/* * QEMU Sun4m & Sun4d & Sun4c System Emulator * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "sysbus.h" #include "qemu-timer.h" #include "sun4m.h" #include "nvram.h" #include "sparc32_dma.h" #include "fdc.h" #include "sysemu.h" #include "net.h" #include "boards.h" #include "firmware_abi.h" #include "esp.h" #include "pc.h" #include "isa.h" #include "fw_cfg.h" #include "escc.h" #include "empty_slot.h" #include "qdev-addr.h" #include "loader.h" #include "elf.h" #include "blockdev.h" #include "trace.h" /* * Sun4m architecture was used in the following machines: * * SPARCserver 6xxMP/xx * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), * SPARCclassic X (4/10) * SPARCstation LX/ZX (4/30) * SPARCstation Voyager * SPARCstation 10/xx, SPARCserver 10/xx * SPARCstation 5, SPARCserver 5 * SPARCstation 20/xx, SPARCserver 20 * SPARCstation 4 * * Sun4d architecture was used in the following machines: * * SPARCcenter 2000 * SPARCserver 1000 * * Sun4c architecture was used in the following machines: * SPARCstation 1/1+, SPARCserver 1/1+ * SPARCstation SLC * SPARCstation IPC * SPARCstation ELC * SPARCstation IPX * * See for example: http://www.sunhelp.org/faq/sunref1.html */ #define KERNEL_LOAD_ADDR 0x00004000 #define CMDLINE_ADDR 0x007ff000 #define INITRD_LOAD_ADDR 0x00800000 #define PROM_SIZE_MAX (1024 * 1024) #define PROM_VADDR 0xffd00000 #define PROM_FILENAME "openbios-sparc32" #define CFG_ADDR 0xd00000510ULL #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00) #define MAX_CPUS 16 #define MAX_PILS 16 #define MAX_VSIMMS 4 #define ESCC_CLOCK 4915200 struct sun4m_hwdef { target_phys_addr_t iommu_base, iommu_pad_base, iommu_pad_len, slavio_base; target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base; target_phys_addr_t serial_base, fd_base; target_phys_addr_t afx_base, idreg_base, dma_base, esp_base, le_base; target_phys_addr_t tcx_base, cs_base, apc_base, aux1_base, aux2_base; target_phys_addr_t bpp_base, dbri_base, sx_base; struct { target_phys_addr_t reg_base, vram_base; } vsimm[MAX_VSIMMS]; target_phys_addr_t ecc_base; uint64_t max_mem; const char * const default_cpu_model; uint32_t ecc_version; uint32_t iommu_version; uint16_t machine_id; uint8_t nvram_machine_id; }; #define MAX_IOUNITS 5 struct sun4d_hwdef { target_phys_addr_t iounit_bases[MAX_IOUNITS], slavio_base; target_phys_addr_t counter_base, nvram_base, ms_kb_base; target_phys_addr_t serial_base; target_phys_addr_t espdma_base, esp_base; target_phys_addr_t ledma_base, le_base; target_phys_addr_t tcx_base; target_phys_addr_t sbi_base; uint64_t max_mem; const char * const default_cpu_model; uint32_t iounit_version; uint16_t machine_id; uint8_t nvram_machine_id; }; struct sun4c_hwdef { target_phys_addr_t iommu_base, slavio_base; target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base; target_phys_addr_t serial_base, fd_base; target_phys_addr_t idreg_base, dma_base, esp_base, le_base; target_phys_addr_t tcx_base, aux1_base; uint64_t max_mem; const char * const default_cpu_model; uint32_t iommu_version; uint16_t machine_id; uint8_t nvram_machine_id; }; int DMA_get_channel_mode (int nchan) { return 0; } int DMA_read_memory (int nchan, void *buf, int pos, int size) { return 0; } int DMA_write_memory (int nchan, void *buf, int pos, int size) { return 0; } void DMA_hold_DREQ (int nchan) {} void DMA_release_DREQ (int nchan) {} void DMA_schedule(int nchan) {} void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit) { } void DMA_register_channel (int nchan, DMA_transfer_handler transfer_handler, void *opaque) { } static int fw_cfg_boot_set(void *opaque, const char *boot_device) { fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); return 0; } static void nvram_init(M48t59State *nvram, uint8_t *macaddr, const char *cmdline, const char *boot_devices, ram_addr_t RAM_size, uint32_t kernel_size, int width, int height, int depth, int nvram_machine_id, const char *arch) { unsigned int i; uint32_t start, end; uint8_t image[0x1ff0]; struct OpenBIOS_nvpart_v1 *part_header; memset(image, '\0', sizeof(image)); start = 0; // OpenBIOS nvram variables // Variable partition part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; part_header->signature = OPENBIOS_PART_SYSTEM; pstrcpy(part_header->name, sizeof(part_header->name), "system"); end = start + sizeof(struct OpenBIOS_nvpart_v1); for (i = 0; i < nb_prom_envs; i++) end = OpenBIOS_set_var(image, end, prom_envs[i]); // End marker image[end++] = '\0'; end = start + ((end - start + 15) & ~15); OpenBIOS_finish_partition(part_header, end - start); // free partition start = end; part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; part_header->signature = OPENBIOS_PART_FREE; pstrcpy(part_header->name, sizeof(part_header->name), "free"); end = 0x1fd0; OpenBIOS_finish_partition(part_header, end - start); Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, nvram_machine_id); for (i = 0; i < sizeof(image); i++) m48t59_write(nvram, i, image[i]); } static DeviceState *slavio_intctl; void sun4m_pic_info(Monitor *mon) { if (slavio_intctl) slavio_pic_info(mon, slavio_intctl); } void sun4m_irq_info(Monitor *mon) { if (slavio_intctl) slavio_irq_info(mon, slavio_intctl); } void cpu_check_irqs(CPUState *env) { if (env->pil_in && (env->interrupt_index == 0 || (env->interrupt_index & ~15) == TT_EXTINT)) { unsigned int i; for (i = 15; i > 0; i--) { if (env->pil_in & (1 << i)) { int old_interrupt = env->interrupt_index; env->interrupt_index = TT_EXTINT | i; if (old_interrupt != env->interrupt_index) { trace_sun4m_cpu_interrupt(i); cpu_interrupt(env, CPU_INTERRUPT_HARD); } break; } } } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15); env->interrupt_index = 0; cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); } } static void cpu_kick_irq(CPUState *env) { env->halted = 0; cpu_check_irqs(env); qemu_cpu_kick(env); } static void cpu_set_irq(void *opaque, int irq, int level) { CPUState *env = opaque; if (level) { trace_sun4m_cpu_set_irq_raise(irq); env->pil_in |= 1 << irq; cpu_kick_irq(env); } else { trace_sun4m_cpu_set_irq_lower(irq); env->pil_in &= ~(1 << irq); cpu_check_irqs(env); } } static void dummy_cpu_set_irq(void *opaque, int irq, int level) { } static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); env->halted = 0; } static void secondary_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); env->halted = 1; } static void cpu_halt_signal(void *opaque, int irq, int level) { if (level && cpu_single_env) cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT); } static uint64_t translate_kernel_address(void *opaque, uint64_t addr) { return addr - 0xf0000000ULL; } static unsigned long sun4m_load_kernel(const char *kernel_filename, const char *initrd_filename, ram_addr_t RAM_size) { int linux_boot; unsigned int i; long initrd_size, kernel_size; uint8_t *ptr; linux_boot = (kernel_filename != NULL); kernel_size = 0; if (linux_boot) { int bswap_needed; #ifdef BSWAP_NEEDED bswap_needed = 1; #else bswap_needed = 0; #endif kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, NULL, NULL, NULL, 1, ELF_MACHINE, 0); if (kernel_size < 0) kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, RAM_size - KERNEL_LOAD_ADDR, bswap_needed, TARGET_PAGE_SIZE); if (kernel_size < 0) kernel_size = load_image_targphys(kernel_filename, KERNEL_LOAD_ADDR, RAM_size - KERNEL_LOAD_ADDR); if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ initrd_size = 0; if (initrd_filename) { initrd_size = load_image_targphys(initrd_filename, INITRD_LOAD_ADDR, RAM_size - INITRD_LOAD_ADDR); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } if (initrd_size > 0) { for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { ptr = rom_ptr(KERNEL_LOAD_ADDR + i); if (ldl_p(ptr) == 0x48647253) { // HdrS stl_p(ptr + 16, INITRD_LOAD_ADDR); stl_p(ptr + 20, initrd_size); break; } } } } return kernel_size; } static void *iommu_init(target_phys_addr_t addr, uint32_t version, qemu_irq irq) { DeviceState *dev; SysBusDevice *s; dev = qdev_create(NULL, "iommu"); qdev_prop_set_uint32(dev, "version", version); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_connect_irq(s, 0, irq); sysbus_mmio_map(s, 0, addr); return s; } static void *sparc32_dma_init(target_phys_addr_t daddr, qemu_irq parent_irq, void *iommu, qemu_irq *dev_irq, int is_ledma) { DeviceState *dev; SysBusDevice *s; dev = qdev_create(NULL, "sparc32_dma"); qdev_prop_set_ptr(dev, "iommu_opaque", iommu); qdev_prop_set_uint32(dev, "is_ledma", is_ledma); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_connect_irq(s, 0, parent_irq); *dev_irq = qdev_get_gpio_in(dev, 0); sysbus_mmio_map(s, 0, daddr); return s; } static void lance_init(NICInfo *nd, target_phys_addr_t leaddr, void *dma_opaque, qemu_irq irq) { DeviceState *dev; SysBusDevice *s; qemu_irq reset; qemu_check_nic_model(&nd_table[0], "lance"); dev = qdev_create(NULL, "lance"); qdev_set_nic_properties(dev, nd); qdev_prop_set_ptr(dev, "dma", dma_opaque); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_mmio_map(s, 0, leaddr); sysbus_connect_irq(s, 0, irq); reset = qdev_get_gpio_in(dev, 0); qdev_connect_gpio_out(dma_opaque, 0, reset); } static DeviceState *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg, qemu_irq **parent_irq) { DeviceState *dev; SysBusDevice *s; unsigned int i, j; dev = qdev_create(NULL, "slavio_intctl"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); for (i = 0; i < MAX_CPUS; i++) { for (j = 0; j < MAX_PILS; j++) { sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]); } } sysbus_mmio_map(s, 0, addrg); for (i = 0; i < MAX_CPUS; i++) { sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE); } return dev; } #define SYS_TIMER_OFFSET 0x10000ULL #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) static void slavio_timer_init_all(target_phys_addr_t addr, qemu_irq master_irq, qemu_irq *cpu_irqs, unsigned int num_cpus) { DeviceState *dev; SysBusDevice *s; unsigned int i; dev = qdev_create(NULL, "slavio_timer"); qdev_prop_set_uint32(dev, "num_cpus", num_cpus); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_connect_irq(s, 0, master_irq); sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET); for (i = 0; i < MAX_CPUS; i++) { sysbus_mmio_map(s, i + 1, addr + (target_phys_addr_t)CPU_TIMER_OFFSET(i)); sysbus_connect_irq(s, i + 1, cpu_irqs[i]); } } #define MISC_LEDS 0x01600000 #define MISC_CFG 0x01800000 #define MISC_DIAG 0x01a00000 #define MISC_MDM 0x01b00000 #define MISC_SYS 0x01f00000 static void slavio_misc_init(target_phys_addr_t base, target_phys_addr_t aux1_base, target_phys_addr_t aux2_base, qemu_irq irq, qemu_irq fdc_tc) { DeviceState *dev; SysBusDevice *s; dev = qdev_create(NULL, "slavio_misc"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); if (base) { /* 8 bit registers */ /* Slavio control */ sysbus_mmio_map(s, 0, base + MISC_CFG); /* Diagnostics */ sysbus_mmio_map(s, 1, base + MISC_DIAG); /* Modem control */ sysbus_mmio_map(s, 2, base + MISC_MDM); /* 16 bit registers */ /* ss600mp diag LEDs */ sysbus_mmio_map(s, 3, base + MISC_LEDS); /* 32 bit registers */ /* System control */ sysbus_mmio_map(s, 4, base + MISC_SYS); } if (aux1_base) { /* AUX 1 (Misc System Functions) */ sysbus_mmio_map(s, 5, aux1_base); } if (aux2_base) { /* AUX 2 (Software Powerdown Control) */ sysbus_mmio_map(s, 6, aux2_base); } sysbus_connect_irq(s, 0, irq); sysbus_connect_irq(s, 1, fdc_tc); qemu_system_powerdown = qdev_get_gpio_in(dev, 0); } static void ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version) { DeviceState *dev; SysBusDevice *s; dev = qdev_create(NULL, "eccmemctl"); qdev_prop_set_uint32(dev, "version", version); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_connect_irq(s, 0, irq); sysbus_mmio_map(s, 0, base); if (version == 0) { // SS-600MP only sysbus_mmio_map(s, 1, base + 0x1000); } } static void apc_init(target_phys_addr_t power_base, qemu_irq cpu_halt) { DeviceState *dev; SysBusDevice *s; dev = qdev_create(NULL, "apc"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); /* Power management (APC) XXX: not a Slavio device */ sysbus_mmio_map(s, 0, power_base); sysbus_connect_irq(s, 0, cpu_halt); } static void tcx_init(target_phys_addr_t addr, int vram_size, int width, int height, int depth) { DeviceState *dev; SysBusDevice *s; dev = qdev_create(NULL, "SUNW,tcx"); qdev_prop_set_taddr(dev, "addr", addr); qdev_prop_set_uint32(dev, "vram_size", vram_size); qdev_prop_set_uint16(dev, "width", width); qdev_prop_set_uint16(dev, "height", height); qdev_prop_set_uint16(dev, "depth", depth); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); /* 8-bit plane */ sysbus_mmio_map(s, 0, addr + 0x00800000ULL); /* DAC */ sysbus_mmio_map(s, 1, addr + 0x00200000ULL); /* TEC (dummy) */ sysbus_mmio_map(s, 2, addr + 0x00700000ULL); /* THC 24 bit: NetBSD writes here even with 8-bit display: dummy */ sysbus_mmio_map(s, 3, addr + 0x00301000ULL); if (depth == 24) { /* 24-bit plane */ sysbus_mmio_map(s, 4, addr + 0x02000000ULL); /* Control plane */ sysbus_mmio_map(s, 5, addr + 0x0a000000ULL); } else { /* THC 8 bit (dummy) */ sysbus_mmio_map(s, 4, addr + 0x00300000ULL); } } /* NCR89C100/MACIO Internal ID register */ static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 }; static void idreg_init(target_phys_addr_t addr) { DeviceState *dev; SysBusDevice *s; dev = qdev_create(NULL, "macio_idreg"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_mmio_map(s, 0, addr); cpu_physical_memory_write_rom(addr, idreg_data, sizeof(idreg_data)); } typedef struct IDRegState { SysBusDevice busdev; MemoryRegion mem; } IDRegState; static int idreg_init1(SysBusDevice *dev) { IDRegState *s = FROM_SYSBUS(IDRegState, dev); memory_region_init_ram(&s->mem, "sun4m.idreg", sizeof(idreg_data)); vmstate_register_ram_global(&s->mem); memory_region_set_readonly(&s->mem, true); sysbus_init_mmio(dev, &s->mem); return 0; } static void idreg_class_init(ObjectClass *klass, void *data) { SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = idreg_init1; } static TypeInfo idreg_info = { .name = "macio_idreg", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(IDRegState), .class_init = idreg_class_init, }; typedef struct AFXState { SysBusDevice busdev; MemoryRegion mem; } AFXState; /* SS-5 TCX AFX register */ static void afx_init(target_phys_addr_t addr) { DeviceState *dev; SysBusDevice *s; dev = qdev_create(NULL, "tcx_afx"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_mmio_map(s, 0, addr); } static int afx_init1(SysBusDevice *dev) { AFXState *s = FROM_SYSBUS(AFXState, dev); memory_region_init_ram(&s->mem, "sun4m.afx", 4); vmstate_register_ram_global(&s->mem); sysbus_init_mmio(dev, &s->mem); return 0; } static void afx_class_init(ObjectClass *klass, void *data) { SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = afx_init1; } static TypeInfo afx_info = { .name = "tcx_afx", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(AFXState), .class_init = afx_class_init, }; typedef struct PROMState { SysBusDevice busdev; MemoryRegion prom; } PROMState; /* Boot PROM (OpenBIOS) */ static uint64_t translate_prom_address(void *opaque, uint64_t addr) { target_phys_addr_t *base_addr = (target_phys_addr_t *)opaque; return addr + *base_addr - PROM_VADDR; } static void prom_init(target_phys_addr_t addr, const char *bios_name) { DeviceState *dev; SysBusDevice *s; char *filename; int ret; dev = qdev_create(NULL, "openprom"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_mmio_map(s, 0, addr); /* load boot prom */ if (bios_name == NULL) { bios_name = PROM_FILENAME; } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (filename) { ret = load_elf(filename, translate_prom_address, &addr, NULL, NULL, NULL, 1, ELF_MACHINE, 0); if (ret < 0 || ret > PROM_SIZE_MAX) { ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); } g_free(filename); } else { ret = -1; } if (ret < 0 || ret > PROM_SIZE_MAX) { fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name); exit(1); } } static int prom_init1(SysBusDevice *dev) { PROMState *s = FROM_SYSBUS(PROMState, dev); memory_region_init_ram(&s->prom, "sun4m.prom", PROM_SIZE_MAX); vmstate_register_ram_global(&s->prom); memory_region_set_readonly(&s->prom, true); sysbus_init_mmio(dev, &s->prom); return 0; } static Property prom_properties[] = { {/* end of property list */}, }; static void prom_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = prom_init1; dc->props = prom_properties; } static TypeInfo prom_info = { .name = "openprom", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(PROMState), .class_init = prom_class_init, }; typedef struct RamDevice { SysBusDevice busdev; MemoryRegion ram; uint64_t size; } RamDevice; /* System RAM */ static int ram_init1(SysBusDevice *dev) { RamDevice *d = FROM_SYSBUS(RamDevice, dev); memory_region_init_ram(&d->ram, "sun4m.ram", d->size); vmstate_register_ram_global(&d->ram); sysbus_init_mmio(dev, &d->ram); return 0; } static void ram_init(target_phys_addr_t addr, ram_addr_t RAM_size, uint64_t max_mem) { DeviceState *dev; SysBusDevice *s; RamDevice *d; /* allocate RAM */ if ((uint64_t)RAM_size > max_mem) { fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n", (unsigned int)(RAM_size / (1024 * 1024)), (unsigned int)(max_mem / (1024 * 1024))); exit(1); } dev = qdev_create(NULL, "memory"); s = sysbus_from_qdev(dev); d = FROM_SYSBUS(RamDevice, s); d->size = RAM_size; qdev_init_nofail(dev); sysbus_mmio_map(s, 0, addr); } static Property ram_properties[] = { DEFINE_PROP_UINT64("size", RamDevice, size, 0), DEFINE_PROP_END_OF_LIST(), }; static void ram_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = ram_init1; dc->props = ram_properties; } static TypeInfo ram_info = { .name = "memory", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(RamDevice), .class_init = ram_class_init, }; static void cpu_devinit(const char *cpu_model, unsigned int id, uint64_t prom_addr, qemu_irq **cpu_irqs) { CPUState *env; env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n"); exit(1); } cpu_sparc_set_id(env, id); if (id == 0) { qemu_register_reset(main_cpu_reset, env); } else { qemu_register_reset(secondary_cpu_reset, env); env->halted = 1; } *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS); env->prom_addr = prom_addr; } static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { unsigned int i; void *iommu, *espdma, *ledma, *nvram; qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS], espdma_irq, ledma_irq; qemu_irq esp_reset, dma_enable; qemu_irq fdc_tc; qemu_irq *cpu_halt; unsigned long kernel_size; DriveInfo *fd[MAX_FD]; void *fw_cfg; unsigned int num_vsimms; /* init CPUs */ if (!cpu_model) cpu_model = hwdef->default_cpu_model; for(i = 0; i < smp_cpus; i++) { cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]); } for (i = smp_cpus; i < MAX_CPUS; i++) cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); /* set up devices */ ram_init(0, RAM_size, hwdef->max_mem); /* models without ECC don't trap when missing ram is accessed */ if (!hwdef->ecc_base) { empty_slot_init(RAM_size, hwdef->max_mem - RAM_size); } prom_init(hwdef->slavio_base, bios_name); slavio_intctl = slavio_intctl_init(hwdef->intctl_base, hwdef->intctl_base + 0x10000ULL, cpu_irqs); for (i = 0; i < 32; i++) { slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i); } for (i = 0; i < MAX_CPUS; i++) { slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i); } if (hwdef->idreg_base) { idreg_init(hwdef->idreg_base); } if (hwdef->afx_base) { afx_init(hwdef->afx_base); } iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]); if (hwdef->iommu_pad_base) { /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased. Software shouldn't use aliased addresses, neither should it crash when does. Using empty_slot instead of aliasing can help with debugging such accesses */ empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len); } espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18], iommu, &espdma_irq, 0); ledma = sparc32_dma_init(hwdef->dma_base + 16ULL, slavio_irq[16], iommu, &ledma_irq, 1); if (graphic_depth != 8 && graphic_depth != 24) { fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth); exit (1); } num_vsimms = 0; if (num_vsimms == 0) { tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height, graphic_depth); } for (i = num_vsimms; i < MAX_VSIMMS; i++) { /* vsimm registers probed by OBP */ if (hwdef->vsimm[i].reg_base) { empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000); } } if (hwdef->sx_base) { empty_slot_init(hwdef->sx_base, 0x2000); } lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq); nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 8); slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus); slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14], display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1); // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15], serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1); slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base, slavio_irq[30], fdc_tc); if (hwdef->apc_base) { apc_init(hwdef->apc_base, cpu_halt[0]); } if (hwdef->fd_base) { /* there is zero or one floppy drive */ memset(fd, 0, sizeof(fd)); fd[0] = drive_get(IF_FLOPPY, 0, 0); sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd, &fdc_tc); } if (drive_get_max_bus(IF_SCSI) > 0) { fprintf(stderr, "qemu: too many SCSI bus\n"); exit(1); } esp_init(hwdef->esp_base, 2, espdma_memory_read, espdma_memory_write, espdma, espdma_irq, &esp_reset, &dma_enable); qdev_connect_gpio_out(espdma, 0, esp_reset); qdev_connect_gpio_out(espdma, 1, dma_enable); if (hwdef->cs_base) { sysbus_create_simple("SUNW,CS4231", hwdef->cs_base, slavio_irq[5]); } if (hwdef->dbri_base) { /* ISDN chip with attached CS4215 audio codec */ /* prom space */ empty_slot_init(hwdef->dbri_base+0x1000, 0x30); /* reg space */ empty_slot_init(hwdef->dbri_base+0x10000, 0x100); } if (hwdef->bpp_base) { /* parallel port */ empty_slot_init(hwdef->bpp_base, 0x20); } kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename, RAM_size); nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, RAM_size, kernel_size, graphic_width, graphic_height, graphic_depth, hwdef->nvram_machine_id, "Sun4m"); if (hwdef->ecc_base) ecc_init(hwdef->ecc_base, slavio_irq[28], hwdef->ecc_version); fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline); fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA, (uint8_t*)strdup(kernel_cmdline), strlen(kernel_cmdline) + 1); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); } enum { ss2_id = 0, ss5_id = 32, vger_id, lx_id, ss4_id, scls_id, sbook_id, ss10_id = 64, ss20_id, ss600mp_id, ss1000_id = 96, ss2000_id, }; static const struct sun4m_hwdef sun4m_hwdefs[] = { /* SS-5 */ { .iommu_base = 0x10000000, .iommu_pad_base = 0x10004000, .iommu_pad_len = 0x0fffb000, .tcx_base = 0x50000000, .cs_base = 0x6c000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x6a000000, .afx_base = 0x6e000000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .nvram_machine_id = 0x80, .machine_id = ss5_id, .iommu_version = 0x05000000, .max_mem = 0x10000000, .default_cpu_model = "Fujitsu MB86904", }, /* SS-10 */ { .iommu_base = 0xfe0000000ULL, .tcx_base = 0xe20000000ULL, .slavio_base = 0xff0000000ULL, .ms_kb_base = 0xff1000000ULL, .serial_base = 0xff1100000ULL, .nvram_base = 0xff1200000ULL, .fd_base = 0xff1700000ULL, .counter_base = 0xff1300000ULL, .intctl_base = 0xff1400000ULL, .idreg_base = 0xef0000000ULL, .dma_base = 0xef0400000ULL, .esp_base = 0xef0800000ULL, .le_base = 0xef0c00000ULL, .apc_base = 0xefa000000ULL, // XXX should not exist .aux1_base = 0xff1800000ULL, .aux2_base = 0xff1a01000ULL, .ecc_base = 0xf00000000ULL, .ecc_version = 0x10000000, // version 0, implementation 1 .nvram_machine_id = 0x72, .machine_id = ss10_id, .iommu_version = 0x03000000, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, /* SS-600MP */ { .iommu_base = 0xfe0000000ULL, .tcx_base = 0xe20000000ULL, .slavio_base = 0xff0000000ULL, .ms_kb_base = 0xff1000000ULL, .serial_base = 0xff1100000ULL, .nvram_base = 0xff1200000ULL, .counter_base = 0xff1300000ULL, .intctl_base = 0xff1400000ULL, .dma_base = 0xef0081000ULL, .esp_base = 0xef0080000ULL, .le_base = 0xef0060000ULL, .apc_base = 0xefa000000ULL, // XXX should not exist .aux1_base = 0xff1800000ULL, .aux2_base = 0xff1a01000ULL, // XXX should not exist .ecc_base = 0xf00000000ULL, .ecc_version = 0x00000000, // version 0, implementation 0 .nvram_machine_id = 0x71, .machine_id = ss600mp_id, .iommu_version = 0x01000000, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, /* SS-20 */ { .iommu_base = 0xfe0000000ULL, .tcx_base = 0xe20000000ULL, .slavio_base = 0xff0000000ULL, .ms_kb_base = 0xff1000000ULL, .serial_base = 0xff1100000ULL, .nvram_base = 0xff1200000ULL, .fd_base = 0xff1700000ULL, .counter_base = 0xff1300000ULL, .intctl_base = 0xff1400000ULL, .idreg_base = 0xef0000000ULL, .dma_base = 0xef0400000ULL, .esp_base = 0xef0800000ULL, .le_base = 0xef0c00000ULL, .bpp_base = 0xef4800000ULL, .apc_base = 0xefa000000ULL, // XXX should not exist .aux1_base = 0xff1800000ULL, .aux2_base = 0xff1a01000ULL, .dbri_base = 0xee0000000ULL, .sx_base = 0xf80000000ULL, .vsimm = { { .reg_base = 0x9c000000ULL, .vram_base = 0xfc000000ULL }, { .reg_base = 0x90000000ULL, .vram_base = 0xf0000000ULL }, { .reg_base = 0x94000000ULL }, { .reg_base = 0x98000000ULL } }, .ecc_base = 0xf00000000ULL, .ecc_version = 0x20000000, // version 0, implementation 2 .nvram_machine_id = 0x72, .machine_id = ss20_id, .iommu_version = 0x13000000, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, /* Voyager */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x71300000, // pmc .aux1_base = 0x71900000, .aux2_base = 0x71910000, .nvram_machine_id = 0x80, .machine_id = vger_id, .iommu_version = 0x05000000, .max_mem = 0x10000000, .default_cpu_model = "Fujitsu MB86904", }, /* LX */ { .iommu_base = 0x10000000, .iommu_pad_base = 0x10004000, .iommu_pad_len = 0x0fffb000, .tcx_base = 0x50000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .nvram_machine_id = 0x80, .machine_id = lx_id, .iommu_version = 0x04000000, .max_mem = 0x10000000, .default_cpu_model = "TI MicroSparc I", }, /* SS-4 */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, .cs_base = 0x6c000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x6a000000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .nvram_machine_id = 0x80, .machine_id = ss4_id, .iommu_version = 0x05000000, .max_mem = 0x10000000, .default_cpu_model = "Fujitsu MB86904", }, /* SPARCClassic */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x6a000000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .nvram_machine_id = 0x80, .machine_id = scls_id, .iommu_version = 0x05000000, .max_mem = 0x10000000, .default_cpu_model = "TI MicroSparc I", }, /* SPARCbook */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, // XXX .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x6a000000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .nvram_machine_id = 0x80, .machine_id = sbook_id, .iommu_version = 0x05000000, .max_mem = 0x10000000, .default_cpu_model = "TI MicroSparc I", }, }; /* SPARCstation 5 hardware initialisation */ static void ss5_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[0], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation 10 hardware initialisation */ static void ss10_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[1], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCserver 600MP hardware initialisation */ static void ss600mp_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[2], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation 20 hardware initialisation */ static void ss20_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[3], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation Voyager hardware initialisation */ static void vger_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[4], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation LX hardware initialisation */ static void ss_lx_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[5], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation 4 hardware initialisation */ static void ss4_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[6], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCClassic hardware initialisation */ static void scls_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[7], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCbook hardware initialisation */ static void sbook_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[8], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } static QEMUMachine ss5_machine = { .name = "SS-5", .desc = "Sun4m platform, SPARCstation 5", .init = ss5_init, .use_scsi = 1, .is_default = 1, }; static QEMUMachine ss10_machine = { .name = "SS-10", .desc = "Sun4m platform, SPARCstation 10", .init = ss10_init, .use_scsi = 1, .max_cpus = 4, }; static QEMUMachine ss600mp_machine = { .name = "SS-600MP", .desc = "Sun4m platform, SPARCserver 600MP", .init = ss600mp_init, .use_scsi = 1, .max_cpus = 4, }; static QEMUMachine ss20_machine = { .name = "SS-20", .desc = "Sun4m platform, SPARCstation 20", .init = ss20_init, .use_scsi = 1, .max_cpus = 4, }; static QEMUMachine voyager_machine = { .name = "Voyager", .desc = "Sun4m platform, SPARCstation Voyager", .init = vger_init, .use_scsi = 1, }; static QEMUMachine ss_lx_machine = { .name = "LX", .desc = "Sun4m platform, SPARCstation LX", .init = ss_lx_init, .use_scsi = 1, }; static QEMUMachine ss4_machine = { .name = "SS-4", .desc = "Sun4m platform, SPARCstation 4", .init = ss4_init, .use_scsi = 1, }; static QEMUMachine scls_machine = { .name = "SPARCClassic", .desc = "Sun4m platform, SPARCClassic", .init = scls_init, .use_scsi = 1, }; static QEMUMachine sbook_machine = { .name = "SPARCbook", .desc = "Sun4m platform, SPARCbook", .init = sbook_init, .use_scsi = 1, }; static const struct sun4d_hwdef sun4d_hwdefs[] = { /* SS-1000 */ { .iounit_bases = { 0xfe0200000ULL, 0xfe1200000ULL, 0xfe2200000ULL, 0xfe3200000ULL, -1, }, .tcx_base = 0x820000000ULL, .slavio_base = 0xf00000000ULL, .ms_kb_base = 0xf00240000ULL, .serial_base = 0xf00200000ULL, .nvram_base = 0xf00280000ULL, .counter_base = 0xf00300000ULL, .espdma_base = 0x800081000ULL, .esp_base = 0x800080000ULL, .ledma_base = 0x800040000ULL, .le_base = 0x800060000ULL, .sbi_base = 0xf02800000ULL, .nvram_machine_id = 0x80, .machine_id = ss1000_id, .iounit_version = 0x03000000, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, /* SS-2000 */ { .iounit_bases = { 0xfe0200000ULL, 0xfe1200000ULL, 0xfe2200000ULL, 0xfe3200000ULL, 0xfe4200000ULL, }, .tcx_base = 0x820000000ULL, .slavio_base = 0xf00000000ULL, .ms_kb_base = 0xf00240000ULL, .serial_base = 0xf00200000ULL, .nvram_base = 0xf00280000ULL, .counter_base = 0xf00300000ULL, .espdma_base = 0x800081000ULL, .esp_base = 0x800080000ULL, .ledma_base = 0x800040000ULL, .le_base = 0x800060000ULL, .sbi_base = 0xf02800000ULL, .nvram_machine_id = 0x80, .machine_id = ss2000_id, .iounit_version = 0x03000000, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, }; static DeviceState *sbi_init(target_phys_addr_t addr, qemu_irq **parent_irq) { DeviceState *dev; SysBusDevice *s; unsigned int i; dev = qdev_create(NULL, "sbi"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); for (i = 0; i < MAX_CPUS; i++) { sysbus_connect_irq(s, i, *parent_irq[i]); } sysbus_mmio_map(s, 0, addr); return dev; } static void sun4d_hw_init(const struct sun4d_hwdef *hwdef, ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { unsigned int i; void *iounits[MAX_IOUNITS], *espdma, *ledma, *nvram; qemu_irq *cpu_irqs[MAX_CPUS], sbi_irq[32], sbi_cpu_irq[MAX_CPUS], espdma_irq, ledma_irq; qemu_irq esp_reset, dma_enable; unsigned long kernel_size; void *fw_cfg; DeviceState *dev; /* init CPUs */ if (!cpu_model) cpu_model = hwdef->default_cpu_model; for(i = 0; i < smp_cpus; i++) { cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]); } for (i = smp_cpus; i < MAX_CPUS; i++) cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); /* set up devices */ ram_init(0, RAM_size, hwdef->max_mem); prom_init(hwdef->slavio_base, bios_name); dev = sbi_init(hwdef->sbi_base, cpu_irqs); for (i = 0; i < 32; i++) { sbi_irq[i] = qdev_get_gpio_in(dev, i); } for (i = 0; i < MAX_CPUS; i++) { sbi_cpu_irq[i] = qdev_get_gpio_in(dev, 32 + i); } for (i = 0; i < MAX_IOUNITS; i++) if (hwdef->iounit_bases[i] != (target_phys_addr_t)-1) iounits[i] = iommu_init(hwdef->iounit_bases[i], hwdef->iounit_version, sbi_irq[0]); espdma = sparc32_dma_init(hwdef->espdma_base, sbi_irq[3], iounits[0], &espdma_irq, 0); /* should be lebuffer instead */ ledma = sparc32_dma_init(hwdef->ledma_base, sbi_irq[4], iounits[0], &ledma_irq, 0); if (graphic_depth != 8 && graphic_depth != 24) { fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth); exit (1); } tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height, graphic_depth); lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq); nvram = m48t59_init(sbi_irq[0], hwdef->nvram_base, 0, 0x2000, 8); slavio_timer_init_all(hwdef->counter_base, sbi_irq[10], sbi_cpu_irq, smp_cpus); slavio_serial_ms_kbd_init(hwdef->ms_kb_base, sbi_irq[12], display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1); // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device escc_init(hwdef->serial_base, sbi_irq[12], sbi_irq[12], serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); if (drive_get_max_bus(IF_SCSI) > 0) { fprintf(stderr, "qemu: too many SCSI bus\n"); exit(1); } esp_init(hwdef->esp_base, 2, espdma_memory_read, espdma_memory_write, espdma, espdma_irq, &esp_reset, &dma_enable); qdev_connect_gpio_out(espdma, 0, esp_reset); qdev_connect_gpio_out(espdma, 1, dma_enable); kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename, RAM_size); nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, RAM_size, kernel_size, graphic_width, graphic_height, graphic_depth, hwdef->nvram_machine_id, "Sun4d"); fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline); fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA, (uint8_t*)strdup(kernel_cmdline), strlen(kernel_cmdline) + 1); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); } /* SPARCserver 1000 hardware initialisation */ static void ss1000_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4d_hw_init(&sun4d_hwdefs[0], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCcenter 2000 hardware initialisation */ static void ss2000_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4d_hw_init(&sun4d_hwdefs[1], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } static QEMUMachine ss1000_machine = { .name = "SS-1000", .desc = "Sun4d platform, SPARCserver 1000", .init = ss1000_init, .use_scsi = 1, .max_cpus = 8, }; static QEMUMachine ss2000_machine = { .name = "SS-2000", .desc = "Sun4d platform, SPARCcenter 2000", .init = ss2000_init, .use_scsi = 1, .max_cpus = 20, }; static const struct sun4c_hwdef sun4c_hwdefs[] = { /* SS-2 */ { .iommu_base = 0xf8000000, .tcx_base = 0xfe000000, .slavio_base = 0xf6000000, .intctl_base = 0xf5000000, .counter_base = 0xf3000000, .ms_kb_base = 0xf0000000, .serial_base = 0xf1000000, .nvram_base = 0xf2000000, .fd_base = 0xf7200000, .dma_base = 0xf8400000, .esp_base = 0xf8800000, .le_base = 0xf8c00000, .aux1_base = 0xf7400003, .nvram_machine_id = 0x55, .machine_id = ss2_id, .max_mem = 0x10000000, .default_cpu_model = "Cypress CY7C601", }, }; static DeviceState *sun4c_intctl_init(target_phys_addr_t addr, qemu_irq *parent_irq) { DeviceState *dev; SysBusDevice *s; unsigned int i; dev = qdev_create(NULL, "sun4c_intctl"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); for (i = 0; i < MAX_PILS; i++) { sysbus_connect_irq(s, i, parent_irq[i]); } sysbus_mmio_map(s, 0, addr); return dev; } static void sun4c_hw_init(const struct sun4c_hwdef *hwdef, ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { void *iommu, *espdma, *ledma, *nvram; qemu_irq *cpu_irqs, slavio_irq[8], espdma_irq, ledma_irq; qemu_irq esp_reset, dma_enable; qemu_irq fdc_tc; unsigned long kernel_size; DriveInfo *fd[MAX_FD]; void *fw_cfg; DeviceState *dev; unsigned int i; /* init CPU */ if (!cpu_model) cpu_model = hwdef->default_cpu_model; cpu_devinit(cpu_model, 0, hwdef->slavio_base, &cpu_irqs); /* set up devices */ ram_init(0, RAM_size, hwdef->max_mem); prom_init(hwdef->slavio_base, bios_name); dev = sun4c_intctl_init(hwdef->intctl_base, cpu_irqs); for (i = 0; i < 8; i++) { slavio_irq[i] = qdev_get_gpio_in(dev, i); } iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[1]); espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[2], iommu, &espdma_irq, 0); ledma = sparc32_dma_init(hwdef->dma_base + 16ULL, slavio_irq[3], iommu, &ledma_irq, 1); if (graphic_depth != 8 && graphic_depth != 24) { fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth); exit (1); } tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height, graphic_depth); lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq); nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x800, 2); slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[1], display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1); // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device escc_init(hwdef->serial_base, slavio_irq[1], slavio_irq[1], serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); slavio_misc_init(0, hwdef->aux1_base, 0, slavio_irq[1], fdc_tc); if (hwdef->fd_base != (target_phys_addr_t)-1) { /* there is zero or one floppy drive */ memset(fd, 0, sizeof(fd)); fd[0] = drive_get(IF_FLOPPY, 0, 0); sun4m_fdctrl_init(slavio_irq[1], hwdef->fd_base, fd, &fdc_tc); } if (drive_get_max_bus(IF_SCSI) > 0) { fprintf(stderr, "qemu: too many SCSI bus\n"); exit(1); } esp_init(hwdef->esp_base, 2, espdma_memory_read, espdma_memory_write, espdma, espdma_irq, &esp_reset, &dma_enable); qdev_connect_gpio_out(espdma, 0, esp_reset); qdev_connect_gpio_out(espdma, 1, dma_enable); kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename, RAM_size); nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, RAM_size, kernel_size, graphic_width, graphic_height, graphic_depth, hwdef->nvram_machine_id, "Sun4c"); fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline); fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA, (uint8_t*)strdup(kernel_cmdline), strlen(kernel_cmdline) + 1); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); } /* SPARCstation 2 hardware initialisation */ static void ss2_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4c_hw_init(&sun4c_hwdefs[0], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } static QEMUMachine ss2_machine = { .name = "SS-2", .desc = "Sun4c platform, SPARCstation 2", .init = ss2_init, .use_scsi = 1, }; static void sun4m_register_types(void) { type_register_static(&idreg_info); type_register_static(&afx_info); type_register_static(&prom_info); type_register_static(&ram_info); } static void ss2_machine_init(void) { qemu_register_machine(&ss5_machine); qemu_register_machine(&ss10_machine); qemu_register_machine(&ss600mp_machine); qemu_register_machine(&ss20_machine); qemu_register_machine(&voyager_machine); qemu_register_machine(&ss_lx_machine); qemu_register_machine(&ss4_machine); qemu_register_machine(&scls_machine); qemu_register_machine(&sbook_machine); qemu_register_machine(&ss1000_machine); qemu_register_machine(&ss2000_machine); qemu_register_machine(&ss2_machine); } type_init(sun4m_register_types) machine_init(ss2_machine_init);