/* * QEMU Sparc SLAVIO timer controller emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "sun4m.h" #include "qemu-timer.h" #include "ptimer.h" #include "sysbus.h" #include "trace.h" /* * Registers of hardware timer in sun4m. * * This is the timer/counter part of chip STP2001 (Slave I/O), also * produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 * are zero. Bit 31 is 1 when count has been reached. * * Per-CPU timers interrupt local CPU, system timer uses normal * interrupt routing. * */ #define MAX_CPUS 16 typedef struct CPUTimerState { qemu_irq irq; ptimer_state *timer; uint32_t count, counthigh, reached; /* processor only */ uint32_t running; uint64_t limit; } CPUTimerState; typedef struct SLAVIO_TIMERState { SysBusDevice busdev; uint32_t num_cpus; uint32_t cputimer_mode; CPUTimerState cputimer[MAX_CPUS + 1]; } SLAVIO_TIMERState; typedef struct TimerContext { MemoryRegion iomem; SLAVIO_TIMERState *s; unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */ } TimerContext; #define SYS_TIMER_SIZE 0x14 #define CPU_TIMER_SIZE 0x10 #define TIMER_LIMIT 0 #define TIMER_COUNTER 1 #define TIMER_COUNTER_NORST 2 #define TIMER_STATUS 3 #define TIMER_MODE 4 #define TIMER_COUNT_MASK32 0xfffffe00 #define TIMER_LIMIT_MASK32 0x7fffffff #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL #define TIMER_MAX_COUNT32 0x7ffffe00ULL #define TIMER_REACHED 0x80000000 #define TIMER_PERIOD 500ULL // 500ns #define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1) #define PERIODS_TO_LIMIT(l) (((l) + 1) << 9) static int slavio_timer_is_user(TimerContext *tc) { SLAVIO_TIMERState *s = tc->s; unsigned int timer_index = tc->timer_index; return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1))); } // Update count, set irq, update expire_time // Convert from ptimer countdown units static void slavio_timer_get_out(CPUTimerState *t) { uint64_t count, limit; if (t->limit == 0) { /* free-run system or processor counter */ limit = TIMER_MAX_COUNT32; } else { limit = t->limit; } count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer)); trace_slavio_timer_get_out(t->limit, t->counthigh, t->count); t->count = count & TIMER_COUNT_MASK32; t->counthigh = count >> 32; } // timer callback static void slavio_timer_irq(void *opaque) { TimerContext *tc = opaque; SLAVIO_TIMERState *s = tc->s; CPUTimerState *t = &s->cputimer[tc->timer_index]; slavio_timer_get_out(t); trace_slavio_timer_irq(t->counthigh, t->count); /* if limit is 0 (free-run), there will be no match */ if (t->limit != 0) { t->reached = TIMER_REACHED; } /* there is no interrupt if user timer or free-run */ if (!slavio_timer_is_user(tc) && t->limit != 0) { qemu_irq_raise(t->irq); } } static uint64_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr, unsigned size) { TimerContext *tc = opaque; SLAVIO_TIMERState *s = tc->s; uint32_t saddr, ret; unsigned int timer_index = tc->timer_index; CPUTimerState *t = &s->cputimer[timer_index]; saddr = addr >> 2; switch (saddr) { case TIMER_LIMIT: // read limit (system counter mode) or read most signifying // part of counter (user mode) if (slavio_timer_is_user(tc)) { // read user timer MSW slavio_timer_get_out(t); ret = t->counthigh | t->reached; } else { // read limit // clear irq qemu_irq_lower(t->irq); t->reached = 0; ret = t->limit & TIMER_LIMIT_MASK32; } break; case TIMER_COUNTER: // read counter and reached bit (system mode) or read lsbits // of counter (user mode) slavio_timer_get_out(t); if (slavio_timer_is_user(tc)) { // read user timer LSW ret = t->count & TIMER_MAX_COUNT64; } else { // read limit ret = (t->count & TIMER_MAX_COUNT32) | t->reached; } break; case TIMER_STATUS: // only available in processor counter/timer // read start/stop status if (timer_index > 0) { ret = t->running; } else { ret = 0; } break; case TIMER_MODE: // only available in system counter // read user/system mode ret = s->cputimer_mode; break; default: trace_slavio_timer_mem_readl_invalid(addr); ret = 0; break; } trace_slavio_timer_mem_readl(addr, ret); return ret; } static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint64_t val, unsigned size) { TimerContext *tc = opaque; SLAVIO_TIMERState *s = tc->s; uint32_t saddr; unsigned int timer_index = tc->timer_index; CPUTimerState *t = &s->cputimer[timer_index]; trace_slavio_timer_mem_writel(addr, val); saddr = addr >> 2; switch (saddr) { case TIMER_LIMIT: if (slavio_timer_is_user(tc)) { uint64_t count; // set user counter MSW, reset counter t->limit = TIMER_MAX_COUNT64; t->counthigh = val & (TIMER_MAX_COUNT64 >> 32); t->reached = 0; count = ((uint64_t)t->counthigh << 32) | t->count; trace_slavio_timer_mem_writel_limit(timer_index, count); ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count)); } else { // set limit, reset counter qemu_irq_lower(t->irq); t->limit = val & TIMER_MAX_COUNT32; if (t->timer) { if (t->limit == 0) { /* free-run */ ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); } else { ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1); } } } break; case TIMER_COUNTER: if (slavio_timer_is_user(tc)) { uint64_t count; // set user counter LSW, reset counter t->limit = TIMER_MAX_COUNT64; t->count = val & TIMER_MAX_COUNT64; t->reached = 0; count = ((uint64_t)t->counthigh) << 32 | t->count; trace_slavio_timer_mem_writel_limit(timer_index, count); ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count)); } else { trace_slavio_timer_mem_writel_counter_invalid(); } break; case TIMER_COUNTER_NORST: // set limit without resetting counter t->limit = val & TIMER_MAX_COUNT32; if (t->limit == 0) { /* free-run */ ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0); } else { ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0); } break; case TIMER_STATUS: if (slavio_timer_is_user(tc)) { // start/stop user counter if ((val & 1) && !t->running) { trace_slavio_timer_mem_writel_status_start(timer_index); ptimer_run(t->timer, 0); t->running = 1; } else if (!(val & 1) && t->running) { trace_slavio_timer_mem_writel_status_stop(timer_index); ptimer_stop(t->timer); t->running = 0; } } break; case TIMER_MODE: if (timer_index == 0) { unsigned int i; for (i = 0; i < s->num_cpus; i++) { unsigned int processor = 1 << i; CPUTimerState *curr_timer = &s->cputimer[i + 1]; // check for a change in timer mode for this processor if ((val & processor) != (s->cputimer_mode & processor)) { if (val & processor) { // counter -> user timer qemu_irq_lower(curr_timer->irq); // counters are always running ptimer_stop(curr_timer->timer); curr_timer->running = 0; // user timer limit is always the same curr_timer->limit = TIMER_MAX_COUNT64; ptimer_set_limit(curr_timer->timer, LIMIT_TO_PERIODS(curr_timer->limit), 1); // set this processors user timer bit in config // register s->cputimer_mode |= processor; trace_slavio_timer_mem_writel_mode_user(timer_index); } else { // user timer -> counter // stop the user timer if it is running if (curr_timer->running) { ptimer_stop(curr_timer->timer); } // start the counter ptimer_run(curr_timer->timer, 0); curr_timer->running = 1; // clear this processors user timer bit in config // register s->cputimer_mode &= ~processor; trace_slavio_timer_mem_writel_mode_counter(timer_index); } } } } else { trace_slavio_timer_mem_writel_mode_invalid(); } break; default: trace_slavio_timer_mem_writel_invalid(addr); break; } } static const MemoryRegionOps slavio_timer_mem_ops = { .read = slavio_timer_mem_readl, .write = slavio_timer_mem_writel, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; static const VMStateDescription vmstate_timer = { .name ="timer", .version_id = 3, .minimum_version_id = 3, .minimum_version_id_old = 3, .fields = (VMStateField []) { VMSTATE_UINT64(limit, CPUTimerState), VMSTATE_UINT32(count, CPUTimerState), VMSTATE_UINT32(counthigh, CPUTimerState), VMSTATE_UINT32(reached, CPUTimerState), VMSTATE_UINT32(running, CPUTimerState), VMSTATE_PTIMER(timer, CPUTimerState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_slavio_timer = { .name ="slavio_timer", .version_id = 3, .minimum_version_id = 3, .minimum_version_id_old = 3, .fields = (VMStateField []) { VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3, vmstate_timer, CPUTimerState), VMSTATE_END_OF_LIST() } }; static void slavio_timer_reset(DeviceState *d) { SLAVIO_TIMERState *s = container_of(d, SLAVIO_TIMERState, busdev.qdev); unsigned int i; CPUTimerState *curr_timer; for (i = 0; i <= MAX_CPUS; i++) { curr_timer = &s->cputimer[i]; curr_timer->limit = 0; curr_timer->count = 0; curr_timer->reached = 0; if (i <= s->num_cpus) { ptimer_set_limit(curr_timer->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); ptimer_run(curr_timer->timer, 0); curr_timer->running = 1; } } s->cputimer_mode = 0; } static int slavio_timer_init1(SysBusDevice *dev) { SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev); QEMUBH *bh; unsigned int i; TimerContext *tc; for (i = 0; i <= MAX_CPUS; i++) { uint64_t size; char timer_name[20]; tc = g_malloc0(sizeof(TimerContext)); tc->s = s; tc->timer_index = i; bh = qemu_bh_new(slavio_timer_irq, tc); s->cputimer[i].timer = ptimer_init(bh); ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD); size = i == 0 ? SYS_TIMER_SIZE : CPU_TIMER_SIZE; snprintf(timer_name, sizeof(timer_name), "timer-%i", i); memory_region_init_io(&tc->iomem, &slavio_timer_mem_ops, tc, timer_name, size); sysbus_init_mmio(dev, &tc->iomem); sysbus_init_irq(dev, &s->cputimer[i].irq); } return 0; } static Property slavio_timer_properties[] = { DEFINE_PROP_UINT32("num_cpus", SLAVIO_TIMERState, num_cpus, 0), DEFINE_PROP_END_OF_LIST(), }; static void slavio_timer_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = slavio_timer_init1; dc->reset = slavio_timer_reset; dc->vmsd = &vmstate_slavio_timer; dc->props = slavio_timer_properties; } static TypeInfo slavio_timer_info = { .name = "slavio_timer", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SLAVIO_TIMERState), .class_init = slavio_timer_class_init, }; static void slavio_timer_register_types(void) { type_register_static(&slavio_timer_info); } type_init(slavio_timer_register_types)