/* packet-eap.c * Routines for EAP Extensible Authentication Protocol dissection * RFC 2284, RFC 3748 * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "config.h" #include /* for sscanf() */ #include #include #include #include #include #include #include #include "packet-eapol.h" #include "packet-wps.h" #include "packet-e212.h" #include "packet-tls-utils.h" void proto_register_eap(void); void proto_reg_handoff_eap(void); static int proto_eap; static int hf_eap_code; static int hf_eap_identifier; static int hf_eap_len; static int hf_eap_type; static int hf_eap_type_nak; static int hf_eap_identity; static int hf_eap_identity_full; static int hf_eap_identity_actual_len; static int hf_eap_identity_prefix; static int hf_eap_identity_type; static int hf_eap_identity_certificate_sn; static int hf_eap_identity_mcc; static int hf_eap_identity_mcc_mnc_2digits; static int hf_eap_identity_mcc_mnc_3digits; static int hf_eap_identity_padding; static int hf_eap_notification; static int hf_eap_md5_value_size; static int hf_eap_md5_value; static int hf_eap_md5_extra_data; static int hf_eap_sim_subtype; static int hf_eap_sim_reserved; static int hf_eap_sim_subtype_attribute; static int hf_eap_sim_subtype_type; static int hf_eap_sim_subtype_length; static int hf_eap_sim_notification_type; static int hf_eap_sim_error_code_type; static int hf_eap_sim_subtype_value; static int hf_eap_aka_subtype; static int hf_eap_aka_reserved; static int hf_eap_aka_subtype_attribute; static int hf_eap_aka_subtype_type; static int hf_eap_aka_subtype_length; static int hf_eap_aka_notification_type; static int hf_eap_aka_error_code_type; static int hf_eap_aka_subtype_value; static int hf_eap_leap_version; static int hf_eap_leap_reserved; static int hf_eap_leap_count; static int hf_eap_leap_peer_challenge; static int hf_eap_leap_peer_response; static int hf_eap_leap_ap_challenge; static int hf_eap_leap_ap_response; static int hf_eap_leap_data; static int hf_eap_leap_name; static int hf_eap_ms_chap_v2_opcode; static int hf_eap_ms_chap_v2_id; static int hf_eap_ms_chap_v2_length; static int hf_eap_ms_chap_v2_value_size; static int hf_eap_ms_chap_v2_challenge; static int hf_eap_ms_chap_v2_name; static int hf_eap_ms_chap_v2_peer_challenge; static int hf_eap_ms_chap_v2_reserved; static int hf_eap_ms_chap_v2_nt_response; static int hf_eap_ms_chap_v2_flags; static int hf_eap_ms_chap_v2_response; static int hf_eap_ms_chap_v2_message; static int hf_eap_ms_chap_v2_failure_request; static int hf_eap_ms_chap_v2_data; static int hf_eap_pax_opcode; static int hf_eap_pax_flags; static int hf_eap_pax_flags_mf; static int hf_eap_pax_flags_ce; static int hf_eap_pax_flags_ai; static int hf_eap_pax_flags_reserved; static int hf_eap_pax_mac_id; static int hf_eap_pax_dh_group_id; static int hf_eap_pax_public_key_id; static int hf_eap_pax_a_len; static int hf_eap_pax_a; static int hf_eap_pax_b_len; static int hf_eap_pax_b; static int hf_eap_pax_cid_len; static int hf_eap_pax_cid; static int hf_eap_pax_mac_ck_len; static int hf_eap_pax_mac_ck; static int hf_eap_pax_ade_len; static int hf_eap_pax_ade; static int hf_eap_pax_mac_icv; static int hf_eap_psk_flags; static int hf_eap_psk_flags_t; static int hf_eap_psk_flags_reserved; static int hf_eap_psk_rand_p; static int hf_eap_psk_rand_s; static int hf_eap_psk_mac_p; static int hf_eap_psk_mac_s; static int hf_eap_psk_id_p; static int hf_eap_psk_id_s; static int hf_eap_psk_pchannel; static int hf_eap_sake_version; static int hf_eap_sake_session_id; static int hf_eap_sake_subtype; static int hf_eap_sake_attr_type; static int hf_eap_sake_attr_len; static int hf_eap_sake_attr_value; static int hf_eap_sake_attr_value_str; static int hf_eap_sake_attr_value_uint48; static int hf_eap_gpsk_opcode; static int hf_eap_gpsk_id_server_len; static int hf_eap_gpsk_id_server; static int hf_eap_gpsk_id_peer_len; static int hf_eap_gpsk_id_peer; static int hf_eap_gpsk_rand_server; static int hf_eap_gpsk_rand_peer; static int hf_eap_gpsk_csuite_list_len; static int hf_eap_gpsk_csuite_vendor; static int hf_eap_gpsk_csuite_specifier; static int hf_eap_gpsk_pd_payload_len; static int hf_eap_gpsk_pd_payload; static int hf_eap_gpsk_payload_mac; static int hf_eap_gpsk_failure_code; static int hf_eap_msauth_tlv_mandatory; static int hf_eap_msauth_tlv_reserved; static int hf_eap_msauth_tlv_type; static int hf_eap_msauth_tlv_len; static int hf_eap_msauth_tlv_val; static int hf_eap_msauth_tlv_status; static int hf_eap_msauth_tlv_crypto_reserved; static int hf_eap_msauth_tlv_crypto_version; static int hf_eap_msauth_tlv_crypto_rcv_version; static int hf_eap_msauth_tlv_crypto_subtype; static int hf_eap_msauth_tlv_crypto_nonce; static int hf_eap_msauth_tlv_crypto_cmac; static int hf_eap_data; static gint ett_eap; static gint ett_eap_pax_flags; static gint ett_eap_psk_flags; static gint ett_eap_sake_attr; static gint ett_eap_gpsk_csuite_list; static gint ett_eap_gpsk_csuite; static gint ett_eap_gpsk_csuite_sel; static gint ett_eap_msauth_tlv; static gint ett_eap_msauth_tlv_tree; static expert_field ei_eap_ms_chap_v2_length; static expert_field ei_eap_mitm_attacks; static expert_field ei_eap_md5_value_size_overflow; static expert_field ei_eap_dictionary_attacks; static expert_field ei_eap_identity_nonascii; static expert_field ei_eap_identity_invalid; static expert_field ei_eap_retransmission; static expert_field ei_eap_bad_length; static dissector_table_t eap_expanded_type_dissector_table; static dissector_handle_t eap_handle; static dissector_handle_t tls_handle; static dissector_handle_t diameter_avps_handle; static dissector_handle_t peap_handle; static dissector_handle_t teap_handle; static dissector_handle_t isakmp_handle; const value_string eap_code_vals[] = { { EAP_REQUEST, "Request" }, { EAP_RESPONSE, "Response" }, { EAP_SUCCESS, "Success" }, { EAP_FAILURE, "Failure" }, { EAP_INITIATE, "Initiate" }, /* [RFC5296] */ { EAP_FINISH, "Finish" }, /* [RFC5296] */ { 0, NULL } }; /* References: 1) https://www.iana.org/assignments/ppp-numbers PPP EAP REQUEST/RESPONSE TYPES 2) https://tools.ietf.org/html/draft-ietf-pppext-rfc2284bis-02 3) RFC2284 4) RFC3748 5) https://www.iana.org/assignments/eap-numbers EAP registry (updated 2011-02-22) 6) https://tools.ietf.org/html/draft-bersani-eap-synthesis-sharedkeymethods-00 */ static const value_string eap_type_vals[] = { { 1, "Identity" }, { 2, "Notification" }, { 3, "Legacy Nak (Response Only)" }, { 4, "MD5-Challenge EAP (EAP-MD5-CHALLENGE)" }, { 5, "One-Time Password EAP (EAP-OTP)" }, { 6, "Generic Token Card EAP (EAP-GTC)" }, { 7, "Allocated" }, { 8, "Allocated" }, { 9, "RSA Public Key Authentication EAP (EAP-RSA-PKA)" }, { 10, "DSS Unilateral EAP (EAP-DSS)" }, { 11, "KEA EAP (EAP-KEA)" }, { 12, "KEA Validate EAP (EAP-KEA-VALIDATE)" }, { 13, "TLS EAP (EAP-TLS)" }, { 14, "Defender Token EAP (EAP-AXENT)" }, { 15, "RSA Security SecurID EAP (EAP-RSA-SECURID)" }, { 16, "Arcot Systems EAP (EAP-ARCOT-SYSTEMS)" }, { 17, "Cisco Wireless EAP / Lightweight EAP (EAP-LEAP)" }, { 18, "GSM Subscriber Identity Modules EAP (EAP-SIM)" }, { 19, "Secure Remote Password SHA1 Part 1 EAP (EAP-SRP-SHA1-PART1)" }, { 20, "Secure Remote Password SHA1 Part 2 EAP (EAP-SRP-SHA1-PART2)" }, { 21, "Tunneled TLS EAP (EAP-TTLS)" }, { 22, "Remote Access Service EAP (EAP-RAS)" }, { 23, "UMTS Authentication and Key Agreement EAP (EAP-AKA)" }, { 24, "3Com Wireless EAP (EAP-3COM-WIRELESS)" }, { 25, "Protected EAP (EAP-PEAP)" }, { 26, "MS-Authentication EAP (EAP-MS-AUTH)" }, { 27, "Mutual Authentication w/Key Exchange EAP (EAP-MAKE)" }, { 28, "CRYPTOCard EAP (EAP-CRYPTOCARD)" }, { 29, "MS-CHAP-v2 EAP (EAP-MS-CHAP-V2)" }, { 30, "DynamID EAP (EAP-DYNAMID)" }, { 31, "Rob EAP (EAP-ROB)" }, { 32, "Protected One-Time Password EAP (EAP-POTP)" }, { 33, "MS-Authentication TLV EAP (EAP-MS-AUTH-TLV)" }, { 34, "SentriNET (EAP-SENTRINET)" }, { 35, "Actiontec Wireless EAP (EAP-ACTIONTEC-WIRELESS)" }, { 36, "Cogent Systems Biometrics Authentication EAP (EAP-COGENT-BIOMETRIC)" }, { 37, "AirFortress EAP (EAP-AIRFORTRESS)" }, { 38, "HTTP Digest EAP (EAP-HTTP-DIGEST)" }, { 39, "SecureSuite EAP (EAP-SECURESUITE)" }, { 40, "DeviceConnect EAP (EAP-DEVICECONNECT)" }, { 41, "Simple Password Exponential Key Exchange EAP (EAP-SPEKE)" }, { 42, "MOBAC EAP (EAP-MOBAC)" }, { 43, "Flexible Authentication via Secure Tunneling EAP (EAP-FAST)" }, { 44, "ZoneLabs EAP (EAP-ZLXEAP)" }, { 45, "Link EAP (EAP-LINK)" }, { 46, "Password Authenticated eXchange EAP (EAP-PAX)" }, { 47, "Pre-Shared Key EAP (EAP-PSK)" }, { 48, "Shared-secret Authentication and Key Establishment EAP (EAP-SAKE)" }, { 49, "Internet Key Exchange v2 EAP (EAP-IKEv2)" }, { 50, "UMTS Authentication and Key Agreement' EAP (EAP-AKA')" }, { 51, "Generalized Pre-Shared Key EAP (EAP-GPSK)" }, { 52, "Password EAP (EAP-pwd)" }, { 53, "Encrypted Key Exchange v1 EAP (EAP-EKEv1)" }, { 55, "Tunneled EAP protocol" }, { 254, "Expanded Type" }, { 255, "Experimental" }, { 0, NULL } }; value_string_ext eap_type_vals_ext = VALUE_STRING_EXT_INIT(eap_type_vals); static const value_string eap_identity_prefix_vals[] = { { 0x00, "Encrypted IMSI" }, { '0', "EAP-AKA Permanent" }, { '1', "EAP-SIM Permanent" }, { '2', "EAP-AKA Pseudonym" }, { '3', "EAP-SIM Pseudonym" }, { '4', "EAP-AKA Reauth ID" }, { '5', "EAP-SIM Reauth ID" }, { '6', "EAP-AKA Prime Permanent" }, { '7', "EAP-AKA Prime Pseudonym" }, { '8', "EAP-AKA Prime Reauth ID" }, { 'C', "Conservative Peer" }, { 'a', "Anonymous Identity" }, { 0, NULL } }; const value_string eap_sim_subtype_vals[] = { { SIM_START, "Start" }, { SIM_CHALLENGE, "Challenge" }, { SIM_NOTIFICATION, "Notification" }, { SIM_RE_AUTHENTICATION, "Re-authentication" }, { SIM_CLIENT_ERROR, "Client-Error" }, { 0, NULL } }; const value_string eap_aka_subtype_vals[] = { { AKA_CHALLENGE, "AKA-Challenge" }, { AKA_AUTHENTICATION_REJECT, "AKA-Authentication-Reject" }, { AKA_SYNCHRONIZATION_FAILURE, "AKA-Synchronization-Failure" }, { AKA_IDENTITY, "AKA-Identity" }, { AKA_NOTIFICATION, "Notification" }, { AKA_REAUTHENTICATION, "Re-authentication" }, { AKA_CLIENT_ERROR, "Client-Error" }, { 0, NULL } }; /* References: 1) http://www.iana.org/assignments/eapsimaka-numbers/eapsimaka-numbers.xml 3) RFC4186 3) RFC4187 4) RFC5448 5) 3GPP TS 24.302 */ #define AT_NOTIFICATION 12 #define AT_IDENTITY 14 #define AT_CLIENT_ERROR_CODE 22 static const value_string eap_sim_aka_attribute_vals[] = { { 1, "AT_RAND" }, { 2, "AT_AUTN" }, { 3, "AT_RES" }, { 4, "AT_AUTS" }, { 6, "AT_PADDING" }, { 7, "AT_NONCE_MT" }, { 10, "AT_PERMANENT_ID_REQ" }, { 11, "AT_MAC" }, { 12, "AT_NOTIFICATION" }, { 13, "AT_ANY_ID_REQ" }, { 14, "AT_IDENTITY" }, { 15, "AT_VERSION_LIST" }, { 16, "AT_SELECTED_VERSION" }, { 17, "AT_FULLAUTH_ID_REQ" }, { 19, "AT_COUNTER" }, { 20, "AT_COUNTER_TOO_SMALL" }, { 21, "AT_NONCE_S" }, { 22, "AT_CLIENT_ERROR_CODE" }, { 23, "AT_KDF_INPUT"}, { 24, "AT_KDF"}, { 128, "Unassigned" }, { 129, "AT_IV" }, { 130, "AT_ENCR_DATA" }, { 131, "Unassigned" }, { 132, "AT_NEXT_PSEUDONYM" }, { 133, "AT_NEXT_REAUTH_ID" }, { 134, "AT_CHECKCODE" }, { 135, "AT_RESULT_IND" }, { 136, "AT_BIDDING" }, { 137, "AT_IPMS_IND" }, { 138, "AT_IPMS_RES" }, { 139, "AT_TRUST_IND" }, { 140, "AT_SHORT_NAME_FOR_NETWORK" }, { 141, "AT_FULL_NAME_FOR_NETWORK" }, { 142, "AT_RQSI_IND" }, { 143, "AT_RQSI_RES" }, { 144, "AT_TWAN_CONN_MODE" }, { 145, "AT_VIRTUAL_NETWORK_ID" }, { 146, "AT_VIRTUAL_NETWORK_REQ" }, { 147, "AT_CONNECTIVITY_TYPE" }, { 148, "AT_HANDOVER_INDICATION" }, { 149, "AT_HANDOVER_SESSION_ID" }, { 150, "AT_MN_SERIAL_ID" }, { 151, "AT_DEVICE_IDENTITY" }, { 0, NULL } }; static value_string_ext eap_sim_aka_attribute_vals_ext = VALUE_STRING_EXT_INIT(eap_sim_aka_attribute_vals); static const value_string eap_sim_aka_notification_vals[] = { { 0, "General Failure after Authentication" }, { 1026, "User has been temporarily denied access" }, { 1031, "User has not subscribed to the requested service" }, { 8192, "Failure to Terminate the Authentication Exchange" }, {16384, "General Failure" }, {32768, "Success" }, {0, NULL } }; static const value_string eap_sim_aka_client_error_codes[] = { { 0, "Unable to process packet" }, { 1, "Unsupported version" }, { 2, "Insufficient number of challenges" }, { 3, "RANDs are not fresh" }, { 0, NULL } }; const value_string eap_ms_chap_v2_opcode_vals[] = { { MS_CHAP_V2_CHALLENGE, "Challenge" }, { MS_CHAP_V2_RESPONSE, "Response" }, { MS_CHAP_V2_SUCCESS, "Success" }, { MS_CHAP_V2_FAILURE, "Failure" }, { MS_CHAP_V2_CHANGE_PASSWORD, "Change-Password" }, { 0, NULL } }; #define PAX_STD_1 0x01 #define PAX_STD_2 0x02 #define PAX_STD_3 0x03 #define PAX_SEC_1 0x11 #define PAX_SEC_2 0x12 #define PAX_SEC_3 0x13 #define PAX_SEC_4 0x14 #define PAX_SEC_5 0x15 #define PAX_ACK 0x21 static const value_string eap_pax_opcode_vals[] = { { PAX_STD_1, "STD-1" }, { PAX_STD_2, "STD-2" }, { PAX_STD_3, "STD-3" }, { PAX_SEC_1, "SEC-1" }, { PAX_SEC_2, "SEC-2" }, { PAX_SEC_3, "SEC-3" }, { PAX_SEC_4, "SEC-4" }, { PAX_SEC_5, "SEC-5" }, { PAX_ACK, "ACK" }, { 0, NULL } }; #define EAP_PAX_FLAG_MF 0x01 /* more fragments */ #define EAP_PAX_FLAG_CE 0x02 /* certificate enabled */ #define EAP_PAX_FLAG_AI 0x04 /* ADE included */ #define EAP_PAX_FLAG_RESERVED 0xF8 /* reserved */ #define PAX_MAC_ID_HMAC_SHA1_128 0x01 #define PAX_MAC_ID_HMAC_SHA256_128 0x02 static const value_string eap_pax_mac_id_vals[] = { { PAX_MAC_ID_HMAC_SHA1_128, "HMAC_SHA1_128" }, { PAX_MAC_ID_HMAC_SHA256_128, "HMAXĆ_SHA256_128" }, { 0, NULL } }; #define PAX_DH_GROUP_ID_NONE 0x00 #define PAX_DH_GROUP_ID_DH_14 0x01 #define PAX_DH_GROUP_ID_DH_15 0x02 #define PAX_DH_GROUP_ID_ECC_P256 0x03 static const value_string eap_pax_dh_group_id_vals[] = { { PAX_DH_GROUP_ID_NONE, "NONE" }, { PAX_DH_GROUP_ID_DH_14, "2048-bit MODP Group (IANA DH Group 14)" }, { PAX_DH_GROUP_ID_DH_15, "3072-bit MODP Group (IANA DH Group 15)" }, { PAX_DH_GROUP_ID_ECC_P256, "NIST ECC Group P-256" }, { 0, NULL } }; #define PAX_PUBLIC_KEY_ID_NONE 0x00 #define PAX_PUBLIC_KEY_ID_RSAES_OAEP 0x01 #define PAX_PUBLIC_KEY_ID_RSA_PKCS1_V1_5 0x02 #define PAX_PUBLIC_KEY_ID_EL_GAMAL_ECC_P256 0x03 static const value_string eap_pax_public_key_id_vals[] = { { PAX_PUBLIC_KEY_ID_NONE, "NONE" }, { PAX_PUBLIC_KEY_ID_RSAES_OAEP, "RSAES-OAEP" }, { PAX_PUBLIC_KEY_ID_RSA_PKCS1_V1_5, "RSA-PKCS1-V1_5" }, { PAX_PUBLIC_KEY_ID_EL_GAMAL_ECC_P256, "El-Gamal Over NIST ECC Group P-256" }, { 0, NULL } }; #define EAP_PSK_FLAGS_T_MASK 0xC0 #define SAKE_CHALLENGE 1 #define SAKE_CONFIRM 2 #define SAKE_AUTH_REJECT 3 #define SAKE_IDENTITY 4 static const value_string eap_sake_subtype_vals[] = { { SAKE_CHALLENGE, "SAKE/Challenge" }, { SAKE_CONFIRM, "SAKE/Confirm" }, { SAKE_AUTH_REJECT, "SAKE/Auth-Reject" }, { SAKE_IDENTITY, "SAKE/Identity" }, { 0, NULL } }; #define SAKE_AT_RAND_S 1 #define SAKE_AT_RAND_P 2 #define SAKE_AT_MIC_S 3 #define SAKE_AT_MIC_P 4 #define SAKE_AT_SERVERID 5 #define SAKE_AT_PEERID 6 #define SAKE_AT_SPI_S 7 #define SAKE_AT_SPI_P 8 #define SAKE_AT_ANY_ID_REQ 9 #define SAKE_AT_PERM_ID_REQ 10 #define SAKE_AT_ENCR_DATA 128 #define SAKE_AT_IV 129 #define SAKE_AT_PADDING 130 #define SAKE_AT_NEXT_TMPID 131 #define SAKE_AT_MSK_LIFE 132 static const value_string eap_sake_attr_type_vals[] = { { SAKE_AT_RAND_S, "Server Nonce RAND_S" }, { SAKE_AT_RAND_P, "Peer Nonce RAND_P" }, { SAKE_AT_MIC_S, "Server MIC" }, { SAKE_AT_MIC_P, "Peer MIC" }, { SAKE_AT_SERVERID, "Server FQDN" }, { SAKE_AT_PEERID, "Peer NAI (tmp, perm)" }, { SAKE_AT_SPI_S, "Server chosen SPI SPI_S" }, { SAKE_AT_SPI_P, "Peer SPI list SPI_P" }, { SAKE_AT_ANY_ID_REQ, "Requires any Peer Id (tmp, perm)" }, { SAKE_AT_PERM_ID_REQ, "Requires Peer's permanent Id/NAI" }, { SAKE_AT_ENCR_DATA, "Contains encrypted attributes" }, { SAKE_AT_IV, "IV for encrypted attributes" }, { SAKE_AT_PADDING, "Padding for encrypted attributes" }, { SAKE_AT_NEXT_TMPID, "TempID for next EAP-SAKE phase" }, { SAKE_AT_MSK_LIFE, "MSK Lifetime" }, { 0, NULL } }; #define GPSK_RESERVED 0 #define GPSK_GPSK_1 1 #define GPSK_GPSK_2 2 #define GPSK_GPSK_3 3 #define GPSK_GPSK_4 4 #define GPSK_FAIL 5 #define GPSK_PROTECTED_FAIL 6 static const value_string eap_gpsk_opcode_vals[] = { { GPSK_RESERVED, "Reserved" }, { GPSK_GPSK_1, "GPSK-1" }, { GPSK_GPSK_2, "GPSK-2" }, { GPSK_GPSK_3, "GPSK-3" }, { GPSK_GPSK_4, "GPSK-4" }, { GPSK_FAIL, "Fail" }, { GPSK_PROTECTED_FAIL, "Protected Fail" }, { 0, NULL } }; static const value_string eap_gpsk_failure_code_vals[] = { { 0x00000000, "Reserved" }, { 0x00000001, "PSK Not Found" }, { 0x00000002, "Authentication Failure" }, { 0x00000003, "Authorization Failure" }, { 0, NULL } }; #define MSAUTH_TLV_MANDATORY 0x8000 #define MSAUTH_TLV_RESERVED 0x4000 #define MSAUTH_TLV_TYPE 0x3FFF #define MSAUTH_TLV_TYPE_EXTENSION_UNASSIGNED 0 #define MSAUTH_TLV_TYPE_EXTENSION_RESULT 3 #define MSAUTH_TLV_TYPE_EXTENSION_CRYPTOBINDING 12 #define MSAUTH_TLV_TYPE_EXPANDED_SOH 33 static const value_string eap_msauth_tlv_type_vals[] = { { MSAUTH_TLV_TYPE_EXTENSION_UNASSIGNED, "Unassigned" }, { MSAUTH_TLV_TYPE_EXTENSION_RESULT, "Result" }, { MSAUTH_TLV_TYPE_EXTENSION_CRYPTOBINDING, "Cryptobinding" }, { 0, NULL } }; static const value_string eap_msauth_tlv_status_vals[] = { { 1, "Success" }, { 2, "Failure" }, { 0, NULL } }; static const value_string eap_msauth_tlv_crypto_subtype_vals[] = { { 0, "Binding Request" }, { 1, "Binding Response" }, { 0, NULL } }; /* * State information for EAP-TLS (RFC2716) and Lightweight EAP: * * http://www.missl.cs.umd.edu/wireless/ethereal/leap.txt * * Attach to all conversations: * * a sequence number to be handed to "fragment_add_seq()" as * the fragment sequence number - if it's -1, no reassembly * is in progress, but if it's not, it's the sequence number * to use for the current fragment; * * a value to be handed to "fragment_add_seq()" as the * reassembly ID - when a reassembly is started, it's set to * the frame number of the current frame, i.e. the frame * that starts the reassembly; * * an indication of the current state of LEAP negotiation, * with -1 meaning no LEAP negotiation is in progress. * * Attach to frames containing fragments of EAP-TLS messages the * reassembly ID for those fragments, so we can find the reassembled * data after the first pass through the packets. * * Attach to LEAP frames the state of the LEAP negotiation when the * frame was processed, so we can properly dissect * the LEAP message after the first pass through the packets. * * Attach to all conversations both pieces of information, to keep * track of EAP-TLS reassembly and the LEAP state machine. */ typedef struct { int eap_tls_seq; guint32 eap_reass_cookie; int leap_state; gint16 last_eap_id_req; /* Last ID of the request from the authenticator. */ gint16 last_eap_id_resp; /* Last ID of the response from the peer. */ } conv_state_t; typedef struct { int info; /* interpretation depends on EAP message type */ } frame_state_t; /* from RFC5216, pg 21 Flags 0 1 2 3 4 5 6 7 8 +-+-+-+-+-+-+-+-+ |L M S R R R R R| TLS (RFC5216) +-+-+-+-+-+-+-+-+ |L M S R R| V | TTLS (RFC5281) and FAST (RFC4851) +-+-+-+-+-+-+-+-+ |L M S O R| V | TEAP (RFC7170) +-+-+-+-+-+-+-+-+ |L M S R R R| V | PEAPv0 (draft-kamath-pppext-peapv0) +-+-+-+-+-+-+-+-+ |L M S R R| V | PEAPv1 (draft-josefsson-pppext-eap-tls-eap-06) and PEAPv2 (draft-josefsson-pppext-eap-tls-eap-10) +-+-+-+-+-+-+-+-+ L = Length included M = More fragments S = EAP-TLS start O = Outer TLV length included (TEAP only) R = Reserved V = TTLS/FAST/TEAP/PEAP version (Reserved for TLS) */ #define EAP_TLS_FLAG_L 0x80 /* Length included */ #define EAP_TLS_FLAG_M 0x40 /* More fragments */ #define EAP_TLS_FLAG_S 0x20 /* EAP-TLS start */ #define EAP_TLS_FLAG_O 0x10 /* Outer TLV length included */ #define EAP_TLS_FLAGS_VERSION 0x07 /* Version mask */ /* * reassembly of EAP-TLS */ static reassembly_table eap_tls_reassembly_table; static int hf_eap_tls_flags; static int hf_eap_tls_flag_l; static int hf_eap_tls_flag_m; static int hf_eap_tls_flag_s; static int hf_eap_tls_flag_o; static int hf_eap_tls_flags_version; static int hf_eap_tls_len; static int hf_eap_tls_outer_tlvs_len; static int hf_eap_tls_fragment; static int hf_eap_tls_fragments; static int hf_eap_tls_fragment_overlap; static int hf_eap_tls_fragment_overlap_conflict; static int hf_eap_tls_fragment_multiple_tails; static int hf_eap_tls_fragment_too_long_fragment; static int hf_eap_tls_fragment_error; static int hf_eap_tls_fragment_count; static int hf_eap_tls_reassembled_in; static int hf_eap_tls_reassembled_length; static int hf_eap_fast_type; static int hf_eap_fast_length; static int hf_eap_fast_aidd; static gint ett_eap_tls_fragment; static gint ett_eap_tls_fragments; static gint ett_eap_sim_attr; static gint ett_eap_aka_attr; static gint ett_eap_exp_attr; static gint ett_eap_tls_flags; static gint ett_identity; static gint ett_eap_ikev2_flags; static const fragment_items eap_tls_frag_items = { &ett_eap_tls_fragment, &ett_eap_tls_fragments, &hf_eap_tls_fragments, &hf_eap_tls_fragment, &hf_eap_tls_fragment_overlap, &hf_eap_tls_fragment_overlap_conflict, &hf_eap_tls_fragment_multiple_tails, &hf_eap_tls_fragment_too_long_fragment, &hf_eap_tls_fragment_error, &hf_eap_tls_fragment_count, &hf_eap_tls_reassembled_in, &hf_eap_tls_reassembled_length, /* Reassembled data field */ NULL, "fragments" }; /* * EAP-IKE2, RFC5106 */ /* RFC5106, 8.1, page 17 0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+ |L M I 0 0 0 0 0| +-+-+-+-+-+-+-+-+ L = Length included M = More fragments I = Integrity Checksum Data included */ #define EAP_IKEV2_FLAG_L 0x80 /* Length included */ #define EAP_IKEV2_FLAG_M 0x40 /* More fragments */ #define EAP_IKEV2_FLAG_I 0x20 /* Integrity checksum data included */ static int hf_eap_ikev2_flags; static int hf_eap_ikev2_flag_l; static int hf_eap_ikev2_flag_m; static int hf_eap_ikev2_flag_i; static int hf_eap_ikev2_len; static int hf_eap_ikev2_int_chk_data; /********************************************************************** Support for EAP Expanded Type. Currently this is limited to WifiProtectedSetup. Maybe we need a generic method to support EAP extended types ? *********************************************************************/ static int hf_eap_ext_vendor_id; static int hf_eap_ext_vendor_type; static const value_string eap_ext_vendor_id_vals[] = { { WFA_VENDOR_ID, "WFA" }, { 0, NULL } }; static const value_string eap_ext_vendor_type_vals[] = { { WFA_SIMPLECONFIG_TYPE, "SimpleConfig" }, { 0, NULL } }; static void dissect_exteap(proto_tree *eap_tree, tvbuff_t *tvb, int offset, gint size _U_, packet_info* pinfo, guint8 eap_code, guint8 eap_identifier) { tvbuff_t *next_tvb; guint32 vendor_id; guint32 vendor_type; eap_vendor_context *vendor_context; vendor_context = wmem_new(pinfo->pool, eap_vendor_context); proto_tree_add_item_ret_uint(eap_tree, hf_eap_ext_vendor_id, tvb, offset, 3, ENC_BIG_ENDIAN, &vendor_id); offset += 3; proto_tree_add_item_ret_uint(eap_tree, hf_eap_ext_vendor_type, tvb, offset, 4, ENC_BIG_ENDIAN, &vendor_type); offset += 4; vendor_context->eap_code = eap_code; vendor_context->eap_identifier = eap_identifier; vendor_context->vendor_id = vendor_id; vendor_context->vendor_type = vendor_type; next_tvb = tvb_new_subset_remaining(tvb, offset); if (!dissector_try_uint_new(eap_expanded_type_dissector_table, vendor_id, next_tvb, pinfo, eap_tree, FALSE, vendor_context)) { call_data_dissector(next_tvb, pinfo, eap_tree); } } /* ********************************************************************* ********************************************************************* */ static void dissect_eap_mschapv2(proto_tree *eap_tree, tvbuff_t *tvb, packet_info *pinfo, int offset, gint size) { proto_item *item; gint left = size; gint ms_len; guint8 value_size; guint8 opcode; /* OpCode (1 byte), MS-CHAPv2-ID (1 byte), MS-Length (2 bytes), Data */ opcode = tvb_get_guint8(tvb, offset); proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_opcode, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; left -= 1; if (left <= 0) return; proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_id, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; left -= 1; if (left <= 0) return; item = proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_length, tvb, offset, 2, ENC_BIG_ENDIAN); ms_len = tvb_get_ntohs(tvb, offset); if (ms_len != size) expert_add_info(pinfo, item, &ei_eap_ms_chap_v2_length); offset += 2; left -= 2; switch (opcode) { case MS_CHAP_V2_CHALLENGE: if (left <= 0) break; value_size = tvb_get_guint8(tvb, offset); proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_value_size, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; left -= 1; proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_challenge, tvb, offset, value_size, ENC_NA); offset += value_size; left -= value_size; if (left <= 0) break; proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_name, tvb, offset, left, ENC_ASCII); break; case MS_CHAP_V2_RESPONSE: if (left <= 0) break; value_size = tvb_get_guint8(tvb, offset); proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_value_size, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; left -= 1; if (value_size == 49) { proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_peer_challenge, tvb, offset, 16, ENC_NA); offset += 16; proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_reserved, tvb, offset, 8, ENC_NA); offset += 8; proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_nt_response, tvb, offset, 24, ENC_NA); offset += 24; proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_flags, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; left -= value_size; } else { proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_response, tvb, offset, value_size, ENC_NA); offset += value_size; left -= value_size; } if (left <= 0) break; proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_name, tvb, offset, left, ENC_ASCII); break; case MS_CHAP_V2_SUCCESS: if (left <= 0) break; proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_message, tvb, offset, left, ENC_ASCII); break; case MS_CHAP_V2_FAILURE: if (left <= 0) break; proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_failure_request, tvb, offset, left, ENC_ASCII); break; default: proto_tree_add_item(eap_tree, hf_eap_ms_chap_v2_data, tvb, offset, left, ENC_NA); break; } } /* Dissect the WLAN identity */ static gboolean dissect_eap_identity_wlan(tvbuff_t *tvb, packet_info* pinfo, proto_tree* tree, int offset, gint size) { guint mnc = 0; guint mcc = 0; guint mcc_mnc = 0; proto_tree* eap_identity_tree = NULL; guint8 eap_identity_prefix = 0; const gchar* eap_identity_value; guint8* identity = NULL; gchar** tokens = NULL; gchar** realm_tokens = NULL; gchar** cert_tokens = NULL; guint ntokens = 0; guint nrealm_tokens = 0; guint ncert_tokens = 0; gboolean ret = TRUE; gboolean enc_imsi = FALSE; int hf_eap_identity_mcc_mnc; proto_item* item; /* Check for Encrypted IMSI - NULL prefix byte */ if (tvb_get_guint8(tvb, offset) == 0x00) { /* Check if identity string complies with ASCII character set. Encrypted IMSI * identities use Base64 encoding and should therefore be ASCII-compliant. */ if (tvb_ascii_isprint(tvb, offset + 1, size - 1) == FALSE) { item = proto_tree_add_item(tree, hf_eap_identity, tvb, offset + 1, size - 1, ENC_ASCII || ENC_NA); expert_add_info(pinfo, item, &ei_eap_identity_nonascii); goto end; } identity = tvb_get_string_enc(pinfo->pool, tvb, offset + 1, size - 1, ENC_ASCII); /* Encrypted IMSIs must be delimited twice: * (1) Once to tokenize the 3GPP realm from the Certificate Serial Number * using the ',' character * (2) Once to tokenize the 3GPP realm using the '@' character */ tokens = g_strsplit_set(identity, ",", -1); enc_imsi = TRUE; } else { /* Check if identity string complies with ASCII character set */ if (tvb_ascii_isprint(tvb, offset, size) == FALSE) { item = proto_tree_add_item(tree, hf_eap_identity, tvb, offset, size, ENC_ASCII || ENC_NA); expert_add_info(pinfo, item, &ei_eap_identity_nonascii); goto end; } /* All other identities may be delimited with the '@' character */ identity = tvb_get_string_enc(pinfo->pool, tvb, offset, size, ENC_ASCII); tokens = g_strsplit_set(identity, "@", -1); } while(tokens[ntokens]) ntokens++; /* Check for valid EAP Identity strings based on tokens and 3GPP-format */ if (enc_imsi) { if (ntokens < 2 || g_ascii_strncasecmp(tokens[1], "CertificateSerialNumber", 23)) { ret = FALSE; proto_tree_add_item(tree, hf_eap_identity, tvb, offset + 1, size - 1, ENC_ASCII); goto end; } } else { /* tokens[0] is the identity, tokens[1] is the NAI Realm */ if (ntokens != 2) { ret = FALSE; proto_tree_add_item(tree, hf_eap_identity, tvb, offset, size, ENC_ASCII); goto end; } realm_tokens = g_strsplit_set(tokens[1], ".", -1); while(realm_tokens[nrealm_tokens]) nrealm_tokens++; /* The WLAN identity must have the form of @wlan.mnc.mcc.3gppnetwork.org If not, we don't have a wlan identity */ if (ntokens != 2 || nrealm_tokens != 5 || g_ascii_strncasecmp(realm_tokens[0], "wlan", 4) || g_ascii_strncasecmp(realm_tokens[3], "3gppnetwork", 11) || g_ascii_strncasecmp(realm_tokens[4], "org", 3)) { ret = FALSE; proto_tree_add_item(tree, hf_eap_identity, tvb, offset, size, ENC_ASCII); goto end; } } /* It is very likely that we have a WLAN identity (EAP-AKA/EAP-SIM) */ /* Go on with the dissection */ eap_identity_tree = proto_item_add_subtree(tree, ett_identity); proto_tree_add_item(eap_identity_tree, hf_eap_identity_prefix, tvb, offset, 1, ENC_NA); eap_identity_prefix = tvb_get_guint8(tvb, offset); eap_identity_value = try_val_to_str(eap_identity_prefix, eap_identity_prefix_vals); item = proto_tree_add_string(eap_identity_tree, hf_eap_identity_type, tvb, offset, 1, eap_identity_value ? eap_identity_value : "Unknown"); switch(eap_identity_prefix) { case 0x00: /* Encrypted IMSI */ proto_tree_add_item(eap_identity_tree, hf_eap_identity_full, tvb, offset + 1, size - 1, ENC_ASCII || ENC_NA); /* Account for wide characters that increase the byte count * despite the character count (i.e., strlen() fails to return * the proper character count, leading to offset errors. */ proto_tree_add_item(eap_identity_tree, hf_eap_identity, tvb, offset + 1, (guint)strlen(tokens[0]), ENC_ASCII); break; case '0': /* EAP-AKA Permanent */ case '1': /* EAP-SIM Permanent */ case '6': /* EAP-AKA' Permanent */ proto_tree_add_item(eap_identity_tree, hf_eap_identity_full, tvb, offset + 1, size - 1, ENC_ASCII || ENC_NA); dissect_e212_utf8_imsi(tvb, pinfo, eap_identity_tree, offset + 1, (guint)strlen(tokens[0]) - 1); break; case '2': /* EAP-AKA Pseudonym */ case '3': /* EAP-SIM Pseudonym */ case '7': /* EAP-AKA' Pseudonym */ proto_tree_add_item(eap_identity_tree, hf_eap_identity_full, tvb, offset + 1, size - 1, ENC_ASCII || ENC_NA); proto_tree_add_item(eap_identity_tree, hf_eap_identity, tvb, offset + 1, (guint)strlen(tokens[0]) - 1, ENC_ASCII); break; case '4': /* EAP-AKA Reauth ID */ case '5': /* EAP-SIM Reauth ID */ case '8': /* EAP-AKA' Reauth ID */ proto_tree_add_item(eap_identity_tree, hf_eap_identity_full, tvb, offset + 1, size - 1, ENC_ASCII || ENC_NA); proto_tree_add_item(eap_identity_tree, hf_eap_identity, tvb, offset + 1, (guint)strlen(tokens[0]) - 1, ENC_ASCII); break; case 'C': /* Conservative Peer */ proto_tree_add_item(eap_identity_tree, hf_eap_identity_full, tvb, offset + 1, size - 1, ENC_ASCII || ENC_NA); proto_tree_add_item(eap_identity_tree, hf_eap_identity, tvb, offset + 1, (guint)strlen(tokens[0]) - 1, ENC_ASCII); break; case 'a': /* Anonymous User */ proto_tree_add_item(eap_identity_tree, hf_eap_identity_full, tvb, offset, size, ENC_ASCII || ENC_NA); proto_tree_add_item(eap_identity_tree, hf_eap_identity, tvb, offset, (guint)strlen(tokens[0]), ENC_ASCII); break; case 'G': /* TODO: 'G' Unknown */ case 'I': /* TODO: 'I' Unknown */ default: proto_tree_add_item(eap_identity_tree, hf_eap_identity_full, tvb, offset + 1, size - 1, ENC_ASCII || ENC_NA); proto_tree_add_item(eap_identity_tree, hf_eap_identity, tvb, offset + 1, (guint)strlen(tokens[0]) - 1, ENC_ASCII); expert_add_info(pinfo, item, &ei_eap_identity_invalid); } /* If the identity is an Encrypted IMSI, parse the Certificate Serial Number */ if (enc_imsi) { /* Tokenize the Certificate string */ cert_tokens = g_strsplit_set(tokens[1], "=", -1); while(cert_tokens[ncert_tokens]) ncert_tokens++; /* Add Certificate Serial Number to the tree */ proto_tree_add_item(eap_identity_tree, hf_eap_identity_certificate_sn, tvb, offset + 1 + (guint)strlen(tokens[0]) + 1 + (guint)strlen("CertificateSerialNumber="), (guint)strlen(tokens[1]) - (guint)strlen("CertificateSerialNumber="), ENC_ASCII); /* Check for the optional NAI Realm string */ if (ntokens != 3 || g_ascii_strncasecmp(tokens[2], "Realm", 5)) { goto end; } realm_tokens = g_strsplit_set(tokens[2], "@.", -1); while (realm_tokens[nrealm_tokens]) nrealm_tokens++; /* The realm string must have the form of wlan.mnc.mcc.3gppnetwork.org If not, we don't have a proper realm. */ if (nrealm_tokens != 5 || g_ascii_strncasecmp(realm_tokens[0], "wlan", 4) || g_ascii_strncasecmp(realm_tokens[1], "mnc", 3) || g_ascii_strncasecmp(realm_tokens[2], "mcc", 3) || g_ascii_strncasecmp(realm_tokens[3], "3gppnetwork", 11) || g_ascii_strncasecmp(realm_tokens[4], "org", 3)) { ret = FALSE; goto end; } /* EAP identities do not always equate to IMSIs. We should * still add the MCC and MNC values for non-permanent EAP * identities. */ if (!sscanf(realm_tokens[2] + 3, "%u", &mnc) || !sscanf(realm_tokens[3] + 3, "%u", &mcc)) { ret = FALSE; goto end; } } else { /* Not an encrypted IMSI, but still need to make sure the realm tokens are * consistent with the 3GPP format. */ if (!sscanf(realm_tokens[1] + 3, "%u", &mnc) || !sscanf(realm_tokens[2] + 3, "%u", &mcc)) { ret = FALSE; goto end; } } if (!try_val_to_str_ext(mcc * 100 + mnc, &mcc_mnc_2digits_codes_ext)) { /* May have * (1) an invalid 2-digit MNC so it won't resolve, * (2) an invalid 3-digit MNC so it won't resolve, or * (3) a valid 3-digit MNC. * For all cases we treat as 3-digit MNC and continue. */ mcc_mnc = 1000 * mcc + mnc; hf_eap_identity_mcc_mnc = hf_eap_identity_mcc_mnc_3digits; } else { /* We got a 2-digit MNC match */ mcc_mnc = 100 * mcc + mnc; hf_eap_identity_mcc_mnc = hf_eap_identity_mcc_mnc_2digits; } /* Handle encrypted IMSI indices first */ if(realm_tokens[0] && realm_tokens[1] && realm_tokens[2] && realm_tokens[3]) { if (enc_imsi) { /* Add MNC to tree */ proto_tree_add_uint(eap_identity_tree, hf_eap_identity_mcc_mnc, tvb, offset + 1 + (guint)strlen(tokens[0]) + 1 + (guint)strlen(tokens[1]) + 1 + (guint)strlen("Realm=@wlan.mnc"), (guint)strlen(realm_tokens[2]) - (guint)strlen("mnc"), mcc_mnc); /* Add MCC to tree */ proto_tree_add_uint(eap_identity_tree, hf_eap_identity_mcc, tvb, offset + 1 + (guint)strlen(tokens[0]) + 1 + (guint)strlen(tokens[1]) + 1 + (guint)strlen(realm_tokens[0]) + (guint)strlen("@wlan.") + (guint)strlen(realm_tokens[2]) + (guint)strlen(".mcc"), (guint)strlen(realm_tokens[3]) - (guint)strlen("mcc"), mcc); } else { /* Add MNC to tree */ proto_tree_add_uint(eap_identity_tree, hf_eap_identity_mcc_mnc, tvb, offset + (guint)strlen(tokens[0]) + (guint)strlen("@wlan.") + (guint)strlen("mnc"), (guint)strlen(realm_tokens[1]) - (guint)strlen("mnc"), mcc_mnc); /* Add MCC to tree */ proto_tree_add_uint(eap_identity_tree, hf_eap_identity_mcc, tvb, offset + (guint)(strlen(tokens[0]) + (guint)strlen("@wlan.") + (guint)strlen(realm_tokens[1]) + 1 + strlen("mcc")), (guint)strlen(realm_tokens[2]) - (guint)strlen("mcc"), mcc); } } end: g_strfreev(tokens); g_strfreev(realm_tokens); g_strfreev(cert_tokens); return ret; } static void dissect_eap_identity(tvbuff_t *tvb, packet_info* pinfo, proto_tree* tree, int offset, gint size) { /* * Try to dissect as WLAN identity. * * XXX - what other types of identity are there? * * XXX - dissect_eap_identity_wlan() speaks of EAP-AKA and EAP-SIM, * and neither RFC 4187 for EAP-AKA nor RFC 4186 for EAP-SIM speak * of those being used solely on WLANs. For that matter, 802.1X * was originally designed for wired networks (Ethernet, Token Ring, * FDDI), and later adapted for 802.11. * * If dissecting EAP identities must be done differently for wired * networks and 802.11, this should dissect them based on the link-layer * type of the network on which the packet arrived. * * If dissecting EAP identities does *not* need to be done differently * for wired networks and 802.11, dissect_eap_identity_wlan() should * just be incorporated within this routine. */ if (dissect_eap_identity_wlan(tvb, pinfo, tree, offset, size)) return; } static void dissect_eap_sim(proto_tree *eap_tree, tvbuff_t *tvb, packet_info* pinfo, int offset, gint size) { gint left = size; proto_tree_add_item(eap_tree, hf_eap_sim_subtype, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; left -= 1; if (left < 2) return; proto_tree_add_item(eap_tree, hf_eap_sim_reserved, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; left -= 2; /* Rest of EAP-SIM data is in Type-Len-Value format. */ while (left >= 2) { guint8 type, length; gint padding; proto_item *pi; proto_tree *attr_tree; int aoffset; gint aleft; aoffset = offset; type = tvb_get_guint8(tvb, aoffset); length = tvb_get_guint8(tvb, aoffset + 1); aleft = 4 * length; pi = proto_tree_add_none_format(eap_tree, hf_eap_sim_subtype_attribute, tvb, aoffset, aleft, "EAP-SIM Attribute: %s (%d)", val_to_str_ext_const(type, &eap_sim_aka_attribute_vals_ext, "Unknown"), type); attr_tree = proto_item_add_subtree(pi, ett_eap_sim_attr); proto_tree_add_uint(attr_tree, hf_eap_sim_subtype_type, tvb, aoffset, 1, type); aoffset += 1; aleft -= 1; if (aleft <= 0) break; proto_tree_add_item(attr_tree, hf_eap_sim_subtype_length, tvb, aoffset, 1, ENC_BIG_ENDIAN); aoffset += 1; aleft -= 1; switch(type){ case AT_IDENTITY: proto_tree_add_item(attr_tree, hf_eap_identity_actual_len, tvb, aoffset, 2, ENC_BIG_ENDIAN); dissect_eap_identity(tvb, pinfo, attr_tree, aoffset + 2, tvb_get_ntohs(tvb, aoffset)); /* If we have a disparity between the EAP-SIM length (minus the * first 4 bytes of header fields) * 4 and the Identity Actual * Length then it's padding and we need to adjust for that * accurately before looking at the next EAP-SIM attribute. */ padding = ((length - 1) * 4) - tvb_get_ntohs(tvb, aoffset); if (padding != 0) { proto_tree_add_item(attr_tree, hf_eap_identity_padding, tvb, aoffset + 2 + tvb_get_ntohs(tvb, aoffset), padding, ENC_NA); } break; case AT_NOTIFICATION: proto_tree_add_item(attr_tree, hf_eap_sim_notification_type, tvb, aoffset, 2, ENC_BIG_ENDIAN); break; case AT_CLIENT_ERROR_CODE: proto_tree_add_item(attr_tree, hf_eap_sim_error_code_type, tvb, aoffset, 2, ENC_BIG_ENDIAN); break; default: proto_tree_add_item(attr_tree, hf_eap_sim_subtype_value, tvb, aoffset, aleft, ENC_NA); } offset += 4 * length; left -= 4 * length; } } static void dissect_eap_aka(proto_tree *eap_tree, tvbuff_t *tvb, packet_info* pinfo, int offset, gint size) { gint left = size; proto_tree_add_item(eap_tree, hf_eap_aka_subtype, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; left -= 1; if (left < 2) return; proto_tree_add_item(eap_tree, hf_eap_aka_reserved, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; left -= 2; /* Rest of EAP-AKA data is in Type-Len-Value format. */ while (left >= 2) { guint8 type, length; gint padding; proto_item *pi; proto_tree *attr_tree; int aoffset; gint aleft; aoffset = offset; type = tvb_get_guint8(tvb, aoffset); length = tvb_get_guint8(tvb, aoffset + 1); aleft = 4 * length; pi = proto_tree_add_none_format(eap_tree, hf_eap_aka_subtype_attribute, tvb, aoffset, aleft, "EAP-AKA Attribute: %s (%d)", val_to_str_ext_const(type, &eap_sim_aka_attribute_vals_ext, "Unknown"), type); attr_tree = proto_item_add_subtree(pi, ett_eap_aka_attr); proto_tree_add_uint(attr_tree, hf_eap_aka_subtype_type, tvb, aoffset, 1, type); aoffset += 1; aleft -= 1; if (aleft <= 0) break; proto_tree_add_item(attr_tree, hf_eap_aka_subtype_length, tvb, aoffset, 1, ENC_BIG_ENDIAN); aoffset += 1; aleft -= 1; switch(type){ case AT_IDENTITY: proto_tree_add_item(attr_tree, hf_eap_identity_actual_len, tvb, aoffset, 2, ENC_BIG_ENDIAN); dissect_eap_identity(tvb, pinfo, attr_tree, aoffset + 2, tvb_get_ntohs(tvb, aoffset)); /* If we have a disparity between the EAP-AKA length (minus the * first 4 bytes of header fields) * 4 and the Identity Actual * Length then it's padding and we need to adjust for that * accurately before looking at the next EAP-AKA attribute. */ padding = ((length - 1) * 4) - tvb_get_ntohs(tvb, aoffset); if (padding != 0) { proto_tree_add_item(attr_tree, hf_eap_identity_padding, tvb, aoffset + 2 + tvb_get_ntohs(tvb, aoffset), padding, ENC_NA); } break; case AT_NOTIFICATION: proto_tree_add_item(attr_tree, hf_eap_aka_notification_type, tvb, aoffset, 2, ENC_BIG_ENDIAN); break; case AT_CLIENT_ERROR_CODE: proto_tree_add_item(attr_tree, hf_eap_aka_error_code_type, tvb, aoffset, 2, ENC_BIG_ENDIAN); break; default: proto_tree_add_item(attr_tree, hf_eap_aka_subtype_value, tvb, aoffset, aleft, ENC_NA); } offset += 4 * length; left -= 4 * length; } } static int dissect_eap_pax(proto_tree *eap_tree, tvbuff_t *tvb, packet_info *pinfo, int offset, gint size) { static int * const pax_flags[] = { &hf_eap_pax_flags_mf, &hf_eap_pax_flags_ce, &hf_eap_pax_flags_ai, &hf_eap_pax_flags_reserved, NULL }; guint32 opcode; guint64 flags; guint32 len; proto_tree_add_item_ret_uint(eap_tree, hf_eap_pax_opcode, tvb, offset, 1, ENC_NA, &opcode); offset++; col_append_fstr(pinfo->cinfo, COL_INFO, " %s", val_to_str(opcode, eap_pax_opcode_vals, "Unknown opcode (0x%02X)")); proto_tree_add_bitmask_ret_uint64(eap_tree, tvb, offset, hf_eap_pax_flags, ett_eap_pax_flags, pax_flags, ENC_BIG_ENDIAN, &flags); offset++; proto_tree_add_item(eap_tree, hf_eap_pax_mac_id, tvb, offset, 1, ENC_NA); offset++; proto_tree_add_item(eap_tree, hf_eap_pax_dh_group_id, tvb, offset, 1, ENC_NA); offset++; proto_tree_add_item(eap_tree, hf_eap_pax_public_key_id, tvb, offset, 1, ENC_NA); offset++; switch (opcode) { case PAX_STD_1: proto_tree_add_item_ret_uint(eap_tree, hf_eap_pax_a_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_pax_a, tvb, offset, len, ENC_NA); offset += len; len = 5 + size - offset; proto_tree_add_item(eap_tree, hf_eap_pax_mac_icv, tvb, offset, len, ENC_NA); offset += len; break; case PAX_STD_2: proto_tree_add_item_ret_uint(eap_tree, hf_eap_pax_b_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_pax_b, tvb, offset, len, ENC_NA); offset += len; proto_tree_add_item_ret_uint(eap_tree, hf_eap_pax_cid_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_pax_cid, tvb, offset, len, ENC_ASCII | ENC_NA); offset += len; proto_tree_add_item_ret_uint(eap_tree, hf_eap_pax_mac_ck_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_pax_mac_ck, tvb, offset, len, ENC_NA); offset += len; if (flags & EAP_PAX_FLAG_AI) { proto_tree_add_item_ret_uint(eap_tree, hf_eap_pax_ade_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_pax_ade, tvb, offset, len, ENC_NA); offset += len; } len = 5 + size - offset; proto_tree_add_item(eap_tree, hf_eap_pax_mac_icv, tvb, offset, len, ENC_NA); offset += len; break; case PAX_STD_3: proto_tree_add_item_ret_uint(eap_tree, hf_eap_pax_mac_ck_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_pax_mac_ck, tvb, offset, len, ENC_NA); offset += len; if (flags & EAP_PAX_FLAG_AI) { proto_tree_add_item_ret_uint(eap_tree, hf_eap_pax_ade_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_pax_ade, tvb, offset, len, ENC_NA); offset += len; } len = 5 + size - offset; proto_tree_add_item(eap_tree, hf_eap_pax_mac_icv, tvb, offset, len, ENC_NA); offset += len; break; case PAX_ACK: if (flags & EAP_PAX_FLAG_AI) { proto_tree_add_item_ret_uint(eap_tree, hf_eap_pax_ade_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_pax_ade, tvb, offset, len, ENC_NA); offset += len; } len = 5 + size - offset; proto_tree_add_item(eap_tree, hf_eap_pax_mac_icv, tvb, offset, len, ENC_NA); offset += len; break; case PAX_SEC_1: case PAX_SEC_2: case PAX_SEC_3: case PAX_SEC_4: case PAX_SEC_5: /* TODO implement */ default: break; } return offset; } static int dissect_eap_psk_pchannel(proto_tree *eap_tree, tvbuff_t *tvb, int offset, gint size) { /* The protected channel (PCHANNEL) content is encrypted so for now just present * it as a binary blob */ proto_tree_add_item(eap_tree, hf_eap_psk_pchannel, tvb, offset, size, ENC_NA); offset += size; return offset; } static int dissect_eap_psk(proto_tree *eap_tree, tvbuff_t *tvb, packet_info *pinfo, int offset, gint size) { static int * const psk_flags[] = { &hf_eap_psk_flags_t, &hf_eap_psk_flags_reserved, NULL }; guint64 flags; proto_tree_add_bitmask_ret_uint64(eap_tree, tvb, offset, hf_eap_psk_flags, ett_eap_psk_flags, psk_flags, ENC_NA, &flags); offset++; switch (flags & EAP_PSK_FLAGS_T_MASK) { case 0x00: /* T == 0 - EAP-PSK First Message */ col_append_str(pinfo->cinfo, COL_INFO, " First Message"); proto_tree_add_item(eap_tree, hf_eap_psk_rand_s, tvb, offset, 16, ENC_NA); offset += 16; proto_tree_add_item(eap_tree, hf_eap_psk_id_s, tvb, offset, size + 5 - offset, ENC_ASCII | ENC_NA); offset = size; break; case 0x40: /* T == 1 - EAP-PSK Second Message */ col_append_str(pinfo->cinfo, COL_INFO, " Second Message"); proto_tree_add_item(eap_tree, hf_eap_psk_rand_s, tvb, offset, 16, ENC_NA); offset += 16; proto_tree_add_item(eap_tree, hf_eap_psk_rand_p, tvb, offset, 16, ENC_NA); offset += 16; proto_tree_add_item(eap_tree, hf_eap_psk_mac_p, tvb, offset, 16, ENC_NA); offset += 16; proto_tree_add_item(eap_tree, hf_eap_psk_id_p, tvb, offset, size + 5 - offset, ENC_ASCII | ENC_NA); offset = size; break; case 0x80: /* T == 2 - EAP-PSK Third Message */ col_append_str(pinfo->cinfo, COL_INFO, " Third Message"); proto_tree_add_item(eap_tree, hf_eap_psk_rand_s, tvb, offset, 16, ENC_NA); offset += 16; proto_tree_add_item(eap_tree, hf_eap_psk_mac_s, tvb, offset, 16, ENC_NA); offset += 16; offset = dissect_eap_psk_pchannel(eap_tree, tvb, offset, size + 5 - offset); break; case 0xC0: /* T == 3 - EAP-PSK Fourth Message */ col_append_str(pinfo->cinfo, COL_INFO, " Fourth Message"); proto_tree_add_item(eap_tree, hf_eap_psk_rand_s, tvb, offset, 16, ENC_NA); offset += 16; offset = dissect_eap_psk_pchannel(eap_tree, tvb, offset, size + 5 - offset); break; default: break; } return offset; } static gint dissect_eap_gpsk_csuite_sel(proto_tree *eap_tree, tvbuff_t *tvb, int offset) { proto_tree *csuite_tree; csuite_tree = proto_tree_add_subtree(eap_tree, tvb, offset, 6, ett_eap_gpsk_csuite_sel, NULL, "EAP-GPSK CSuite_Sel"); proto_tree_add_item(csuite_tree, hf_eap_gpsk_csuite_vendor, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; proto_tree_add_item(csuite_tree, hf_eap_gpsk_csuite_specifier, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; return offset; } static gint dissect_eap_gpsk_csuite_list(proto_tree *eap_tree, tvbuff_t *tvb, int offset) { gint start_offset = offset; guint16 len; proto_tree *list_tree, *csuite_tree; len = tvb_get_ntohs(tvb, offset) + 2; list_tree = proto_tree_add_subtree(eap_tree, tvb, offset, len, ett_eap_gpsk_csuite_list, NULL, "EAP-GPSK CSuite List"); proto_tree_add_item(list_tree, hf_eap_gpsk_csuite_list_len, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; while (offset < start_offset + len) { csuite_tree = proto_tree_add_subtree(list_tree, tvb, offset, 6, ett_eap_gpsk_csuite, NULL, "CSuite"); proto_tree_add_item(csuite_tree, hf_eap_gpsk_csuite_vendor, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; proto_tree_add_item(csuite_tree, hf_eap_gpsk_csuite_specifier, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; } return offset; } static gint dissect_eap_sake_attribute(proto_tree *eap_tree, tvbuff_t *tvb, int offset, gint size) { gint start_offset = offset; guint8 type; guint8 len; proto_tree *attr_tree; type = tvb_get_guint8(tvb, offset); len = tvb_get_guint8(tvb, offset + 1); if (len < 2 || len > size) { return -1; } attr_tree = proto_tree_add_subtree_format(eap_tree, tvb, offset, len, ett_eap_sake_attr, NULL, "EAP-SAKE Attribute: %s", val_to_str(type, eap_sake_attr_type_vals, "Unknown (%d)")); proto_tree_add_item(attr_tree, hf_eap_sake_attr_type, tvb, offset, 1, ENC_NA); offset++; proto_tree_add_item(attr_tree, hf_eap_sake_attr_len, tvb, offset, 1, ENC_NA); offset++; len -= 2; switch (type) { case SAKE_AT_SERVERID: case SAKE_AT_PEERID: proto_tree_add_item(attr_tree, hf_eap_sake_attr_value_str, tvb, offset, len, ENC_ASCII | ENC_NA); offset += len; break; case SAKE_AT_MSK_LIFE: proto_tree_add_item(attr_tree, hf_eap_sake_attr_value_uint48, tvb, offset, len, ENC_BIG_ENDIAN); offset += len; break; case SAKE_AT_RAND_S: case SAKE_AT_RAND_P: case SAKE_AT_MIC_S: case SAKE_AT_MIC_P: case SAKE_AT_SPI_S: case SAKE_AT_SPI_P: case SAKE_AT_ANY_ID_REQ: case SAKE_AT_PERM_ID_REQ: case SAKE_AT_ENCR_DATA: case SAKE_AT_IV: case SAKE_AT_PADDING: case SAKE_AT_NEXT_TMPID: default: proto_tree_add_item(attr_tree, hf_eap_sake_attr_value, tvb, offset, len, ENC_NA); offset += len; break; } return offset - start_offset; } static void dissect_eap_sake_attributes(proto_tree *eap_tree, tvbuff_t *tvb, int offset, gint size) { gint attr_size; while (offset < size) { attr_size = dissect_eap_sake_attribute(eap_tree, tvb, offset, size); if (attr_size == -1) { break; } offset += attr_size; } } static void dissect_eap_sake(proto_tree *eap_tree, tvbuff_t *tvb, packet_info *pinfo _U_, int offset, gint size) { guint32 version; guint32 subtype; proto_tree_add_item_ret_uint(eap_tree, hf_eap_sake_version, tvb, offset, 1, ENC_NA, &version); offset++; if (version != 2) { /* RFC 4763 specify version 2. Everything else is unsupported */ return; } proto_tree_add_item(eap_tree, hf_eap_sake_session_id, tvb, offset, 1, ENC_NA); offset++; proto_tree_add_item_ret_uint(eap_tree, hf_eap_sake_subtype, tvb, offset, 1, ENC_NA, &subtype); offset++; switch (subtype) { case SAKE_CHALLENGE: case SAKE_CONFIRM: case SAKE_AUTH_REJECT: case SAKE_IDENTITY: dissect_eap_sake_attributes(eap_tree, tvb, offset, size + 5 - offset); break; default: break; } } static int dissect_eap_gpsk(proto_tree *eap_tree, tvbuff_t *tvb, packet_info *pinfo, int offset, gint size) { guint32 opcode; guint32 len; proto_tree_add_item_ret_uint(eap_tree, hf_eap_gpsk_opcode, tvb, offset, 1, ENC_NA, &opcode); offset++; col_append_fstr(pinfo->cinfo, COL_INFO, " %s", val_to_str(opcode, eap_gpsk_opcode_vals, "Unknown opcode (0x%02X)")); switch (opcode) { case GPSK_GPSK_1: proto_tree_add_item_ret_uint(eap_tree, hf_eap_gpsk_id_server_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_gpsk_id_server, tvb, offset, len, ENC_ASCII | ENC_NA); offset += len; proto_tree_add_item(eap_tree, hf_eap_gpsk_rand_server, tvb, offset, 32, ENC_NA); offset += 32; offset = dissect_eap_gpsk_csuite_list(eap_tree, tvb, offset); break; case GPSK_GPSK_2: proto_tree_add_item_ret_uint(eap_tree, hf_eap_gpsk_id_peer_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_gpsk_id_peer, tvb, offset, len, ENC_ASCII | ENC_NA); offset += len; proto_tree_add_item_ret_uint(eap_tree, hf_eap_gpsk_id_server_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_gpsk_id_server, tvb, offset, len, ENC_ASCII | ENC_NA); offset += len; proto_tree_add_item(eap_tree, hf_eap_gpsk_rand_peer, tvb, offset, 32, ENC_NA); offset += 32; proto_tree_add_item(eap_tree, hf_eap_gpsk_rand_server, tvb, offset, 32, ENC_NA); offset += 32; offset = dissect_eap_gpsk_csuite_list(eap_tree, tvb, offset); offset = dissect_eap_gpsk_csuite_sel(eap_tree, tvb, offset); proto_tree_add_item_ret_uint(eap_tree, hf_eap_gpsk_pd_payload_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; if (len > 0) { proto_tree_add_item(eap_tree, hf_eap_gpsk_pd_payload, tvb, offset, len, ENC_NA); offset += len; } len = size + 5 - offset; proto_tree_add_item(eap_tree, hf_eap_gpsk_payload_mac, tvb, offset, len, ENC_NA); offset += len; break; case GPSK_GPSK_3: proto_tree_add_item(eap_tree, hf_eap_gpsk_rand_peer, tvb, offset, 32, ENC_NA); offset += 32; proto_tree_add_item(eap_tree, hf_eap_gpsk_rand_server, tvb, offset, 32, ENC_NA); offset += 32; proto_tree_add_item_ret_uint(eap_tree, hf_eap_gpsk_id_server_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; proto_tree_add_item(eap_tree, hf_eap_gpsk_id_server, tvb, offset, len, ENC_ASCII | ENC_NA); offset += len; offset = dissect_eap_gpsk_csuite_sel(eap_tree, tvb, offset); proto_tree_add_item_ret_uint(eap_tree, hf_eap_gpsk_pd_payload_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; if (len > 0) { proto_tree_add_item(eap_tree, hf_eap_gpsk_pd_payload, tvb, offset, len, ENC_NA); offset += len; } len = size + 5 - offset; proto_tree_add_item(eap_tree, hf_eap_gpsk_payload_mac, tvb, offset, len, ENC_NA); offset += len; break; case GPSK_GPSK_4: proto_tree_add_item_ret_uint(eap_tree, hf_eap_gpsk_pd_payload_len, tvb, offset, 2, ENC_BIG_ENDIAN, &len); offset += 2; if (len > 0) { proto_tree_add_item(eap_tree, hf_eap_gpsk_pd_payload, tvb, offset, len, ENC_NA); offset += len; } len = size + 5 - offset; proto_tree_add_item(eap_tree, hf_eap_gpsk_payload_mac, tvb, offset, len, ENC_NA); offset += len; break; case GPSK_FAIL: proto_tree_add_item(eap_tree, hf_eap_gpsk_failure_code, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; break; case GPSK_PROTECTED_FAIL: proto_tree_add_item(eap_tree, hf_eap_gpsk_failure_code, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; len = size + 5 - offset; proto_tree_add_item(eap_tree, hf_eap_gpsk_payload_mac, tvb, offset, len, ENC_NA); offset += len; break; default: break; } return offset; } static int dissect_eap_msauth_tlv(proto_tree *eap_tree, tvbuff_t *tvb, packet_info *pinfo, int offset, gint size) { guint tlv_type, tlv_len; proto_tree *tlv_tree, *tree, *ti_len; tlv_tree = proto_tree_add_subtree(eap_tree, tvb, offset, size, ett_eap_msauth_tlv, NULL, "Tag Length Values"); next_tlv: tlv_type = tvb_get_guint16(tvb, offset, ENC_BIG_ENDIAN) & MSAUTH_TLV_TYPE; tlv_len = tvb_get_guint16(tvb, offset + 2, ENC_BIG_ENDIAN); tree = proto_tree_add_subtree_format(tlv_tree, tvb, offset, 4 + tlv_len, ett_eap_msauth_tlv_tree, NULL, "TLV: t=%s(%d) l=%d", val_to_str_const(tlv_type, eap_msauth_tlv_type_vals, "Unknown"), tlv_type, 4 + tlv_len); proto_tree_add_item(tree, hf_eap_msauth_tlv_mandatory, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(tree, hf_eap_msauth_tlv_reserved, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(tree, hf_eap_msauth_tlv_type, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(tree, hf_eap_msauth_tlv_len, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; switch (tlv_type) { case MSAUTH_TLV_TYPE_EXTENSION_RESULT: proto_tree_add_item(tree, hf_eap_msauth_tlv_status, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; break; case MSAUTH_TLV_TYPE_EXTENSION_CRYPTOBINDING: proto_tree_add_item(tree, hf_eap_msauth_tlv_crypto_reserved, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(tree, hf_eap_msauth_tlv_crypto_version, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(tree, hf_eap_msauth_tlv_crypto_rcv_version, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(tree, hf_eap_msauth_tlv_crypto_subtype, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(tree, hf_eap_msauth_tlv_crypto_nonce, tvb, offset, 32, ENC_NA); offset += 32; proto_tree_add_item(tree, hf_eap_msauth_tlv_crypto_cmac, tvb, offset, 20, ENC_NA); offset += 20; break; default: ti_len = proto_tree_add_item(tree, hf_eap_msauth_tlv_val, tvb, offset, tlv_len, ENC_NA); if (4 + tlv_len > (guint)size - offset) { expert_add_info(pinfo, ti_len, &ei_eap_bad_length); } offset += tlv_len; } if (offset < size) { goto next_tlv; } return offset; } static int dissect_eap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { guint8 eap_code; guint8 eap_identifier; guint16 eap_len; guint8 eap_type; gint len; conversation_t *conversation = NULL; conv_state_t *conversation_state = NULL; frame_state_t *packet_state; int leap_state; proto_tree *ti, *ti_id, *ti_len; proto_tree *eap_tree; proto_tree *eap_tls_flags_tree; proto_item *eap_type_item; static address null_address = ADDRESS_INIT_NONE; static guint8 pae_group_address_mac_addr[6] = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; static address pae_group_address = ADDRESS_INIT(AT_ETHER, sizeof(pae_group_address_mac_addr), pae_group_address_mac_addr); col_set_str(pinfo->cinfo, COL_PROTOCOL, "EAP"); col_clear(pinfo->cinfo, COL_INFO); eap_code = tvb_get_guint8(tvb, 0); eap_identifier = tvb_get_guint8(tvb, 1); col_add_str(pinfo->cinfo, COL_INFO, val_to_str(eap_code, eap_code_vals, "Unknown code (0x%02X)")); /* * Find a conversation to which we belong; create one if we don't find it. * * EAP runs over RADIUS (which runs over UDP), EAPOL (802.1X Authentication) * or other transports. In case of RADIUS, a single "session" may consist * of two UDP associations (one for authorization, one for accounting) which * results in two separate conversations. This wastes memory, but won't affect * the use cases below. In case of EAPOL, there are no ports. In any case, * force a new conversation when the EAP-Request/Identity message is found. * * Conversation tracking is required for 1) EAP-TLS reassembly and 2) tracking * the stage in the LEAP protocol. In both cases, the protocol starts with an * EAP-Request/Identity message which cannot be found in the middle of the * session. Use it as a signal to start a new conversation. This ensures that * the TLS dissector associates new TLS messages with a unique TLS session. * * For EAPOL frames we need to massage the source/destination addresses into * something stable for the TLS decoder as wireshark typically thinks there * are three conversations occurring when there is only one: * * src ether = server mac -> dst ether = PAE multicast group address * * src ether = server mac -> dst ether = client mac * * src ether = client mac -> dst ether = PAE multicast group address * We set the port so the TLS decoder can figure out which side is the server */ address conv_src, conv_dst; guint32 tls_group = pinfo->curr_proto_layer_num << 16; uint32_t conv_srcport = pinfo->srcport; uint32_t conv_destport = pinfo->destport; if (pinfo->src.type == AT_ETHER) { if (eap_code == EAP_REQUEST) { /* server -> client */ copy_address_shallow(&conv_src, &null_address); copy_address_shallow(&conv_dst, &pae_group_address); conv_srcport = 443; } else { /* client -> server */ copy_address_shallow(&conv_src, &pae_group_address); copy_address_shallow(&conv_dst, &null_address); conv_destport = 443; } } else { copy_address_shallow(&conv_src, &pinfo->src); copy_address_shallow(&conv_dst, &pinfo->dst); } /* * To support tunneled EAP-TLS (e.g. {TTLS,PEAP,TEAP,...}/EAP-TLS) we * group our TLS frames by the depth they are found at and use this * as offsets for p_get_proto_data/p_add_proto_data and as done for * EAPOL above we massage the client port using this too */ if (eap_code == EAP_REQUEST) { /* server -> client */ conv_destport |= tls_group; } else { /* client -> server */ conv_srcport |= tls_group; } conversation_set_conv_addr_port_endpoints(pinfo, &conv_src, &conv_dst, conversation_pt_to_conversation_type(pinfo->ptype), conv_srcport, conv_destport); if (PINFO_FD_VISITED(pinfo) || !(eap_code == EAP_REQUEST && tvb_get_guint8(tvb, 4) == EAP_TYPE_ID)) { conversation = find_or_create_conversation(pinfo); } if (conversation == NULL) { conversation = conversation_new(pinfo->num, &conv_src, &conv_dst, conversation_pt_to_conversation_type(pinfo->ptype), conv_srcport, conv_destport, 0); } /* * Get the state information for the conversation; attach some if * we don't find it. */ conversation_state = (conv_state_t *)conversation_get_proto_data(conversation, proto_eap); if (conversation_state == NULL) { /* * Attach state information to the conversation. */ conversation_state = wmem_new(wmem_file_scope(), conv_state_t); conversation_state->eap_tls_seq = -1; conversation_state->eap_reass_cookie = 0; conversation_state->leap_state = -1; conversation_state->last_eap_id_req = -1; conversation_state->last_eap_id_resp = -1; conversation_add_proto_data(conversation, proto_eap, conversation_state); } /* * Set this now, so that it gets remembered even if we throw an exception * later. */ if (eap_code == EAP_FAILURE) conversation_state->leap_state = -1; eap_len = tvb_get_ntohs(tvb, 2); len = eap_len; ti = proto_tree_add_item(tree, proto_eap, tvb, 0, len, ENC_NA); eap_tree = proto_item_add_subtree(ti, ett_eap); proto_tree_add_item(eap_tree, hf_eap_code, tvb, 0, 1, ENC_BIG_ENDIAN); ti_id = proto_tree_add_item(eap_tree, hf_eap_identifier, tvb, 1, 1, ENC_BIG_ENDIAN); ti_len = proto_tree_add_item(eap_tree, hf_eap_len, tvb, 2, 2, ENC_BIG_ENDIAN); if (len < 4 || (guint)len > tvb_reported_length(tvb)) { expert_add_info(pinfo, ti_len, &ei_eap_bad_length); } /* Detect message retransmissions. Since the protocol proceeds in lock-step, * reordering is not expected. If retransmissions somehow occur, we would have * to detect retransmissions via a bitmap. */ gboolean is_duplicate_id = FALSE; if (conversation_state) { if (eap_code == EAP_REQUEST || eap_code == EAP_RESPONSE || eap_code == EAP_INITIATE || eap_code == EAP_FINISH) { if (!PINFO_FD_VISITED(pinfo)) { gint16 *last_eap_id = eap_code == EAP_REQUEST || eap_code == EAP_INITIATE ? &conversation_state->last_eap_id_req : &conversation_state->last_eap_id_resp; is_duplicate_id = *last_eap_id == eap_identifier; *last_eap_id = eap_identifier; if (is_duplicate_id) { // Use a dummy value to remember that this packet is a duplicate. p_add_proto_data(wmem_file_scope(), pinfo, proto_eap, PROTO_DATA_EAP_DUPLICATE_ID | tls_group, GINT_TO_POINTER(1)); } } else { is_duplicate_id = !!p_get_proto_data(wmem_file_scope(), pinfo, proto_eap, PROTO_DATA_EAP_DUPLICATE_ID | tls_group); } if (is_duplicate_id) { expert_add_info(pinfo, ti_id, &ei_eap_retransmission); } } } switch (eap_code) { case EAP_SUCCESS: case EAP_FAILURE: break; case EAP_REQUEST: case EAP_RESPONSE: eap_type = tvb_get_guint8(tvb, 4); col_append_fstr(pinfo->cinfo, COL_INFO, ", %s", val_to_str_ext(eap_type, &eap_type_vals_ext, "Unknown type (0x%02x)")); eap_type_item = proto_tree_add_item(eap_tree, hf_eap_type, tvb, 4, 1, ENC_BIG_ENDIAN); if ((len > 5) || ((len == 5) && (eap_type == EAP_TYPE_ID))) { int offset = 5; gint size = len - offset; switch (eap_type) { /********************************************************************* **********************************************************************/ case EAP_TYPE_ID: if (size > 0) { dissect_eap_identity(tvb, pinfo, eap_tree, offset, size); } if (conversation_state && !PINFO_FD_VISITED(pinfo)) { conversation_state->leap_state = 0; conversation_state->eap_tls_seq = -1; } break; /********************************************************************* **********************************************************************/ case EAP_TYPE_NOTIFY: proto_tree_add_item(eap_tree, hf_eap_notification, tvb, offset, size, ENC_ASCII); break; /********************************************************************* **********************************************************************/ case EAP_TYPE_NAK: proto_tree_add_item(eap_tree, hf_eap_type_nak, tvb, offset, 1, ENC_BIG_ENDIAN); break; /********************************************************************* **********************************************************************/ case EAP_TYPE_MD5: { guint8 value_size = tvb_get_guint8(tvb, offset); gint extra_len = size - 1 - value_size; proto_item *item; /* Warn that this is an insecure EAP type. */ expert_add_info(pinfo, eap_type_item, &ei_eap_mitm_attacks); item = proto_tree_add_item(eap_tree, hf_eap_md5_value_size, tvb, offset, 1, ENC_BIG_ENDIAN); if (value_size > (size - 1)) { expert_add_info(pinfo, item, &ei_eap_md5_value_size_overflow); value_size = size - 1; } offset += 1; proto_tree_add_item(eap_tree, hf_eap_md5_value, tvb, offset, value_size, ENC_NA); offset += value_size; if (extra_len > 0) { proto_tree_add_item(eap_tree, hf_eap_md5_extra_data, tvb, offset, extra_len, ENC_NA); } } break; /********************************************************************* EAP-TLS **********************************************************************/ case EAP_TYPE_FAST: case EAP_TYPE_PEAP: case EAP_TYPE_TTLS: case EAP_TYPE_TLS: case EAP_TYPE_TEAP: { gboolean more_fragments; gboolean has_length; gboolean is_start; gboolean outer_tlvs = false; gint outer_tlvs_length = 0; int eap_tls_seq = -1; guint32 eap_reass_cookie = 0; gboolean needs_reassembly = FALSE; if (!conversation_state) { // XXX expert info? There cannot be another EAP-TTLS message within // the EAP-Message inside EAP-TTLS. break; } /* Flags field, 1 byte */ ti = proto_tree_add_item(eap_tree, hf_eap_tls_flags, tvb, offset, 1, ENC_BIG_ENDIAN); eap_tls_flags_tree = proto_item_add_subtree(ti, ett_eap_tls_flags); proto_tree_add_item_ret_boolean(eap_tls_flags_tree, hf_eap_tls_flag_l, tvb, offset, 1, ENC_BIG_ENDIAN, &has_length); proto_tree_add_item_ret_boolean(eap_tls_flags_tree, hf_eap_tls_flag_m, tvb, offset, 1, ENC_BIG_ENDIAN, &more_fragments); proto_tree_add_item_ret_boolean(eap_tls_flags_tree, hf_eap_tls_flag_s, tvb, offset, 1, ENC_BIG_ENDIAN, &is_start); switch (eap_type) { case EAP_TYPE_TEAP: proto_tree_add_item_ret_boolean(eap_tls_flags_tree, hf_eap_tls_flag_o, tvb, offset, 1, ENC_BIG_ENDIAN, &outer_tlvs); /* FALLTHROUGH */ case EAP_TYPE_TTLS: case EAP_TYPE_FAST: case EAP_TYPE_PEAP: proto_tree_add_item(eap_tls_flags_tree, hf_eap_tls_flags_version, tvb, offset, 1, ENC_BIG_ENDIAN); break; } size -= 1; offset += 1; /* Length field, 4 bytes, OPTIONAL. */ if (has_length) { proto_tree_add_item(eap_tree, hf_eap_tls_len, tvb, offset, 4, ENC_BIG_ENDIAN); size -= 4; offset += 4; } /* Outer TLV Length field, 4 bytes, OPTIONAL. */ if (outer_tlvs) { proto_tree_add_item_ret_uint(eap_tree, hf_eap_tls_outer_tlvs_len, tvb, offset, 4, ENC_BIG_ENDIAN, &outer_tlvs_length); size -= 4; offset += 4; } if (is_start) conversation_state->eap_tls_seq = -1; /* 4.1.1 Authority ID Data https://datatracker.ietf.org/doc/html/rfc4851#section-4.1.1 */ if (eap_type == EAP_TYPE_FAST && is_start) { guint32 length, type; proto_tree_add_item_ret_uint(eap_tree, hf_eap_fast_type, tvb, offset, 2, ENC_BIG_ENDIAN, &type); size -= 2; offset += 2; proto_tree_add_item_ret_uint(eap_tree, hf_eap_fast_length, tvb, offset, 2, ENC_BIG_ENDIAN, &length); size -= 2; offset += 2; proto_tree_add_item(eap_tree, hf_eap_data, tvb, offset, length, ENC_NA); switch (type) { case 4: proto_tree_add_item(eap_tree, hf_eap_fast_aidd, tvb, offset, length, ENC_NA); break; } size -= length; offset += length; } if (size > 0) { tvbuff_t *next_tvb = NULL; gint tvb_len; gboolean save_fragmented; tvb_len = tvb_captured_length_remaining(tvb, offset); if (size < tvb_len) tvb_len = size; /* If this is a retransmission, do not save the fragment. */ if (is_duplicate_id) { next_tvb = tvb_new_subset_length_caplen(tvb, offset, tvb_len, size); call_data_dissector(next_tvb, pinfo, eap_tree); break; } /* EAP/TLS is weird protocol (it comes from Microsoft after all). If we have series of fragmented packets, then there's no way of knowing that from the packet itself, if it is the last packet in series, that is that the packet part of bigger fragmented set of data. The only way to know is, by knowing that we are already in defragmentation "mode" and we are expecing packet carrying fragment of data. (either because we have not received expected amount of data, or because the packet before had "F"ragment flag set.) The situation is alleviated by fact that it is simple ack/nack protcol so there's no place for out-of-order packets like it is possible with IP. Anyway, point of this lengthy essay is that we have to keep state information in the conversation, so that we can put ourselves in defragmenting mode and wait for the last packet, and have to attach state to frames as well, so that we can handle defragmentation after the first pass through the capture. */ /* See if we have a remembered defragmentation EAP ID. */ packet_state = (frame_state_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_eap, PROTO_DATA_EAP_FRAME_STATE | tls_group); if (packet_state == NULL) { /* * We haven't - does this message require reassembly? */ if (!pinfo->fd->visited) { /* * This is the first time we've looked at this frame, * so it wouldn't have any remembered information. * * Therefore, we check whether this conversation has * a reassembly operation in progress, or whether * this frame has the Fragment flag set. */ if (conversation_state->eap_tls_seq != -1) { /* * There's a reassembly in progress; the sequence number * of the previous fragment is * "conversation_state->eap_tls_seq", and the reassembly * ID is "conversation_state->eap_reass_cookie". * * We must include this frame in the reassembly. * We advance the sequence number, giving us the * sequence number for this fragment. */ needs_reassembly = TRUE; conversation_state->eap_tls_seq++; eap_reass_cookie = conversation_state->eap_reass_cookie; eap_tls_seq = conversation_state->eap_tls_seq; } else if (more_fragments && has_length) { /* * This message has the Fragment flag set, so it requires * reassembly. It's the message containing the first * fragment (if it's a later fragment, the sequence * number in the conversation state would not be -1). * * If it doesn't include a length, however, we can't * do reassembly (either the message is in error, as * the first fragment *must* contain a length, or we * didn't capture the first fragment, and this just * happens to be the first fragment we saw), so we * also check that we have a length; */ needs_reassembly = TRUE; conversation_state->eap_reass_cookie = pinfo->num; /* * Start the reassembly sequence number at 0. */ conversation_state->eap_tls_seq = 0; eap_tls_seq = conversation_state->eap_tls_seq; eap_reass_cookie = conversation_state->eap_reass_cookie; } if (needs_reassembly) { /* * This frame requires reassembly; remember the reassembly * ID for subsequent accesses to it. */ packet_state = wmem_new(wmem_file_scope(), frame_state_t); packet_state->info = eap_reass_cookie; p_add_proto_data(wmem_file_scope(), pinfo, proto_eap, PROTO_DATA_EAP_FRAME_STATE | tls_group, packet_state); } } } else { /* * This frame has a reassembly cookie associated with it, so * it requires reassembly. We've already done the * reassembly in the first pass, so "fragment_add_seq()" * won't look at the sequence number; set it to 0. * * XXX - a frame isn't supposed to have more than one * EAP message in it, but if it includes both an EAP-TLS * message and a LEAP message, we might be mistakenly * concluding it requires reassembly because the "info" * field isn't -1. We could, I guess, pack both EAP-TLS * ID and LEAP state into the structure, but that doesn't * work if you have multiple EAP-TLS or LEAP messages in * the frame. * * But it's not clear how much work we should do to handle * a bogus message such as that; as long as we don't crash * or do something else equally horrible, we may not * have to worry about this at all. */ needs_reassembly = TRUE; eap_reass_cookie = packet_state->info; eap_tls_seq = 0; } /* We test here to see whether EAP-TLS packet carry fragmented of TLS data. If this is the case, we do reasembly below, otherwise we just call dissector. */ if (needs_reassembly) { fragment_head *fd_head; /* * Yes, this frame contains a fragment that requires * reassembly. */ save_fragmented = pinfo->fragmented; pinfo->fragmented = TRUE; fd_head = fragment_add_seq(&eap_tls_reassembly_table, tvb, offset, pinfo, eap_reass_cookie, NULL, eap_tls_seq, size, more_fragments, 0); if (fd_head != NULL) { if (fd_head->reassembled_in == pinfo->num) { /* Reassembled */ proto_item* frag_tree_item; next_tvb = tvb_new_chain(tvb, fd_head->tvb_data); add_new_data_source(pinfo, next_tvb, "Reassembled EAP-TLS"); show_fragment_seq_tree(fd_head, &eap_tls_frag_items, eap_tree, pinfo, next_tvb, &frag_tree_item); /* * We're finished reassembing this frame. * Reinitialize the reassembly state. */ if (!pinfo->fd->visited) conversation_state->eap_tls_seq = -1; } else { ti = proto_tree_add_uint(eap_tree, hf_eap_tls_reassembled_in, tvb, 0, 0, fd_head->reassembled_in); proto_item_set_generated(ti); } } pinfo->fragmented = save_fragmented; } else { /* this data is NOT fragmented */ next_tvb = tvb_new_subset_length_caplen(tvb, offset, tvb_len, size); } if (next_tvb) { switch (eap_type) { case EAP_TYPE_TTLS: tls_set_appdata_dissector(tls_handle, pinfo, diameter_avps_handle); break; case EAP_TYPE_PEAP: p_add_proto_data(pinfo->pool, pinfo, proto_eap, PROTO_DATA_EAP_TVB | tls_group, tvb); tls_set_appdata_dissector(tls_handle, pinfo, peap_handle); break; case EAP_TYPE_TEAP: if (outer_tlvs) { /* https://www.rfc-editor.org/rfc/rfc7170.html#section-4.1 */ tvbuff_t *teap_tvb = tvb_new_subset_length(tvb, offset + size - outer_tlvs_length, outer_tlvs_length); call_dissector(teap_handle, teap_tvb, pinfo, eap_tree); if (size == outer_tlvs_length) goto skip_tls_dissector; next_tvb = tvb_new_subset_length(next_tvb, 0, size - outer_tlvs_length); } tls_set_appdata_dissector(tls_handle, pinfo, teap_handle); break; } call_dissector(tls_handle, next_tvb, pinfo, eap_tree); } } } skip_tls_dissector: break; /* EAP_TYPE_TLS */ /********************************************************************* Cisco's Lightweight EAP (LEAP) https://web.archive.org/web/20070623090417if_/http://www.missl.cs.umd.edu/wireless/ethereal/leap.txt **********************************************************************/ case EAP_TYPE_LEAP: { guint8 count, namesize; /* Warn that this is an insecure EAP type. */ expert_add_info(pinfo, eap_type_item, &ei_eap_dictionary_attacks); /* Version (byte) */ proto_tree_add_item(eap_tree, hf_eap_leap_version, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* Unused (byte) */ proto_tree_add_item(eap_tree, hf_eap_leap_reserved, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* Count (byte) */ count = tvb_get_guint8(tvb, offset); proto_tree_add_item(eap_tree, hf_eap_leap_count, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* Data (byte*Count) */ /* This part is state-dependent. */ if (!conversation_state) { // XXX expert info? LEAP is not expected within the EAP-Message within EAP-TTLS. break; } /* XXX - are duplicates possible (is_duplicate_id)? * If so, should we stop here to avoid modifying conversation_state? */ /* See if we've already remembered the state. */ packet_state = (frame_state_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_eap, PROTO_DATA_EAP_FRAME_STATE | tls_group); if (packet_state == NULL) { /* * We haven't - compute the state based on the current * state in the conversation. */ leap_state = conversation_state->leap_state; /* Advance the state machine. */ if (leap_state==0) leap_state = 1; else if (leap_state==1) leap_state = 2; else if (leap_state==2) leap_state = 3; else if (leap_state==3) leap_state = 4; else if (leap_state==4) leap_state = -1; /* * Remember the state for subsequent accesses to this * frame. */ packet_state = wmem_new(wmem_file_scope(), frame_state_t); packet_state->info = leap_state; p_add_proto_data(wmem_file_scope(), pinfo, proto_eap, PROTO_DATA_EAP_FRAME_STATE | tls_group, packet_state); /* * Update the conversation's state. */ conversation_state->leap_state = leap_state; } /* Get the remembered state. */ leap_state = packet_state->info; switch (leap_state) { case 1: proto_tree_add_item(eap_tree, hf_eap_leap_peer_challenge, tvb, offset, count, ENC_NA); break; case 2: proto_tree_add_item(eap_tree, hf_eap_leap_peer_response, tvb, offset, count, ENC_NA); break; case 3: proto_tree_add_item(eap_tree, hf_eap_leap_ap_challenge, tvb, offset, count, ENC_NA); break; case 4: proto_tree_add_item(eap_tree, hf_eap_leap_ap_response, tvb, offset, count, ENC_NA); break; default: proto_tree_add_item(eap_tree, hf_eap_leap_data, tvb, offset, count, ENC_NA); break; } offset += count; /* Name (Length-(8+Count)) */ namesize = eap_len - (8+count); proto_tree_add_item(eap_tree, hf_eap_leap_name, tvb, offset, namesize, ENC_ASCII); } break; /* EAP_TYPE_LEAP */ /********************************************************************* EAP-MSCHAPv2 - draft-kamath-pppext-eap-mschapv2-00.txt **********************************************************************/ case EAP_TYPE_MSCHAPV2: dissect_eap_mschapv2(eap_tree, tvb, pinfo, offset, size); break; /* EAP_TYPE_MSCHAPV2 */ /********************************************************************* EAP-SIM - draft-haverinen-pppext-eap-sim-13.txt **********************************************************************/ case EAP_TYPE_SIM: dissect_eap_sim(eap_tree, tvb, pinfo, offset, size); break; /* EAP_TYPE_SIM */ /********************************************************************* EAP-AKA - draft-arkko-pppext-eap-aka-12.txt **********************************************************************/ case EAP_TYPE_AKA: case EAP_TYPE_AKA_PRIME: dissect_eap_aka(eap_tree, tvb, pinfo, offset, size); break; /* EAP_TYPE_AKA */ /********************************************************************* EAP Expanded Type **********************************************************************/ case EAP_TYPE_EXT: { proto_tree *exptree; exptree = proto_tree_add_subtree(eap_tree, tvb, offset, size, ett_eap_exp_attr, NULL, "Expanded Type"); dissect_exteap(exptree, tvb, offset, size, pinfo, eap_code, eap_identifier); } break; /********************************************************************* EAP-PAX - RFC 4746 **********************************************************************/ case EAP_TYPE_PAX: dissect_eap_pax(eap_tree, tvb, pinfo, offset, size); break; /* EAP_TYPE_PAX */ /********************************************************************* EAP-PSK - RFC 4764 **********************************************************************/ case EAP_TYPE_PSK: dissect_eap_psk(eap_tree, tvb, pinfo, offset, size); break; /* EAP_TYPE_PSK */ /********************************************************************* EAP-SAKE - RFC 4763 **********************************************************************/ case EAP_TYPE_SAKE: dissect_eap_sake(eap_tree, tvb, pinfo, offset, size); break; /* EAP_TYPE_SAKE */ /********************************************************************* EAP-GPSK - RFC 5433 **********************************************************************/ case EAP_TYPE_GPSK: dissect_eap_gpsk(eap_tree, tvb, pinfo, offset, size); break; /* EAP_TYPE_GPSK */ /********************************************************************* EAP-IKEv2 - RFC 5106 **********************************************************************/ case EAP_TYPE_IKEV2: { gboolean more_fragments; gboolean has_length; gboolean icv_present; /* Flags field, 1 byte */ ti = proto_tree_add_item(eap_tree, hf_eap_ikev2_flags, tvb, offset, 1, ENC_BIG_ENDIAN); eap_tls_flags_tree = proto_item_add_subtree(ti, hf_eap_ikev2_flags); proto_tree_add_item_ret_boolean(eap_tls_flags_tree, hf_eap_ikev2_flag_l, tvb, offset, 1, ENC_BIG_ENDIAN, &has_length); proto_tree_add_item_ret_boolean(eap_tls_flags_tree, hf_eap_ikev2_flag_m, tvb, offset, 1, ENC_BIG_ENDIAN, &more_fragments); proto_tree_add_item_ret_boolean(eap_tls_flags_tree, hf_eap_ikev2_flag_i, tvb, offset, 1, ENC_BIG_ENDIAN, &icv_present); size -= 1; offset += 1; /* Length field, 4 bytes, OPTIONAL. */ if (has_length) { proto_tree_add_item(eap_tree, hf_eap_ikev2_len, tvb, offset, 4, ENC_BIG_ENDIAN); size -= 4; offset += 4; } if (size > 0) { tvbuff_t* next_tvb = NULL; gint tvb_len; tvb_len = tvb_captured_length_remaining(tvb, offset); if (size < tvb_len) { tvb_len = size; } if (has_length || more_fragments) { /* TODO: Add fragmentation support * Length of integrity check data needs to be determined in case of fragmentation. Chosen INTEG transform? */ } else { next_tvb = tvb_new_subset_length_caplen(tvb, offset, tvb_len, size); guint tmp = call_dissector(isakmp_handle, next_tvb, pinfo, eap_tree); size -= tmp; offset += tmp; if (icv_present && size > 0) { /* We assume that all data present is integrity check data. We cannot detect too short/long right now. */ proto_tree_add_item(eap_tree, hf_eap_ikev2_int_chk_data, tvb, offset, size, ENC_NA); } } } break; } /* EAP_TYPE_IKEV2 */ /********************************************************************* MS-Authentication-TLV - MS-PEAP section 2.2.8.1 **********************************************************************/ case EAP_TYPE_MSAUTH_TLV: dissect_eap_msauth_tlv(eap_tree, tvb, pinfo, offset, size); break; /* EAP_TYPE_MSAUTH_TLV */ /********************************************************************* **********************************************************************/ default: proto_tree_add_item(eap_tree, hf_eap_data, tvb, offset, size, ENC_NA); break; /********************************************************************* **********************************************************************/ } /* switch (eap_type) */ } } /* switch (eap_code) */ return tvb_captured_length(tvb); } void proto_register_eap(void) { static hf_register_info hf[] = { { &hf_eap_code, { "Code", "eap.code", FT_UINT8, BASE_DEC, VALS(eap_code_vals), 0x0, NULL, HFILL }}, { &hf_eap_identifier, { "Id", "eap.id", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_len, { "Length", "eap.len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_type, { "Type", "eap.type", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &eap_type_vals_ext, 0x0, NULL, HFILL }}, { &hf_eap_type_nak, { "Desired Auth Type", "eap.desired_type", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &eap_type_vals_ext, 0x0, NULL, HFILL }}, { &hf_eap_identity, { "Identity", "eap.identity", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_identity_prefix, { "Identity Prefix", "eap.identity.prefix", FT_CHAR, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_identity_type, { "Identity Type", "eap.identity.type", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_identity_full, { "Identity (Full)", "eap.identity.full", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_identity_certificate_sn, { "Certificate Serial Number", "eap.identity.cert_sn", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_identity_mcc, { "Identity Mobile Country Code", "eap.identity.mcc", FT_UINT16, BASE_DEC|BASE_EXT_STRING, &E212_codes_ext, 0x0, NULL, HFILL }}, { &hf_eap_identity_mcc_mnc_2digits, { "Identity Mobile Network Code", "eap.identity.mnc", FT_UINT16, BASE_DEC|BASE_EXT_STRING, &mcc_mnc_2digits_codes_ext, 0x0, NULL, HFILL }}, { &hf_eap_identity_mcc_mnc_3digits, { "Identity Mobile Network Code", "eap.identity.mnc", FT_UINT16, BASE_DEC|BASE_EXT_STRING, &mcc_mnc_3digits_codes_ext, 0x0, NULL, HFILL }}, { &hf_eap_identity_padding, { "Padding", "eap.identity.padding", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_identity_actual_len, { "Identity Actual Length", "eap.identity.actual_len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_notification, { "Notification", "eap.notification", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_md5_value_size, { "EAP-MD5 Value-Size", "eap.md5.value_size", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_md5_value, { "EAP-MD5 Value", "eap.md5.value", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_md5_extra_data, { "EAP-MD5 Extra Data", "eap.md5.extra_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_tls_flags, { "EAP-TLS Flags", "eap.tls.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_tls_flag_l, { "Length Included", "eap.tls.flags.len_included", FT_BOOLEAN, 8, NULL, EAP_TLS_FLAG_L, NULL, HFILL }}, { &hf_eap_tls_flag_m, { "More Fragments", "eap.tls.flags.more_fragments", FT_BOOLEAN, 8, NULL, EAP_TLS_FLAG_M, NULL, HFILL }}, { &hf_eap_tls_flag_s, { "Start", "eap.tls.flags.start", FT_BOOLEAN, 8, NULL, EAP_TLS_FLAG_S, NULL, HFILL }}, { &hf_eap_tls_flag_o, { "Outer TLV Length Included", "eap.tls.flags.outer_tlv_len_included", FT_BOOLEAN, 8, NULL, EAP_TLS_FLAG_O, NULL, HFILL }}, { &hf_eap_tls_flags_version, { "Version", "eap.tls.flags.version", FT_UINT8, BASE_DEC, NULL, EAP_TLS_FLAGS_VERSION, NULL, HFILL }}, { &hf_eap_tls_len, { "EAP-TLS Length", "eap.tls.len", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_tls_outer_tlvs_len, { "TEAP Outer TLVs Length", "eap.tls.outer_tlvs_len", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_tls_fragment, { "EAP-TLS Fragment", "eap.tls.fragment", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_tls_fragments, { "EAP-TLS Fragments", "eap.tls.fragments", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_tls_fragment_overlap, { "Fragment Overlap", "eap.tls.fragment.overlap", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Fragment overlaps with other fragments", HFILL }}, { &hf_eap_tls_fragment_overlap_conflict, { "Conflicting Data In Fragment Overlap", "eap.tls.fragment.overlap_conflict", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Overlapping fragments contained conflicting data", HFILL }}, { &hf_eap_tls_fragment_multiple_tails, { "Multiple Tail Fragments Found", "eap.tls.fragment.multiple_tails", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Several tails were found when defragmenting the packet", HFILL }}, { &hf_eap_tls_fragment_too_long_fragment,{ "Fragment Too Long", "eap.tls.fragment.fragment.too_long", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Fragment contained data past end of packet", HFILL }}, { &hf_eap_tls_fragment_error, { "Defragmentation Error", "eap.tls.fragment.error", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "Defragmentation error due to illegal fragments", HFILL }}, { &hf_eap_tls_fragment_count, { "Fragment Count", "eap.tls.fragment.count", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_tls_reassembled_in, { "Reassembled EAP-TLS PDU in frame", "eap.tls.reassembled_in", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "A PDU with a fragment from this frame is reassembled in this frame", HFILL } }, { &hf_eap_tls_reassembled_length, { "Reassembled EAP-TLS Length", "eap.tls.reassembled.len", FT_UINT32, BASE_DEC, NULL, 0x0, "Total length of the reassembled payload", HFILL }}, { &hf_eap_sim_subtype, { "EAP-SIM Subtype", "eap.sim.subtype", FT_UINT8, BASE_DEC, VALS(eap_sim_subtype_vals), 0x0, NULL, HFILL }}, { &hf_eap_sim_reserved, { "EAP-SIM Reserved", "eap.sim.reserved", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_sim_subtype_attribute, { "EAP-SIM Attribute", "eap.sim.subtype.attribute", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_sim_subtype_type, { "EAP-SIM Type", "eap.sim.subtype.type", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &eap_sim_aka_attribute_vals_ext, 0x0, NULL, HFILL }}, { &hf_eap_sim_subtype_length, { "EAP-SIM Length", "eap.sim.subtype.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_sim_notification_type, { "EAP-SIM Notification Type", "eap.sim.notification_type", FT_UINT16, BASE_DEC, VALS(eap_sim_aka_notification_vals), 0x0, NULL, HFILL }}, { &hf_eap_sim_error_code_type, { "EAP-SIM Error Code", "eap.sim.error_code", FT_UINT16, BASE_DEC, VALS(eap_sim_aka_client_error_codes), 0x0, NULL, HFILL }}, { &hf_eap_sim_subtype_value, { "EAP-SIM Value", "eap.sim.subtype.value", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_aka_subtype, { "EAP-AKA Subtype", "eap.aka.subtype", FT_UINT8, BASE_DEC, VALS(eap_aka_subtype_vals), 0x0, NULL, HFILL }}, { &hf_eap_aka_reserved, { "EAP-AKA Reserved", "eap.aka.reserved", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_aka_subtype_attribute, { "EAP-AKA Attribute", "eap.aka.subtype.attribute", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_aka_subtype_type, { "EAP-AKA Type", "eap.aka.subtype.type", FT_UINT8, BASE_DEC|BASE_EXT_STRING, &eap_sim_aka_attribute_vals_ext, 0x0, NULL, HFILL }}, { &hf_eap_aka_subtype_length, { "EAP-AKA Length", "eap.aka.subtype.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_aka_notification_type, { "EAP-AKA Notification Type", "eap.aka.notification_type", FT_UINT16, BASE_DEC, VALS(eap_sim_aka_notification_vals), 0x0, NULL, HFILL }}, { &hf_eap_aka_error_code_type, { "EAP-AKA Error Code", "eap.aka.error_code", FT_UINT16, BASE_DEC, VALS(eap_sim_aka_client_error_codes), 0x0, NULL, HFILL }}, { &hf_eap_aka_subtype_value, { "EAP-AKA Value", "eap.aka.subtype.value", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_leap_version, { "EAP-LEAP Version", "eap.leap.version", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_leap_reserved, { "EAP-LEAP Reserved", "eap.leap.reserved", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_leap_count, { "EAP-LEAP Count", "eap.leap.count", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_leap_peer_challenge, { "EAP-LEAP Peer-Challenge", "eap.leap.peer_challenge", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_leap_peer_response, { "EAP-LEAP Peer-Response", "eap.leap.peer_response", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_leap_ap_challenge, { "EAP-LEAP AP-Challenge", "eap.leap.ap_challenge", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_leap_ap_response, { "EAP-LEAP AP-Response", "eap.leap.ap_response", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_leap_data, { "EAP-LEAP Data", "eap.leap.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_leap_name, { "EAP-LEAP Name", "eap.leap.name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_opcode, { "EAP-MS-CHAP-v2 OpCode", "eap.ms_chap_v2.opcode", FT_UINT8, BASE_DEC, VALS(eap_ms_chap_v2_opcode_vals), 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_id, { "EAP-MS-CHAP-v2 Id", "eap.ms_chap_v2.id", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_length, { "EAP-MS-CHAP-v2 Length", "eap.ms_chap_v2.length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_value_size, { "EAP-MS-CHAP-v2 Value-Size", "eap.ms_chap_v2.value_size", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_challenge, { "EAP-MS-CHAP-v2 Challenge", "eap.ms_chap_v2.challenge", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_name, { "EAP-MS-CHAP-v2 Name", "eap.ms_chap_v2.name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_peer_challenge, { "EAP-MS-CHAP-v2 Peer-Challenge", "eap.ms_chap_v2.peer_challenge", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_reserved, { "EAP-MS-CHAP-v2 Reserved", "eap.ms_chap_v2.reserved", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_nt_response, { "EAP-MS-CHAP-v2 NT-Response", "eap.ms_chap_v2.nt_response", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_flags, { "EAP-MS-CHAP-v2 Flags", "eap.ms_chap_v2.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_response, { "EAP-MS-CHAP-v2 Response (Unknown Length)", "eap.ms_chap_v2.response", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_message, { "EAP-MS-CHAP-v2 Message", "eap.ms_chap_v2.message", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_failure_request, { "EAP-MS-CHAP-v2 Failure-Request", "eap.ms_chap_v2.failure_request", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_ms_chap_v2_data, { "EAP-MS-CHAP-v2 Data", "eap.ms_chap_v2.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_opcode, { "EAP-PAX OP-Code", "eap.pax.opcode", FT_UINT8, BASE_HEX, VALS(eap_pax_opcode_vals), 0x0, NULL, HFILL }}, { &hf_eap_pax_flags, { "EAP-PAX Flags", "eap.pax.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_flags_mf, { "more fragments", "eap.pax.flags.mf", FT_BOOLEAN, 8, NULL, EAP_PAX_FLAG_MF, NULL, HFILL }}, { &hf_eap_pax_flags_ce, { "certificate enabled", "eap.pax.flags.ce", FT_BOOLEAN, 8, NULL, EAP_PAX_FLAG_CE, NULL, HFILL }}, { &hf_eap_pax_flags_ai, { "ADE Included", "eap.pax.flags.ai", FT_BOOLEAN, 8, NULL, EAP_PAX_FLAG_AI, NULL, HFILL }}, { &hf_eap_pax_flags_reserved, { "reserved", "eap.pax.flags.reserved", FT_BOOLEAN, 8, NULL, EAP_PAX_FLAG_RESERVED, NULL, HFILL }}, { &hf_eap_pax_mac_id, { "EAP-PAX MAC ID", "eap.pax.mac_id", FT_UINT8, BASE_HEX, VALS(eap_pax_mac_id_vals), 0x0, NULL, HFILL }}, { &hf_eap_pax_dh_group_id, { "EAP-PAX DH Group ID", "eap.pax.dh_group_id", FT_UINT8, BASE_HEX, VALS(eap_pax_dh_group_id_vals), 0x0, NULL, HFILL }}, { &hf_eap_pax_public_key_id, { "EAP-PAX Public Key ID", "eap.pax.public_key_id", FT_UINT8, BASE_HEX, VALS(eap_pax_public_key_id_vals), 0x0, NULL, HFILL }}, { &hf_eap_pax_a_len, { "EAP-PAX A len", "eap.pax.a.len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_a, { "EAP-PAX A", "eap.pax.a", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_b_len, { "EAP-PAX B len", "eap.pax.b.len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_b, { "EAP-PAX B", "eap.pax.b", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_cid_len, { "EAP-PAX CID len", "eap.pax.cid.len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_cid, { "EAP-PAX CID", "eap.pax.cid", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_mac_ck_len, { "EAP-PAX MAC_CK len", "eap.pax.mac_ck.len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_mac_ck, { "EAP-PAX MAC_CK", "eap.pax.mac_ck", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_ade_len, { "EAP-PAX ADE len", "eap.pax.ade.len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_ade, { "EAP-PAX ADE", "eap.pax.ade", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_pax_mac_icv, { "EAP-PAX ICV", "eap.pax.icv", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_psk_flags, { "EAP-PSK Flags", "eap.psk.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_psk_flags_t, { "T", "eap.psk.flags.t", FT_UINT8, BASE_HEX, NULL, EAP_PSK_FLAGS_T_MASK, NULL, HFILL }}, { &hf_eap_psk_flags_reserved, { "Reserved", "eap.psk.flags.reserved", FT_UINT8, BASE_HEX, NULL, 0x3F, NULL, HFILL }}, { &hf_eap_psk_rand_p, { "EAP-PSK RAND_P", "eap.psk.rand_p", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_psk_rand_s, { "EAP-PSK RAND_S", "eap.psk.rand_s", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_psk_mac_p, { "EAP-PSK MAC_P", "eap.psk.mac_p", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_psk_mac_s, { "EAP-PSK MAC_S", "eap.psk.mac_s", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_psk_id_p, { "EAP-PSK ID_P", "eap.psk.id_p", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_psk_id_s, { "EAP-PSK ID_S", "eap.psk.id_s", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_psk_pchannel, { "EAP-PSK Protected Channel (encrypted)", "eap.psk.pchannel", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_sake_version, { "EAP-SAKE Version", "eap.sake.version", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_sake_session_id, { "EAP-SAKE Session ID", "eap.sake.session_id", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_sake_subtype, { "EAP-SAKE Subtype", "eap.sake.subtype", FT_UINT8, BASE_HEX, VALS(eap_sake_subtype_vals), 0x0, NULL, HFILL }}, { &hf_eap_sake_attr_type, { "Attribute Type", "eap.sake.attr.type", FT_UINT8, BASE_HEX, VALS(eap_sake_attr_type_vals), 0x0, NULL, HFILL }}, { &hf_eap_sake_attr_len, { "Attribute Length", "eap.sake.attr.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_sake_attr_value, { "Attribute Value", "eap.sake.attr.val", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_sake_attr_value_str, { "Attribute Value", "eap.sake.attr.val_str", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_sake_attr_value_uint48, { "Attribute Value", "eap.sake.attr.val_uint48", FT_UINT48, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_opcode, { "EAP-GPSK OP-Code", "eap.gpsk.opcode", FT_UINT8, BASE_HEX, VALS(eap_gpsk_opcode_vals), 0x0, NULL, HFILL }}, { &hf_eap_gpsk_id_server_len, { "EAP-GPSK ID_Server len", "eap.gpsk.id_server.len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_id_server, { "EAP-GPSK ID_Server", "eap.gpsk.id_server", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_id_peer_len, { "EAP-GPSK ID_Peer len", "eap.gpsk.id_peer.len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_id_peer, { "EAP-GPSK ID_Peer", "eap.gpsk.id_peer", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_rand_server, { "EAP-GPSK Rand_Server", "eap.gpsk.rand_server", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_rand_peer, { "EAP-GPSK Rand_Peer", "eap.gpsk.rand_peer", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_csuite_list_len, { "Len", "eap.gpsk.csuite_list_len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_csuite_vendor, { "Vendor", "eap.gpsk.csuite.vendor", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_csuite_specifier, { "Specifier", "eap.gpsk.csuite.specifier", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_pd_payload_len, { "EAP-GPSK PD_Payload len", "eap.gpsk.pd_payload.len", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_pd_payload, { "EAP-GPSK PD_Payload", "eap.gpsk.pd_payload", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_payload_mac, { "EAP-GPSK Payload MAC", "eap.gpsk.payload_mac", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_gpsk_failure_code, { "EAP-GPSK Failure code", "eap.gpsk.failure_code", FT_UINT32, BASE_HEX, VALS(eap_gpsk_failure_code_vals), 0x0, NULL, HFILL }}, { &hf_eap_data, { "EAP Data", "eap.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_fast_type, { "EAP-FAST Type", "eap.fast.type", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_fast_length, { "EAP-FAST Length", "eap.fast.length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_fast_aidd, { "Authority ID Data", "eap.fast.authority_id_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_msauth_tlv_mandatory, { "Mandatory", "eap.msauth-tlv.mandatory", FT_BOOLEAN, 16, NULL, MSAUTH_TLV_MANDATORY, NULL, HFILL }}, { &hf_eap_msauth_tlv_reserved, { "Reserved", "eap.msauth-tlv.reserved", FT_BOOLEAN, 16, NULL, MSAUTH_TLV_RESERVED, NULL, HFILL }}, { &hf_eap_msauth_tlv_type, { "Type", "eap.msauth-tlv.type", FT_UINT16, BASE_DEC, VALS(eap_msauth_tlv_type_vals), MSAUTH_TLV_TYPE, NULL, HFILL }}, { &hf_eap_msauth_tlv_len, { "Length", "eap.msauth-tlv.len", FT_UINT16, BASE_DEC, NULL, 0x00, NULL, HFILL }}, { &hf_eap_msauth_tlv_val, { "Value", "eap.msauth-tlv.val", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_msauth_tlv_status, { "Status", "eap.msauth-tlv.status", FT_UINT16, BASE_DEC, VALS(eap_msauth_tlv_status_vals), 0x0, NULL, HFILL }}, { &hf_eap_msauth_tlv_crypto_reserved, { "Reserved", "eap.msauth-tlv.crypto.reserved", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_msauth_tlv_crypto_version, { "Version", "eap.msauth-tlv.crypto.version", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_msauth_tlv_crypto_rcv_version, { "Received Version", "eap.msauth-tlv.crypto.received-version", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_eap_msauth_tlv_crypto_subtype, { "Subtype", "eap.msauth-tlv.crypto.subtype", FT_UINT8, BASE_DEC, VALS(eap_msauth_tlv_crypto_subtype_vals), 0x0, NULL, HFILL }}, { &hf_eap_msauth_tlv_crypto_nonce, { "Nonce", "eap.msauth-tlv.crypto.nonce", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_eap_msauth_tlv_crypto_cmac, { "Compound MAC", "eap.msauth-tlv.crypto.cmac", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, /* Expanded type fields */ { &hf_eap_ext_vendor_id, { "EAP-EXT Vendor Id", "eap.ext.vendor_id", FT_UINT24, BASE_HEX, VALS(eap_ext_vendor_id_vals), 0x0, NULL, HFILL }}, { &hf_eap_ext_vendor_type, { "EAP-EXT Vendor Type", "eap.ext.vendor_type", FT_UINT32, BASE_HEX, VALS(eap_ext_vendor_type_vals), 0x0, NULL, HFILL }}, { &hf_eap_ikev2_flags, { "EAP-IKEv2 Flags", "eap.ikev2.flags", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, { &hf_eap_ikev2_flag_l, { "Length Included", "eap.ikve2.flags.len_included", FT_BOOLEAN, 8, NULL, EAP_IKEV2_FLAG_L, NULL, HFILL } }, { &hf_eap_ikev2_flag_m, { "More Fragments", "eap.ikev2.flags.more_fragments", FT_BOOLEAN, 8, NULL, EAP_IKEV2_FLAG_M, NULL, HFILL } }, { &hf_eap_ikev2_flag_i, { "Integrity Checksum Data present", "eap.ikev2.flags.icv_present", FT_BOOLEAN, 8, NULL, EAP_IKEV2_FLAG_I, NULL, HFILL } }, { &hf_eap_ikev2_len, { "EAP-IKEv2 Length", "eap.ikev2.len", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_eap_ikev2_int_chk_data, { "EAP-IKEv2 Integrity Checksum Data", "eap.ikev2.integrity_checksum_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, }; static gint *ett[] = { &ett_eap, &ett_eap_pax_flags, &ett_eap_psk_flags, &ett_eap_gpsk_csuite_list, &ett_eap_gpsk_csuite, &ett_eap_gpsk_csuite_sel, &ett_eap_sake_attr, &ett_eap_msauth_tlv, &ett_eap_msauth_tlv_tree, &ett_eap_tls_fragment, &ett_eap_tls_fragments, &ett_eap_sim_attr, &ett_eap_aka_attr, &ett_eap_exp_attr, &ett_eap_tls_flags, &ett_identity, &ett_eap_ikev2_flags, }; static ei_register_info ei[] = { { &ei_eap_ms_chap_v2_length, { "eap.ms_chap_v2.length.invalid", PI_PROTOCOL, PI_WARN, "Invalid Length", EXPFILL }}, { &ei_eap_mitm_attacks, { "eap.mitm_attacks", PI_SECURITY, PI_WARN, "Vulnerable to MITM attacks. If possible, change EAP type.", EXPFILL }}, { &ei_eap_md5_value_size_overflow, { "eap.md5.value_size.overflow", PI_PROTOCOL, PI_WARN, "Overflow", EXPFILL }}, { &ei_eap_dictionary_attacks, { "eap.dictionary_attacks", PI_SECURITY, PI_WARN, "Vulnerable to dictionary attacks. If possible, change EAP type." " See http://www.cisco.com/warp/public/cc/pd/witc/ao350ap/prodlit/2331_pp.pdf", EXPFILL }}, { &ei_eap_identity_nonascii, { "eap.identity.nonascii", PI_PROTOCOL, PI_WARN, "Non-ASCII characters within identity", EXPFILL }}, { &ei_eap_identity_invalid, { "eap.identity.invalid", PI_PROTOCOL, PI_WARN, "Invalid identity code", EXPFILL }}, { &ei_eap_retransmission, { "eap.retransmission", PI_SEQUENCE, PI_NOTE, "This packet is a retransmission", EXPFILL }}, { &ei_eap_bad_length, { "eap.bad_length", PI_PROTOCOL, PI_WARN, "Bad length (too small or too large)", EXPFILL }}, }; expert_module_t* expert_eap; proto_eap = proto_register_protocol("Extensible Authentication Protocol", "EAP", "eap"); proto_register_field_array(proto_eap, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); expert_eap = expert_register_protocol(proto_eap); expert_register_field_array(expert_eap, ei, array_length(ei)); eap_handle = register_dissector("eap", dissect_eap, proto_eap); reassembly_table_register(&eap_tls_reassembly_table, &addresses_reassembly_table_functions); eap_expanded_type_dissector_table = register_dissector_table("eap.ext.vendor_id", "EAP-EXT Vendor Id", proto_eap, FT_UINT24, BASE_HEX); } void proto_reg_handoff_eap(void) { /* * Get a handle for the SSL/TLS dissector. */ tls_handle = find_dissector_add_dependency("tls", proto_eap); diameter_avps_handle = find_dissector_add_dependency("diameter_avps", proto_eap); peap_handle = find_dissector_add_dependency("peap", proto_eap); teap_handle = find_dissector_add_dependency("teap", proto_eap); isakmp_handle = find_dissector_add_dependency("isakmp", proto_eap); dissector_add_uint("ppp.protocol", PPP_EAP, eap_handle); dissector_add_uint("eapol.type", EAPOL_EAP, eap_handle); } /* * Editor modelines * * Local Variables: * c-basic-offset: 2 * tab-width: 8 * indent-tabs-mode: nil * End: * * ex: set shiftwidth=2 tabstop=8 expandtab: * :indentSize=2:tabSize=8:noTabs=true: */