/* * Fitipower FC0012 tuner driver * * Copyright (C) 2012 Hans-Frieder Vogt * * modified for use in librtlsdr * Copyright (C) 2012 Steve Markgraf * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include "rtlsdr_i2c.h" #include "tuner_fc0012.h" static int fc0012_writereg(void *dev, uint8_t reg, uint8_t val) { uint8_t data[2]; data[0] = reg; data[1] = val; if (rtlsdr_i2c_write_fn(dev, FC0012_I2C_ADDR, data, 2) < 0) return -1; return 0; } static int fc0012_readreg(void *dev, uint8_t reg, uint8_t *val) { uint8_t data = reg; if (rtlsdr_i2c_write_fn(dev, FC0012_I2C_ADDR, &data, 1) < 0) return -1; if (rtlsdr_i2c_read_fn(dev, FC0012_I2C_ADDR, &data, 1) < 0) return -1; *val = data; return 0; } /* Incomplete list of register settings: * * Name Reg Bits Desc * CHIP_ID 0x00 0-7 Chip ID (constant 0xA1) * RF_A 0x01 0-3 Number of count-to-9 cycles in RF * divider (suggested: 2..9) * RF_M 0x02 0-7 Total number of cycles (to-8 and to-9) * in RF divider * RF_K_HIGH 0x03 0-6 Bits 8..14 of fractional divider * RF_K_LOW 0x04 0-7 Bits 0..7 of fractional RF divider * RF_OUTDIV_A 0x05 3-7 Power of two required? * LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp * RF_OUTDIV_B 0x06 1 Set to select 3 instead of 2 for the * RF output divider * VCO_SPEED 0x06 3 Select tuning range of VCO: * 0 = Low range, (ca. 1.1 - 1.5GHz) * 1 = High range (ca. 1.4 - 1.8GHz) * BANDWIDTH 0x06 6-7 Set bandwidth. 6MHz = 0x80, 7MHz=0x40 * 8MHz=0x00 * XTAL_SPEED 0x07 5 Set to 1 for 28.8MHz Crystal input * or 0 for 36MHz * 0x08 0-7 * EN_CAL_RSSI 0x09 4 Enable calibrate RSSI * (Receive Signal Strength Indicator) * LNA_FORCE 0x0d 0 * AGC_FORCE 0x0d ? * LNA_GAIN 0x13 3-4 Low noise amp gain * LNA_COMPS 0x15 3 ? * VCO_CALIB 0x0e 7 Set high then low to calibrate VCO * (fast lock?) * VCO_VOLTAGE 0x0e 0-6 Read Control voltage of VCO * (big value -> low freq) */ int fc0012_init(void *dev) { int ret = 0; unsigned int i; uint8_t reg[] = { 0x00, /* dummy reg. 0 */ 0x05, /* reg. 0x01 */ 0x10, /* reg. 0x02 */ 0x00, /* reg. 0x03 */ 0x00, /* reg. 0x04 */ 0x0f, /* reg. 0x05: may also be 0x0a */ 0x00, /* reg. 0x06: divider 2, VCO slow */ 0x00, /* reg. 0x07: may also be 0x0f */ 0xff, /* reg. 0x08: AGC Clock divide by 256, AGC gain 1/256, Loop Bw 1/8 */ 0x6e, /* reg. 0x09: Disable LoopThrough, Enable LoopThrough: 0x6f */ 0xb8, /* reg. 0x0a: Disable LO Test Buffer */ 0x82, /* reg. 0x0b: Output Clock is same as clock frequency, may also be 0x83 */ 0xfc, /* reg. 0x0c: depending on AGC Up-Down mode, may need 0xf8 */ 0x02, /* reg. 0x0d: AGC Not Forcing & LNA Forcing, 0x02 for DVB-T */ 0x00, /* reg. 0x0e */ 0x00, /* reg. 0x0f */ 0x00, /* reg. 0x10: may also be 0x0d */ 0x00, /* reg. 0x11 */ 0x1f, /* reg. 0x12: Set to maximum gain */ 0x08, /* reg. 0x13: Set to Middle Gain: 0x08, Low Gain: 0x00, High Gain: 0x10, enable IX2: 0x80 */ 0x00, /* reg. 0x14 */ 0x04, /* reg. 0x15: Enable LNA COMPS */ }; #if 0 switch (rtlsdr_get_tuner_clock(dev)) { case FC_XTAL_27_MHZ: case FC_XTAL_28_8_MHZ: reg[0x07] |= 0x20; break; case FC_XTAL_36_MHZ: default: break; } #endif reg[0x07] |= 0x20; // if (priv->dual_master) reg[0x0c] |= 0x02; for (i = 1; i < sizeof(reg); i++) { ret = fc0012_writereg(dev, i, reg[i]); if (ret) break; } return ret; } int fc0012_set_params(void *dev, uint32_t freq, uint32_t bandwidth) { int i, ret = 0; uint8_t reg[7], am, pm, multi, tmp; uint64_t f_vco; uint32_t xtal_freq_div_2; uint16_t xin, xdiv; int vco_select = 0; xtal_freq_div_2 = rtlsdr_get_tuner_clock(dev) / 2; /* select frequency divider and the frequency of VCO */ if (freq < 37084000) { /* freq * 96 < 3560000000 */ multi = 96; reg[5] = 0x82; reg[6] = 0x00; } else if (freq < 55625000) { /* freq * 64 < 3560000000 */ multi = 64; reg[5] = 0x82; reg[6] = 0x02; } else if (freq < 74167000) { /* freq * 48 < 3560000000 */ multi = 48; reg[5] = 0x42; reg[6] = 0x00; } else if (freq < 111250000) { /* freq * 32 < 3560000000 */ multi = 32; reg[5] = 0x42; reg[6] = 0x02; } else if (freq < 148334000) { /* freq * 24 < 3560000000 */ multi = 24; reg[5] = 0x22; reg[6] = 0x00; } else if (freq < 222500000) { /* freq * 16 < 3560000000 */ multi = 16; reg[5] = 0x22; reg[6] = 0x02; } else if (freq < 296667000) { /* freq * 12 < 3560000000 */ multi = 12; reg[5] = 0x12; reg[6] = 0x00; } else if (freq < 445000000) { /* freq * 8 < 3560000000 */ multi = 8; reg[5] = 0x12; reg[6] = 0x02; } else if (freq < 593334000) { /* freq * 6 < 3560000000 */ multi = 6; reg[5] = 0x0a; reg[6] = 0x00; } else { multi = 4; reg[5] = 0x0a; reg[6] = 0x02; } f_vco = freq * multi; if (f_vco >= 3060000000U) { reg[6] |= 0x08; vco_select = 1; } /* From divided value (XDIV) determined the FA and FP value */ xdiv = (uint16_t)(f_vco / xtal_freq_div_2); if ((f_vco - xdiv * xtal_freq_div_2) >= (xtal_freq_div_2 / 2)) xdiv++; pm = (uint8_t)(xdiv / 8); am = (uint8_t)(xdiv - (8 * pm)); if (am < 2) { am += 8; pm--; } if (pm > 31) { reg[1] = am + (8 * (pm - 31)); reg[2] = 31; } else { reg[1] = am; reg[2] = pm; } if ((reg[1] > 15) || (reg[2] < 0x0b)) { fprintf(stderr, "[FC0012] no valid PLL combination " "found for %u Hz!\n", freq); return -1; } /* fix clock out */ reg[6] |= 0x20; /* From VCO frequency determines the XIN ( fractional part of Delta Sigma PLL) and divided value (XDIV) */ xin = (uint16_t)((f_vco - (f_vco / xtal_freq_div_2) * xtal_freq_div_2) / 1000); xin = (xin << 15) / (xtal_freq_div_2 / 1000); if (xin >= 16384) xin += 32768; reg[3] = xin >> 8; /* xin with 9 bit resolution */ reg[4] = xin & 0xff; reg[6] &= 0x3f; /* bits 6 and 7 describe the bandwidth */ switch (bandwidth) { case 6000000: reg[6] |= 0x80; break; case 7000000: reg[6] |= 0x40; break; case 8000000: default: break; } /* modified for Realtek demod */ reg[5] |= 0x07; for (i = 1; i <= 6; i++) { ret = fc0012_writereg(dev, i, reg[i]); if (ret) goto exit; } /* VCO Calibration */ ret = fc0012_writereg(dev, 0x0e, 0x80); if (!ret) ret = fc0012_writereg(dev, 0x0e, 0x00); /* VCO Re-Calibration if needed */ if (!ret) ret = fc0012_writereg(dev, 0x0e, 0x00); if (!ret) { // msleep(10); ret = fc0012_readreg(dev, 0x0e, &tmp); } if (ret) goto exit; /* vco selection */ tmp &= 0x3f; if (vco_select) { if (tmp > 0x3c) { reg[6] &= ~0x08; ret = fc0012_writereg(dev, 0x06, reg[6]); if (!ret) ret = fc0012_writereg(dev, 0x0e, 0x80); if (!ret) ret = fc0012_writereg(dev, 0x0e, 0x00); } } else { if (tmp < 0x02) { reg[6] |= 0x08; ret = fc0012_writereg(dev, 0x06, reg[6]); if (!ret) ret = fc0012_writereg(dev, 0x0e, 0x80); if (!ret) ret = fc0012_writereg(dev, 0x0e, 0x00); } } exit: return ret; } int fc0012_set_gain(void *dev, int gain) { int ret; uint8_t tmp = 0; ret = fc0012_readreg(dev, 0x13, &tmp); /* mask bits off */ tmp &= 0xe0; switch (gain) { case -99: /* -9.9 dB */ tmp |= 0x02; break; case -40: /* -4 dB */ break; case 71: tmp |= 0x08; /* 7.1 dB */ break; case 179: tmp |= 0x17; /* 17.9 dB */ break; case 192: default: tmp |= 0x10; /* 19.2 dB */ break; } ret = fc0012_writereg(dev, 0x13, tmp); return ret; }