summaryrefslogtreecommitdiffstats
path: root/sdrbase/dsp/interpolator.cpp
blob: 781864bee9257dd682c653199d23fad775870ff4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#define _USE_MATH_DEFINES
#include <math.h>
#include <vector>
#include "dsp/interpolator.h"

static std::vector<Real> createPolyphaseLowPass(
	int phaseSteps,
	double gain,
	double sampleRateHz,
	double cutoffFreqHz,
	double transitionWidthHz,
	double oobAttenuationdB)
{
	int ntaps = (int)(oobAttenuationdB * sampleRateHz / (22.0 * transitionWidthHz));
	if((ntaps % 2) != 0)
		ntaps++;
	ntaps *= phaseSteps;

	std::vector<float> taps(ntaps);
	std::vector<float> window(ntaps);

	for(int n = 0; n < ntaps; n++)
		window[n] = 0.54 - 0.46 * cos ((2 * M_PI * n) / (ntaps - 1));

	int M = (ntaps - 1) / 2;
	double fwT0 = 2 * M_PI * cutoffFreqHz / sampleRateHz;
	for(int n = -M; n <= M; n++) {
		if(n == 0) taps[n + M] = fwT0 / M_PI * window[n + M];
			else taps[n + M] =  sin (n * fwT0) / (n * M_PI) * window[n + M];
	}

	double max = taps[0 + M];
	for(int n = 1; n <= M; n++)
		max += 2.0 * taps[n + M];

	gain /= max;

	for(int i = 0; i < ntaps; i++)
		taps[i] *= gain;

	return taps;
}

Interpolator::Interpolator() :
	m_taps(NULL),
	m_alignedTaps(NULL)
{
}

Interpolator::~Interpolator()
{
	free();
}

void Interpolator::create(int phaseSteps, double sampleRate, double cutoff)
{
	free();

	std::vector<Real> taps = createPolyphaseLowPass(
		phaseSteps, // number of polyphases
		1.0, // gain
		phaseSteps * sampleRate, // sampling frequency
		cutoff, // hz beginning of transition band
		sampleRate / 5.0,  // hz width of transition band
		20.0); // out of band attenuation

	// init state
	m_ptr = 0;
	m_nTaps = taps.size() / phaseSteps;
	m_phaseSteps = phaseSteps;
	m_samples.resize(m_nTaps + 2);
	for(int i = 0; i < m_nTaps + 2; i++)
		m_samples[i] = 0;

	// reorder into polyphase
	std::vector<Real> polyphase(taps.size());
	for(int phase = 0; phase < phaseSteps; phase++) {
		for(int i = 0; i < m_nTaps; i++)
			polyphase[phase * m_nTaps + i] = taps[i * phaseSteps + phase];
	}

	// normalize phase filters
	for(int phase = 0; phase < phaseSteps; phase++) {
		Real sum = 0;
		for(int i = phase * m_nTaps; i < phase * m_nTaps + m_nTaps; i++)
			sum += polyphase[i];
		for(int i = phase * m_nTaps; i < phase * m_nTaps + m_nTaps; i++)
			polyphase[i] /= sum;
	}

	// move taps around to match sse storage requirements
	m_taps = new float[2 * taps.size() + 8];
	for(int i = 0; i < 2 * taps.size() + 8; ++i)
		m_taps[i] = 0;
	m_alignedTaps = (float*)((((quint64)m_taps) + 15) & ~15);
	for(int i = 0; i < taps.size(); ++i) {
		m_alignedTaps[2 * i + 0] = polyphase[i];
		m_alignedTaps[2 * i + 1] = polyphase[i];
	}
	m_taps2 = new float[2 * taps.size() + 8];
	for(int i = 0; i < 2 * taps.size() + 8; ++i)
		m_taps2[i] = 0;
	m_alignedTaps2 = (float*)((((quint64)m_taps2) + 15) & ~15);
	for(int i = 1; i < taps.size(); ++i) {
		m_alignedTaps2[2 * (i - 1) + 0] = polyphase[i];
		m_alignedTaps2[2 * (i - 1) + 1] = polyphase[i];
	}
}

void Interpolator::free()
{
	if(m_taps != NULL) {
		delete[] m_taps;
		m_taps = NULL;
		m_alignedTaps = NULL;
		delete[] m_taps2;
		m_taps2 = NULL;
		m_alignedTaps2 = NULL;
	}
}