/* * QEMU Sparc Sun4c interrupt controller emulation * * Based on slavio_intctl, copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "sun4m.h" #include "console.h" //#define DEBUG_IRQ_COUNT //#define DEBUG_IRQ #ifdef DEBUG_IRQ #define DPRINTF(fmt, args...) \ do { printf("IRQ: " fmt , ##args); } while (0) #else #define DPRINTF(fmt, args...) #endif /* * Registers of interrupt controller in sun4c. * */ #define MAX_PILS 16 typedef struct Sun4c_INTCTLState { #ifdef DEBUG_IRQ_COUNT uint64_t irq_count; #endif qemu_irq *cpu_irqs; const uint32_t *intbit_to_level; uint32_t pil_out; uint8_t reg; uint8_t pending; } Sun4c_INTCTLState; #define INTCTL_MAXADDR 0 #define INTCTL_SIZE (INTCTL_MAXADDR + 1) static void sun4c_check_interrupts(void *opaque); static uint32_t sun4c_intctl_mem_readb(void *opaque, target_phys_addr_t addr) { Sun4c_INTCTLState *s = opaque; uint32_t ret; ret = s->reg; DPRINTF("read reg 0x" TARGET_FMT_plx " = %x\n", addr, ret); return ret; } static void sun4c_intctl_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { Sun4c_INTCTLState *s = opaque; DPRINTF("write reg 0x" TARGET_FMT_plx " = %x\n", addr, val); val &= 0xbf; s->reg = val; sun4c_check_interrupts(s); } static CPUReadMemoryFunc *sun4c_intctl_mem_read[3] = { sun4c_intctl_mem_readb, NULL, NULL, }; static CPUWriteMemoryFunc *sun4c_intctl_mem_write[3] = { sun4c_intctl_mem_writeb, NULL, NULL, }; void sun4c_pic_info(void *opaque) { Sun4c_INTCTLState *s = opaque; term_printf("master: pending 0x%2.2x, enabled 0x%2.2x\n", s->pending, s->reg); } void sun4c_irq_info(void *opaque) { #ifndef DEBUG_IRQ_COUNT term_printf("irq statistic code not compiled.\n"); #else Sun4c_INTCTLState *s = opaque; int64_t count; term_printf("IRQ statistics:\n"); count = s->irq_count[i]; if (count > 0) term_printf("%2d: %" PRId64 "\n", i, count); #endif } static const uint32_t intbit_to_level[] = { 0, 1, 4, 6, 8, 10, 0, 14, }; static void sun4c_check_interrupts(void *opaque) { Sun4c_INTCTLState *s = opaque; uint32_t pil_pending; unsigned int i; DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled); pil_pending = 0; if (s->pending && !(s->reg & 0x80000000)) { for (i = 0; i < 8; i++) { if (s->pending & (1 << i)) pil_pending |= 1 << intbit_to_level[i]; } } for (i = 0; i < MAX_PILS; i++) { if (pil_pending & (1 << i)) { if (!(s->pil_out & (1 << i))) qemu_irq_raise(s->cpu_irqs[i]); } else { if (s->pil_out & (1 << i)) qemu_irq_lower(s->cpu_irqs[i]); } } s->pil_out = pil_pending; } /* * "irq" here is the bit number in the system interrupt register */ static void sun4c_set_irq(void *opaque, int irq, int level) { Sun4c_INTCTLState *s = opaque; uint32_t mask = 1 << irq; uint32_t pil = intbit_to_level[irq]; DPRINTF("Set irq %d -> pil %d level %d\n", irq, pil, level); if (pil > 0) { if (level) { #ifdef DEBUG_IRQ_COUNT s->irq_count[pil]++; #endif s->pending |= mask; } else { s->pending &= ~mask; } sun4c_check_interrupts(s); } } static void sun4c_intctl_save(QEMUFile *f, void *opaque) { Sun4c_INTCTLState *s = opaque; qemu_put_8s(f, &s->reg); qemu_put_8s(f, &s->pending); } static int sun4c_intctl_load(QEMUFile *f, void *opaque, int version_id) { Sun4c_INTCTLState *s = opaque; if (version_id != 1) return -EINVAL; qemu_get_8s(f, &s->reg); qemu_get_8s(f, &s->pending); sun4c_check_interrupts(s); return 0; } static void sun4c_intctl_reset(void *opaque) { Sun4c_INTCTLState *s = opaque; s->reg = 1; s->pending = 0; sun4c_check_interrupts(s); } void *sun4c_intctl_init(target_phys_addr_t addr, qemu_irq **irq, qemu_irq *parent_irq) { int sun4c_intctl_io_memory; Sun4c_INTCTLState *s; s = qemu_mallocz(sizeof(Sun4c_INTCTLState)); if (!s) return NULL; sun4c_intctl_io_memory = cpu_register_io_memory(0, sun4c_intctl_mem_read, sun4c_intctl_mem_write, s); cpu_register_physical_memory(addr, INTCTL_SIZE, sun4c_intctl_io_memory); s->cpu_irqs = parent_irq; register_savevm("sun4c_intctl", addr, 1, sun4c_intctl_save, sun4c_intctl_load, s); qemu_register_reset(sun4c_intctl_reset, s); *irq = qemu_allocate_irqs(sun4c_set_irq, s, 8); sun4c_intctl_reset(s); return s; }