xx), hr, min, sec, msec (16-bit) */ ts_mon = tvb_get_guint8(tvb, offset); ts_day = tvb_get_guint8(tvb, offset+1); ts_year = tvb_get_guint8(tvb, offset+2); ts_hour = tvb_get_guint8(tvb, offset+3); ts_min = tvb_get_guint8(tvb, offset+4); ts_sec = tvb_get_guint8(tvb, offset+5); ts_msec = tvb_get_ntohs(tvb, offset+6); proto_tree_add_text(fmdata_tree, tvb, offset, 8, "Timestamp: %.2d/%.2d/%.2d %.2d:%.2d:%.2d.%.3d", ts_mon, ts_day, ts_year, ts_hour, ts_min, ts_sec, ts_msec); offset += 8; } /* Check that we actually have digital data */ if (cfg_data->num_dig > 0) { fmdata_dig_item = proto_tree_add_text(fmdata_tree, tvb, offset, cfg_data->num_dig, "Digital Channels (%d)", cfg_data->num_dig); fmdata_dig_tree = proto_item_add_subtree(fmdata_dig_item, ett_selfm_fmdata_dig); for (i=0; i < cfg_data->num_dig; i++) { fmdata_dig_ch_item = proto_tree_add_text(fmdata_dig_tree, tvb, offset, 1, "Digital Word Bit Row: %d", i+1); fmdata_dig_ch_tree = proto_item_add_subtree(fmdata_dig_ch_item, ett_selfm_fmdata_dig_ch); proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b0, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b1, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b2, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b3, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b4, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b5, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b6, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b7, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; } } /* digital data was available */ } /* matching config frame message was found */ } /* config data found */ if (!config_found) { proto_item_append_text(fmdata_item, ", No Fast Meter Configuration frame found"); return 0; } } return tvb_length(tvb); } /******************************************************************************************************/ /* Code to Dissect Fast Operate Configuration Frames */ /******************************************************************************************************/ static int dissect_foconfig_frame(tvbuff_t *tvb, proto_tree *tree, int offset) { /* Set up structures needed to add the protocol subtree and manage it */ proto_item *foconfig_item, *foconfig_brkr_item, *foconfig_rb_item; proto_tree *foconfig_tree, *foconfig_brkr_tree=NULL, *foconfig_rb_tree=NULL; guint count; guint8 len, num_brkr, prb_supp; guint16 num_rb; len = tvb_get_guint8(tvb, offset); num_brkr = tvb_get_guint8(tvb, offset+1); num_rb = tvb_get_ntohs(tvb, offset+2); prb_supp = tvb_get_guint8(tvb, offset+4); foconfig_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast Operate Configuration Details"); foconfig_tree = proto_item_add_subtree(foconfig_item, ett_selfm_foconfig); /* Add items to protocol tree specific to Fast Operate Configuration Block */ /* Reported length */ proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN); /* Supported Breaker Bits */ foconfig_brkr_item = proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_num_brkr, tvb, offset+1, 1, ENC_BIG_ENDIAN); /* Supported Remote Bits */ foconfig_rb_item = proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_num_rb, tvb, offset+2, 2, ENC_BIG_ENDIAN); /* Add "Remote Bit Pulse Supported?" and "Reserved Bit" to Tree */ proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_prb_supp, tvb, offset+4, 1, ENC_BIG_ENDIAN); proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_reserved, tvb, offset+5, 1, ENC_BIG_ENDIAN); /* Update offset pointer */ offset += 6; /* Get Breaker Bit Command Details */ for (count = 1; count <= num_brkr; count++) { foconfig_brkr_tree = proto_item_add_subtree(foconfig_brkr_item, ett_selfm_foconfig_brkr); /* Add Breaker Open/Close commands to tree */ proto_tree_add_item(foconfig_brkr_tree, hf_selfm_foconfig_brkr_open, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(foconfig_brkr_tree, hf_selfm_foconfig_brkr_close, tvb, offset+1, 1, ENC_BIG_ENDIAN); offset += 2; } /* Get Remote Bit Command Details */ for (count = 1; count <= num_rb; count++) { foconfig_rb_tree = proto_item_add_subtree(foconfig_rb_item, ett_selfm_foconfig_rb); /* Add "Remote Bit Set" command to tree */ proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset, 1, ENC_BIG_ENDIAN); /* Print "Remote Bit Clear" command to tree */ proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset+1, 1, ENC_BIG_ENDIAN); /* If Remote Bit "pulse" is supported, retrieve that command as well */ if (prb_supp) { proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset+2, 1, ENC_BIG_ENDIAN); offset += 3; } else{ offset += 2; } } return tvb_length(tvb); } /******************************************************************************************************/ /* Code to Dissect Fast Operate (Remote Bit or Breaker Bit) Frames */ /******************************************************************************************************/ static int dissect_fastop_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset) { /* Set up structures needed to add the protocol subtree and manage it */ proto_item *fastop_item; proto_tree *fastop_tree; guint8 len, opcode; guint16 msg_type; msg_type = tvb_get_ntohs(tvb, offset-2); len = tvb_get_guint8(tvb, offset); fastop_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast Operate Details"); fastop_tree = proto_item_add_subtree(fastop_item, ett_selfm_fastop); /* Add Reported length to tree*/ proto_tree_add_item(fastop_tree, hf_selfm_fastop_len, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* Operate Code */ opcode = tvb_get_guint8(tvb, offset); /* Use different lookup table for different msg_type */ if (msg_type == CMD_FASTOP_RB_CTRL) { proto_tree_add_item(fastop_tree, hf_selfm_fastop_rb_code, tvb, offset, 1, ENC_BIG_ENDIAN); /* Append Column Info w/ Control Code Code */ if (check_col(pinfo->cinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_const(opcode, selfm_fo_rb_vals, "Unknown Control Code")); } } else if (msg_type == CMD_FASTOP_BR_CTRL) { proto_tree_add_item(fastop_tree, hf_selfm_fastop_br_code, tvb, offset, 1, ENC_BIG_ENDIAN); /* Append Column Info w/ Control Code Code */ if (check_col(pinfo->cinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_const(opcode, selfm_fo_br_vals, "Unknown Control Code")); } } offset += 1; /* Operate Code Validation */ proto_tree_add_item(fastop_tree, hf_selfm_fastop_valid, tvb, offset, 1, ENC_BIG_ENDIAN); return tvb_length(tvb); } /******************************************************************************************************/ /* Code to dissect Fast SER Frames */ /* Some protocol structure is guessed at */ /******************************************************************************************************/ static int dissect_fastser_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset) { /* Set up structures needed to add the protocol subtree and manage it */ proto_item *fastser_item, *fastser_def_fc_item=NULL, *fastser_seq_item=NULL, *fastser_elementlist_item=NULL; proto_item *fastser_element_item=NULL, *fastser_datareg_item=NULL, *fastser_tag_item=NULL; proto_tree *fastser_tree, *fastser_def_fc_tree=NULL, *fastser_seq_tree=NULL, *fastser_elementlist_tree=NULL; proto_tree *fastser_element_tree=NULL, *fastser_datareg_tree=NULL, *fastser_tag_tree=NULL; gint cnt, num_elements, elmt_status32_ofs=0, elmt_status; guint8 len, funccode, seq, rx_num_fc, tx_num_fc; guint8 seq_cnt, seq_fir, seq_fin, elmt_idx, fc_enable; guint8 *fid_str_ptr, *rid_str_ptr, *region_name_ptr, *tag_name_ptr; guint16 base_addr, num_addr, num_reg, addr1, addr2; guint32 tod_ms, elmt_status32, elmt_ts_offset; len = tvb_get_guint8(tvb, offset); fastser_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast SER Message Details"); fastser_tree = proto_item_add_subtree(fastser_item, ett_selfm_fastser); /* Reported length */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_len, tvb, offset, 1, ENC_BIG_ENDIAN); /* 5-byte Future Routing Address */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_routing_addr, tvb, offset+1, 5, ENC_NA); offset += 6; /* Add Status Byte to tree */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_status, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* Get Function Code, add to tree */ funccode = tvb_get_guint8(tvb, offset); proto_tree_add_item(fastser_tree, hf_selfm_fastser_funccode, tvb, offset, 1, ENC_BIG_ENDIAN); /* Append Column Info w/ Function Code */ if (check_col(pinfo->cinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_const(funccode, selfm_fastser_func_code_vals, "Unknown Function Code")); } offset += 1; /* Get Sequence Byte, add to Tree */ /* Some more decoding may be required here, format of this byte for multi-frame messages is guessed */ /* based on observations from communications */ /* 0x80 - First Message */ /* 0x40 - Final Message */ /* 0x3f - Sequence Count */ /* Sequence Byte(s): */ /* SEL-2411 */ /* 0xC0 (11000000) - single frame req message m->r or r->m */ /* 0x80 (10000000) - multi-frame message r->m */ /* 0xC1 (11000001) - next scan after multi-frame message response m->r */ /* 0x41 (01000001) - final response of multi-frame message r->m */ /* SEL-735 */ /* 0xC0 (11000000) - single frame req message m->r or r->m */ /* 0x80 (10000000) - multi-frame message r->m */ /* 0xC1 (11000001) - next scan after multi-frame message response m->r */ /* 0x01 (00000001) - continued response of multi-frame message r->m */ /* 0xC2 (11000010) - next scan after multi-frame message response m->r */ /* 0x02 (00000010) - continued response of multi-frame message r->m */ /* 0xC3 (11000011) - next scan after multi-frame message response m->r */ /* 0x43 (01000011) - final response of multi-frame message r->m */ /* SEL-421 */ /* 0xC0 (11000000) - single frame req message m->r or r->m */ /* 0x80 (10000000) - multi-frame message r->m */ /* 0xC1 (11000001) - next scan after multi-frame message response m->r */ /* 0x01 (00000001) - continued response of multi-frame message r->m */ /* 0xC2 (11000010) - next scan after multi-frame message response m->r */ /* 0x02 (00000010) - continued response of multi-frame message r->m */ /* 0xC3 (11000011) - next scan after multi-frame message response m->r */ /* 0x03 (00000011) - continued response of multi-frame message r->m */ /* 0xC4 (11000100) - next scan after multi-frame message response m->r */ /* 0x04 (00000100) - continued response of multi-frame message r->m */ /* 0xC5 (11000100) - next scan after multi-frame message response m->r */ /* 0x45 (01000101) - final response of multi-frame message r->m */ seq = tvb_get_guint8(tvb, offset); seq_cnt = seq & FAST_SER_SEQ_CNT; seq_fir = seq & FAST_SER_SEQ_FIR; seq_fin = seq & FAST_SER_SEQ_FIN; fastser_seq_item = proto_tree_add_uint_format(fastser_tree, hf_selfm_fastser_seq, tvb, offset, 1, seq, "Sequence Byte: 0x%02x (", seq); if (seq_fir) proto_item_append_text(fastser_seq_item, "FIR, "); if (seq_fin) proto_item_append_text(fastser_seq_item, "FIN, "); proto_item_append_text(fastser_seq_item, "Count %u)", seq_cnt); fastser_seq_tree = proto_item_add_subtree(fastser_seq_item, ett_selfm_fastser_seq); proto_tree_add_boolean(fastser_seq_tree, hf_selfm_fastser_seq_fir, tvb, offset, 1, seq); proto_tree_add_boolean(fastser_seq_tree, hf_selfm_fastser_seq_fin, tvb, offset, 1, seq); proto_tree_add_item(fastser_seq_tree, hf_selfm_fastser_seq_cnt, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* Add Response Number to tree */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_resp_num, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* Depending on Function Code used, remaining section of packet will be handled differently. */ switch (funccode) { case FAST_SER_MESSAGE_DEF_ACK: /* 0x80 (resp to 0x00) - Fast SER Message Definition Acknowledge */ /* Routing Support */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_route_sup, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* RX / TX Status */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_rx_stat, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_tx_stat, tvb, offset+1, 1, ENC_BIG_ENDIAN); offset += 2; /* Max Frames RX/TX */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_rx_maxfr, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_tx_maxfr, tvb, offset+1, 1, ENC_BIG_ENDIAN); offset += 2; /* 6 bytes of reserved space */ offset += 6; /* Number of Supported RX Function Codes */ rx_num_fc = tvb_get_guint8(tvb, offset); fastser_def_fc_item = proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_rx_num_fc, tvb, offset, 1, ENC_BIG_ENDIAN); fastser_def_fc_tree = proto_item_add_subtree(fastser_def_fc_item, ett_selfm_fastser_def_fc); offset += 1; /* Add Supported RX Function Codes to tree */ for (cnt=0; cntcinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Function to Enable (%#x)", fc_enable); } /* 3-byte Function Code data */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_en_fc_data, tvb, offset+1, 3, ENC_NA); offset += 4; break; case FAST_SER_DIS_UNS_DATA: /* 0x02 - Disable Unsolicited Data Transfers */ /* Function code to disable */ fc_enable = tvb_get_guint8(tvb, offset); proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_dis_fc, tvb, offset, 1, ENC_BIG_ENDIAN); /* Append Column Info w/ "Disable" Function Code */ if (check_col(pinfo->cinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Function to Disable (%#x)", fc_enable); } /* 1-byte Function Code data */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_dis_fc_data, tvb, offset+1, 1, ENC_NA); offset += 2; break; case FAST_SER_READ_REQ: /* 0x10 - Read Request - unknown full structure */ offset += 2; /* 2 unknown bytes */ base_addr = tvb_get_ntohs(tvb, offset); /* unknown - 16-bit field with base address to read? */ /* Append Column Info w/ Base Address */ if (check_col(pinfo->cinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr); } proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_numaddr, tvb, offset+2, 2, ENC_BIG_ENDIAN); offset += 4; break; case FAST_SER_READ_RESP: /* 0x90 (resp to 0x10) - Read Response - unknown full structure */ offset += 2; /* 2 unknown bytes */ base_addr = tvb_get_ntohs(tvb, offset); /* unknown - 16-bit field with base address to read? */ num_addr = tvb_get_ntohs(tvb, offset+2); /* unknown - 16-bit field with number of 16-bit addresses to read? */ /* Append Column Info w/ Base Address */ if (check_col(pinfo->cinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr); } proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_numaddr, tvb, offset+2, 2, ENC_BIG_ENDIAN); offset += 4; /* Skip over read response data, we'll be able to format and decode this later once specifications are out */ offset += num_addr*2; break; case FAST_SER_UNS_RESP: /* 0x18 - Unsolicited Fast SER Data Response */ /* 4 bytes - "Origination Path" */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_orig, tvb, offset, 4, ENC_NA); offset += 4; /* Timestamp: 2-byte day-of-year, 2-byte year, 4-byte time-of-day in milliseconds */ /* XXX - We can use a built-in function to convert the tod_ms to a readable time format, is there anything for day_of_year? */ tod_ms = tvb_get_ntohl(tvb, offset+4); proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_doy, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_year, tvb, offset+2, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_todms, tvb, offset+4, 4, ENC_BIG_ENDIAN); proto_tree_add_text(fastser_tree, tvb, offset+4, 4, "Time of Day (decoded): %s", time_msecs_to_str(tod_ms)); offset += 8; /* Build element tree */ /* Determine the number of elements returned in this unsolicited message */ /* The general formula is: (Length - 34) / 4 */ num_elements = (len-34) / 4; fastser_elementlist_item = proto_tree_add_uint(fastser_tree, hf_selfm_fastser_unsresp_num_elmt, tvb, offset, (4*num_elements), num_elements); fastser_elementlist_tree = proto_item_add_subtree(fastser_elementlist_item, ett_selfm_fastser_element_list); /* "Reported New Status" word for up to 32 index elements is following the upcoming 0xFFFFFFFE End-of-record indicator Search for that indicator and use the detected tvb offset+4 to retrieve the proper 32-bit status word. Save this word for use in the element index printing but don't print the word itself until the end of the tree dissection */ for (cnt = offset; cnt < len; cnt++) { if (tvb_memeql(tvb, cnt, "\xFF\xFF\xFF\xFE", 4) == 0) { elmt_status32_ofs = cnt+4; } } elmt_status32 = tvb_get_ntohl(tvb, elmt_status32_ofs ); /* Cycle through each element we have detected that exists in the SER record */ for (cnt=0; cnt> cnt) & 0x01); /* Build the tree */ fastser_element_item = proto_tree_add_text(fastser_elementlist_tree, tvb, offset, 4, "Reported Event %d (Index: %d, New State: %s)", cnt+1, elmt_idx, val_to_str_const(elmt_status, selfm_ser_status_vals, "Unknown")); fastser_element_tree = proto_item_add_subtree(fastser_element_item, ett_selfm_fastser_element); /* Add Index Number and Timestamp offset to tree */ proto_tree_add_item(fastser_element_tree, hf_selfm_fastser_unsresp_elmt_idx, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_element_tree, hf_selfm_fastser_unsresp_elmt_ts_ofs, tvb, offset+1, 3, ENC_NA); proto_tree_add_text(fastser_element_tree, tvb, offset+1, 3, "SER Element Timestamp Offset (decoded): %s", time_msecs_to_str(tod_ms + (elmt_ts_offset/1000))); proto_tree_add_uint(fastser_element_tree, hf_selfm_fastser_unsresp_elmt_status, tvb, elmt_status32_ofs, 4, elmt_status); offset += 4; } /* 4-byte End-of-Record Terminator 0xFFFFFFFE */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_eor, tvb, offset, 4, ENC_NA); offset += 4; /* 4-byte Element Status word */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_elmt_statword, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; break; case FAST_SER_UNS_WRITE: /* 0x20 - Unsolicited Write */ /* Write Address Region #1 and #2, along with number of 16-bit registers */ addr1 = tvb_get_ntohs(tvb, offset); addr2 = tvb_get_ntohs(tvb, offset+2); num_reg = tvb_get_ntohs(tvb, offset+4); /* Append Column Info w/ Address Information */ if (check_col(pinfo->cinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x, %#x", addr1, addr2); } proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_addr1, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_addr2, tvb, offset+2, 2, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_num_reg, tvb, offset+4, 2, ENC_BIG_ENDIAN); offset += 6; /* For the number of registers, step through and retrieve/print each 16-bit component */ for (cnt=0; cnt < num_reg; cnt++) { proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_reg_val, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; } break; case FAST_SER_DEVDESC_RESP: /* 0xB0 - Device Description Response - unknown full structure */ fid_str_ptr = tvb_get_ephemeral_string(tvb, offset, 50); /* Add FID / RID ASCII data to tree */ rid_str_ptr = tvb_get_ephemeral_string(tvb, offset+50, 40); proto_tree_add_text(fastser_tree, tvb, offset, 50, "FID: %s", fid_str_ptr); proto_tree_add_text(fastser_tree, tvb, offset+50, 40, "RID: %s", rid_str_ptr); offset += 90; /* unknown - 16-bit field with number of data regions? */ num_reg = tvb_get_ntohs(tvb, offset); proto_tree_add_item(fastser_tree, hf_selfm_fastser_devdesc_num_reg, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* 2 unknown bytes */ offset += 2; /* exact arrangement of these regions are unknown, but I think believe we have a 12 byte region name, followed by 16-bit base and address count fields */ for (cnt=0; cntcinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr); } break; case FAST_SER_DATAFMT_RESP: /* 0xB1 - Data Format Response - unknown full structure */ /* 2 unknown bytes */ offset += 2; /* unknown - 16-bit field with base address to read? */ base_addr = tvb_get_ntohs(tvb, offset); proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* Append Column Info w/ Base Address */ if (check_col(pinfo->cinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr); } /* unknown - 16-bit field with number of tags to follow? */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_datafmt_resp_num_tag, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; while ((tvb_reported_length_remaining(tvb, offset)) > 2) { tag_name_ptr = tvb_get_ephemeral_string(tvb, offset, 11); /* unknown field - Tag name 11 bytes? */ fastser_tag_item = proto_tree_add_text(fastser_tree, tvb, offset, 14, "Tag Name: %s", tag_name_ptr); fastser_tag_tree = proto_item_add_subtree(fastser_tag_item, ett_selfm_fastser_tag); /* Unknown 3 bytes that follow */ /* 01 - Quantity of Values within Tag */ /* 02 - Unused ??? */ /* 03 - Data Type of Tag */ proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_datafmt_resp_tag_qty, tvb, offset+11, 1, ENC_BIG_ENDIAN); proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_datafmt_resp_tag_type, tvb, offset+13, 1, ENC_BIG_ENDIAN); offset += 14; } break; case FAST_SER_BITLABEL_REQ: /* 0x33 - Bit Label Request - unknown full structure */ /* 2 unknown bytes */ offset += 2; /* unknown - 16-bit field with base address to read? */ base_addr = tvb_get_ntohs(tvb, offset); proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* Append Column Info w/ Base Address */ if (check_col(pinfo->cinfo, COL_INFO)) { col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr); } break; case FAST_SER_BITLABEL_RESP: /* 0xB3 - Bit Label Response - unknown full structure */ /* Variable length string containing the names of 8 digital bits. Each name is max 8 chars and each is null-seperated */ proto_tree_add_text(fastser_tree, tvb, offset, (tvb_reported_length_remaining(tvb, offset)-2), "Bit Label Data %s", tvb_format_text(tvb, offset, (tvb_reported_length_remaining(tvb, offset)-2))); /* Skip over variable-length string */ offset += (tvb_reported_length_remaining(tvb, offset)-2); default: break; } /* func_code */ /* XXX - Should eventually get a function here to validate this CRC16 */ proto_tree_add_item(fastser_tree, hf_selfm_fastser_crc16, tvb, offset, 2, ENC_BIG_ENDIAN); return tvb_length(tvb); } /******************************************************************************************************/ /* Code to dissect SEL Fast Message Protocol packets */ /* Will call other sub-dissectors, as needed */ /******************************************************************************************************/ static void dissect_selfm(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) { /* Set up structures needed to add the protocol subtree and manage it */ proto_item *selfm_item=NULL; proto_tree *selfm_tree=NULL; int offset=0; guint16 msg_type, len; tvbuff_t *selfm_tvb; /* Make entries in Protocol column on summary display */ col_set_str(pinfo->cinfo, COL_PROTOCOL, "SEL Fast Msg"); col_clear(pinfo->cinfo, COL_INFO); len = tvb_length(tvb); /* If this is a Telnet-encapsulated Ethernet, let's clean out the IAC 0xFF instances */ if ((pinfo->srcport) && selfm_telnet_clean) { selfm_tvb=clean_telnet_iac(pinfo, tvb, offset, len); } else { selfm_tvb = tvb_new_subset( tvb, offset, len, len); } msg_type = tvb_get_ntohs(selfm_tvb, offset); /* Configuration (0xA5C1, 0xA5C2, 0xA5C3) and corresponding data frames (0xA5D1, 0xA5D2, 0xA5D3) * need special treatment during the first run: * For Fast Meter Configuration frames (0xA5C1), a 'fm_config_frame' struct is created to hold the * information necessary to decode subsequent Fast Meter Data frames (0xA5D1). A pointer to this * struct is saved in the conversation and is copied to the per-packet information if a * Fast Meter Data frame is dissected. */ if (!pinfo->fd->flags.visited) { conversation_t *conversation; fm_conversation *conv_data; /* Find a conversation, create a new if no one exists */ conversation = find_or_create_conversation(pinfo); conv_data = conversation_get_proto_data(conversation, proto_selfm); if (conv_data == NULL) { conv_data = wmem_alloc(wmem_file_scope(), sizeof(fm_conversation)); conv_data->fm_config_frames = wmem_slist_new(wmem_file_scope()); conversation_add_proto_data(conversation, proto_selfm, (void *)conv_data); } p_add_proto_data(pinfo->fd, proto_selfm, conv_data); if ((CMD_FM_CONFIG == msg_type) || (CMD_DFM_CONFIG == msg_type) || (CMD_PDFM_CONFIG == msg_type)) { /* Fill the fm_config_frame */ fm_config_frame *frame_ptr = fmconfig_frame_fast(selfm_tvb); frame_ptr->fnum = pinfo->fd->num; wmem_slist_prepend(conv_data->fm_config_frames, frame_ptr); } } /* if (!visited) */ if (tree) { selfm_item = proto_tree_add_protocol_format(tree, proto_selfm, selfm_tvb, 0, len, "SEL Fast Message"); selfm_tree = proto_item_add_subtree(selfm_item, ett_selfm); if (check_col(pinfo->cinfo, COL_INFO)) { col_clear(pinfo->cinfo, COL_INFO); /* clear out stuff in the info column */ col_add_fstr(pinfo->cinfo, COL_INFO, "%s", val_to_str_const(msg_type, selfm_msgtype_vals, "Unknown Message Type")); } /* Add Message Type to Protocol Tree */ proto_tree_add_item(selfm_tree, hf_selfm_msgtype, selfm_tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* Determine correct message type and call appropriate dissector */ if (tvb_reported_length_remaining(selfm_tvb, offset) > 0) { switch (msg_type) { case CMD_RELAY_DEF: dissect_relaydef_frame(selfm_tvb, selfm_tree, offset); break; case CMD_FM_CONFIG: case CMD_DFM_CONFIG: case CMD_PDFM_CONFIG: dissect_fmconfig_frame(selfm_tvb, selfm_tree, offset); break; case CMD_FM_DATA: dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_FM_CONFIG); break; case CMD_DFM_DATA: dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_DFM_CONFIG); break; case CMD_PDFM_DATA: dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_PDFM_CONFIG); break; case CMD_FASTOP_CONFIG: dissect_foconfig_frame(selfm_tvb, selfm_tree, offset); break; case CMD_FAST_SER: dissect_fastser_frame(selfm_tvb, selfm_tree, pinfo, offset); break; case CMD_FASTOP_RB_CTRL: case CMD_FASTOP_BR_CTRL: dissect_fastop_frame(selfm_tvb, selfm_tree, pinfo, offset); break; default: break; } /* msg_type */ } /* remaining length > 0 */ } /* tree */ } /******************************************************************************************************/ /* Return length of SEL Protocol over TCP message (used for re-assembly) */ /* SEL Protocol "Scan" messages are generally 2-bytes in length and only include a 16-bit message type */ /* SEL Protocol "Response" messages include a "length" byte in each response message but an issue */ /* is that the "length" byte does not always line up with the actual length of the data packet due to */ /* Telnet 0xFF pad bytes (as documented elsewhere). Make a best-guess "total size" effort here. */ /******************************************************************************************************/ static guint get_selfm_len(packet_info *pinfo _U_, tvbuff_t *tvb, int offset _U_) { guint message_len=0; /* message length, inclusive of header, data, crc */ guint16 msg_type; if (tvb_length(tvb) > 2) { msg_type = tvb_get_ntohs(tvb, 0); switch (msg_type) { case CMD_FM_CONFIG: /* 0xA5C1 messages have reported lengths, but extra 0xFF pad bytes strewn about in 'Telnet' mode */ /* Attempt to guess the length by using the num_ai (normal size 10 bytes) and num_calc (normal size 15 bytes) block fields */ /* If the number of scale factors is 0 (offset 5) then there will be 1 extra 0xFFs per num_ai (offset 6) */ /* Number of calculation blocks (offset 9) will typically produce a minimum of 20 bytes including padding */ /* 18 bytes of hardcoded data are: hdr(2), len, flag, sf_loc, sf_num, ai_num, samp_num, dig_num, num_calc, ai_ofs(2), ts_ofs(2), dig_ofs(2), pad, crc */ /* Only attempt to retrieve bytes that we know will exist */ if (tvb_length(tvb) > 10) { if (tvb_get_guint8(tvb, 5) != 0) { message_len = ((tvb_get_guint8(tvb, 6) * 10) + (tvb_get_guint8(tvb, 9) * 20) + 18); } else { message_len = ((tvb_get_guint8(tvb, 6) * 11) + (tvb_get_guint8(tvb, 9) * 20) + 18); } } /* Otherwise we can fall back on the length byte */ else { message_len = tvb_get_guint8(tvb, 2); } /* After calculating theoretical length, check if actual length of tvb is longer. In that case, use the tvb length */ if (message_len < tvb_length(tvb)) { message_len = tvb_length(tvb); } break; case CMD_DFM_CONFIG: case CMD_PDFM_CONFIG: /* 0xA5C2/C2 messages have reported lengths, but typically extra 0xFF pad bytes strewn about in Telnet mode */ /* Attempt to guess the length by using the num_ai (normal size 11 bytes) and harcoded fields */ /* 20 bytes of hardcoded data are: hdr(2), len, flag, sf_loc, sf_num, ai_num, samp_num, dig_num, num_calc, ai_ofs(2), ts_ofs(2), dig_ofs(4), pad, crc */ /* Only attempt to retrieve bytes that we know will exist */ if (tvb_length(tvb) > 7) { message_len = ((tvb_get_guint8(tvb, 6) * 11) + 20); } /* Otherwise we can fall back on the length byte */ else { message_len = tvb_get_guint8(tvb, 2); } /* After calculating theoretical length, check if actual length of tvb is longer. In that case, use the tvb length */ if (message_len < tvb_length(tvb)) { message_len = tvb_length(tvb); } break; case CMD_RELAY_DEF: case CMD_FM_DATA: case CMD_DFM_DATA: case CMD_PDFM_DATA: case CMD_FAST_SER: /* Theses messages include length byte and don't generally contain 0xFF data */ message_len = tvb_get_guint8(tvb, 2); /* After processing length byte, check if actual length of tvb is longer. In that case, use the tvb length */ if (message_len < tvb_length(tvb)) { message_len = tvb_length(tvb); } break; default: /* For remaining packet types, fall back whatever length is greater, len byte from packet or tvb length */ if (tvb_get_guint8(tvb, 2) > tvb_length(tvb)) { message_len = tvb_get_guint8(tvb, 2); } else { message_len = tvb_length(tvb); } break; } } /* for 2-byte poll messages, manually set the length to 2 */ else if (tvb_length(tvb) == 2) { message_len = 2; } return message_len; } /******************************************************************************************************/ /* Dissect (and possibly Re-assemble) SEL protocol payload data */ /******************************************************************************************************/ static gboolean dissect_selfm_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { gint length = tvb_length(tvb); /* Check for a SEL FM packet. It should begin with 0xA5 */ if(length < 2 || tvb_get_guint8(tvb, 0) != 0xA5) { /* Not a SEL Protocol packet, just happened to use the same port */ return FALSE; } tcp_dissect_pdus(tvb, pinfo, tree, selfm_desegment, 2, get_selfm_len, dissect_selfm); return TRUE; } /******************************************************************************************************/ /* Dissect "simple" SEL protocol payload (no TCP re-assembly) */ /******************************************************************************************************/ static gboolean dissect_selfm_simple(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { gint length = tvb_length(tvb); /* Check for a SEL FM packet. It should begin with 0xA5 */ if(length < 2 || tvb_get_guint8(tvb, 0) != 0xA5) { /* Not a SEL Protocol packet, just happened to use the same port */ return FALSE; } dissect_selfm(tvb, pinfo, tree); return TRUE; } /******************************************************************************************************/ /* Register the protocol with Wireshark */ /******************************************************************************************************/ void proto_reg_handoff_selfm(void); void proto_register_selfm(void) { /* SEL Protocol header fields */ static hf_register_info selfm_hf[] = { { &hf_selfm_msgtype, { "Message Type", "selfm.msgtype", FT_UINT16, BASE_HEX|BASE_EXT_STRING, &selfm_msgtype_vals_ext, 0x0, NULL, HFILL }}, /* "Relay Definition" specific fields */ { &hf_selfm_relaydef_len, { "Length", "selfm.relaydef.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_relaydef_numproto, { "Number of Protocols", "selfm.relaydef.numproto", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_relaydef_numfm, { "Number of Fast Meter Messages", "selfm.relaydef.numfm", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_relaydef_numflags, { "Number of Status Flags", "selfm.relaydef.numflags", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_relaydef_fmcfg_cmd, { "Fast Meter Config Command", "selfm.relaydef.fmcfg_cmd", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_relaydef_fmdata_cmd, { "Fast Meter Data Command", "selfm.relaydef.fmdata_cmd", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_relaydef_statbit, { "Status Flag Bit", "selfm.relaydef.status_bit", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_relaydef_statbit_cmd, { "Status Flag Bit Response Command", "selfm.relaydef.status_bit_cmd", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_relaydef_proto, { "Supported Protocol", "selfm.relaydef.proto", FT_UINT16, BASE_HEX|BASE_EXT_STRING, &selfm_relaydef_proto_vals_ext, 0x0, NULL, HFILL }}, /* "Fast Meter Configuration" specific fields */ { &hf_selfm_fmconfig_len, { "Length", "selfm.fmconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_numflags, { "Number of Status Flags", "selfm.fmconfig.numflags", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_loc_sf, { "Location of Scale Factor", "selfm.fmconfig.loc_sf", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_sfloc_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_num_sf, { "Number of Scale Factors", "selfm.fmconfig.num_sf", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_num_ai, { "Number of Analog Input Channels", "selfm.fmconfig.num_ai", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_num_samp, { "Number of Samples per AI Channel", "selfm.fmconfig.num_samp", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_num_dig, { "Number of Digital Banks", "selfm.fmconfig.num_dig", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_num_calc, { "Number of Calculation Blocks", "selfm.fmconfig.num_calc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_ofs_ai, { "First Analog Channel Offset", "selfm.fmconfig.ofs_ai", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_ofs_ts, { "Timestamp Offset", "selfm.fmconfig.ofs_ts", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_ofs_dig, { "First Digital Bank Offset", "selfm.fmconfig.ofs_dig", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_ai_type, { "Analog Channel Type", "selfm.fmconfig.ai_type", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_ai_chtype_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_ai_sf_type, { "Analog Channel Scale Factor Type", "selfm.fmconfig.ai_sf_type", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_ai_sftype_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fmconfig_ai_sf_ofs, { "Analog Channel Scale Factor Offset", "selfm.fmconfig.ai_sf_ofs", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, /* "Fast Meter Data" specific fields */ { &hf_selfm_fmdata_len, { "Length", "selfm.fmdata.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmdata_flagbyte, { "Status Flags Byte", "selfm.fmdata.flagbyte", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmdata_ai_sf_fp, { "Using IEEE FP Format Scale Factor", "selfm.fmdata.ai.sf_fp",FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fmdata_dig_b0, { "Bit 0", "selfm.fmdata.dig_b0", FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL }}, { &hf_selfm_fmdata_dig_b1, { "Bit 1", "selfm.fmdata.dig_b1", FT_BOOLEAN, 8, NULL, 0x02, NULL, HFILL }}, { &hf_selfm_fmdata_dig_b2, { "Bit 2", "selfm.fmdata.dig_b2", FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }}, { &hf_selfm_fmdata_dig_b3, { "Bit 3", "selfm.fmdata.dig_b3", FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL }}, { &hf_selfm_fmdata_dig_b4, { "Bit 4", "selfm.fmdata.dig_b4", FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL }}, { &hf_selfm_fmdata_dig_b5, { "Bit 5", "selfm.fmdata.dig_b5", FT_BOOLEAN, 8, NULL, 0x20, NULL, HFILL }}, { &hf_selfm_fmdata_dig_b6, { "Bit 6", "selfm.fmdata.dig_b6", FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL }}, { &hf_selfm_fmdata_dig_b7, { "Bit 7", "selfm.fmdata.dig_b7", FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }}, /* "Fast Operate Configuration" specific fields */ { &hf_selfm_foconfig_len, { "Length", "selfm.foconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_foconfig_num_brkr, { "Number of Breaker Bits", "selfm.foconfig.num_brkr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_foconfig_num_rb, { "Number of Remote Bits", "selfm.foconfig.num_rb", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_foconfig_prb_supp, { "Remote Bit Pulse Supported", "selfm.foconfig.prb_supp", FT_UINT8, BASE_DEC, VALS(selfm_foconfig_prb_supp_vals), 0x0, NULL, HFILL }}, { &hf_selfm_foconfig_reserved, { "Reserved Bit (Future)", "selfm.foconfig.reserved", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_foconfig_brkr_open, { "Breaker Bit Open Command", "selfm.foconfig.brkr_open", FT_UINT8, BASE_HEX, VALS(selfm_fo_br_vals), 0x0, NULL, HFILL }}, { &hf_selfm_foconfig_brkr_close, { "Breaker Bit Close Command", "selfm.foconfig.brkr_close", FT_UINT8, BASE_HEX, VALS(selfm_fo_br_vals), 0x0, NULL, HFILL }}, { &hf_selfm_foconfig_rb_cmd, { "Remote Bit Command", "selfm.foconfig.rb_cmd", FT_UINT8, BASE_HEX, VALS(selfm_fo_rb_vals), 0x0, NULL, HFILL }}, /* "Fast Operate" specific fields */ { &hf_selfm_fastop_len, { "Length", "selfm.fastop.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastop_rb_code, { "Remote Bit Operate Code", "selfm.fastop.rb_code", FT_UINT8, BASE_HEX, VALS(selfm_fo_rb_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastop_br_code, { "Breaker Bit Operate Code", "selfm.fastop.br_code", FT_UINT8, BASE_HEX, VALS(selfm_fo_br_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastop_valid, { "Operate Code Validation", "selfm.fastop.valid", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, /* "Fast SER Message" specific fields */ { &hf_selfm_fastser_len, { "Length", "selfm.fastser.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_routing_addr, { "Routing Address (future)", "selfm.fastser.routing_addr", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_status, { "Status Byte", "selfm.fastser.status", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_funccode, { "Function Code", "selfm.fastser.funccode", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastser_seq, { "Sequence Byte", "selfm.fastser.seq", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_seq_fir, { "FIR", "selfm.fastser.seq_fir", FT_BOOLEAN, 8, NULL, FAST_SER_SEQ_FIR, NULL, HFILL }}, { &hf_selfm_fastser_seq_fin, { "FIN", "selfm.fastser.seq_fin", FT_BOOLEAN, 8, NULL, FAST_SER_SEQ_FIN, NULL, HFILL }}, { &hf_selfm_fastser_seq_cnt, { "Count", "selfm.fastser.seq_cnt", FT_UINT8, BASE_DEC, NULL, FAST_SER_SEQ_CNT, "Frame Count Number", HFILL }}, { &hf_selfm_fastser_resp_num, { "Response Number", "selfm.fastser.resp_num", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_crc16, { "CRC-16", "selfm.fastser.crc16", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_def_route_sup, { "Routing Support", "selfm.fastser.def_route_sup", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_def_rx_stat, { "Status RX", "selfm.fastser.def_rx_stat", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_def_tx_stat, { "Status TX", "selfm.fastser.def_tx_stat", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_def_rx_maxfr, { "Max Frames RX", "selfm.fastser.def_rx_maxfr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_def_tx_maxfr, { "Max Frames TX", "selfm.fastser.def_tx_maxfr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_def_rx_num_fc, { "Number of Supported RX Function Codes", "selfm.fastser.def_rx_num_fc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_def_rx_fc, { "Receive Function Code", "selfm.fastser.def_rx_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastser_def_tx_num_fc, { "Number of Supported TX Function Codes", "selfm.fastser.def_tx_num_fc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_def_tx_fc, { "Transmit Function Code", "selfm.fastser.def_tx_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastser_uns_en_fc, { "Function Code to Enable", "selfm.fastser.uns_en_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastser_uns_en_fc_data, { "Function Code Data", "selfm.fastser.uns_en_fc_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_uns_dis_fc, { "Function Code to Disable", "selfm.fastser.uns_dis_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastser_uns_dis_fc_data, { "Function Code Data", "selfm.fastser.uns_dis_fc_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_orig, { "Origination path", "selfm.fastser.unsresp_orig", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_doy, { "Day of Year", "selfm.fastser.unsresp_doy", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_year, { "Year", "selfm.fastser.unsresp_year", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_todms, { "Time of Day (in ms)", "selfm.fastser.unsresp_todms", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_num_elmt, { "Number of SER Elements", "selfm.fastser.unsresp_num_elmt", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_elmt_idx, { "SER Element Index", "selfm.fastser.unsresp_elmt_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_elmt_ts_ofs, { "SER Element Timestamp Offset (us)", "selfm.fastser.unsresp_elmt_ts_ofs", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_elmt_status, { "SER Element Status", "selfm.fastser.unsresp_elmt_status", FT_UINT8, BASE_DEC, VALS(selfm_ser_status_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_eor, { "End of Record Indicator", "selfm.fastser.unsresp_eor", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unsresp_elmt_statword, { "SER Element Status Word", "selfm.fastser.unsresp_elmt_statword", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unswrite_addr1, { "Write Address Region #1", "selfm.fastser.unswrite_addr1", FT_UINT16, BASE_HEX, VALS(selfm_fastser_unswrite_com_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unswrite_addr2, { "Write Address Region #2", "selfm.fastser.unswrite_addr2", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unswrite_num_reg, { "Number of Registers", "selfm.fastser.unswrite_num_reg", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_unswrite_reg_val, { "Register Value", "selfm.fastser.unswrite_reg_val", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_read_baseaddr, { "Base Address", "selfm.fastser.read_baseaddr", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_read_numaddr, { "Number of Addresses", "selfm.fastser.read_numaddr", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_datafmt_resp_num_tag, { "Number of Tags", "selfm.fastser.datafmt_resp_numtag", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_datafmt_resp_tag_qty, { "Quantity of Values within Tag", "selfm.fastser.datafmt_resp_tagqty", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_selfm_fastser_datafmt_resp_tag_type, { "Tag Data Type", "selfm.fastser.datafmt_resp_tagtype", FT_UINT8, BASE_HEX, VALS(selfm_fastser_tagtype_vals), 0x0, NULL, HFILL }}, { &hf_selfm_fastser_devdesc_num_reg, { "Number of Data Regions", "selfm.fastser.devdesc_num_reg", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, }; /* Setup protocol subtree array */ static gint *ett[] = { &ett_selfm, &ett_selfm_relaydef, &ett_selfm_relaydef_fm, &ett_selfm_relaydef_proto, &ett_selfm_relaydef_flags, &ett_selfm_fmconfig, &ett_selfm_fmconfig_ai, &ett_selfm_foconfig, &ett_selfm_foconfig_brkr, &ett_selfm_foconfig_rb, &ett_selfm_fastop, &ett_selfm_fmdata, &ett_selfm_fmdata_ai, &ett_selfm_fmdata_dig, &ett_selfm_fmdata_ai_ch, &ett_selfm_fmdata_dig_ch, &ett_selfm_fastser, &ett_selfm_fastser_seq, &ett_selfm_fastser_def_fc, &ett_selfm_fastser_tag, &ett_selfm_fastser_element_list, &ett_selfm_fastser_element, &ett_selfm_fastser_datareg, }; module_t *selfm_module; /* Register the protocol name and description */ proto_selfm = proto_register_protocol("SEL Fast Message", "SEL Fast Message", "selfm"); /* Registering protocol to be called by another dissector */ new_register_dissector("selfm", dissect_selfm_simple, proto_selfm); /* Required function calls to register the header fields and subtrees used */ proto_register_field_array(proto_selfm, selfm_hf, array_length(selfm_hf)); proto_register_subtree_array(ett, array_length(ett)); /* Register required preferences for SEL Protocol register decoding */ selfm_module = prefs_register_protocol(proto_selfm, proto_reg_handoff_selfm); /* SEL Protocol - Desegmentmentation; defaults to TRUE for TCP desegmentation*/ prefs_register_bool_preference(selfm_module, "desegment", "Desegment all SEL Fast Message Protocol packets spanning multiple TCP segments", "Whether the SEL Protocol dissector should desegment all messages spanning multiple TCP segments", &selfm_desegment); /* SEL Protocol - Telnet protocol IAC (0xFF) processing; defaults to TRUE to allow Telnet Encapsulated Data */ prefs_register_bool_preference(selfm_module, "telnetclean", "Enable Automatic pre-processing of Telnet-encapsulated data to remove extra 0xFF (IAC) bytes", "Whether the SEL Protocol dissector should automatically pre-process Telnet data to remove IAC bytes", &selfm_telnet_clean); /* SEL Protocol Preference - Default TCP Port, allows for "user" port either than 0. */ prefs_register_uint_preference(selfm_module, "tcp.port", "SEL Protocol Port", "Set the TCP port for SEL FM Protocol packets (if other" " than the default of 0)", 10, &global_selfm_tcp_port); } /******************************************************************************************************/ /* If this dissector uses sub-dissector registration add a registration routine. This format is required because a script is used to find these routines and create the code that calls these routines. */ /******************************************************************************************************/ void proto_reg_handoff_selfm(void) { static int selfm_prefs_initialized = FALSE; static dissector_handle_t selfm_handle; static unsigned int selfm_port; /* Make sure to use SEL FM Protocol Preferences field to determine default TCP port */ if (! selfm_prefs_initialized) { selfm_handle = new_create_dissector_handle(dissect_selfm_tcp, proto_selfm); selfm_prefs_initialized = TRUE; } else { dissector_delete_uint("tcp.port", selfm_port, selfm_handle); } selfm_port = global_selfm_tcp_port; dissector_add_uint("tcp.port", selfm_port, selfm_handle); } /* * Editor modelines - http://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 4 * tab-width: 8 * indent-tabs-mode: nil * End: * * vi: set shiftwidth=4 tabstop=8 expandtab: * :indentSize=4:tabSize=8:noTabs=true: */