/* packet-peekremote.c * * Routines for the disassembly of packets sent from Cisco WLAN * Controllers, possibly other Cisco access points, and possibly * other devices such as Aruba access points. See * * https://web.archive.org/web/20130117041444/http://www.wildpackets.com/elements/omnipeek/OmniPeek_UserGuide.pdf * * which speaks of Aruba access points supporting remote capture and * defaulting to port 5000 for this, and also speaks of Cisco access * points supporting remote capture without any reference to a port * number. The two types of remote capture are described separately; * there's no indication of whether they use the same protocol for * streaming packets but perhaps other protocols for, for example, * discovery and setup, or whether they use different protocols * for streaming packets. * * A later manual at * * https://community.liveaction.com/wp-content/uploads/2020/02/Omnipeek-UserGuide-2-20.pdf * * speaks of Aruba and Cisco access points together, mentioning port 5000. * * Apparently Aruba supports several protocols, including Peek remote. * See the packet-aruba-erm dissector. * * Tested with frames captured from a Cisco WCS. * * Copyright 2007 Joerg Mayer (see AUTHORS file) * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * SPDX-License-Identifier: GPL-2.0-or-later */ /* * TODO: Decode meta information. * Check on fillup bytes in capture (fcs sometimes wrong) * From: * http://www.cisco.com/univercd/cc/td/doc/product/wireless/pahcont/oweb.pdf * "It will include information on timestamp, signal strength, packet size * and so on" */ #include "config.h" #include #include #include #include #define IS_ARUBA 0x01 #define PEEKREMOTE_PORT 5000 /* Not IANA registered */ void proto_register_peekremote(void); void proto_reg_handoff_peekremote(void); static int proto_peekremote; static dissector_handle_t peekremote_handle; /* * XXX - we don't have all the MCS index values here. * We should probably just show the MCS index as a number (those * numbers are used in 802.11), and have separate items for the * number of spatial streams, the modulation type, and the coding rate. * Note that some modes with more than one spatial stream use *different* * modulation types for the different streams. See section 20.6 * "Parameters for HT MCSs" in 802.11-2012. */ static const value_string peekremote_mcs_index_vals[] = { { 0, "Spatial streams: 1, Modulation type: BPSK, Codingrate: 1/2" }, { 1, "Spatial streams: 1, Modulation type: QPSK, Codingrate: 1/2" }, { 2, "Spatial streams: 1, Modulation type: QPSK, Codingrate: 3/4" }, { 3, "Spatial streams: 1, Modulation type: 16-QAM, Codingrate: 1/2" }, { 4, "Spatial streams: 1, Modulation type: 16-QAM, Codingrate: 3/4" }, { 5, "Spatial streams: 1, Modulation type: 64-QAM, Codingrate: 2/3" }, { 6, "Spatial streams: 1, Modulation type: 64-QAM, Codingrate: 3/4" }, { 7, "Spatial streams: 1, Modulation type: 64-QAM, Codingrate: 5/6" }, { 8, "Spatial streams: 2, Modulation type: BPSK, Codingrate: 1/2" }, { 9, "Spatial streams: 2, Modulation type: QPSK, Codingrate: 1/2" }, { 10, "Spatial streams: 2, Modulation type: QPSK, Codingrate: 3/4" }, { 11, "Spatial streams: 2, Modulation type: 16-QAM, Codingrate: 1/2" }, { 12, "Spatial streams: 2, Modulation type: 16-QAM, Codingrate: 3/4" }, { 13, "Spatial streams: 2, Modulation type: 64-QAM, Codingrate: 2/3" }, { 14, "Spatial streams: 2, Modulation type: 64-QAM, Codingrate: 3/4" }, { 15, "Spatial streams: 2, Modulation type: 64-QAM, Codingrate: 5/6" }, { 16, "Spatial streams: 3, Modulation type: BPSK, Codingrate: 1/2" }, { 17, "Spatial streams: 3, Modulation type: QPSK, Codingrate: 1/2" }, { 18, "Spatial streams: 3, Modulation type: QPSK, Codingrate: 3/4" }, { 19, "Spatial streams: 3, Modulation type: 16-QAM, Codingrate: 1/2" }, { 20, "Spatial streams: 3, Modulation type: 16-QAM, Codingrate: 3/4" }, { 21, "Spatial streams: 3, Modulation type: 64-QAM, Codingrate: 2/3" }, { 22, "Spatial streams: 3, Modulation type: 64-QAM, Codingrate: 3/4" }, { 23, "Spatial streams: 3, Modulation type: 64-QAM, Codingrate: 5/6" }, { 24, "Spatial streams: 4, Modulation type: BPSK, Codingrate: 1/2" }, { 25, "Spatial streams: 4, Modulation type: QPSK, Codingrate: 1/2" }, { 26, "Spatial streams: 4, Modulation type: QPSK, Codingrate: 3/4" }, { 27, "Spatial streams: 4, Modulation type: 16-QAM, Codingrate: 1/2" }, { 28, "Spatial streams: 4, Modulation type: 16-QAM, Codingrate: 3/4" }, { 29, "Spatial streams: 4, Modulation type: 64-QAM, Codingrate: 2/3" }, { 30, "Spatial streams: 4, Modulation type: 64-QAM, Codingrate: 3/4" }, { 31, "Spatial streams: 4, Modulation type: 64-QAM, Codingrate: 5/6" }, { 0, NULL } }; static value_string_ext peekremote_mcs_index_vals_ext = VALUE_STRING_EXT_INIT(peekremote_mcs_index_vals); /* There is no reason to define a separate set of constants for HE(11ax) as it only adds a MCS 10 and 11. MCS0-9 stay the same. We could even imagine an 11ac implementation with MCS10 and 11 (nonstandard) */ static const value_string peekremote_mcs_index_vals_ac[] = { { 0, "Modulation type: BPSK, Codingrate: 1/2" }, { 1, "Modulation type: QPSK, Codingrate: 1/2" }, { 2, "Modulation type: QPSK, Codingrate: 3/4" }, { 3, "Modulation type: 16-QAM, Codingrate: 1/2" }, { 4, "Modulation type: 16-QAM, Codingrate: 3/4" }, { 5, "Modulation type: 64-QAM, Codingrate: 2/3" }, { 6, "Modulation type: 64-QAM, Codingrate: 3/4" }, { 7, "Modulation type: 64-QAM, Codingrate: 5/6" }, { 8, "Modulation type: 256-QAM, Codingrate: 3/4" }, { 9, "Modulation type: 256-QAM, Codingrate: 5/6" }, { 10, "Modulation type: 1024-QAM, Codingrate: 3/4" }, { 11, "Modulation type: 1024-QAM, Codingrate: 5/6" }, { 0, NULL } }; static const value_string spatialstreams_vals[] = { { 0, "1" }, { 1, "2" }, { 2, "3" }, { 3, "4" }, { 4, "5" }, { 5, "6" }, { 6, "7" }, { 7, "8" }, { 0, NULL } }; static const value_string peekremote_type_vals[] = { { 6, "kMediaSpecificHdrType_Wireless3" }, { 0, NULL } }; /* * Extended flags. * * Some determined from bug 10637, some determined from bug 9586, * and the ones present in both agree, so we're assuming that * the "remote Peek" protocol and the "Peek tagged" file format * use the same bits (which wouldn't be too surprising, as they * both come from Wildpackets). */ #define EXT_FLAG_20_MHZ_LOWER 0x00000001 #define EXT_FLAG_20_MHZ_UPPER 0x00000002 #define EXT_FLAG_40_MHZ 0x00000004 #define EXT_FLAGS_BANDWIDTH 0x00000007 #define EXT_FLAG_HALF_GI 0x00000008 #define EXT_FLAG_FULL_GI 0x00000010 #define EXT_FLAGS_GI 0x00000018 #define EXT_FLAG_AMPDU 0x00000020 #define EXT_FLAG_AMSDU 0x00000040 #define EXT_FLAG_802_11ac 0x00000080 #define EXT_FLAG_MCS_INDEX_USED 0x00000100 #define EXT_FLAG_80MHZ 0x00000200 #define EXT_FLAG_SHORTPREAMBLE 0x00000400 #define EXT_FLAG_SPATIALSTREAMS 0x0001C000 #define EXT_FLAG_HEFLAG 0x00020000 #define EXT_FLAG_160MHZ 0x00040000 #define EXT_FLAGS_RESERVED 0xFFFC0000 static int hf_peekremote_band; static int hf_peekremote_channel; static int hf_peekremote_extflags; static int hf_peekremote_extflags_11ac; static int hf_peekremote_extflags_160mhz; static int hf_peekremote_extflags_20mhz_lower; static int hf_peekremote_extflags_20mhz_upper; static int hf_peekremote_extflags_40mhz; static int hf_peekremote_extflags_80mhz; static int hf_peekremote_extflags_ampdu; static int hf_peekremote_extflags_amsdu; static int hf_peekremote_extflags_full_gi; static int hf_peekremote_extflags_future_use; static int hf_peekremote_extflags_half_gi; static int hf_peekremote_extflags_heflag; static int hf_peekremote_extflags_reserved; static int hf_peekremote_extflags_shortpreamble; static int hf_peekremote_extflags_spatialstreams; static int hf_peekremote_flags; static int hf_peekremote_flags_control_frame; static int hf_peekremote_flags_crc_error; static int hf_peekremote_flags_frame_error; static int hf_peekremote_flags_reserved; static int hf_peekremote_frequency; static int hf_peekremote_header_size; static int hf_peekremote_header_version; static int hf_peekremote_magic_number; static int hf_peekremote_mcs_index; static int hf_peekremote_mcs_index_ac; static int hf_peekremote_noise_1_dbm; static int hf_peekremote_noise_2_dbm; static int hf_peekremote_noise_3_dbm; static int hf_peekremote_noise_4_dbm; static int hf_peekremote_noise_dbm; static int hf_peekremote_noise_percent; static int hf_peekremote_packetlength; static int hf_peekremote_signal_1_dbm; static int hf_peekremote_signal_2_dbm; static int hf_peekremote_signal_3_dbm; static int hf_peekremote_signal_4_dbm; static int hf_peekremote_signal_dbm; static int hf_peekremote_signal_percent; static int hf_peekremote_slicelength; static int hf_peekremote_speed; static int hf_peekremote_status; static int hf_peekremote_status_protected; static int hf_peekremote_status_reserved; static int hf_peekremote_status_with_decrypt_error; static int hf_peekremote_status_with_short_preamble; static int hf_peekremote_timestamp; static int hf_peekremote_type; static expert_field ei_peekremote_unknown_header_version; static expert_field ei_peekremote_invalid_header_size; static gint ett_peekremote; static gint ett_peekremote_flags; static gint ett_peekremote_status; static gint ett_peekremote_extflags; static dissector_handle_t wlan_radio_handle; static int dissect_peekremote_extflags(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, int offset) { proto_tree *extflags_tree; proto_item *ti_extflags; ti_extflags = proto_tree_add_item(tree, hf_peekremote_extflags, tvb, offset, 4, ENC_BIG_ENDIAN); extflags_tree = proto_item_add_subtree(ti_extflags, ett_peekremote_extflags); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_20mhz_lower, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_20mhz_upper, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_40mhz, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_half_gi, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_full_gi, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_ampdu, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_amsdu, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_11ac, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_future_use, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_80mhz, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_shortpreamble, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_spatialstreams, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_heflag, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_160mhz, tvb, offset, 4, ENC_BIG_ENDIAN); proto_tree_add_item(extflags_tree, hf_peekremote_extflags_reserved, tvb, offset, 4, ENC_BIG_ENDIAN); return 4; } static int dissect_peekremote_flags(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, int offset) { proto_tree *flags_tree; proto_item *ti_flags; ti_flags = proto_tree_add_item(tree, hf_peekremote_flags, tvb, offset, 1, ENC_NA); flags_tree = proto_item_add_subtree(ti_flags, ett_peekremote_flags); proto_tree_add_item(flags_tree, hf_peekremote_flags_control_frame, tvb, offset, 1, ENC_NA); proto_tree_add_item(flags_tree, hf_peekremote_flags_crc_error, tvb, offset, 1, ENC_NA); proto_tree_add_item(flags_tree, hf_peekremote_flags_frame_error, tvb, offset, 1, ENC_NA); proto_tree_add_item(flags_tree, hf_peekremote_flags_reserved, tvb, offset, 1, ENC_NA); return 1; } static int dissect_peekremote_status(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, int offset) { proto_tree *status_tree; proto_item *ti_status; ti_status = proto_tree_add_item(tree, hf_peekremote_status, tvb, offset, 1, ENC_NA); status_tree = proto_item_add_subtree(ti_status, ett_peekremote_status); proto_tree_add_item(status_tree, hf_peekremote_status_protected, tvb, offset, 1, ENC_NA); proto_tree_add_item(status_tree, hf_peekremote_status_with_decrypt_error, tvb, offset, 1, ENC_NA); proto_tree_add_item(status_tree, hf_peekremote_status_with_short_preamble, tvb, offset, 1, ENC_NA); proto_tree_add_item(status_tree, hf_peekremote_status_reserved, tvb, offset, 1, ENC_NA); return 1; } static gboolean dissect_peekremote_new(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *u _U_) { static const guint8 magic[4] = { 0x00, 0xFF, 0xAB, 0xCD }; int offset = 0; proto_tree *peekremote_tree = NULL; proto_item *ti = NULL; proto_item *ti_header_version, *ti_header_size; guint8 header_version; gint header_size; struct ieee_802_11_phdr phdr; guint32 extflags; guint16 frequency; guint16 mcs_index; tvbuff_t *next_tvb; if (tvb_memeql(tvb, 0, magic, 4) == -1) { /* * Not big enough to hold the magic number, or doesn't start * with the magic number. */ return FALSE; } /* We don't have any 802.11 metadata yet. */ memset(&phdr, 0, sizeof(phdr)); phdr.fcs_len = 4; /* has an FCS */ phdr.decrypted = FALSE; phdr.datapad = FALSE; phdr.phy = PHDR_802_11_PHY_UNKNOWN; col_set_str(pinfo->cinfo, COL_PROTOCOL, "PEEKREMOTE"); col_clear(pinfo->cinfo, COL_INFO); ti = proto_tree_add_item(tree, proto_peekremote, tvb, 0, -1, ENC_NA); peekremote_tree = proto_item_add_subtree(ti, ett_peekremote); proto_tree_add_item(peekremote_tree, hf_peekremote_magic_number, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; header_version = tvb_get_guint8(tvb, offset); ti_header_version = proto_tree_add_uint(peekremote_tree, hf_peekremote_header_version, tvb, offset, 1, header_version); offset += 1; header_size = tvb_get_ntohl(tvb, offset); ti_header_size = proto_tree_add_uint(peekremote_tree, hf_peekremote_header_size, tvb, offset, 4, header_size); offset += 4; switch (header_version) { case 2: if (header_size != 55) { expert_add_info(pinfo, ti_header_size, &ei_peekremote_invalid_header_size); if (header_size > 9) offset += (header_size - 9); } else { proto_tree_add_item(peekremote_tree, hf_peekremote_type, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; mcs_index = tvb_get_ntohs(tvb, offset); extflags = tvb_get_ntohl(tvb, offset+12); if (extflags & EXT_FLAG_HEFLAG) { proto_tree_add_item(peekremote_tree, hf_peekremote_mcs_index_ac, tvb, offset, 2, ENC_BIG_ENDIAN); phdr.phy = PHDR_802_11_PHY_11AX; } else { if (extflags & EXT_FLAG_802_11ac) { proto_tree_add_item(peekremote_tree, hf_peekremote_mcs_index_ac, tvb, offset, 2, ENC_BIG_ENDIAN); phdr.phy = PHDR_802_11_PHY_11AC; } else { proto_tree_add_item(peekremote_tree, hf_peekremote_mcs_index, tvb, offset, 2, ENC_BIG_ENDIAN); phdr.phy = PHDR_802_11_PHY_11N; phdr.phy_info.info_11n.has_mcs_index = TRUE; phdr.phy_info.info_11n.mcs_index = mcs_index; } } offset += 2; phdr.has_channel = TRUE; phdr.channel = tvb_get_ntohs(tvb, offset); proto_tree_add_item(peekremote_tree, hf_peekremote_channel, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; frequency = tvb_get_ntohl(tvb, offset); if (frequency != 0) { phdr.has_frequency = TRUE; phdr.frequency = frequency; } proto_tree_add_item(peekremote_tree, hf_peekremote_frequency, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; proto_tree_add_item(peekremote_tree, hf_peekremote_band, tvb, offset, 4, ENC_BIG_ENDIAN); offset +=4; offset += dissect_peekremote_extflags(tvb, pinfo, peekremote_tree, offset); phdr.has_signal_percent = TRUE; phdr.signal_percent = tvb_get_guint8(tvb, offset); proto_tree_add_item(peekremote_tree, hf_peekremote_signal_percent, tvb, offset, 1, ENC_NA); offset += 1; phdr.has_noise_percent = TRUE; phdr.noise_percent = tvb_get_guint8(tvb, offset); proto_tree_add_item(peekremote_tree, hf_peekremote_noise_percent, tvb, offset, 1, ENC_NA); offset += 1; phdr.has_signal_dbm = TRUE; phdr.signal_dbm = tvb_get_guint8(tvb, offset); proto_tree_add_item(peekremote_tree, hf_peekremote_signal_dbm, tvb, offset, 1, ENC_NA); offset += 1; phdr.has_noise_dbm = TRUE; phdr.noise_dbm = tvb_get_guint8(tvb, offset); proto_tree_add_item(peekremote_tree, hf_peekremote_noise_dbm, tvb, offset, 1, ENC_NA); offset += 1; proto_tree_add_item(peekremote_tree, hf_peekremote_signal_1_dbm, tvb, offset, 1, ENC_NA); offset += 1; proto_tree_add_item(peekremote_tree, hf_peekremote_signal_2_dbm, tvb, offset, 1, ENC_NA); offset += 1; proto_tree_add_item(peekremote_tree, hf_peekremote_signal_3_dbm, tvb, offset, 1, ENC_NA); offset += 1; proto_tree_add_item(peekremote_tree, hf_peekremote_signal_4_dbm, tvb, offset, 1, ENC_NA); offset += 1; proto_tree_add_item(peekremote_tree, hf_peekremote_noise_1_dbm, tvb, offset, 1, ENC_NA); offset += 1; proto_tree_add_item(peekremote_tree, hf_peekremote_noise_2_dbm, tvb, offset, 1, ENC_NA); offset += 1; proto_tree_add_item(peekremote_tree, hf_peekremote_noise_3_dbm, tvb, offset, 1, ENC_NA); offset += 1; proto_tree_add_item(peekremote_tree, hf_peekremote_noise_4_dbm, tvb, offset, 1, ENC_NA); offset += 1; proto_tree_add_item(peekremote_tree, hf_peekremote_packetlength, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(peekremote_tree, hf_peekremote_slicelength, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; offset += dissect_peekremote_flags(tvb, pinfo, peekremote_tree, offset); offset += dissect_peekremote_status(tvb, pinfo, peekremote_tree, offset); proto_tree_add_item(peekremote_tree, hf_peekremote_timestamp, tvb, offset, 8, ENC_BIG_ENDIAN); phdr.has_tsf_timestamp = TRUE; phdr.tsf_timestamp = tvb_get_ntoh64(tvb, offset); offset += 8; } break; default: expert_add_info(pinfo, ti_header_version, &ei_peekremote_unknown_header_version); if (header_size > 9) offset += (header_size - 9); break; } proto_item_set_end(ti, tvb, offset); next_tvb = tvb_new_subset_remaining(tvb, offset); call_dissector_with_data(wlan_radio_handle, next_tvb, pinfo, tree, &phdr); return TRUE; } static int dissect_peekremote_legacy(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) { tvbuff_t *next_tvb; proto_tree *peekremote_tree = NULL; proto_item *ti = NULL; struct ieee_802_11_phdr phdr; guint8 signal_percent; memset(&phdr, 0, sizeof(phdr)); /* * Check whether this is peekremote-ng, and dissect it as such if it * is. */ if (dissect_peekremote_new(tvb, pinfo, tree, data)) { /* Yup, it was peekremote-ng, and it's been dissected as such. */ return tvb_reported_length(tvb); } col_set_str(pinfo->cinfo, COL_PROTOCOL, "PEEKREMOTE"); col_clear(pinfo->cinfo, COL_INFO); if (tree) { ti = proto_tree_add_item(tree, proto_peekremote, tvb, 0, -1, ENC_NA); peekremote_tree = proto_item_add_subtree(ti, ett_peekremote); proto_tree_add_item(peekremote_tree, hf_peekremote_signal_dbm, tvb, 0, 1, ENC_NA); proto_tree_add_item(peekremote_tree, hf_peekremote_noise_dbm, tvb, 1, 1, ENC_NA); proto_tree_add_item(peekremote_tree, hf_peekremote_packetlength, tvb, 2, 2, ENC_BIG_ENDIAN); proto_tree_add_item(peekremote_tree, hf_peekremote_slicelength, tvb, 4, 2, ENC_BIG_ENDIAN); dissect_peekremote_flags(tvb, pinfo, peekremote_tree, 6); dissect_peekremote_status(tvb, pinfo, peekremote_tree, 7); proto_tree_add_item(peekremote_tree, hf_peekremote_timestamp, tvb, 8, 8, ENC_BIG_ENDIAN); proto_tree_add_item(peekremote_tree, hf_peekremote_speed, tvb, 16, 1, ENC_NA); proto_tree_add_item(peekremote_tree, hf_peekremote_channel, tvb, 17, 1, ENC_BIG_ENDIAN); proto_tree_add_item(peekremote_tree, hf_peekremote_signal_percent, tvb, 18, 1, ENC_NA); proto_tree_add_item(peekremote_tree, hf_peekremote_noise_percent, tvb, 19, 1, ENC_NA); } signal_percent = tvb_get_guint8(tvb, 18); proto_item_set_end(ti, tvb, 20); next_tvb = tvb_new_subset_remaining(tvb, 20); /* When signal = 100 % and coming from ARUBA ERM, it is TX packet and there is no FCS */ if (GPOINTER_TO_INT(data) == IS_ARUBA && signal_percent == 100) { phdr.fcs_len = 0; /* TX packet, no FCS */ } else { phdr.fcs_len = 4; /* We have an FCS */ } phdr.decrypted = FALSE; phdr.phy = PHDR_802_11_PHY_UNKNOWN; phdr.has_channel = TRUE; phdr.channel = tvb_get_guint8(tvb, 17); phdr.has_data_rate = TRUE; phdr.data_rate = tvb_get_guint8(tvb, 16); phdr.has_signal_percent = TRUE; phdr.signal_percent = tvb_get_guint8(tvb, 18); phdr.has_noise_percent = TRUE; phdr.noise_percent = tvb_get_guint8(tvb, 18); phdr.has_signal_dbm = TRUE; phdr.signal_dbm = tvb_get_guint8(tvb, 0); phdr.has_noise_dbm = TRUE; phdr.noise_dbm = tvb_get_guint8(tvb, 1); phdr.has_tsf_timestamp = TRUE; phdr.tsf_timestamp = tvb_get_ntoh64(tvb, 8); /* * We don't know they PHY, but we do have the data rate; * try to guess the PHY based on the data rate and channel. */ if (RATE_IS_DSSS(phdr.data_rate)) { /* 11b */ phdr.phy = PHDR_802_11_PHY_11B; phdr.phy_info.info_11b.has_short_preamble = FALSE; } else if (RATE_IS_OFDM(phdr.data_rate)) { /* 11a or 11g, depending on the band. */ if (CHAN_IS_BG(phdr.channel)) { /* 11g */ phdr.phy = PHDR_802_11_PHY_11G; phdr.phy_info.info_11g.has_mode = FALSE; } else { /* 11a */ phdr.phy = PHDR_802_11_PHY_11A; phdr.phy_info.info_11a.has_channel_type = FALSE; phdr.phy_info.info_11a.has_turbo_type = FALSE; } } return 20 + call_dissector_with_data(wlan_radio_handle, next_tvb, pinfo, tree, &phdr); } void proto_register_peekremote(void) { static hf_register_info hf[] = { { &hf_peekremote_channel, { "Channel", "peekremote.channel", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_signal_dbm, { "Signal [dBm]", "peekremote.signal_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_noise_dbm, { "Noise [dBm]", "peekremote.noise_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_packetlength, { "Packet length", "peekremote.packetlength", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_slicelength, { "Slice length", "peekremote.slicelength", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_flags, { "Flags", "peekremote.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_flags_control_frame, { "Is a Control frame", "peekremote.flags.control_frame", FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x01, NULL, HFILL } }, { &hf_peekremote_flags_crc_error, { "Has CRC error", "peekremote.flags.has_crc_error", FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x02, NULL, HFILL } }, { &hf_peekremote_flags_frame_error, { "Has frame error", "peekremote.flags.has_frame_error", FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x04, NULL, HFILL } }, { &hf_peekremote_flags_reserved, { "Reserved", "peekremote.flags.reserved", FT_UINT8, BASE_HEX, NULL, 0xF8, "Must be zero", HFILL } }, { &hf_peekremote_status, { "Status", "peekremote.status", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_status_protected, { "Protected", "peekremote.status.protected", FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x04, NULL, HFILL } }, { &hf_peekremote_status_with_decrypt_error, { "With decrypt error", "peekremote.status.with_decrypt_error", FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x08, NULL, HFILL } }, { &hf_peekremote_status_with_short_preamble, { "With short preamble", "peekremote.status.with_short_preamble", FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x40, NULL, HFILL } }, { &hf_peekremote_status_reserved, { "Reserved", "peekremote.status.reserved", FT_UINT8, BASE_HEX, NULL, 0xB3, "Must be zero", HFILL } }, { &hf_peekremote_timestamp, { "TSF timestamp", "peekremote.timestamp", FT_UINT64, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_mcs_index, { "MCS index", "peekremote.mcs_index", FT_UINT16, BASE_DEC|BASE_EXT_STRING, &peekremote_mcs_index_vals_ext, 0x0, NULL, HFILL } }, { &hf_peekremote_mcs_index_ac, { "11ac/11ax MCS index", "peekremote.mcs_index_ac", FT_UINT16, BASE_DEC, VALS(peekremote_mcs_index_vals_ac), 0x0, NULL, HFILL } }, { &hf_peekremote_signal_percent, { "Signal [percent]", "peekremote.signal_percent", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_noise_percent, { "Noise [percent]", "peekremote.noise_percent", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_speed, { "Data rate [500kHz]", "peekremote.data_rate", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_magic_number, { "Magic number", "peekremote.magic_number", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_header_version, { "Header version", "peekremote.header_version", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_header_size, { "Header size", "peekremote.header_size", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_type, { "Type", "peekremote.type", FT_UINT32, BASE_DEC, VALS(peekremote_type_vals), 0x0, NULL, HFILL } }, { &hf_peekremote_frequency, { "Frequency [Mhz]", "peekremote.frequency", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_band, { "Band", "peekremote.band", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_extflags, { "Extended flags", "peekremote.extflags", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_extflags_20mhz_lower, { "20 MHz Lower", "peekremote.extflags.20mhz_lower", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_20_MHZ_LOWER, NULL, HFILL } }, { &hf_peekremote_extflags_20mhz_upper, { "20 MHz Upper", "peekremote.extflags.20mhz_upper", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_20_MHZ_UPPER, NULL, HFILL } }, { &hf_peekremote_extflags_40mhz, { "40 MHz", "peekremote.extflags.40mhz", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_40_MHZ, NULL, HFILL } }, { &hf_peekremote_extflags_half_gi, { "Half Guard Interval", "peekremote.extflags.half_gi", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_HALF_GI, NULL, HFILL } }, { &hf_peekremote_extflags_full_gi, { "Full Guard Interval", "peekremote.extflags.full_gi", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_FULL_GI, NULL, HFILL } }, { &hf_peekremote_extflags_ampdu, { "AMPDU", "peekremote.extflags.ampdu", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_AMPDU, NULL, HFILL } }, { &hf_peekremote_extflags_amsdu, { "AMSDU", "peekremote.extflags.amsdu", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_AMSDU, NULL, HFILL } }, { &hf_peekremote_extflags_11ac, { "802.11ac", "peekremote.extflags.11ac", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_802_11ac, NULL, HFILL } }, { &hf_peekremote_extflags_future_use, { "MCS index used", "peekremote.extflags.future_use", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_MCS_INDEX_USED, NULL, HFILL } }, { &hf_peekremote_extflags_80mhz, { "80 Mhz", "peekremote.extflags.80mhz", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_80MHZ, NULL, HFILL } }, { &hf_peekremote_extflags_shortpreamble, { "Short preamble", "peekremote.extflags.shortpreamble", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_SHORTPREAMBLE, NULL, HFILL } }, { &hf_peekremote_extflags_spatialstreams, { "Spatial streams", "peekremote.extflags.spatialstreams", FT_UINT32, BASE_DEC, VALS(spatialstreams_vals), EXT_FLAG_SPATIALSTREAMS, NULL, HFILL } }, { &hf_peekremote_extflags_heflag, { "802.11ax", "peekremote.extflags.11ax", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_HEFLAG, NULL, HFILL } }, { &hf_peekremote_extflags_160mhz, { "160Mhz", "peekremote.extflags.160mhz", FT_BOOLEAN, 32, TFS(&tfs_yes_no), EXT_FLAG_160MHZ, NULL, HFILL } }, { &hf_peekremote_extflags_reserved, { "Reserved", "peekremote.extflags.reserved", FT_UINT32, BASE_HEX, NULL, EXT_FLAGS_RESERVED, "Must be zero", HFILL } }, { &hf_peekremote_signal_1_dbm, { "Signal 1 [dBm]", "peekremote.signal_1_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_signal_2_dbm, { "Signal 2 [dBm]", "peekremote.signal_2_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_signal_3_dbm, { "Signal 3 [dBm]", "peekremote.signal_3_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_signal_4_dbm, { "Signal 4 [dBm]", "peekremote.signal_4_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_noise_1_dbm, { "Noise 1 [dBm]", "peekremote.noise_1_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_noise_2_dbm, { "Noise 2 [dBm]", "peekremote.noise_2_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_noise_3_dbm, { "Noise 3 [dBm]", "peekremote.noise_3_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_peekremote_noise_4_dbm, { "Noise 4 [dBm]", "peekremote.noise_4_dbm", FT_INT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, }; static gint *ett[] = { &ett_peekremote, &ett_peekremote_flags, &ett_peekremote_status, &ett_peekremote_extflags }; static ei_register_info ei[] = { { &ei_peekremote_unknown_header_version, { "peekremote.unknown_header_version", PI_UNDECODED, PI_ERROR, "Unknown header version", EXPFILL }}, { &ei_peekremote_invalid_header_size, { "peekremote.invalid_header_size", PI_UNDECODED, PI_ERROR, "Invalid header size for that header version", EXPFILL }}, }; expert_module_t *expert_peekremote; proto_peekremote = proto_register_protocol("AiroPeek/OmniPeek encapsulated IEEE 802.11", "PEEKREMOTE", "peekremote"); proto_register_field_array(proto_peekremote, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); expert_peekremote = expert_register_protocol(proto_peekremote); expert_register_field_array(expert_peekremote, ei, array_length(ei)); peekremote_handle = register_dissector("peekremote", dissect_peekremote_legacy, proto_peekremote); } void proto_reg_handoff_peekremote(void) { wlan_radio_handle = find_dissector_add_dependency("wlan_radio", proto_peekremote); dissector_add_uint_with_preference("udp.port", PEEKREMOTE_PORT, peekremote_handle); heur_dissector_add("udp", dissect_peekremote_new, "OmniPeek Remote over UDP", "peekremote_udp", proto_peekremote, HEURISTIC_ENABLE); } /* * Editor modelines - https://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 2 * tab-width: 8 * indent-tabs-mode: nil * End: * * vi: set shiftwidth=2 tabstop=8 expandtab: * :indentSize=2:tabSize=8:noTabs=true: */