/* * PowerPC emulation micro-operations for qemu. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ //#define DEBUG_OP #include "config.h" #include "exec.h" #include "host-utils.h" #include "helper_regs.h" #include "op_helper.h" #define REG 0 #include "op_template.h" #define REG 1 #include "op_template.h" #define REG 2 #include "op_template.h" #define REG 3 #include "op_template.h" #define REG 4 #include "op_template.h" #define REG 5 #include "op_template.h" #define REG 6 #include "op_template.h" #define REG 7 #include "op_template.h" #define REG 8 #include "op_template.h" #define REG 9 #include "op_template.h" #define REG 10 #include "op_template.h" #define REG 11 #include "op_template.h" #define REG 12 #include "op_template.h" #define REG 13 #include "op_template.h" #define REG 14 #include "op_template.h" #define REG 15 #include "op_template.h" #define REG 16 #include "op_template.h" #define REG 17 #include "op_template.h" #define REG 18 #include "op_template.h" #define REG 19 #include "op_template.h" #define REG 20 #include "op_template.h" #define REG 21 #include "op_template.h" #define REG 22 #include "op_template.h" #define REG 23 #include "op_template.h" #define REG 24 #include "op_template.h" #define REG 25 #include "op_template.h" #define REG 26 #include "op_template.h" #define REG 27 #include "op_template.h" #define REG 28 #include "op_template.h" #define REG 29 #include "op_template.h" #define REG 30 #include "op_template.h" #define REG 31 #include "op_template.h" void OPPROTO op_print_mem_EA (void) { do_print_mem_EA(T0); RETURN(); } /* PowerPC state maintenance operations */ /* set_Rc0 */ void OPPROTO op_set_Rc0 (void) { env->crf[0] = T0 | xer_so; RETURN(); } /* Constants load */ void OPPROTO op_reset_T0 (void) { T0 = 0; RETURN(); } void OPPROTO op_set_T0 (void) { T0 = (uint32_t)PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_set_T0_64 (void) { T0 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } #endif void OPPROTO op_set_T1 (void) { T1 = (uint32_t)PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_set_T1_64 (void) { T1 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } #endif #if 0 // unused void OPPROTO op_set_T2 (void) { T2 = (uint32_t)PARAM1; RETURN(); } #endif void OPPROTO op_move_T1_T0 (void) { T1 = T0; RETURN(); } void OPPROTO op_move_T2_T0 (void) { T2 = T0; RETURN(); } void OPPROTO op_moven_T2_T0 (void) { T2 = ~T0; RETURN(); } /* Generate exceptions */ void OPPROTO op_raise_exception_err (void) { do_raise_exception_err(PARAM1, PARAM2); } void OPPROTO op_update_nip (void) { env->nip = (uint32_t)PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_update_nip_64 (void) { env->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } #endif void OPPROTO op_debug (void) { do_raise_exception(EXCP_DEBUG); } /* Load/store special registers */ void OPPROTO op_load_cr (void) { do_load_cr(); RETURN(); } void OPPROTO op_store_cr (void) { do_store_cr(PARAM1); RETURN(); } void OPPROTO op_load_cro (void) { T0 = env->crf[PARAM1]; RETURN(); } void OPPROTO op_store_cro (void) { env->crf[PARAM1] = T0; RETURN(); } void OPPROTO op_load_xer_cr (void) { T0 = (xer_so << 3) | (xer_ov << 2) | (xer_ca << 1); RETURN(); } void OPPROTO op_clear_xer_ov (void) { xer_so = 0; xer_ov = 0; RETURN(); } void OPPROTO op_clear_xer_ca (void) { xer_ca = 0; RETURN(); } void OPPROTO op_load_xer_bc (void) { T1 = xer_bc; RETURN(); } void OPPROTO op_store_xer_bc (void) { xer_bc = T0; RETURN(); } void OPPROTO op_load_xer (void) { T0 = hreg_load_xer(env); RETURN(); } void OPPROTO op_store_xer (void) { hreg_store_xer(env, T0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_store_pri (void) { do_store_pri(PARAM1); RETURN(); } #endif #if !defined(CONFIG_USER_ONLY) /* Segment registers load and store */ void OPPROTO op_load_sr (void) { T0 = env->sr[T1]; RETURN(); } void OPPROTO op_store_sr (void) { do_store_sr(env, T1, T0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_load_slb (void) { T0 = ppc_load_slb(env, T1); RETURN(); } void OPPROTO op_store_slb (void) { ppc_store_slb(env, T1, T0); RETURN(); } #endif /* defined(TARGET_PPC64) */ void OPPROTO op_load_sdr1 (void) { T0 = env->sdr1; RETURN(); } void OPPROTO op_store_sdr1 (void) { do_store_sdr1(env, T0); RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_load_asr (void) { T0 = env->asr; RETURN(); } void OPPROTO op_store_asr (void) { ppc_store_asr(env, T0); RETURN(); } #endif void OPPROTO op_load_msr (void) { T0 = env->msr; RETURN(); } void OPPROTO op_store_msr (void) { do_store_msr(); RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_store_msr_32 (void) { T0 = (env->msr & ~0xFFFFFFFFULL) | (T0 & 0xFFFFFFFF); do_store_msr(); RETURN(); } #endif void OPPROTO op_update_riee (void) { /* We don't call do_store_msr here as we won't trigger * any special case nor change hflags */ T0 &= (1 << MSR_RI) | (1 << MSR_EE); env->msr &= ~(1 << MSR_RI) | (1 << MSR_EE); env->msr |= T0; RETURN(); } #endif /* SPR */ void OPPROTO op_load_spr (void) { T0 = env->spr[PARAM1]; RETURN(); } void OPPROTO op_store_spr (void) { env->spr[PARAM1] = T0; RETURN(); } void OPPROTO op_load_dump_spr (void) { T0 = ppc_load_dump_spr(PARAM1); RETURN(); } void OPPROTO op_store_dump_spr (void) { ppc_store_dump_spr(PARAM1, T0); RETURN(); } void OPPROTO op_mask_spr (void) { env->spr[PARAM1] &= ~T0; RETURN(); } void OPPROTO op_load_lr (void) { T0 = env->lr; RETURN(); } void OPPROTO op_store_lr (void) { env->lr = T0; RETURN(); } void OPPROTO op_load_ctr (void) { T0 = env->ctr; RETURN(); } void OPPROTO op_store_ctr (void) { env->ctr = T0; RETURN(); } void OPPROTO op_load_tbl (void) { T0 = cpu_ppc_load_tbl(env); RETURN(); } void OPPROTO op_load_tbu (void) { T0 = cpu_ppc_load_tbu(env); RETURN(); } void OPPROTO op_load_atbl (void) { T0 = cpu_ppc_load_atbl(env); RETURN(); } void OPPROTO op_load_atbu (void) { T0 = cpu_ppc_load_atbu(env); RETURN(); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_store_tbl (void) { cpu_ppc_store_tbl(env, T0); RETURN(); } void OPPROTO op_store_tbu (void) { cpu_ppc_store_tbu(env, T0); RETURN(); } void OPPROTO op_store_atbl (void) { cpu_ppc_store_atbl(env, T0); RETURN(); } void OPPROTO op_store_atbu (void) { cpu_ppc_store_atbu(env, T0); RETURN(); } void OPPROTO op_load_decr (void) { T0 = cpu_ppc_load_decr(env); RETURN(); } void OPPROTO op_store_decr (void) { cpu_ppc_store_decr(env, T0); RETURN(); } void OPPROTO op_load_ibat (void) { T0 = env->IBAT[PARAM1][PARAM2]; RETURN(); } void OPPROTO op_store_ibatu (void) { do_store_ibatu(env, PARAM1, T0); RETURN(); } void OPPROTO op_store_ibatl (void) { #if 1 env->IBAT[1][PARAM1] = T0; #else do_store_ibatl(env, PARAM1, T0); #endif RETURN(); } void OPPROTO op_load_dbat (void) { T0 = env->DBAT[PARAM1][PARAM2]; RETURN(); } void OPPROTO op_store_dbatu (void) { do_store_dbatu(env, PARAM1, T0); RETURN(); } void OPPROTO op_store_dbatl (void) { #if 1 env->DBAT[1][PARAM1] = T0; #else do_store_dbatl(env, PARAM1, T0); #endif RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */ /* FPSCR */ #ifdef CONFIG_SOFTFLOAT void OPPROTO op_reset_fpstatus (void) { env->fp_status.float_exception_flags = 0; RETURN(); } #endif void OPPROTO op_compute_fprf (void) { do_compute_fprf(PARAM1); RETURN(); } #ifdef CONFIG_SOFTFLOAT void OPPROTO op_float_check_status (void) { do_float_check_status(); RETURN(); } #else void OPPROTO op_float_check_status (void) { if (env->exception_index == POWERPC_EXCP_PROGRAM && (env->error_code & POWERPC_EXCP_FP)) { /* Differred floating-point exception after target FPR update */ if (msr_fe0 != 0 || msr_fe1 != 0) do_raise_exception_err(env->exception_index, env->error_code); } RETURN(); } #endif void OPPROTO op_load_fpscr_FT0 (void) { /* The 32 MSB of the target fpr are undefined. * They'll be zero... */ CPU_DoubleU u; u.l.upper = 0; u.l.lower = env->fpscr; FT0 = u.d; RETURN(); } void OPPROTO op_set_FT0 (void) { CPU_DoubleU u; u.l.upper = 0; u.l.lower = PARAM1; FT0 = u.d; RETURN(); } void OPPROTO op_load_fpscr_T0 (void) { T0 = (env->fpscr >> PARAM1) & 0xF; RETURN(); } void OPPROTO op_load_fpcc (void) { T0 = fpscr_fpcc; RETURN(); } void OPPROTO op_fpscr_resetbit (void) { env->fpscr &= PARAM1; RETURN(); } void OPPROTO op_fpscr_setbit (void) { do_fpscr_setbit(PARAM1); RETURN(); } void OPPROTO op_store_fpscr (void) { do_store_fpscr(PARAM1); RETURN(); } /* Branch */ #define EIP env->nip void OPPROTO op_setlr (void) { env->lr = (uint32_t)PARAM1; RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_setlr_64 (void) { env->lr = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } #endif void OPPROTO op_b_T1 (void) { env->nip = (uint32_t)(T1 & ~3); RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_b_T1_64 (void) { env->nip = (uint64_t)(T1 & ~3); RETURN(); } #endif void OPPROTO op_jz_T0 (void) { if (!T0) GOTO_LABEL_PARAM(1); RETURN(); } void OPPROTO op_btest_T1 (void) { if (T0) { env->nip = (uint32_t)(T1 & ~3); } else { env->nip = (uint32_t)PARAM1; } RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_btest_T1_64 (void) { if (T0) { env->nip = (uint64_t)(T1 & ~3); } else { env->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; } RETURN(); } #endif void OPPROTO op_movl_T1_ctr (void) { T1 = env->ctr; RETURN(); } void OPPROTO op_movl_T1_lr (void) { T1 = env->lr; RETURN(); } /* tests with result in T0 */ void OPPROTO op_test_ctr (void) { T0 = (uint32_t)env->ctr; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctr_64 (void) { T0 = (uint64_t)env->ctr; RETURN(); } #endif void OPPROTO op_test_ctr_true (void) { T0 = ((uint32_t)env->ctr != 0 && (T0 & PARAM1) != 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctr_true_64 (void) { T0 = ((uint64_t)env->ctr != 0 && (T0 & PARAM1) != 0); RETURN(); } #endif void OPPROTO op_test_ctr_false (void) { T0 = ((uint32_t)env->ctr != 0 && (T0 & PARAM1) == 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctr_false_64 (void) { T0 = ((uint64_t)env->ctr != 0 && (T0 & PARAM1) == 0); RETURN(); } #endif void OPPROTO op_test_ctrz (void) { T0 = ((uint32_t)env->ctr == 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctrz_64 (void) { T0 = ((uint64_t)env->ctr == 0); RETURN(); } #endif void OPPROTO op_test_ctrz_true (void) { T0 = ((uint32_t)env->ctr == 0 && (T0 & PARAM1) != 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctrz_true_64 (void) { T0 = ((uint64_t)env->ctr == 0 && (T0 & PARAM1) != 0); RETURN(); } #endif void OPPROTO op_test_ctrz_false (void) { T0 = ((uint32_t)env->ctr == 0 && (T0 & PARAM1) == 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctrz_false_64 (void) { T0 = ((uint64_t)env->ctr == 0 && (T0 & PARAM1) == 0); RETURN(); } #endif void OPPROTO op_test_true (void) { T0 = (T0 & PARAM1); RETURN(); } void OPPROTO op_test_false (void) { T0 = ((T0 & PARAM1) == 0); RETURN(); } /* CTR maintenance */ void OPPROTO op_dec_ctr (void) { env->ctr--; RETURN(); } /*** Integer arithmetic ***/ /* add */ void OPPROTO op_add (void) { T0 += T1; RETURN(); } void OPPROTO op_check_addo (void) { xer_ov = (((uint32_t)T2 ^ (uint32_t)T1 ^ UINT32_MAX) & ((uint32_t)T2 ^ (uint32_t)T0)) >> 31; xer_so |= xer_ov; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_check_addo_64 (void) { xer_ov = (((uint64_t)T2 ^ (uint64_t)T1 ^ UINT64_MAX) & ((uint64_t)T2 ^ (uint64_t)T0)) >> 63; xer_so |= xer_ov; RETURN(); } #endif /* add carrying */ void OPPROTO op_check_addc (void) { if (likely((uint32_t)T0 >= (uint32_t)T2)) { xer_ca = 0; } else { xer_ca = 1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_check_addc_64 (void) { if (likely((uint64_t)T0 >= (uint64_t)T2)) { xer_ca = 0; } else { xer_ca = 1; } RETURN(); } #endif /* add extended */ void OPPROTO op_adde (void) { do_adde(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_adde_64 (void) { do_adde_64(); RETURN(); } #endif /* add immediate */ void OPPROTO op_addi (void) { T0 += (int32_t)PARAM1; RETURN(); } /* add to minus one extended */ void OPPROTO op_add_me (void) { T0 += xer_ca + (-1); if (likely((uint32_t)T1 != 0)) xer_ca = 1; else xer_ca = 0; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_add_me_64 (void) { T0 += xer_ca + (-1); if (likely((uint64_t)T1 != 0)) xer_ca = 1; else xer_ca = 0; RETURN(); } #endif void OPPROTO op_addmeo (void) { do_addmeo(); RETURN(); } void OPPROTO op_addmeo_64 (void) { do_addmeo(); RETURN(); } /* add to zero extended */ void OPPROTO op_add_ze (void) { T0 += xer_ca; RETURN(); } /* divide word */ void OPPROTO op_divw (void) { if (unlikely(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) || (int32_t)T1 == 0)) { T0 = (int32_t)(UINT32_MAX * ((uint32_t)T0 >> 31)); } else { T0 = (int32_t)T0 / (int32_t)T1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_divd (void) { if (unlikely(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) || (int64_t)T1 == 0)) { T0 = (int64_t)(UINT64_MAX * ((uint64_t)T0 >> 63)); } else { T0 = (int64_t)T0 / (int64_t)T1; } RETURN(); } #endif void OPPROTO op_divwo (void) { do_divwo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_divdo (void) { do_divdo(); RETURN(); } #endif /* divide word unsigned */ void OPPROTO op_divwu (void) { if (unlikely(T1 == 0)) { T0 = 0; } else { T0 = (uint32_t)T0 / (uint32_t)T1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_divdu (void) { if (unlikely(T1 == 0)) { T0 = 0; } else { T0 /= T1; } RETURN(); } #endif void OPPROTO op_divwuo (void) { do_divwuo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_divduo (void) { do_divduo(); RETURN(); } #endif /* multiply high word */ void OPPROTO op_mulhw (void) { T0 = ((int64_t)((int32_t)T0) * (int64_t)((int32_t)T1)) >> 32; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_mulhd (void) { uint64_t tl, th; muls64(&tl, &th, T0, T1); T0 = th; RETURN(); } #endif /* multiply high word unsigned */ void OPPROTO op_mulhwu (void) { T0 = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1) >> 32; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_mulhdu (void) { uint64_t tl, th; mulu64(&tl, &th, T0, T1); T0 = th; RETURN(); } #endif /* multiply low immediate */ void OPPROTO op_mulli (void) { T0 = ((int32_t)T0 * (int32_t)PARAM1); RETURN(); } /* multiply low word */ void OPPROTO op_mullw (void) { T0 = (int32_t)(T0 * T1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_mulld (void) { T0 *= T1; RETURN(); } #endif void OPPROTO op_mullwo (void) { do_mullwo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_mulldo (void) { do_mulldo(); RETURN(); } #endif /* negate */ void OPPROTO op_neg (void) { if (likely(T0 != INT32_MIN)) { T0 = -(int32_t)T0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_neg_64 (void) { if (likely(T0 != INT64_MIN)) { T0 = -(int64_t)T0; } RETURN(); } #endif void OPPROTO op_nego (void) { do_nego(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_nego_64 (void) { do_nego_64(); RETURN(); } #endif /* subtract from */ void OPPROTO op_subf (void) { T0 = T1 - T0; RETURN(); } /* subtract from carrying */ void OPPROTO op_check_subfc (void) { if (likely((uint32_t)T0 > (uint32_t)T1)) { xer_ca = 0; } else { xer_ca = 1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_check_subfc_64 (void) { if (likely((uint64_t)T0 > (uint64_t)T1)) { xer_ca = 0; } else { xer_ca = 1; } RETURN(); } #endif /* subtract from extended */ void OPPROTO op_subfe (void) { do_subfe(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfe_64 (void) { do_subfe_64(); RETURN(); } #endif /* subtract from immediate carrying */ void OPPROTO op_subfic (void) { T0 = (int32_t)PARAM1 + ~T0 + 1; if ((uint32_t)T0 <= (uint32_t)PARAM1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfic_64 (void) { T0 = (int64_t)PARAM1 + ~T0 + 1; if ((uint64_t)T0 <= (uint64_t)PARAM1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #endif /* subtract from minus one extended */ void OPPROTO op_subfme (void) { T0 = ~T0 + xer_ca - 1; if (likely((uint32_t)T0 != UINT32_MAX)) xer_ca = 1; else xer_ca = 0; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfme_64 (void) { T0 = ~T0 + xer_ca - 1; if (likely((uint64_t)T0 != UINT64_MAX)) xer_ca = 1; else xer_ca = 0; RETURN(); } #endif void OPPROTO op_subfmeo (void) { do_subfmeo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfmeo_64 (void) { do_subfmeo_64(); RETURN(); } #endif /* subtract from zero extended */ void OPPROTO op_subfze (void) { T1 = ~T0; T0 = T1 + xer_ca; if ((uint32_t)T0 < (uint32_t)T1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfze_64 (void) { T1 = ~T0; T0 = T1 + xer_ca; if ((uint64_t)T0 < (uint64_t)T1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #endif void OPPROTO op_subfzeo (void) { do_subfzeo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfzeo_64 (void) { do_subfzeo_64(); RETURN(); } #endif /*** Integer comparison ***/ /* compare */ void OPPROTO op_cmp (void) { if ((int32_t)T0 < (int32_t)T1) { T0 = 0x08; } else if ((int32_t)T0 > (int32_t)T1) { T0 = 0x04; } else { T0 = 0x02; } T0 |= xer_so; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cmp_64 (void) { if ((int64_t)T0 < (int64_t)T1) { T0 = 0x08; } else if ((int64_t)T0 > (int64_t)T1) { T0 = 0x04; } else { T0 = 0x02; } T0 |= xer_so; RETURN(); } #endif /* compare immediate */ void OPPROTO op_cmpi (void) { if ((int32_t)T0 < (int32_t)PARAM1) { T0 = 0x08; } else if ((int32_t)T0 > (int32_t)PARAM1) { T0 = 0x04; } else { T0 = 0x02; } T0 |= xer_so; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cmpi_64 (void) { if ((int64_t)T0 < (int64_t)((int32_t)PARAM1)) { T0 = 0x08; } else if ((int64_t)T0 > (int64_t)((int32_t)PARAM1)) { T0 = 0x04; } else { T0 = 0x02; } T0 |= xer_so; RETURN(); } #endif /* compare logical */ void OPPROTO op_cmpl (void) { if ((uint32_t)T0 < (uint32_t)T1) { T0 = 0x08; } else if ((uint32_t)T0 > (uint32_t)T1) { T0 = 0x04; } else { T0 = 0x02; } T0 |= xer_so; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cmpl_64 (void) { if ((uint64_t)T0 < (uint64_t)T1) { T0 = 0x08; } else if ((uint64_t)T0 > (uint64_t)T1) { T0 = 0x04; } else { T0 = 0x02; } T0 |= xer_so; RETURN(); } #endif /* compare logical immediate */ void OPPROTO op_cmpli (void) { if ((uint32_t)T0 < (uint32_t)PARAM1) { T0 = 0x08; } else if ((uint32_t)T0 > (uint32_t)PARAM1) { T0 = 0x04; } else { T0 = 0x02; } T0 |= xer_so; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cmpli_64 (void) { if ((uint64_t)T0 < (uint64_t)PARAM1) { T0 = 0x08; } else if ((uint64_t)T0 > (uint64_t)PARAM1) { T0 = 0x04; } else { T0 = 0x02; } T0 |= xer_so; RETURN(); } #endif void OPPROTO op_isel (void) { if (T0) T0 = T1; else T0 = T2; RETURN(); } void OPPROTO op_popcntb (void) { do_popcntb(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_popcntb_64 (void) { do_popcntb_64(); RETURN(); } #endif /*** Integer logical ***/ /* and */ void OPPROTO op_and (void) { T0 &= T1; RETURN(); } /* andc */ void OPPROTO op_andc (void) { T0 &= ~T1; RETURN(); } /* andi. */ void OPPROTO op_andi_T0 (void) { T0 &= (uint32_t)PARAM1; RETURN(); } void OPPROTO op_andi_T1 (void) { T1 &= (uint32_t)PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_andi_T0_64 (void) { T0 &= ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } void OPPROTO op_andi_T1_64 (void) { T1 &= ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } #endif /* count leading zero */ void OPPROTO op_cntlzw (void) { do_cntlzw(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cntlzd (void) { do_cntlzd(); RETURN(); } #endif /* eqv */ void OPPROTO op_eqv (void) { T0 = ~(T0 ^ T1); RETURN(); } /* extend sign byte */ void OPPROTO op_extsb (void) { #if defined (TARGET_PPC64) T0 = (int64_t)((int8_t)T0); #else T0 = (int32_t)((int8_t)T0); #endif RETURN(); } /* extend sign half word */ void OPPROTO op_extsh (void) { #if defined (TARGET_PPC64) T0 = (int64_t)((int16_t)T0); #else T0 = (int32_t)((int16_t)T0); #endif RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_extsw (void) { T0 = (int64_t)((int32_t)T0); RETURN(); } #endif /* nand */ void OPPROTO op_nand (void) { T0 = ~(T0 & T1); RETURN(); } /* nor */ void OPPROTO op_nor (void) { T0 = ~(T0 | T1); RETURN(); } /* or */ void OPPROTO op_or (void) { T0 |= T1; RETURN(); } /* orc */ void OPPROTO op_orc (void) { T0 |= ~T1; RETURN(); } /* ori */ void OPPROTO op_ori (void) { T0 |= (uint32_t)PARAM1; RETURN(); } /* xor */ void OPPROTO op_xor (void) { T0 ^= T1; RETURN(); } /* xori */ void OPPROTO op_xori (void) { T0 ^= (uint32_t)PARAM1; RETURN(); } /*** Integer rotate ***/ void OPPROTO op_rotl32_T0_T1 (void) { T0 = rotl32(T0, T1 & 0x1F); RETURN(); } void OPPROTO op_rotli32_T0 (void) { T0 = rotl32(T0, PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_rotl64_T0_T1 (void) { T0 = rotl64(T0, T1 & 0x3F); RETURN(); } void OPPROTO op_rotli64_T0 (void) { T0 = rotl64(T0, PARAM1); RETURN(); } #endif /*** Integer shift ***/ /* shift left word */ void OPPROTO op_slw (void) { if (T1 & 0x20) { T0 = 0; } else { T0 = (uint32_t)(T0 << T1); } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_sld (void) { if (T1 & 0x40) { T0 = 0; } else { T0 = T0 << T1; } RETURN(); } #endif /* shift right algebraic word */ void OPPROTO op_sraw (void) { do_sraw(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srad (void) { do_srad(); RETURN(); } #endif /* shift right algebraic word immediate */ void OPPROTO op_srawi (void) { uint32_t mask = (uint32_t)PARAM2; T0 = (int32_t)T0 >> PARAM1; if ((int32_t)T1 < 0 && (T1 & mask) != 0) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_sradi (void) { uint64_t mask = ((uint64_t)PARAM2 << 32) | (uint64_t)PARAM3; T0 = (int64_t)T0 >> PARAM1; if ((int64_t)T1 < 0 && ((uint64_t)T1 & mask) != 0) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #endif /* shift right word */ void OPPROTO op_srw (void) { if (T1 & 0x20) { T0 = 0; } else { T0 = (uint32_t)T0 >> T1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srd (void) { if (T1 & 0x40) { T0 = 0; } else { T0 = (uint64_t)T0 >> T1; } RETURN(); } #endif void OPPROTO op_sl_T0_T1 (void) { T0 = T0 << T1; RETURN(); } void OPPROTO op_sli_T0 (void) { T0 = T0 << PARAM1; RETURN(); } void OPPROTO op_sli_T1 (void) { T1 = T1 << PARAM1; RETURN(); } void OPPROTO op_srl_T0_T1 (void) { T0 = (uint32_t)T0 >> T1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srl_T0_T1_64 (void) { T0 = (uint32_t)T0 >> T1; RETURN(); } #endif void OPPROTO op_srli_T0 (void) { T0 = (uint32_t)T0 >> PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srli_T0_64 (void) { T0 = (uint64_t)T0 >> PARAM1; RETURN(); } #endif void OPPROTO op_srli_T1 (void) { T1 = (uint32_t)T1 >> PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srli_T1_64 (void) { T1 = (uint64_t)T1 >> PARAM1; RETURN(); } #endif /*** Floating-Point arithmetic ***/ /* fadd - fadd. */ void OPPROTO op_fadd (void) { #if USE_PRECISE_EMULATION do_fadd(); #else FT0 = float64_add(FT0, FT1, &env->fp_status); #endif RETURN(); } /* fsub - fsub. */ void OPPROTO op_fsub (void) { #if USE_PRECISE_EMULATION do_fsub(); #else FT0 = float64_sub(FT0, FT1, &env->fp_status); #endif RETURN(); } /* fmul - fmul. */ void OPPROTO op_fmul (void) { #if USE_PRECISE_EMULATION do_fmul(); #else FT0 = float64_mul(FT0, FT1, &env->fp_status); #endif RETURN(); } /* fdiv - fdiv. */ void OPPROTO op_fdiv (void) { #if USE_PRECISE_EMULATION do_fdiv(); #else FT0 = float64_div(FT0, FT1, &env->fp_status); #endif RETURN(); } /* fsqrt - fsqrt. */ void OPPROTO op_fsqrt (void) { do_fsqrt(); RETURN(); } /* fre - fre. */ void OPPROTO op_fre (void) { do_fre(); RETURN(); } /* fres - fres. */ void OPPROTO op_fres (void) { do_fres(); RETURN(); } /* frsqrte - frsqrte. */ void OPPROTO op_frsqrte (void) { do_frsqrte(); RETURN(); } /* fsel - fsel. */ void OPPROTO op_fsel (void) { do_fsel(); RETURN(); } /*** Floating-Point multiply-and-add ***/ /* fmadd - fmadd. */ void OPPROTO op_fmadd (void) { #if USE_PRECISE_EMULATION do_fmadd(); #else FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_add(FT0, FT2, &env->fp_status); #endif RETURN(); } /* fmsub - fmsub. */ void OPPROTO op_fmsub (void) { #if USE_PRECISE_EMULATION do_fmsub(); #else FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_sub(FT0, FT2, &env->fp_status); #endif RETURN(); } /* fnmadd - fnmadd. - fnmadds - fnmadds. */ void OPPROTO op_fnmadd (void) { do_fnmadd(); RETURN(); } /* fnmsub - fnmsub. */ void OPPROTO op_fnmsub (void) { do_fnmsub(); RETURN(); } /*** Floating-Point round & convert ***/ /* frsp - frsp. */ void OPPROTO op_frsp (void) { #if USE_PRECISE_EMULATION do_frsp(); #else FT0 = float64_to_float32(FT0, &env->fp_status); #endif RETURN(); } /* fctiw - fctiw. */ void OPPROTO op_fctiw (void) { do_fctiw(); RETURN(); } /* fctiwz - fctiwz. */ void OPPROTO op_fctiwz (void) { do_fctiwz(); RETURN(); } #if defined(TARGET_PPC64) /* fcfid - fcfid. */ void OPPROTO op_fcfid (void) { do_fcfid(); RETURN(); } /* fctid - fctid. */ void OPPROTO op_fctid (void) { do_fctid(); RETURN(); } /* fctidz - fctidz. */ void OPPROTO op_fctidz (void) { do_fctidz(); RETURN(); } #endif void OPPROTO op_frin (void) { do_frin(); RETURN(); } void OPPROTO op_friz (void) { do_friz(); RETURN(); } void OPPROTO op_frip (void) { do_frip(); RETURN(); } void OPPROTO op_frim (void) { do_frim(); RETURN(); } /*** Floating-Point compare ***/ /* fcmpu */ void OPPROTO op_fcmpu (void) { do_fcmpu(); RETURN(); } /* fcmpo */ void OPPROTO op_fcmpo (void) { do_fcmpo(); RETURN(); } /*** Floating-point move ***/ /* fabs */ void OPPROTO op_fabs (void) { FT0 = float64_abs(FT0); RETURN(); } /* fnabs */ void OPPROTO op_fnabs (void) { FT0 = float64_abs(FT0); FT0 = float64_chs(FT0); RETURN(); } /* fneg */ void OPPROTO op_fneg (void) { FT0 = float64_chs(FT0); RETURN(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_helper.h" #include "op_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_helper.h" #include "op_mem.h" #define MEMSUFFIX _kernel #include "op_helper.h" #include "op_mem.h" #define MEMSUFFIX _hypv #include "op_helper.h" #include "op_mem.h" #endif /* Special op to check and maybe clear reservation */ void OPPROTO op_check_reservation (void) { if ((uint32_t)env->reserve == (uint32_t)(T0 & ~0x00000003)) env->reserve = (target_ulong)-1ULL; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_check_reservation_64 (void) { if ((uint64_t)env->reserve == (uint64_t)(T0 & ~0x00000003)) env->reserve = (target_ulong)-1ULL; RETURN(); } #endif void OPPROTO op_wait (void) { env->halted = 1; RETURN(); } /* Return from interrupt */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_rfi (void) { do_rfi(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_rfid (void) { do_rfid(); RETURN(); } void OPPROTO op_hrfid (void) { do_hrfid(); RETURN(); } #endif /* Exception vectors */ void OPPROTO op_store_excp_prefix (void) { T0 &= env->ivpr_mask; env->excp_prefix = T0; RETURN(); } void OPPROTO op_store_excp_vector (void) { T0 &= env->ivor_mask; env->excp_vectors[PARAM1] = T0; RETURN(); } #endif /* Trap word */ void OPPROTO op_tw (void) { do_tw(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_td (void) { do_td(PARAM1); RETURN(); } #endif #if !defined(CONFIG_USER_ONLY) /* tlbia */ void OPPROTO op_tlbia (void) { ppc_tlb_invalidate_all(env); RETURN(); } /* tlbie */ void OPPROTO op_tlbie (void) { ppc_tlb_invalidate_one(env, (uint32_t)T0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_tlbie_64 (void) { ppc_tlb_invalidate_one(env, T0); RETURN(); } #endif #if defined(TARGET_PPC64) void OPPROTO op_slbia (void) { ppc_slb_invalidate_all(env); RETURN(); } void OPPROTO op_slbie (void) { ppc_slb_invalidate_one(env, (uint32_t)T0); RETURN(); } void OPPROTO op_slbie_64 (void) { ppc_slb_invalidate_one(env, T0); RETURN(); } #endif #endif #if !defined(CONFIG_USER_ONLY) /* PowerPC 602/603/755 software TLB load instructions */ void OPPROTO op_6xx_tlbld (void) { do_load_6xx_tlb(0); RETURN(); } void OPPROTO op_6xx_tlbli (void) { do_load_6xx_tlb(1); RETURN(); } /* PowerPC 74xx software TLB load instructions */ void OPPROTO op_74xx_tlbld (void) { do_load_74xx_tlb(0); RETURN(); } void OPPROTO op_74xx_tlbli (void) { do_load_74xx_tlb(1); RETURN(); } #endif /* 601 specific */ void OPPROTO op_load_601_rtcl (void) { T0 = cpu_ppc601_load_rtcl(env); RETURN(); } void OPPROTO op_load_601_rtcu (void) { T0 = cpu_ppc601_load_rtcu(env); RETURN(); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_store_601_rtcl (void) { cpu_ppc601_store_rtcl(env, T0); RETURN(); } void OPPROTO op_store_601_rtcu (void) { cpu_ppc601_store_rtcu(env, T0); RETURN(); } void OPPROTO op_store_hid0_601 (void) { do_store_hid0_601(); RETURN(); } void OPPROTO op_load_601_bat (void) { T0 = env->IBAT[PARAM1][PARAM2]; RETURN(); } void OPPROTO op_store_601_batl (void) { do_store_ibatl_601(env, PARAM1, T0); RETURN(); } void OPPROTO op_store_601_batu (void) { do_store_ibatu_601(env, PARAM1, T0); RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */ /* PowerPC 601 specific instructions (POWER bridge) */ /* XXX: those micro-ops need tests ! */ void OPPROTO op_POWER_abs (void) { if ((int32_t)T0 == INT32_MIN) T0 = INT32_MAX; else if ((int32_t)T0 < 0) T0 = -T0; RETURN(); } void OPPROTO op_POWER_abso (void) { do_POWER_abso(); RETURN(); } void OPPROTO op_POWER_clcs (void) { do_POWER_clcs(); RETURN(); } void OPPROTO op_POWER_div (void) { do_POWER_div(); RETURN(); } void OPPROTO op_POWER_divo (void) { do_POWER_divo(); RETURN(); } void OPPROTO op_POWER_divs (void) { do_POWER_divs(); RETURN(); } void OPPROTO op_POWER_divso (void) { do_POWER_divso(); RETURN(); } void OPPROTO op_POWER_doz (void) { if ((int32_t)T1 > (int32_t)T0) T0 = T1 - T0; else T0 = 0; RETURN(); } void OPPROTO op_POWER_dozo (void) { do_POWER_dozo(); RETURN(); } void OPPROTO op_load_xer_cmp (void) { T2 = xer_cmp; RETURN(); } void OPPROTO op_POWER_maskg (void) { do_POWER_maskg(); RETURN(); } void OPPROTO op_POWER_maskir (void) { T0 = (T0 & ~T2) | (T1 & T2); RETURN(); } void OPPROTO op_POWER_mul (void) { uint64_t tmp; tmp = (uint64_t)T0 * (uint64_t)T1; env->spr[SPR_MQ] = tmp >> 32; T0 = tmp; RETURN(); } void OPPROTO op_POWER_mulo (void) { do_POWER_mulo(); RETURN(); } void OPPROTO op_POWER_nabs (void) { if (T0 > 0) T0 = -T0; RETURN(); } void OPPROTO op_POWER_nabso (void) { /* nabs never overflows */ if (T0 > 0) T0 = -T0; xer_ov = 0; RETURN(); } /* XXX: factorise POWER rotates... */ void OPPROTO op_POWER_rlmi (void) { T0 = rotl32(T0, T2) & PARAM1; T0 |= T1 & (uint32_t)PARAM2; RETURN(); } void OPPROTO op_POWER_rrib (void) { T2 &= 0x1FUL; T0 = rotl32(T0 & INT32_MIN, T2); T0 |= T1 & ~rotl32(INT32_MIN, T2); RETURN(); } void OPPROTO op_POWER_sle (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, T1); T0 = T0 << T1; RETURN(); } void OPPROTO op_POWER_sleq (void) { uint32_t tmp = env->spr[SPR_MQ]; T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, T1); T0 = T0 << T1; T0 |= tmp >> (32 - T1); RETURN(); } void OPPROTO op_POWER_sllq (void) { uint32_t msk = UINT32_MAX; msk = msk << (T1 & 0x1FUL); if (T1 & 0x20UL) msk = ~msk; T1 &= 0x1FUL; T0 = (T0 << T1) & msk; T0 |= env->spr[SPR_MQ] & ~msk; RETURN(); } void OPPROTO op_POWER_slq (void) { uint32_t msk = UINT32_MAX, tmp; msk = msk << (T1 & 0x1FUL); if (T1 & 0x20UL) msk = ~msk; T1 &= 0x1FUL; tmp = rotl32(T0, T1); T0 = tmp & msk; env->spr[SPR_MQ] = tmp; RETURN(); } void OPPROTO op_POWER_sraq (void) { env->spr[SPR_MQ] = rotl32(T0, 32 - (T1 & 0x1FUL)); if (T1 & 0x20UL) T0 = UINT32_MAX; else T0 = (int32_t)T0 >> T1; RETURN(); } void OPPROTO op_POWER_sre (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = (int32_t)T0 >> T1; RETURN(); } void OPPROTO op_POWER_srea (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = T0 >> T1; T0 = (int32_t)T0 >> T1; RETURN(); } void OPPROTO op_POWER_sreq (void) { uint32_t tmp; int32_t msk; T1 &= 0x1FUL; msk = INT32_MIN >> T1; tmp = env->spr[SPR_MQ]; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = T0 >> T1; T0 |= tmp & msk; RETURN(); } void OPPROTO op_POWER_srlq (void) { uint32_t tmp; int32_t msk; msk = INT32_MIN >> (T1 & 0x1FUL); if (T1 & 0x20UL) msk = ~msk; T1 &= 0x1FUL; tmp = env->spr[SPR_MQ]; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = T0 >> T1; T0 &= msk; T0 |= tmp & ~msk; RETURN(); } void OPPROTO op_POWER_srq (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = T0 >> T1; RETURN(); } /* POWER instructions not implemented in PowerPC 601 */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_POWER_mfsri (void) { T1 = T0 >> 28; T0 = env->sr[T1]; RETURN(); } void OPPROTO op_POWER_rac (void) { do_POWER_rac(); RETURN(); } void OPPROTO op_POWER_rfsvc (void) { do_POWER_rfsvc(); RETURN(); } #endif /* PowerPC 602 specific instruction */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_602_mfrom (void) { do_op_602_mfrom(); RETURN(); } #endif /* PowerPC 4xx specific micro-ops */ void OPPROTO op_405_add_T0_T2 (void) { T0 = (int32_t)T0 + (int32_t)T2; RETURN(); } void OPPROTO op_405_mulchw (void) { T0 = ((int16_t)T0) * ((int16_t)(T1 >> 16)); RETURN(); } void OPPROTO op_405_mulchwu (void) { T0 = ((uint16_t)T0) * ((uint16_t)(T1 >> 16)); RETURN(); } void OPPROTO op_405_mulhhw (void) { T0 = ((int16_t)(T0 >> 16)) * ((int16_t)(T1 >> 16)); RETURN(); } void OPPROTO op_405_mulhhwu (void) { T0 = ((uint16_t)(T0 >> 16)) * ((uint16_t)(T1 >> 16)); RETURN(); } void OPPROTO op_405_mullhw (void) { T0 = ((int16_t)T0) * ((int16_t)T1); RETURN(); } void OPPROTO op_405_mullhwu (void) { T0 = ((uint16_t)T0) * ((uint16_t)T1); RETURN(); } void OPPROTO op_405_check_sat (void) { do_405_check_sat(); RETURN(); } void OPPROTO op_405_check_ovu (void) { if (likely(T0 >= T2)) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } RETURN(); } void OPPROTO op_405_check_satu (void) { if (unlikely(T0 < T2)) { /* Saturate result */ T0 = UINT32_MAX; } RETURN(); } void OPPROTO op_load_dcr (void) { do_load_dcr(); RETURN(); } void OPPROTO op_store_dcr (void) { do_store_dcr(); RETURN(); } #if !defined(CONFIG_USER_ONLY) /* Return from critical interrupt : * same as rfi, except nip & MSR are loaded from SRR2/3 instead of SRR0/1 */ void OPPROTO op_40x_rfci (void) { do_40x_rfci(); RETURN(); } void OPPROTO op_rfci (void) { do_rfci(); RETURN(); } void OPPROTO op_rfdi (void) { do_rfdi(); RETURN(); } void OPPROTO op_rfmci (void) { do_rfmci(); RETURN(); } void OPPROTO op_wrte (void) { /* We don't call do_store_msr here as we won't trigger * any special case nor change hflags */ T0 &= 1 << MSR_EE; env->msr &= ~(1 << MSR_EE); env->msr |= T0; RETURN(); } void OPPROTO op_440_tlbre (void) { do_440_tlbre(PARAM1); RETURN(); } void OPPROTO op_440_tlbsx (void) { T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_440_MMUCR] & 0xFF); RETURN(); } void OPPROTO op_4xx_tlbsx_check (void) { int tmp; tmp = xer_so; if ((int)T0 != -1) tmp |= 0x02; env->crf[0] = tmp; RETURN(); } void OPPROTO op_440_tlbwe (void) { do_440_tlbwe(PARAM1); RETURN(); } void OPPROTO op_4xx_tlbre_lo (void) { do_4xx_tlbre_lo(); RETURN(); } void OPPROTO op_4xx_tlbre_hi (void) { do_4xx_tlbre_hi(); RETURN(); } void OPPROTO op_4xx_tlbsx (void) { T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_40x_PID]); RETURN(); } void OPPROTO op_4xx_tlbwe_lo (void) { do_4xx_tlbwe_lo(); RETURN(); } void OPPROTO op_4xx_tlbwe_hi (void) { do_4xx_tlbwe_hi(); RETURN(); } #endif /* SPR micro-ops */ /* 440 specific */ void OPPROTO op_440_dlmzb (void) { do_440_dlmzb(); RETURN(); } void OPPROTO op_440_dlmzb_update_Rc (void) { if (T0 == 8) T0 = 0x2; else if (T0 < 4) T0 = 0x4; else T0 = 0x8; RETURN(); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_store_pir (void) { env->spr[SPR_PIR] = T0 & 0x0000000FUL; RETURN(); } void OPPROTO op_load_403_pb (void) { do_load_403_pb(PARAM1); RETURN(); } void OPPROTO op_store_403_pb (void) { do_store_403_pb(PARAM1); RETURN(); } void OPPROTO op_load_40x_pit (void) { T0 = load_40x_pit(env); RETURN(); } void OPPROTO op_store_40x_pit (void) { store_40x_pit(env, T0); RETURN(); } void OPPROTO op_store_40x_dbcr0 (void) { store_40x_dbcr0(env, T0); RETURN(); } void OPPROTO op_store_40x_sler (void) { store_40x_sler(env, T0); RETURN(); } void OPPROTO op_store_booke_tcr (void) { store_booke_tcr(env, T0); RETURN(); } void OPPROTO op_store_booke_tsr (void) { store_booke_tsr(env, T0); RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */ /* SPE extension */ void OPPROTO op_splatw_T1_64 (void) { T1_64 = (T1_64 << 32) | (T1_64 & 0x00000000FFFFFFFFULL); RETURN(); } void OPPROTO op_splatwi_T0_64 (void) { uint64_t tmp = PARAM1; T0_64 = (tmp << 32) | tmp; RETURN(); } void OPPROTO op_splatwi_T1_64 (void) { uint64_t tmp = PARAM1; T1_64 = (tmp << 32) | tmp; RETURN(); } void OPPROTO op_extsh_T1_64 (void) { T1_64 = (int32_t)((int16_t)T1_64); RETURN(); } void OPPROTO op_sli16_T1_64 (void) { T1_64 = T1_64 << 16; RETURN(); } void OPPROTO op_sli32_T1_64 (void) { T1_64 = T1_64 << 32; RETURN(); } void OPPROTO op_srli32_T1_64 (void) { T1_64 = T1_64 >> 32; RETURN(); } void OPPROTO op_evsel (void) { do_evsel(); RETURN(); } void OPPROTO op_evaddw (void) { do_evaddw(); RETURN(); } void OPPROTO op_evsubfw (void) { do_evsubfw(); RETURN(); } void OPPROTO op_evneg (void) { do_evneg(); RETURN(); } void OPPROTO op_evabs (void) { do_evabs(); RETURN(); } void OPPROTO op_evextsh (void) { T0_64 = ((uint64_t)((int32_t)(int16_t)(T0_64 >> 32)) << 32) | (uint64_t)((int32_t)(int16_t)T0_64); RETURN(); } void OPPROTO op_evextsb (void) { T0_64 = ((uint64_t)((int32_t)(int8_t)(T0_64 >> 32)) << 32) | (uint64_t)((int32_t)(int8_t)T0_64); RETURN(); } void OPPROTO op_evcntlzw (void) { do_evcntlzw(); RETURN(); } void OPPROTO op_evrndw (void) { do_evrndw(); RETURN(); } void OPPROTO op_brinc (void) { do_brinc(); RETURN(); } void OPPROTO op_evcntlsw (void) { do_evcntlsw(); RETURN(); } void OPPROTO op_evand (void) { T0_64 &= T1_64; RETURN(); } void OPPROTO op_evandc (void) { T0_64 &= ~T1_64; RETURN(); } void OPPROTO op_evor (void) { T0_64 |= T1_64; RETURN(); } void OPPROTO op_evxor (void) { T0_64 ^= T1_64; RETURN(); } void OPPROTO op_eveqv (void) { T0_64 = ~(T0_64 ^ T1_64); RETURN(); } void OPPROTO op_evnor (void) { T0_64 = ~(T0_64 | T1_64); RETURN(); } void OPPROTO op_evorc (void) { T0_64 |= ~T1_64; RETURN(); } void OPPROTO op_evnand (void) { T0_64 = ~(T0_64 & T1_64); RETURN(); } void OPPROTO op_evsrws (void) { do_evsrws(); RETURN(); } void OPPROTO op_evsrwu (void) { do_evsrwu(); RETURN(); } void OPPROTO op_evslw (void) { do_evslw(); RETURN(); } void OPPROTO op_evrlw (void) { do_evrlw(); RETURN(); } void OPPROTO op_evmergelo (void) { T0_64 = (T0_64 << 32) | (T1_64 & 0x00000000FFFFFFFFULL); RETURN(); } void OPPROTO op_evmergehi (void) { T0_64 = (T0_64 & 0xFFFFFFFF00000000ULL) | (T1_64 >> 32); RETURN(); } void OPPROTO op_evmergelohi (void) { T0_64 = (T0_64 << 32) | (T1_64 >> 32); RETURN(); } void OPPROTO op_evmergehilo (void) { T0_64 = (T0_64 & 0xFFFFFFFF00000000ULL) | (T1_64 & 0x00000000FFFFFFFFULL); RETURN(); } void OPPROTO op_evcmpgts (void) { do_evcmpgts(); RETURN(); } void OPPROTO op_evcmpgtu (void) { do_evcmpgtu(); RETURN(); } void OPPROTO op_evcmplts (void) { do_evcmplts(); RETURN(); } void OPPROTO op_evcmpltu (void) { do_evcmpltu(); RETURN(); } void OPPROTO op_evcmpeq (void) { do_evcmpeq(); RETURN(); } void OPPROTO op_evfssub (void) { do_evfssub(); RETURN(); } void OPPROTO op_evfsadd (void) { do_evfsadd(); RETURN(); } void OPPROTO op_evfsnabs (void) { do_evfsnabs(); RETURN(); } void OPPROTO op_evfsabs (void) { do_evfsabs(); RETURN(); } void OPPROTO op_evfsneg (void) { do_evfsneg(); RETURN(); } void OPPROTO op_evfsdiv (void) { do_evfsdiv(); RETURN(); } void OPPROTO op_evfsmul (void) { do_evfsmul(); RETURN(); } void OPPROTO op_evfscmplt (void) { do_evfscmplt(); RETURN(); } void OPPROTO op_evfscmpgt (void) { do_evfscmpgt(); RETURN(); } void OPPROTO op_evfscmpeq (void) { do_evfscmpeq(); RETURN(); } void OPPROTO op_evfscfsi (void) { do_evfscfsi(); RETURN(); } void OPPROTO op_evfscfui (void) { do_evfscfui(); RETURN(); } void OPPROTO op_evfscfsf (void) { do_evfscfsf(); RETURN(); } void OPPROTO op_evfscfuf (void) { do_evfscfuf(); RETURN(); } void OPPROTO op_evfsctsi (void) { do_evfsctsi(); RETURN(); } void OPPROTO op_evfsctui (void) { do_evfsctui(); RETURN(); } void OPPROTO op_evfsctsf (void) { do_evfsctsf(); RETURN(); } void OPPROTO op_evfsctuf (void) { do_evfsctuf(); RETURN(); } void OPPROTO op_evfsctuiz (void) { do_evfsctuiz(); RETURN(); } void OPPROTO op_evfsctsiz (void) { do_evfsctsiz(); RETURN(); } void OPPROTO op_evfststlt (void) { do_evfststlt(); RETURN(); } void OPPROTO op_evfststgt (void) { do_evfststgt(); RETURN(); } void OPPROTO op_evfststeq (void) { do_evfststeq(); RETURN(); } void OPPROTO op_efssub (void) { T0_64 = _do_efssub(T0_64, T1_64); RETURN(); } void OPPROTO op_efsadd (void) { T0_64 = _do_efsadd(T0_64, T1_64); RETURN(); } void OPPROTO op_efsnabs (void) { T0_64 = _do_efsnabs(T0_64); RETURN(); } void OPPROTO op_efsabs (void) { T0_64 = _do_efsabs(T0_64); RETURN(); } void OPPROTO op_efsneg (void) { T0_64 = _do_efsneg(T0_64); RETURN(); } void OPPROTO op_efsdiv (void) { T0_64 = _do_efsdiv(T0_64, T1_64); RETURN(); } void OPPROTO op_efsmul (void) { T0_64 = _do_efsmul(T0_64, T1_64); RETURN(); } void OPPROTO op_efscmplt (void) { do_efscmplt(); RETURN(); } void OPPROTO op_efscmpgt (void) { do_efscmpgt(); RETURN(); } void OPPROTO op_efscfd (void) { do_efscfd(); RETURN(); } void OPPROTO op_efscmpeq (void) { do_efscmpeq(); RETURN(); } void OPPROTO op_efscfsi (void) { do_efscfsi(); RETURN(); } void OPPROTO op_efscfui (void) { do_efscfui(); RETURN(); } void OPPROTO op_efscfsf (void) { do_efscfsf(); RETURN(); } void OPPROTO op_efscfuf (void) { do_efscfuf(); RETURN(); } void OPPROTO op_efsctsi (void) { do_efsctsi(); RETURN(); } void OPPROTO op_efsctui (void) { do_efsctui(); RETURN(); } void OPPROTO op_efsctsf (void) { do_efsctsf(); RETURN(); } void OPPROTO op_efsctuf (void) { do_efsctuf(); RETURN(); } void OPPROTO op_efsctsiz (void) { do_efsctsiz(); RETURN(); } void OPPROTO op_efsctuiz (void) { do_efsctuiz(); RETURN(); } void OPPROTO op_efststlt (void) { T0 = _do_efststlt(T0_64, T1_64); RETURN(); } void OPPROTO op_efststgt (void) { T0 = _do_efststgt(T0_64, T1_64); RETURN(); } void OPPROTO op_efststeq (void) { T0 = _do_efststeq(T0_64, T1_64); RETURN(); } void OPPROTO op_efdsub (void) { CPU_DoubleU u1, u2; u1.ll = T0_64; u2.ll = T1_64; u1.d = float64_sub(u1.d, u2.d, &env->spe_status); T0_64 = u1.ll; RETURN(); } void OPPROTO op_efdadd (void) { CPU_DoubleU u1, u2; u1.ll = T0_64; u2.ll = T1_64; u1.d = float64_add(u1.d, u2.d, &env->spe_status); T0_64 = u1.ll; RETURN(); } void OPPROTO op_efdcfsid (void) { do_efdcfsi(); RETURN(); } void OPPROTO op_efdcfuid (void) { do_efdcfui(); RETURN(); } void OPPROTO op_efdnabs (void) { T0_64 |= 0x8000000000000000ULL; RETURN(); } void OPPROTO op_efdabs (void) { T0_64 &= ~0x8000000000000000ULL; RETURN(); } void OPPROTO op_efdneg (void) { T0_64 ^= 0x8000000000000000ULL; RETURN(); } void OPPROTO op_efddiv (void) { CPU_DoubleU u1, u2; u1.ll = T0_64; u2.ll = T1_64; u1.d = float64_div(u1.d, u2.d, &env->spe_status); T0_64 = u1.ll; RETURN(); } void OPPROTO op_efdmul (void) { CPU_DoubleU u1, u2; u1.ll = T0_64; u2.ll = T1_64; u1.d = float64_mul(u1.d, u2.d, &env->spe_status); T0_64 = u1.ll; RETURN(); } void OPPROTO op_efdctsidz (void) { do_efdctsiz(); RETURN(); } void OPPROTO op_efdctuidz (void) { do_efdctuiz(); RETURN(); } void OPPROTO op_efdcmplt (void) { do_efdcmplt(); RETURN(); } void OPPROTO op_efdcmpgt (void) { do_efdcmpgt(); RETURN(); } void OPPROTO op_efdcfs (void) { do_efdcfs(); RETURN(); } void OPPROTO op_efdcmpeq (void) { do_efdcmpeq(); RETURN(); } void OPPROTO op_efdcfsi (void) { do_efdcfsi(); RETURN(); } void OPPROTO op_efdcfui (void) { do_efdcfui(); RETURN(); } void OPPROTO op_efdcfsf (void) { do_efdcfsf(); RETURN(); } void OPPROTO op_efdcfuf (void) { do_efdcfuf(); RETURN(); } void OPPROTO op_efdctsi (void) { do_efdctsi(); RETURN(); } void OPPROTO op_efdctui (void) { do_efdctui(); RETURN(); } void OPPROTO op_efdctsf (void) { do_efdctsf(); RETURN(); } void OPPROTO op_efdctuf (void) { do_efdctuf(); RETURN(); } void OPPROTO op_efdctuiz (void) { do_efdctuiz(); RETURN(); } void OPPROTO op_efdctsiz (void) { do_efdctsiz(); RETURN(); } void OPPROTO op_efdtstlt (void) { T0 = _do_efdtstlt(T0_64, T1_64); RETURN(); } void OPPROTO op_efdtstgt (void) { T0 = _do_efdtstgt(T0_64, T1_64); RETURN(); } void OPPROTO op_efdtsteq (void) { T0 = _do_efdtsteq(T0_64, T1_64); RETURN(); }