aboutsummaryrefslogtreecommitdiffstats
path: root/hw/xilinx_axienet.c
blob: 7526273b4d400caba4eccaaa2f9fb336cd4a21cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
/*
 * QEMU model of Xilinx AXI-Ethernet.
 *
 * Copyright (c) 2011 Edgar E. Iglesias.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "sysbus.h"
#include "qemu-char.h"
#include "qemu-log.h"
#include "net.h"
#include "net/checksum.h"

#include "xilinx_axidma.h"

#define DPHY(x)

/* Advertisement control register. */
#define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
#define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */

struct PHY {
    uint32_t regs[32];

    int link;

    unsigned int (*read)(struct PHY *phy, unsigned int req);
    void (*write)(struct PHY *phy, unsigned int req,
                  unsigned int data);
};

static unsigned int tdk_read(struct PHY *phy, unsigned int req)
{
    int regnum;
    unsigned r = 0;

    regnum = req & 0x1f;

    switch (regnum) {
        case 1:
            if (!phy->link) {
                break;
            }
            /* MR1.  */
            /* Speeds and modes.  */
            r |= (1 << 13) | (1 << 14);
            r |= (1 << 11) | (1 << 12);
            r |= (1 << 5); /* Autoneg complete.  */
            r |= (1 << 3); /* Autoneg able.  */
            r |= (1 << 2); /* link.  */
            r |= (1 << 1); /* link.  */
            break;
        case 5:
            /* Link partner ability.
               We are kind; always agree with whatever best mode
               the guest advertises.  */
            r = 1 << 14; /* Success.  */
            /* Copy advertised modes.  */
            r |= phy->regs[4] & (15 << 5);
            /* Autoneg support.  */
            r |= 1;
            break;
        case 17:
            /* Marvel PHY on many xilinx boards.  */
            r = 0x8000; /* 1000Mb  */
            break;
        case 18:
            {
                /* Diagnostics reg.  */
                int duplex = 0;
                int speed_100 = 0;

                if (!phy->link) {
                    break;
                }

                /* Are we advertising 100 half or 100 duplex ? */
                speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
                speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);

                /* Are we advertising 10 duplex or 100 duplex ? */
                duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
                duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
                r = (speed_100 << 10) | (duplex << 11);
            }
            break;

        default:
            r = phy->regs[regnum];
            break;
    }
    DPHY(qemu_log("\n%s %x = reg[%d]\n", __func__, r, regnum));
    return r;
}

static void
tdk_write(struct PHY *phy, unsigned int req, unsigned int data)
{
    int regnum;

    regnum = req & 0x1f;
    DPHY(qemu_log("%s reg[%d] = %x\n", __func__, regnum, data));
    switch (regnum) {
        default:
            phy->regs[regnum] = data;
            break;
    }
}

static void
tdk_init(struct PHY *phy)
{
    phy->regs[0] = 0x3100;
    /* PHY Id.  */
    phy->regs[2] = 0x0300;
    phy->regs[3] = 0xe400;
    /* Autonegotiation advertisement reg.  */
    phy->regs[4] = 0x01E1;
    phy->link = 1;

    phy->read = tdk_read;
    phy->write = tdk_write;
}

struct MDIOBus {
    /* bus.  */
    int mdc;
    int mdio;

    /* decoder.  */
    enum {
        PREAMBLE,
        SOF,
        OPC,
        ADDR,
        REQ,
        TURNAROUND,
        DATA
    } state;
    unsigned int drive;

    unsigned int cnt;
    unsigned int addr;
    unsigned int opc;
    unsigned int req;
    unsigned int data;

    struct PHY *devs[32];
};

static void
mdio_attach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr)
{
    bus->devs[addr & 0x1f] = phy;
}

#ifdef USE_THIS_DEAD_CODE
static void
mdio_detach(struct MDIOBus *bus, struct PHY *phy, unsigned int addr)
{
    bus->devs[addr & 0x1f] = NULL;
}
#endif

static uint16_t mdio_read_req(struct MDIOBus *bus, unsigned int addr,
                  unsigned int reg)
{
    struct PHY *phy;
    uint16_t data;

    phy = bus->devs[addr];
    if (phy && phy->read) {
        data = phy->read(phy, reg);
    } else {
        data = 0xffff;
    }
    DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data));
    return data;
}

static void mdio_write_req(struct MDIOBus *bus, unsigned int addr,
               unsigned int reg, uint16_t data)
{
    struct PHY *phy;

    DPHY(qemu_log("%s addr=%d reg=%d data=%x\n", __func__, addr, reg, data));
    phy = bus->devs[addr];
    if (phy && phy->write) {
        phy->write(phy, reg, data);
    }
}

#define DENET(x)

#define R_RAF      (0x000 / 4)
enum {
    RAF_MCAST_REJ = (1 << 1),
    RAF_BCAST_REJ = (1 << 2),
    RAF_EMCF_EN = (1 << 12),
    RAF_NEWFUNC_EN = (1 << 11)
};

#define R_IS       (0x00C / 4)
enum {
    IS_HARD_ACCESS_COMPLETE = 1,
    IS_AUTONEG = (1 << 1),
    IS_RX_COMPLETE = (1 << 2),
    IS_RX_REJECT = (1 << 3),
    IS_TX_COMPLETE = (1 << 5),
    IS_RX_DCM_LOCK = (1 << 6),
    IS_MGM_RDY = (1 << 7),
    IS_PHY_RST_DONE = (1 << 8),
};

#define R_IP       (0x010 / 4)
#define R_IE       (0x014 / 4)
#define R_UAWL     (0x020 / 4)
#define R_UAWU     (0x024 / 4)
#define R_PPST     (0x030 / 4)
enum {
    PPST_LINKSTATUS = (1 << 0),
    PPST_PHY_LINKSTATUS = (1 << 7),
};

#define R_STATS_RX_BYTESL (0x200 / 4)
#define R_STATS_RX_BYTESH (0x204 / 4)
#define R_STATS_TX_BYTESL (0x208 / 4)
#define R_STATS_TX_BYTESH (0x20C / 4)
#define R_STATS_RXL       (0x290 / 4)
#define R_STATS_RXH       (0x294 / 4)
#define R_STATS_RX_BCASTL (0x2a0 / 4)
#define R_STATS_RX_BCASTH (0x2a4 / 4)
#define R_STATS_RX_MCASTL (0x2a8 / 4)
#define R_STATS_RX_MCASTH (0x2ac / 4)

#define R_RCW0     (0x400 / 4)
#define R_RCW1     (0x404 / 4)
enum {
    RCW1_VLAN = (1 << 27),
    RCW1_RX   = (1 << 28),
    RCW1_FCS  = (1 << 29),
    RCW1_JUM  = (1 << 30),
    RCW1_RST  = (1 << 31),
};

#define R_TC       (0x408 / 4)
enum {
    TC_VLAN = (1 << 27),
    TC_TX   = (1 << 28),
    TC_FCS  = (1 << 29),
    TC_JUM  = (1 << 30),
    TC_RST  = (1 << 31),
};

#define R_EMMC     (0x410 / 4)
enum {
    EMMC_LINKSPEED_10MB = (0 << 30),
    EMMC_LINKSPEED_100MB = (1 << 30),
    EMMC_LINKSPEED_1000MB = (2 << 30),
};

#define R_PHYC     (0x414 / 4)

#define R_MC       (0x500 / 4)
#define MC_EN      (1 << 6)

#define R_MCR      (0x504 / 4)
#define R_MWD      (0x508 / 4)
#define R_MRD      (0x50c / 4)
#define R_MIS      (0x600 / 4)
#define R_MIP      (0x620 / 4)
#define R_MIE      (0x640 / 4)
#define R_MIC      (0x640 / 4)

#define R_UAW0     (0x700 / 4)
#define R_UAW1     (0x704 / 4)
#define R_FMI      (0x708 / 4)
#define R_AF0      (0x710 / 4)
#define R_AF1      (0x714 / 4)
#define R_MAX      (0x34 / 4)

/* Indirect registers.  */
struct TEMAC  {
    struct MDIOBus mdio_bus;
    struct PHY phy;

    void *parent;
};

struct XilinxAXIEnet {
    SysBusDevice busdev;
    MemoryRegion iomem;
    qemu_irq irq;
    void *dmach;
    NICState *nic;
    NICConf conf;


    uint32_t c_rxmem;
    uint32_t c_txmem;
    uint32_t c_phyaddr;

    struct TEMAC TEMAC;

    /* MII regs.  */
    union {
        uint32_t regs[4];
        struct {
            uint32_t mc;
            uint32_t mcr;
            uint32_t mwd;
            uint32_t mrd;
        };
    } mii;

    struct {
        uint64_t rx_bytes;
        uint64_t tx_bytes;

        uint64_t rx;
        uint64_t rx_bcast;
        uint64_t rx_mcast;
    } stats;

    /* Receive configuration words.  */
    uint32_t rcw[2];
    /* Transmit config.  */
    uint32_t tc;
    uint32_t emmc;
    uint32_t phyc;

    /* Unicast Address Word.  */
    uint32_t uaw[2];
    /* Unicast address filter used with extended mcast.  */
    uint32_t ext_uaw[2];
    uint32_t fmi;

    uint32_t regs[R_MAX];

    /* Multicast filter addrs.  */
    uint32_t maddr[4][2];
    /* 32K x 1 lookup filter.  */
    uint32_t ext_mtable[1024];


    uint8_t *rxmem;
};

static void axienet_rx_reset(struct XilinxAXIEnet *s)
{
    s->rcw[1] = RCW1_JUM | RCW1_FCS | RCW1_RX | RCW1_VLAN;
}

static void axienet_tx_reset(struct XilinxAXIEnet *s)
{
    s->tc = TC_JUM | TC_TX | TC_VLAN;
}

static inline int axienet_rx_resetting(struct XilinxAXIEnet *s)
{
    return s->rcw[1] & RCW1_RST;
}

static inline int axienet_rx_enabled(struct XilinxAXIEnet *s)
{
    return s->rcw[1] & RCW1_RX;
}

static inline int axienet_extmcf_enabled(struct XilinxAXIEnet *s)
{
    return !!(s->regs[R_RAF] & RAF_EMCF_EN);
}

static inline int axienet_newfunc_enabled(struct XilinxAXIEnet *s)
{
    return !!(s->regs[R_RAF] & RAF_NEWFUNC_EN);
}

static void axienet_reset(struct XilinxAXIEnet *s)
{
    axienet_rx_reset(s);
    axienet_tx_reset(s);

    s->regs[R_PPST] = PPST_LINKSTATUS | PPST_PHY_LINKSTATUS;
    s->regs[R_IS] = IS_AUTONEG | IS_RX_DCM_LOCK | IS_MGM_RDY | IS_PHY_RST_DONE;

    s->emmc = EMMC_LINKSPEED_100MB;
}

static void enet_update_irq(struct XilinxAXIEnet *s)
{
    s->regs[R_IP] = s->regs[R_IS] & s->regs[R_IE];
    qemu_set_irq(s->irq, !!s->regs[R_IP]);
}

static uint64_t enet_read(void *opaque, target_phys_addr_t addr, unsigned size)
{
    struct XilinxAXIEnet *s = opaque;
    uint32_t r = 0;
    addr >>= 2;

    switch (addr) {
        case R_RCW0:
        case R_RCW1:
            r = s->rcw[addr & 1];
            break;

        case R_TC:
            r = s->tc;
            break;

        case R_EMMC:
            r = s->emmc;
            break;

        case R_PHYC:
            r = s->phyc;
            break;

        case R_MCR:
            r = s->mii.regs[addr & 3] | (1 << 7); /* Always ready.  */
            break;

        case R_STATS_RX_BYTESL:
        case R_STATS_RX_BYTESH:
            r = s->stats.rx_bytes >> (32 * (addr & 1));
            break;

        case R_STATS_TX_BYTESL:
        case R_STATS_TX_BYTESH:
            r = s->stats.tx_bytes >> (32 * (addr & 1));
            break;

        case R_STATS_RXL:
        case R_STATS_RXH:
            r = s->stats.rx >> (32 * (addr & 1));
            break;
        case R_STATS_RX_BCASTL:
        case R_STATS_RX_BCASTH:
            r = s->stats.rx_bcast >> (32 * (addr & 1));
            break;
        case R_STATS_RX_MCASTL:
        case R_STATS_RX_MCASTH:
            r = s->stats.rx_mcast >> (32 * (addr & 1));
            break;

        case R_MC:
        case R_MWD:
        case R_MRD:
            r = s->mii.regs[addr & 3];
            break;

        case R_UAW0:
        case R_UAW1:
            r = s->uaw[addr & 1];
            break;

        case R_UAWU:
        case R_UAWL:
            r = s->ext_uaw[addr & 1];
            break;

        case R_FMI:
            r = s->fmi;
            break;

        case R_AF0:
        case R_AF1:
            r = s->maddr[s->fmi & 3][addr & 1];
            break;

        case 0x8000 ... 0x83ff:
            r = s->ext_mtable[addr - 0x8000];
            break;

        default:
            if (addr < ARRAY_SIZE(s->regs)) {
                r = s->regs[addr];
            }
            DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n",
                            __func__, addr * 4, r));
            break;
    }
    return r;
}

static void enet_write(void *opaque, target_phys_addr_t addr,
                       uint64_t value, unsigned size)
{
    struct XilinxAXIEnet *s = opaque;
    struct TEMAC *t = &s->TEMAC;

    addr >>= 2;
    switch (addr) {
        case R_RCW0:
        case R_RCW1:
            s->rcw[addr & 1] = value;
            if ((addr & 1) && value & RCW1_RST) {
                axienet_rx_reset(s);
            }
            break;

        case R_TC:
            s->tc = value;
            if (value & TC_RST) {
                axienet_tx_reset(s);
            }
            break;

        case R_EMMC:
            s->emmc = value;
            break;

        case R_PHYC:
            s->phyc = value;
            break;

        case R_MC:
             value &= ((1 < 7) - 1);

             /* Enable the MII.  */
             if (value & MC_EN) {
                 unsigned int miiclkdiv = value & ((1 << 6) - 1);
                 if (!miiclkdiv) {
                     qemu_log("AXIENET: MDIO enabled but MDIOCLK is zero!\n");
                 }
             }
             s->mii.mc = value;
             break;

        case R_MCR: {
             unsigned int phyaddr = (value >> 24) & 0x1f;
             unsigned int regaddr = (value >> 16) & 0x1f;
             unsigned int op = (value >> 14) & 3;
             unsigned int initiate = (value >> 11) & 1;

             if (initiate) {
                 if (op == 1) {
                     mdio_write_req(&t->mdio_bus, phyaddr, regaddr, s->mii.mwd);
                 } else if (op == 2) {
                     s->mii.mrd = mdio_read_req(&t->mdio_bus, phyaddr, regaddr);
                 } else {
                     qemu_log("AXIENET: invalid MDIOBus OP=%d\n", op);
                 }
             }
             s->mii.mcr = value;
             break;
        }

        case R_MWD:
        case R_MRD:
             s->mii.regs[addr & 3] = value;
             break;


        case R_UAW0:
        case R_UAW1:
            s->uaw[addr & 1] = value;
            break;

        case R_UAWL:
        case R_UAWU:
            s->ext_uaw[addr & 1] = value;
            break;

        case R_FMI:
            s->fmi = value;
            break;

        case R_AF0:
        case R_AF1:
            s->maddr[s->fmi & 3][addr & 1] = value;
            break;

        case 0x8000 ... 0x83ff:
            s->ext_mtable[addr - 0x8000] = value;
            break;

        default:
            DENET(qemu_log("%s addr=" TARGET_FMT_plx " v=%x\n",
                           __func__, addr * 4, (unsigned)value));
            if (addr < ARRAY_SIZE(s->regs)) {
                s->regs[addr] = value;
            }
            break;
    }
    enet_update_irq(s);
}

static const MemoryRegionOps enet_ops = {
    .read = enet_read,
    .write = enet_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
};

static int eth_can_rx(VLANClientState *nc)
{
    struct XilinxAXIEnet *s = DO_UPCAST(NICState, nc, nc)->opaque;

    /* RX enabled?  */
    return !axienet_rx_resetting(s) && axienet_rx_enabled(s);
}

static int enet_match_addr(const uint8_t *buf, uint32_t f0, uint32_t f1)
{
    int match = 1;

    if (memcmp(buf, &f0, 4)) {
        match = 0;
    }

    if (buf[4] != (f1 & 0xff) || buf[5] != ((f1 >> 8) & 0xff)) {
        match = 0;
    }

    return match;
}

static ssize_t eth_rx(VLANClientState *nc, const uint8_t *buf, size_t size)
{
    struct XilinxAXIEnet *s = DO_UPCAST(NICState, nc, nc)->opaque;
    static const unsigned char sa_bcast[6] = {0xff, 0xff, 0xff,
                                              0xff, 0xff, 0xff};
    static const unsigned char sa_ipmcast[3] = {0x01, 0x00, 0x52};
    uint32_t app[6] = {0};
    int promisc = s->fmi & (1 << 31);
    int unicast, broadcast, multicast, ip_multicast = 0;
    uint32_t csum32;
    uint16_t csum16;
    int i;

    s = s;
    DENET(qemu_log("%s: %zd bytes\n", __func__, size));

    unicast = ~buf[0] & 0x1;
    broadcast = memcmp(buf, sa_bcast, 6) == 0;
    multicast = !unicast && !broadcast;
    if (multicast && (memcmp(sa_ipmcast, buf, sizeof sa_ipmcast) == 0)) {
        ip_multicast = 1;
    }

    /* Jumbo or vlan sizes ?  */
    if (!(s->rcw[1] & RCW1_JUM)) {
        if (size > 1518 && size <= 1522 && !(s->rcw[1] & RCW1_VLAN)) {
            return size;
        }
    }

    /* Basic Address filters.  If you want to use the extended filters
       you'll generally have to place the ethernet mac into promiscuous mode
       to avoid the basic filtering from dropping most frames.  */
    if (!promisc) {
        if (unicast) {
            if (!enet_match_addr(buf, s->uaw[0], s->uaw[1])) {
                return size;
            }
        } else {
            if (broadcast) {
                /* Broadcast.  */
                if (s->regs[R_RAF] & RAF_BCAST_REJ) {
                    return size;
                }
            } else {
                int drop = 1;

                /* Multicast.  */
                if (s->regs[R_RAF] & RAF_MCAST_REJ) {
                    return size;
                }

                for (i = 0; i < 4; i++) {
                    if (enet_match_addr(buf, s->maddr[i][0], s->maddr[i][1])) {
                        drop = 0;
                        break;
                    }
                }

                if (drop) {
                    return size;
                }
            }
        }
    }

    /* Extended mcast filtering enabled?  */
    if (axienet_newfunc_enabled(s) && axienet_extmcf_enabled(s)) {
        if (unicast) {
            if (!enet_match_addr(buf, s->ext_uaw[0], s->ext_uaw[1])) {
                return size;
            }
        } else {
            if (broadcast) {
                /* Broadcast. ???  */
                if (s->regs[R_RAF] & RAF_BCAST_REJ) {
                    return size;
                }
            } else {
                int idx, bit;

                /* Multicast.  */
                if (!memcmp(buf, sa_ipmcast, 3)) {
                    return size;
                }

                idx  = (buf[4] & 0x7f) << 8;
                idx |= buf[5];

                bit = 1 << (idx & 0x1f);
                idx >>= 5;

                if (!(s->ext_mtable[idx] & bit)) {
                    return size;
                }
            }
        }
    }

    if (size < 12) {
        s->regs[R_IS] |= IS_RX_REJECT;
        enet_update_irq(s);
        return -1;
    }

    if (size > (s->c_rxmem - 4)) {
        size = s->c_rxmem - 4;
    }

    memcpy(s->rxmem, buf, size);
    memset(s->rxmem + size, 0, 4); /* Clear the FCS.  */

    if (s->rcw[1] & RCW1_FCS) {
        size += 4; /* fcs is inband.  */
    }

    app[0] = 5 << 28;
    csum32 = net_checksum_add(size - 14, (uint8_t *)s->rxmem + 14);
    /* Fold it once.  */
    csum32 = (csum32 & 0xffff) + (csum32 >> 16);
    /* And twice to get rid of possible carries.  */
    csum16 = (csum32 & 0xffff) + (csum32 >> 16);
    app[3] = csum16;
    app[4] = size & 0xffff;

    s->stats.rx_bytes += size;
    s->stats.rx++;
    if (multicast) {
        s->stats.rx_mcast++;
        app[2] |= 1 | (ip_multicast << 1);
    } else if (broadcast) {
        s->stats.rx_bcast++;
        app[2] |= 1 << 3;
    }

    /* Good frame.  */
    app[2] |= 1 << 6;

    xlx_dma_push_to_dma(s->dmach, (void *)s->rxmem, size, app);

    s->regs[R_IS] |= IS_RX_COMPLETE;
    enet_update_irq(s);
    return size;
}

static void eth_cleanup(VLANClientState *nc)
{
    /* FIXME.  */
    struct XilinxAXIEnet *s = DO_UPCAST(NICState, nc, nc)->opaque;
    g_free(s->rxmem);
    g_free(s);
}

static void
axienet_stream_push(void *opaque, uint8_t *buf, size_t size, uint32_t *hdr)
{
    struct XilinxAXIEnet *s = opaque;

    /* TX enable ?  */
    if (!(s->tc & TC_TX)) {
        return;
    }

    /* Jumbo or vlan sizes ?  */
    if (!(s->tc & TC_JUM)) {
        if (size > 1518 && size <= 1522 && !(s->tc & TC_VLAN)) {
            return;
        }
    }

    if (hdr[0] & 1) {
        unsigned int start_off = hdr[1] >> 16;
        unsigned int write_off = hdr[1] & 0xffff;
        uint32_t tmp_csum;
        uint16_t csum;

        tmp_csum = net_checksum_add(size - start_off,
                                    (uint8_t *)buf + start_off);
        /* Accumulate the seed.  */
        tmp_csum += hdr[2] & 0xffff;

        /* Fold the 32bit partial checksum.  */
        csum = net_checksum_finish(tmp_csum);

        /* Writeback.  */
        buf[write_off] = csum >> 8;
        buf[write_off + 1] = csum & 0xff;
    }

    qemu_send_packet(&s->nic->nc, buf, size);

    s->stats.tx_bytes += size;
    s->regs[R_IS] |= IS_TX_COMPLETE;
    enet_update_irq(s);
}

static NetClientInfo net_xilinx_enet_info = {
    .type = NET_CLIENT_TYPE_NIC,
    .size = sizeof(NICState),
    .can_receive = eth_can_rx,
    .receive = eth_rx,
    .cleanup = eth_cleanup,
};

static int xilinx_enet_init(SysBusDevice *dev)
{
    struct XilinxAXIEnet *s = FROM_SYSBUS(typeof(*s), dev);

    sysbus_init_irq(dev, &s->irq);

    if (!s->dmach) {
        hw_error("Unconnected Xilinx Ethernet MAC.\n");
    }

    xlx_dma_connect_client(s->dmach, s, axienet_stream_push);

    memory_region_init_io(&s->iomem, &enet_ops, s, "enet", 0x40000);
    sysbus_init_mmio(dev, &s->iomem);

    qemu_macaddr_default_if_unset(&s->conf.macaddr);
    s->nic = qemu_new_nic(&net_xilinx_enet_info, &s->conf,
                          object_get_typename(OBJECT(dev)), dev->qdev.id, s);
    qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);

    tdk_init(&s->TEMAC.phy);
    mdio_attach(&s->TEMAC.mdio_bus, &s->TEMAC.phy, s->c_phyaddr);

    s->TEMAC.parent = s;

    s->rxmem = g_malloc(s->c_rxmem);
    axienet_reset(s);

    return 0;
}

static Property xilinx_enet_properties[] = {
    DEFINE_PROP_UINT32("phyaddr", struct XilinxAXIEnet, c_phyaddr, 7),
    DEFINE_PROP_UINT32("c_rxmem", struct XilinxAXIEnet, c_rxmem, 0x1000),
    DEFINE_PROP_UINT32("c_txmem", struct XilinxAXIEnet, c_txmem, 0x1000),
    DEFINE_PROP_PTR("dmach", struct XilinxAXIEnet, dmach),
    DEFINE_NIC_PROPERTIES(struct XilinxAXIEnet, conf),
    DEFINE_PROP_END_OF_LIST(),
};

static void xilinx_enet_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);

    k->init = xilinx_enet_init;
    dc->props = xilinx_enet_properties;
}

static TypeInfo xilinx_enet_info = {
    .name          = "xilinx,axienet",
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(struct XilinxAXIEnet),
    .class_init    = xilinx_enet_class_init,
};

static void xilinx_enet_register_types(void)
{
    type_register_static(&xilinx_enet_info);
}

type_init(xilinx_enet_register_types)