aboutsummaryrefslogtreecommitdiffstats
path: root/hw/onenand.c
blob: db6af682c42243e74f755ee5f70e8b4c8d0beb99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/*
 * OneNAND flash memories emulation.
 *
 * Copyright (C) 2008 Nokia Corporation
 * Written by Andrzej Zaborowski <andrew@openedhand.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 or
 * (at your option) version 3 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu-common.h"
#include "hw.h"
#include "flash.h"
#include "irq.h"
#include "blockdev.h"
#include "memory.h"
#include "exec-memory.h"
#include "sysbus.h"
#include "qemu-error.h"

/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
#define PAGE_SHIFT	11

/* Fixed */
#define BLOCK_SHIFT	(PAGE_SHIFT + 6)

typedef struct {
    SysBusDevice busdev;
    struct {
        uint16_t man;
        uint16_t dev;
        uint16_t ver;
    } id;
    int shift;
    target_phys_addr_t base;
    qemu_irq intr;
    qemu_irq rdy;
    BlockDriverState *bdrv;
    BlockDriverState *bdrv_cur;
    uint8_t *image;
    uint8_t *otp;
    uint8_t *current;
    MemoryRegion ram;
    MemoryRegion mapped_ram;
    uint8_t current_direction;
    uint8_t *boot[2];
    uint8_t *data[2][2];
    MemoryRegion iomem;
    MemoryRegion container;
    int cycle;
    int otpmode;

    uint16_t addr[8];
    uint16_t unladdr[8];
    int bufaddr;
    int count;
    uint16_t command;
    uint16_t config[2];
    uint16_t status;
    uint16_t intstatus;
    uint16_t wpstatus;

    ECCState ecc;

    int density_mask;
    int secs;
    int secs_cur;
    int blocks;
    uint8_t *blockwp;
} OneNANDState;

enum {
    ONEN_BUF_BLOCK = 0,
    ONEN_BUF_BLOCK2 = 1,
    ONEN_BUF_DEST_BLOCK = 2,
    ONEN_BUF_DEST_PAGE = 3,
    ONEN_BUF_PAGE = 7,
};

enum {
    ONEN_ERR_CMD = 1 << 10,
    ONEN_ERR_ERASE = 1 << 11,
    ONEN_ERR_PROG = 1 << 12,
    ONEN_ERR_LOAD = 1 << 13,
};

enum {
    ONEN_INT_RESET = 1 << 4,
    ONEN_INT_ERASE = 1 << 5,
    ONEN_INT_PROG = 1 << 6,
    ONEN_INT_LOAD = 1 << 7,
    ONEN_INT = 1 << 15,
};

enum {
    ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
    ONEN_LOCK_LOCKED = 1 << 1,
    ONEN_LOCK_UNLOCKED = 1 << 2,
};

static void onenand_mem_setup(OneNANDState *s)
{
    /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
     * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
     * write boot commands.  Also take note of the BWPS bit.  */
    memory_region_init(&s->container, "onenand", 0x10000 << s->shift);
    memory_region_add_subregion(&s->container, 0, &s->iomem);
    memory_region_init_alias(&s->mapped_ram, "onenand-mapped-ram",
                             &s->ram, 0x0200 << s->shift,
                             0xbe00 << s->shift);
    memory_region_add_subregion_overlap(&s->container,
                                        0x0200 << s->shift,
                                        &s->mapped_ram,
                                        1);
}

static void onenand_intr_update(OneNANDState *s)
{
    qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
}

static void onenand_pre_save(void *opaque)
{
    OneNANDState *s = opaque;
    if (s->current == s->otp) {
        s->current_direction = 1;
    } else if (s->current == s->image) {
        s->current_direction = 2;
    } else {
        s->current_direction = 0;
    }
}

static int onenand_post_load(void *opaque, int version_id)
{
    OneNANDState *s = opaque;
    switch (s->current_direction) {
    case 0:
        break;
    case 1:
        s->current = s->otp;
        break;
    case 2:
        s->current = s->image;
        break;
    default:
        return -1;
    }
    onenand_intr_update(s);
    return 0;
}

static const VMStateDescription vmstate_onenand = {
    .name = "onenand",
    .version_id = 1,
    .minimum_version_id = 1,
    .minimum_version_id_old = 1,
    .pre_save = onenand_pre_save,
    .post_load = onenand_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_UINT8(current_direction, OneNANDState),
        VMSTATE_INT32(cycle, OneNANDState),
        VMSTATE_INT32(otpmode, OneNANDState),
        VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
        VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
        VMSTATE_INT32(bufaddr, OneNANDState),
        VMSTATE_INT32(count, OneNANDState),
        VMSTATE_UINT16(command, OneNANDState),
        VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
        VMSTATE_UINT16(status, OneNANDState),
        VMSTATE_UINT16(intstatus, OneNANDState),
        VMSTATE_UINT16(wpstatus, OneNANDState),
        VMSTATE_INT32(secs_cur, OneNANDState),
        VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
        VMSTATE_UINT8(ecc.cp, OneNANDState),
        VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
        VMSTATE_UINT16(ecc.count, OneNANDState),
        VMSTATE_BUFFER_UNSAFE(otp, OneNANDState, 0, ((64 + 2) << PAGE_SHIFT)),
        VMSTATE_END_OF_LIST()
    }
};

/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
static void onenand_reset(OneNANDState *s, int cold)
{
    memset(&s->addr, 0, sizeof(s->addr));
    s->command = 0;
    s->count = 1;
    s->bufaddr = 0;
    s->config[0] = 0x40c0;
    s->config[1] = 0x0000;
    onenand_intr_update(s);
    qemu_irq_raise(s->rdy);
    s->status = 0x0000;
    s->intstatus = cold ? 0x8080 : 0x8010;
    s->unladdr[0] = 0;
    s->unladdr[1] = 0;
    s->wpstatus = 0x0002;
    s->cycle = 0;
    s->otpmode = 0;
    s->bdrv_cur = s->bdrv;
    s->current = s->image;
    s->secs_cur = s->secs;

    if (cold) {
        /* Lock the whole flash */
        memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);

        if (s->bdrv_cur && bdrv_read(s->bdrv_cur, 0, s->boot[0], 8) < 0) {
            hw_error("%s: Loading the BootRAM failed.\n", __func__);
        }
    }
}

static void onenand_system_reset(DeviceState *dev)
{
    onenand_reset(FROM_SYSBUS(OneNANDState, sysbus_from_qdev(dev)), 1);
}

static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
                void *dest)
{
    if (s->bdrv_cur)
        return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
    else if (sec + secn > s->secs_cur)
        return 1;

    memcpy(dest, s->current + (sec << 9), secn << 9);

    return 0;
}

static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
                void *src)
{
    int result = 0;

    if (secn > 0) {
        uint32_t size = (uint32_t)secn * 512;
        const uint8_t *sp = (const uint8_t *)src;
        uint8_t *dp = 0;
        if (s->bdrv_cur) {
            dp = g_malloc(size);
            if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) {
                result = 1;
            }
        } else {
            if (sec + secn > s->secs_cur) {
                result = 1;
            } else {
                dp = (uint8_t *)s->current + (sec << 9);
            }
        }
        if (!result) {
            uint32_t i;
            for (i = 0; i < size; i++) {
                dp[i] &= sp[i];
            }
            if (s->bdrv_cur) {
                result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0;
            }
        }
        if (dp && s->bdrv_cur) {
            g_free(dp);
        }
    }

    return result;
}

static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
                void *dest)
{
    uint8_t buf[512];

    if (s->bdrv_cur) {
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
            return 1;
        memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
    } else if (sec + secn > s->secs_cur)
        return 1;
    else
        memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
 
    return 0;
}

static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
                void *src)
{
    int result = 0;
    if (secn > 0) {
        const uint8_t *sp = (const uint8_t *)src;
        uint8_t *dp = 0, *dpp = 0;
        if (s->bdrv_cur) {
            dp = g_malloc(512);
            if (!dp || bdrv_read(s->bdrv_cur,
                                 s->secs_cur + (sec >> 5),
                                 dp, 1) < 0) {
                result = 1;
            } else {
                dpp = dp + ((sec & 31) << 4);
            }
        } else {
            if (sec + secn > s->secs_cur) {
                result = 1;
            } else {
                dpp = s->current + (s->secs_cur << 9) + (sec << 4);
            }
        }
        if (!result) {
            uint32_t i;
            for (i = 0; i < (secn << 4); i++) {
                dpp[i] &= sp[i];
            }
            if (s->bdrv_cur) {
                result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5),
                                    dp, 1) < 0;
            }
        }
        if (dp) {
            g_free(dp);
        }
    }
    return result;
}

static inline int onenand_erase(OneNANDState *s, int sec, int num)
{
    uint8_t *blankbuf, *tmpbuf;
    blankbuf = g_malloc(512);
    if (!blankbuf) {
        return 1;
    }
    tmpbuf = g_malloc(512);
    if (!tmpbuf) {
        g_free(blankbuf);
        return 1;
    }
    memset(blankbuf, 0xff, 512);
    for (; num > 0; num--, sec++) {
        if (s->bdrv_cur) {
            int erasesec = s->secs_cur + (sec >> 5);
            if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1)) {
                goto fail;
            }
            if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
                goto fail;
            }
            memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
            if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
                goto fail;
            }
        } else {
            if (sec + 1 > s->secs_cur) {
                goto fail;
            }
            memcpy(s->current + (sec << 9), blankbuf, 512);
            memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
                   blankbuf, 1 << 4);
        }
    }

    g_free(tmpbuf);
    g_free(blankbuf);
    return 0;

fail:
    g_free(tmpbuf);
    g_free(blankbuf);
    return 1;
}

static void onenand_command(OneNANDState *s)
{
    int b;
    int sec;
    void *buf;
#define SETADDR(block, page)			\
    sec = (s->addr[page] & 3) +			\
            ((((s->addr[page] >> 2) & 0x3f) +	\
              (((s->addr[block] & 0xfff) |	\
                (s->addr[block] >> 15 ?		\
                 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
#define SETBUF_M()				\
    buf = (s->bufaddr & 8) ?			\
            s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
    buf += (s->bufaddr & 3) << 9;
#define SETBUF_S()				\
    buf = (s->bufaddr & 8) ?			\
            s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
    buf += (s->bufaddr & 3) << 4;

    switch (s->command) {
    case 0x00:	/* Load single/multiple sector data unit into buffer */
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)

        SETBUF_M()
        if (onenand_load_main(s, sec, s->count, buf))
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;

#if 0
        SETBUF_S()
        if (onenand_load_spare(s, sec, s->count, buf))
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
#endif

        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
         * then we need two split the read/write into two chunks.
         */
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
        break;
    case 0x13:	/* Load single/multiple spare sector into buffer */
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)

        SETBUF_S()
        if (onenand_load_spare(s, sec, s->count, buf))
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;

        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
         * then we need two split the read/write into two chunks.
         */
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
        break;
    case 0x80:	/* Program single/multiple sector data unit from buffer */
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)

        SETBUF_M()
        if (onenand_prog_main(s, sec, s->count, buf))
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;

#if 0
        SETBUF_S()
        if (onenand_prog_spare(s, sec, s->count, buf))
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
#endif

        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
         * then we need two split the read/write into two chunks.
         */
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
        break;
    case 0x1a:	/* Program single/multiple spare area sector from buffer */
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)

        SETBUF_S()
        if (onenand_prog_spare(s, sec, s->count, buf))
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;

        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
         * then we need two split the read/write into two chunks.
         */
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
        break;
    case 0x1b:	/* Copy-back program */
        SETBUF_S()

        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
        if (onenand_load_main(s, sec, s->count, buf))
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;

        SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
        if (onenand_prog_main(s, sec, s->count, buf))
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;

        /* TODO: spare areas */

        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
        break;

    case 0x23:	/* Unlock NAND array block(s) */
        s->intstatus |= ONEN_INT;

        /* XXX the previous (?) area should be locked automatically */
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
            if (b >= s->blocks) {
                s->status |= ONEN_ERR_CMD;
                break;
            }
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
                break;

            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
        }
        break;
    case 0x27:	/* Unlock All NAND array blocks */
        s->intstatus |= ONEN_INT;

        for (b = 0; b < s->blocks; b ++) {
            if (b >= s->blocks) {
                s->status |= ONEN_ERR_CMD;
                break;
            }
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
                break;

            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
        }
        break;

    case 0x2a:	/* Lock NAND array block(s) */
        s->intstatus |= ONEN_INT;

        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
            if (b >= s->blocks) {
                s->status |= ONEN_ERR_CMD;
                break;
            }
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
                break;

            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
        }
        break;
    case 0x2c:	/* Lock-tight NAND array block(s) */
        s->intstatus |= ONEN_INT;

        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
            if (b >= s->blocks) {
                s->status |= ONEN_ERR_CMD;
                break;
            }
            if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
                continue;

            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
        }
        break;

    case 0x71:	/* Erase-Verify-Read */
        s->intstatus |= ONEN_INT;
        break;
    case 0x95:	/* Multi-block erase */
        qemu_irq_pulse(s->intr);
        /* Fall through.  */
    case 0x94:	/* Block erase */
        sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
                        (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
                << (BLOCK_SHIFT - 9);
        if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
            s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;

        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
        break;
    case 0xb0:	/* Erase suspend */
        break;
    case 0x30:	/* Erase resume */
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
        break;

    case 0xf0:	/* Reset NAND Flash core */
        onenand_reset(s, 0);
        break;
    case 0xf3:	/* Reset OneNAND */
        onenand_reset(s, 0);
        break;

    case 0x65:	/* OTP Access */
        s->intstatus |= ONEN_INT;
        s->bdrv_cur = NULL;
        s->current = s->otp;
        s->secs_cur = 1 << (BLOCK_SHIFT - 9);
        s->addr[ONEN_BUF_BLOCK] = 0;
        s->otpmode = 1;
        break;

    default:
        s->status |= ONEN_ERR_CMD;
        s->intstatus |= ONEN_INT;
        fprintf(stderr, "%s: unknown OneNAND command %x\n",
                        __func__, s->command);
    }

    onenand_intr_update(s);
}

static uint64_t onenand_read(void *opaque, target_phys_addr_t addr,
                             unsigned size)
{
    OneNANDState *s = (OneNANDState *) opaque;
    int offset = addr >> s->shift;

    switch (offset) {
    case 0x0000 ... 0xc000:
        return lduw_le_p(s->boot[0] + addr);

    case 0xf000:	/* Manufacturer ID */
        return s->id.man;
    case 0xf001:	/* Device ID */
        return s->id.dev;
    case 0xf002:	/* Version ID */
        return s->id.ver;
    /* TODO: get the following values from a real chip!  */
    case 0xf003:	/* Data Buffer size */
        return 1 << PAGE_SHIFT;
    case 0xf004:	/* Boot Buffer size */
        return 0x200;
    case 0xf005:	/* Amount of buffers */
        return 1 | (2 << 8);
    case 0xf006:	/* Technology */
        return 0;

    case 0xf100 ... 0xf107:	/* Start addresses */
        return s->addr[offset - 0xf100];

    case 0xf200:	/* Start buffer */
        return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));

    case 0xf220:	/* Command */
        return s->command;
    case 0xf221:	/* System Configuration 1 */
        return s->config[0] & 0xffe0;
    case 0xf222:	/* System Configuration 2 */
        return s->config[1];

    case 0xf240:	/* Controller Status */
        return s->status;
    case 0xf241:	/* Interrupt */
        return s->intstatus;
    case 0xf24c:	/* Unlock Start Block Address */
        return s->unladdr[0];
    case 0xf24d:	/* Unlock End Block Address */
        return s->unladdr[1];
    case 0xf24e:	/* Write Protection Status */
        return s->wpstatus;

    case 0xff00:	/* ECC Status */
        return 0x00;
    case 0xff01:	/* ECC Result of main area data */
    case 0xff02:	/* ECC Result of spare area data */
    case 0xff03:	/* ECC Result of main area data */
    case 0xff04:	/* ECC Result of spare area data */
        hw_error("%s: imeplement ECC\n", __FUNCTION__);
        return 0x0000;
    }

    fprintf(stderr, "%s: unknown OneNAND register %x\n",
                    __FUNCTION__, offset);
    return 0;
}

static void onenand_write(void *opaque, target_phys_addr_t addr,
                          uint64_t value, unsigned size)
{
    OneNANDState *s = (OneNANDState *) opaque;
    int offset = addr >> s->shift;
    int sec;

    switch (offset) {
    case 0x0000 ... 0x01ff:
    case 0x8000 ... 0x800f:
        if (s->cycle) {
            s->cycle = 0;

            if (value == 0x0000) {
                SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
                onenand_load_main(s, sec,
                                1 << (PAGE_SHIFT - 9), s->data[0][0]);
                s->addr[ONEN_BUF_PAGE] += 4;
                s->addr[ONEN_BUF_PAGE] &= 0xff;
            }
            break;
        }

        switch (value) {
        case 0x00f0:	/* Reset OneNAND */
            onenand_reset(s, 0);
            break;

        case 0x00e0:	/* Load Data into Buffer */
            s->cycle = 1;
            break;

        case 0x0090:	/* Read Identification Data */
            memset(s->boot[0], 0, 3 << s->shift);
            s->boot[0][0 << s->shift] = s->id.man & 0xff;
            s->boot[0][1 << s->shift] = s->id.dev & 0xff;
            s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
            break;

        default:
            fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
                            __FUNCTION__, value);
        }
        break;

    case 0xf100 ... 0xf107:	/* Start addresses */
        s->addr[offset - 0xf100] = value;
        break;

    case 0xf200:	/* Start buffer */
        s->bufaddr = (value >> 8) & 0xf;
        if (PAGE_SHIFT == 11)
            s->count = (value & 3) ?: 4;
        else if (PAGE_SHIFT == 10)
            s->count = (value & 1) ?: 2;
        break;

    case 0xf220:	/* Command */
        if (s->intstatus & (1 << 15))
            break;
        s->command = value;
        onenand_command(s);
        break;
    case 0xf221:	/* System Configuration 1 */
        s->config[0] = value;
        onenand_intr_update(s);
        qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
        break;
    case 0xf222:	/* System Configuration 2 */
        s->config[1] = value;
        break;

    case 0xf241:	/* Interrupt */
        s->intstatus &= value;
        if ((1 << 15) & ~s->intstatus)
            s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
                            ONEN_ERR_PROG | ONEN_ERR_LOAD);
        onenand_intr_update(s);
        break;
    case 0xf24c:	/* Unlock Start Block Address */
        s->unladdr[0] = value & (s->blocks - 1);
        /* For some reason we have to set the end address to by default
         * be same as start because the software forgets to write anything
         * in there.  */
        s->unladdr[1] = value & (s->blocks - 1);
        break;
    case 0xf24d:	/* Unlock End Block Address */
        s->unladdr[1] = value & (s->blocks - 1);
        break;

    default:
        fprintf(stderr, "%s: unknown OneNAND register %x\n",
                        __FUNCTION__, offset);
    }
}

static const MemoryRegionOps onenand_ops = {
    .read = onenand_read,
    .write = onenand_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static int onenand_initfn(SysBusDevice *dev)
{
    OneNANDState *s = (OneNANDState *)dev;
    uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
    void *ram;
    s->base = (target_phys_addr_t)-1;
    s->rdy = NULL;
    s->blocks = size >> BLOCK_SHIFT;
    s->secs = size >> 9;
    s->blockwp = g_malloc(s->blocks);
    s->density_mask = (s->id.dev & 0x08)
        ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
    memory_region_init_io(&s->iomem, &onenand_ops, s, "onenand",
                          0x10000 << s->shift);
    if (!s->bdrv) {
        s->image = memset(g_malloc(size + (size >> 5)),
                          0xff, size + (size >> 5));
    } else {
        if (bdrv_is_read_only(s->bdrv)) {
            error_report("Can't use a read-only drive");
            return -1;
        }
        s->bdrv_cur = s->bdrv;
    }
    s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
                    0xff, (64 + 2) << PAGE_SHIFT);
    memory_region_init_ram(&s->ram, "onenand.ram", 0xc000 << s->shift);
    vmstate_register_ram_global(&s->ram);
    ram = memory_region_get_ram_ptr(&s->ram);
    s->boot[0] = ram + (0x0000 << s->shift);
    s->boot[1] = ram + (0x8000 << s->shift);
    s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
    s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
    s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
    s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
    onenand_mem_setup(s);
    sysbus_init_irq(dev, &s->intr);
    sysbus_init_mmio(dev, &s->container);
    vmstate_register(&dev->qdev,
                     ((s->shift & 0x7f) << 24)
                     | ((s->id.man & 0xff) << 16)
                     | ((s->id.dev & 0xff) << 8)
                     | (s->id.ver & 0xff),
                     &vmstate_onenand, s);
    return 0;
}

static Property onenand_properties[] = {
    DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
    DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
    DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
    DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
    DEFINE_PROP_DRIVE("drive", OneNANDState, bdrv),
    DEFINE_PROP_END_OF_LIST(),
};

static void onenand_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);

    k->init = onenand_initfn;
    dc->reset = onenand_system_reset;
    dc->props = onenand_properties;
}

static TypeInfo onenand_info = {
    .name          = "onenand",
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(OneNANDState),
    .class_init    = onenand_class_init,
};

static void onenand_register_types(void)
{
    type_register_static(&onenand_info);
}

void *onenand_raw_otp(DeviceState *onenand_device)
{
    return FROM_SYSBUS(OneNANDState, sysbus_from_qdev(onenand_device))->otp;
}

type_init(onenand_register_types)