#include "dsp/channelizer.h" #include "dsp/inthalfbandfilter.h" #include "dsp/dspcommands.h" Channelizer::Channelizer(SampleSink* sampleSink) : m_sampleSink(sampleSink), m_inputSampleRate(100000), m_requestedOutputSampleRate(100000), m_requestedCenterFrequency(0), m_currentOutputSampleRate(100000), m_currentCenterFrequency(0) { } Channelizer::~Channelizer() { freeFilterChain(); } void Channelizer::configure(MessageQueue* messageQueue, int sampleRate, int centerFrequency) { Message* cmd = DSPConfigureChannelizer::create(sampleRate, centerFrequency); cmd->submit(messageQueue, this); } void Channelizer::feed(SampleVector::const_iterator begin, SampleVector::const_iterator end, bool firstOfBurst) { for(SampleVector::const_iterator sample = begin; sample != end; ++sample) { Sample s(*sample); FilterStages::iterator stage = m_filterStages.begin(); while(stage != m_filterStages.end()) { if(!(*stage)->work(&s)) break; ++stage; } if(stage == m_filterStages.end()) m_sampleBuffer.push_back(s); } if(m_sampleSink != NULL) m_sampleSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), firstOfBurst); m_sampleBuffer.clear(); } void Channelizer::start() { if(m_sampleSink != NULL) m_sampleSink->start(); } void Channelizer::stop() { if(m_sampleSink != NULL) m_sampleSink->stop(); } bool Channelizer::handleMessage(Message* cmd) { if(cmd->id() == DSPSignalNotification::ID()) { DSPSignalNotification* signal = (DSPSignalNotification*)cmd; m_inputSampleRate = signal->getSampleRate(); applyConfiguration(); cmd->completed(); if(m_sampleSink != NULL) { signal = DSPSignalNotification::create(m_currentOutputSampleRate, m_currentCenterFrequency); if(!m_sampleSink->handleMessage(signal)) signal->completed(); } return true; } else if(cmd->id() == DSPConfigureChannelizer::ID()) { DSPConfigureChannelizer* chan = (DSPConfigureChannelizer*)cmd; m_requestedOutputSampleRate = chan->getSampleRate(); m_requestedCenterFrequency = chan->getCenterFrequency(); applyConfiguration(); cmd->completed(); if(m_sampleSink != NULL) { DSPSignalNotification* signal = DSPSignalNotification::create(m_currentOutputSampleRate, m_currentCenterFrequency); if(!m_sampleSink->handleMessage(signal)) signal->completed(); } return true; } else { if(m_sampleSink != NULL) return m_sampleSink->handleMessage(cmd); else return false; } } void Channelizer::applyConfiguration() { freeFilterChain(); m_currentCenterFrequency = createFilterChain( m_inputSampleRate / -2, m_inputSampleRate / 2, m_requestedCenterFrequency - m_requestedOutputSampleRate / 2, m_requestedCenterFrequency + m_requestedOutputSampleRate / 2); m_currentOutputSampleRate = m_inputSampleRate / (1 << m_filterStages.size()); } Channelizer::FilterStage::FilterStage(Mode mode) : m_filter(new IntHalfbandFilter), m_workFunction(NULL) { switch(mode) { case ModeCenter: m_workFunction = &IntHalfbandFilter::workDecimateCenter; break; case ModeLowerHalf: m_workFunction = &IntHalfbandFilter::workDecimateLowerHalf; break; case ModeUpperHalf: m_workFunction = &IntHalfbandFilter::workDecimateUpperHalf; break; } } Channelizer::FilterStage::~FilterStage() { delete m_filter; } bool Channelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const { //qDebug(" testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd); if(sigEnd <= sigStart) return false; if(chanEnd <= chanStart) return false; return (sigStart <= chanStart) && (sigEnd >= chanEnd); } Real Channelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) { Real sigBw = sigEnd - sigStart; Real safetyMargin = sigBw / 20; Real rot = sigBw / 4; safetyMargin = 0; //qDebug("Signal [%f, %f] (BW %f), Channel [%f, %f], Rot %f, Safety %f", sigStart, sigEnd, sigBw, chanStart, chanEnd, rot, safetyMargin); #if 1 // check if it fits into the left half if(signalContainsChannel(sigStart + safetyMargin, sigStart + sigBw / 2.0 - safetyMargin, chanStart, chanEnd)) { //qDebug("-> take left half (rotate by +1/4 and decimate by 2)"); m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf)); return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd); } // check if it fits into the right half if(signalContainsChannel(sigEnd - sigBw / 2.0f + safetyMargin, sigEnd - safetyMargin, chanStart, chanEnd)) { //qDebug("-> take right half (rotate by -1/4 and decimate by 2)"); m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf)); return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd); } // check if it fits into the center if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) { //qDebug("-> take center half (decimate by 2)"); m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter)); return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd); } #endif Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart); qDebug("-> complete (final BW %f, frequency offset %f)", sigBw, ofs); return ofs; } void Channelizer::freeFilterChain() { for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it) delete *it; m_filterStages.clear(); } #if 0 /////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany // // written by Christian Daniel // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include "channelizer.h" #include "hardware/audiooutput.h" Channelizer::Channelizer() { #if 0 m_spectrum.configure(128 , 25, FFTWindow::Bartlett); m_buffer.resize(2048); m_bufferFill = 0; m_nco.setFreq(-100000, 500000); m_interpolator.create(51, 32, 32 * 500000, 150000 / 2); m_distance = 500000.0 / 176400.0; m_interpolator2.create(19, 8, 8 * 176400, 15000 / 2); m_distance2 = 4; m_audioFifo.setSize(4, 44100 / 2 * 4); m_audioOutput = new AudioOutput; m_audioOutput->start(0, 44100, &m_audioFifo); m_resampler = 1.0; m_resamplerCtrl.setup(0.00001, 0, -0.00001); #endif } Channelizer::~Channelizer() { #if 0 m_audioOutput->stop(); delete m_audioOutput; #endif } #if 0 void Channelizer::setGLSpectrum(GLSpectrum* glSpectrum) { m_spectrum.setGLSpectrum(glSpectrum); } #endif size_t Channelizer::workUnitSize() { #if 0 return m_buffer.size(); #endif return 0; } size_t Channelizer::work(SampleVector::const_iterator begin, SampleVector::const_iterator end) { #if 0 int buffered = m_audioOutput->bufferedSamples(); if(m_audioFifo.fill() < (m_audioFifo.size() / 6)) { while(m_audioFifo.fill() < (m_audioFifo.size() / 2)) { quint32 d = 0; m_audioFifo.write((quint8*)&d, 4); } qDebug("underflow - fill %d (vs %d)", m_audioFifo.fill(), m_audioFifo.size() / 4 / 2); } buffered = m_audioOutput->bufferedSamples(); int fill = m_audioFifo.fill() / 4 + buffered; float err = (float)fill / ((m_audioFifo.size() / 4) / 2); float ctrl = m_resamplerCtrl.feed(err); //float resamplerRate = (ctrl / 1.0); float resamplerRate = err; if(resamplerRate < 0.9999) resamplerRate = 0.9999; else if(resamplerRate > 1.0001) resamplerRate = 1.0001; m_resampler = m_resampler * 0.99 + resamplerRate * 0.01; //m_resampler = resamplerRate; if(m_resampler < 0.995) m_resampler = 0.995; else if(m_resampler > 1.005) m_resampler = 1.005; //qDebug("%lld %5d %f %f %f", QDateTime::currentMSecsSinceEpoch(), fill, ctrl, m_resampler, err); struct AudioSample { qint16 l; qint16 r; }; size_t count = end - begin; Complex ci; bool consumed; bool consumed2; for(SampleVector::const_iterator it = begin; it < end; it++) { Complex c(it->real() / 32768.0, it->imag() / 32768.0); c *= m_nco.nextIQ(); consumed = false; if(m_interpolator.interpolate(&m_distance, c, &consumed, &ci)) { Complex d = ci * conj(m_lastSample); m_lastSample = ci; //Complex demod(atan2(d.imag(), d.real()) * 0.5, 0); Real demod = atan2(d.imag(), d.real()) / M_PI; consumed2 = false; c = Complex(demod, 0); while(!consumed2) { if(m_interpolator2.interpolate(&m_distance2, c, &consumed2, &ci)) { m_buffer[m_bufferFill++] = Sample(ci.real() * 32767.0, 0.0); AudioSample s; s.l = ci.real() * 32767.0; s.r = s.l; m_audioFifo.write((quint8*)&s, 4, 1); if(m_bufferFill >= m_buffer.size()) { m_spectrum.feed(m_buffer.begin(), m_buffer.end()); m_bufferFill = 0; } m_distance2 += 4.0 * m_resampler; } } m_distance += 500000 / 176400.0; } } return count; #endif } #endif