/* * On-chip DMA controller framework. * * Copyright (C) 2008 Nokia Corporation * Written by Andrzej Zaborowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu-common.h" #include "qemu-timer.h" #include "soc_dma.h" static void transfer_mem2mem(struct soc_dma_ch_s *ch) { memcpy(ch->paddr[0], ch->paddr[1], ch->bytes); ch->paddr[0] += ch->bytes; ch->paddr[1] += ch->bytes; } static void transfer_mem2fifo(struct soc_dma_ch_s *ch) { ch->io_fn[1](ch->io_opaque[1], ch->paddr[0], ch->bytes); ch->paddr[0] += ch->bytes; } static void transfer_fifo2mem(struct soc_dma_ch_s *ch) { ch->io_fn[0](ch->io_opaque[0], ch->paddr[1], ch->bytes); ch->paddr[1] += ch->bytes; } /* This is further optimisable but isn't very important because often * DMA peripherals forbid this kind of transfers and even when they don't, * oprating systems may not need to use them. */ static void *fifo_buf; static int fifo_size; static void transfer_fifo2fifo(struct soc_dma_ch_s *ch) { if (ch->bytes > fifo_size) fifo_buf = g_realloc(fifo_buf, fifo_size = ch->bytes); /* Implement as transfer_fifo2linear + transfer_linear2fifo. */ ch->io_fn[0](ch->io_opaque[0], fifo_buf, ch->bytes); ch->io_fn[1](ch->io_opaque[1], fifo_buf, ch->bytes); } struct dma_s { struct soc_dma_s soc; int chnum; uint64_t ch_enable_mask; int64_t channel_freq; int enabled_count; struct memmap_entry_s { enum soc_dma_port_type type; target_phys_addr_t addr; union { struct { void *opaque; soc_dma_io_t fn; int out; } fifo; struct { void *base; size_t size; } mem; } u; } *memmap; int memmap_size; struct soc_dma_ch_s ch[0]; }; static void soc_dma_ch_schedule(struct soc_dma_ch_s *ch, int delay_bytes) { int64_t now = qemu_get_clock_ns(vm_clock); struct dma_s *dma = (struct dma_s *) ch->dma; qemu_mod_timer(ch->timer, now + delay_bytes / dma->channel_freq); } static void soc_dma_ch_run(void *opaque) { struct soc_dma_ch_s *ch = (struct soc_dma_ch_s *) opaque; ch->running = 1; ch->dma->setup_fn(ch); ch->transfer_fn(ch); ch->running = 0; if (ch->enable) soc_dma_ch_schedule(ch, ch->bytes); ch->bytes = 0; } static inline struct memmap_entry_s *soc_dma_lookup(struct dma_s *dma, target_phys_addr_t addr) { struct memmap_entry_s *lo; int hi; lo = dma->memmap; hi = dma->memmap_size; while (hi > 1) { hi /= 2; if (lo[hi].addr <= addr) lo += hi; } return lo; } static inline enum soc_dma_port_type soc_dma_ch_update_type( struct soc_dma_ch_s *ch, int port) { struct dma_s *dma = (struct dma_s *) ch->dma; struct memmap_entry_s *entry = soc_dma_lookup(dma, ch->vaddr[port]); if (entry->type == soc_dma_port_fifo) { while (entry < dma->memmap + dma->memmap_size && entry->u.fifo.out != port) entry ++; if (entry->addr != ch->vaddr[port] || entry->u.fifo.out != port) return soc_dma_port_other; if (ch->type[port] != soc_dma_access_const) return soc_dma_port_other; ch->io_fn[port] = entry->u.fifo.fn; ch->io_opaque[port] = entry->u.fifo.opaque; return soc_dma_port_fifo; } else if (entry->type == soc_dma_port_mem) { if (entry->addr > ch->vaddr[port] || entry->addr + entry->u.mem.size <= ch->vaddr[port]) return soc_dma_port_other; /* TODO: support constant memory address for source port as used for * drawing solid rectangles by PalmOS(R). */ if (ch->type[port] != soc_dma_access_const) return soc_dma_port_other; ch->paddr[port] = (uint8_t *) entry->u.mem.base + (ch->vaddr[port] - entry->addr); /* TODO: save bytes left to the end of the mapping somewhere so we * can check we're not reading beyond it. */ return soc_dma_port_mem; } else return soc_dma_port_other; } void soc_dma_ch_update(struct soc_dma_ch_s *ch) { enum soc_dma_port_type src, dst; src = soc_dma_ch_update_type(ch, 0); if (src == soc_dma_port_other) { ch->update = 0; ch->transfer_fn = ch->dma->transfer_fn; return; } dst = soc_dma_ch_update_type(ch, 1); /* TODO: use src and dst as array indices. */ if (src == soc_dma_port_mem && dst == soc_dma_port_mem) ch->transfer_fn = transfer_mem2mem; else if (src == soc_dma_port_mem && dst == soc_dma_port_fifo) ch->transfer_fn = transfer_mem2fifo; else if (src == soc_dma_port_fifo && dst == soc_dma_port_mem) ch->transfer_fn = transfer_fifo2mem; else if (src == soc_dma_port_fifo && dst == soc_dma_port_fifo) ch->transfer_fn = transfer_fifo2fifo; else ch->transfer_fn = ch->dma->transfer_fn; ch->update = (dst != soc_dma_port_other); } static void soc_dma_ch_freq_update(struct dma_s *s) { if (s->enabled_count) /* We completely ignore channel priorities and stuff */ s->channel_freq = s->soc.freq / s->enabled_count; else { /* TODO: Signal that we want to disable the functional clock and let * the platform code decide what to do with it, i.e. check that * auto-idle is enabled in the clock controller and if we are stopping * the clock, do the same with any parent clocks that had only one * user keeping them on and auto-idle enabled. */ } } void soc_dma_set_request(struct soc_dma_ch_s *ch, int level) { struct dma_s *dma = (struct dma_s *) ch->dma; dma->enabled_count += level - ch->enable; if (level) dma->ch_enable_mask |= 1 << ch->num; else dma->ch_enable_mask &= ~(1 << ch->num); if (level != ch->enable) { soc_dma_ch_freq_update(dma); ch->enable = level; if (!ch->enable) qemu_del_timer(ch->timer); else if (!ch->running) soc_dma_ch_run(ch); else soc_dma_ch_schedule(ch, 1); } } void soc_dma_reset(struct soc_dma_s *soc) { struct dma_s *s = (struct dma_s *) soc; s->soc.drqbmp = 0; s->ch_enable_mask = 0; s->enabled_count = 0; soc_dma_ch_freq_update(s); } /* TODO: take a functional-clock argument */ struct soc_dma_s *soc_dma_init(int n) { int i; struct dma_s *s = g_malloc0(sizeof(*s) + n * sizeof(*s->ch)); s->chnum = n; s->soc.ch = s->ch; for (i = 0; i < n; i ++) { s->ch[i].dma = &s->soc; s->ch[i].num = i; s->ch[i].timer = qemu_new_timer_ns(vm_clock, soc_dma_ch_run, &s->ch[i]); } soc_dma_reset(&s->soc); fifo_size = 0; return &s->soc; } void soc_dma_port_add_fifo(struct soc_dma_s *soc, target_phys_addr_t virt_base, soc_dma_io_t fn, void *opaque, int out) { struct memmap_entry_s *entry; struct dma_s *dma = (struct dma_s *) soc; dma->memmap = g_realloc(dma->memmap, sizeof(*entry) * (dma->memmap_size + 1)); entry = soc_dma_lookup(dma, virt_base); if (dma->memmap_size) { if (entry->type == soc_dma_port_mem) { if (entry->addr <= virt_base && entry->addr + entry->u.mem.size > virt_base) { fprintf(stderr, "%s: FIFO at " TARGET_FMT_lx " collides with RAM region at " TARGET_FMT_lx "-" TARGET_FMT_lx "\n", __FUNCTION__, (target_ulong) virt_base, (target_ulong) entry->addr, (target_ulong) (entry->addr + entry->u.mem.size)); exit(-1); } if (entry->addr <= virt_base) entry ++; } else while (entry < dma->memmap + dma->memmap_size && entry->addr <= virt_base) { if (entry->addr == virt_base && entry->u.fifo.out == out) { fprintf(stderr, "%s: FIFO at " TARGET_FMT_lx " collides FIFO at " TARGET_FMT_lx "\n", __FUNCTION__, (target_ulong) virt_base, (target_ulong) entry->addr); exit(-1); } entry ++; } memmove(entry + 1, entry, (uint8_t *) (dma->memmap + dma->memmap_size ++) - (uint8_t *) entry); } else dma->memmap_size ++; entry->addr = virt_base; entry->type = soc_dma_port_fifo; entry->u.fifo.fn = fn; entry->u.fifo.opaque = opaque; entry->u.fifo.out = out; } void soc_dma_port_add_mem(struct soc_dma_s *soc, uint8_t *phys_base, target_phys_addr_t virt_base, size_t size) { struct memmap_entry_s *entry; struct dma_s *dma = (struct dma_s *) soc; dma->memmap = g_realloc(dma->memmap, sizeof(*entry) * (dma->memmap_size + 1)); entry = soc_dma_lookup(dma, virt_base); if (dma->memmap_size) { if (entry->type == soc_dma_port_mem) { if ((entry->addr >= virt_base && entry->addr < virt_base + size) || (entry->addr <= virt_base && entry->addr + entry->u.mem.size > virt_base)) { fprintf(stderr, "%s: RAM at " TARGET_FMT_lx "-" TARGET_FMT_lx " collides with RAM region at " TARGET_FMT_lx "-" TARGET_FMT_lx "\n", __FUNCTION__, (target_ulong) virt_base, (target_ulong) (virt_base + size), (target_ulong) entry->addr, (target_ulong) (entry->addr + entry->u.mem.size)); exit(-1); } if (entry->addr <= virt_base) entry ++; } else { if (entry->addr >= virt_base && entry->addr < virt_base + size) { fprintf(stderr, "%s: RAM at " TARGET_FMT_lx "-" TARGET_FMT_lx " collides with FIFO at " TARGET_FMT_lx "\n", __FUNCTION__, (target_ulong) virt_base, (target_ulong) (virt_base + size), (target_ulong) entry->addr); exit(-1); } while (entry < dma->memmap + dma->memmap_size && entry->addr <= virt_base) entry ++; } memmove(entry + 1, entry, (uint8_t *) (dma->memmap + dma->memmap_size ++) - (uint8_t *) entry); } else dma->memmap_size ++; entry->addr = virt_base; entry->type = soc_dma_port_mem; entry->u.mem.base = phys_base; entry->u.mem.size = size; } /* TODO: port removal for ports like PCMCIA memory */