/* * QEMU Sparc SLAVIO interrupt controller emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "sun4m.h" #include "monitor.h" #include "sysbus.h" #include "trace.h" //#define DEBUG_IRQ_COUNT /* * Registers of interrupt controller in sun4m. * * This is the interrupt controller part of chip STP2001 (Slave I/O), also * produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * There is a system master controller and one for each cpu. * */ #define MAX_CPUS 16 #define MAX_PILS 16 struct SLAVIO_INTCTLState; typedef struct SLAVIO_CPUINTCTLState { MemoryRegion iomem; struct SLAVIO_INTCTLState *master; uint32_t intreg_pending; uint32_t cpu; uint32_t irl_out; } SLAVIO_CPUINTCTLState; typedef struct SLAVIO_INTCTLState { SysBusDevice busdev; MemoryRegion iomem; #ifdef DEBUG_IRQ_COUNT uint64_t irq_count[32]; #endif qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS]; SLAVIO_CPUINTCTLState slaves[MAX_CPUS]; uint32_t intregm_pending; uint32_t intregm_disabled; uint32_t target_cpu; } SLAVIO_INTCTLState; #define INTCTL_MAXADDR 0xf #define INTCTL_SIZE (INTCTL_MAXADDR + 1) #define INTCTLM_SIZE 0x14 #define MASTER_IRQ_MASK ~0x0fa2007f #define MASTER_DISABLE 0x80000000 #define CPU_SOFTIRQ_MASK 0xfffe0000 #define CPU_IRQ_INT15_IN (1 << 15) #define CPU_IRQ_TIMER_IN (1 << 14) static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs); // per-cpu interrupt controller static uint64_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr, unsigned size) { SLAVIO_CPUINTCTLState *s = opaque; uint32_t saddr, ret; saddr = addr >> 2; switch (saddr) { case 0: ret = s->intreg_pending; break; default: ret = 0; break; } trace_slavio_intctl_mem_readl(s->cpu, addr, ret); return ret; } static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint64_t val, unsigned size) { SLAVIO_CPUINTCTLState *s = opaque; uint32_t saddr; saddr = addr >> 2; trace_slavio_intctl_mem_writel(s->cpu, addr, val); switch (saddr) { case 1: // clear pending softints val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN; s->intreg_pending &= ~val; slavio_check_interrupts(s->master, 1); trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending); break; case 2: // set softint val &= CPU_SOFTIRQ_MASK; s->intreg_pending |= val; slavio_check_interrupts(s->master, 1); trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending); break; default: break; } } static const MemoryRegionOps slavio_intctl_mem_ops = { .read = slavio_intctl_mem_readl, .write = slavio_intctl_mem_writel, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; // master system interrupt controller static uint64_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr, unsigned size) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr, ret; saddr = addr >> 2; switch (saddr) { case 0: ret = s->intregm_pending & ~MASTER_DISABLE; break; case 1: ret = s->intregm_disabled & MASTER_IRQ_MASK; break; case 4: ret = s->target_cpu; break; default: ret = 0; break; } trace_slavio_intctlm_mem_readl(addr, ret); return ret; } static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint64_t val, unsigned size) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr; saddr = addr >> 2; trace_slavio_intctlm_mem_writel(addr, val); switch (saddr) { case 2: // clear (enable) // Force clear unused bits val &= MASTER_IRQ_MASK; s->intregm_disabled &= ~val; trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled); slavio_check_interrupts(s, 1); break; case 3: // set (disable; doesn't affect pending) // Force clear unused bits val &= MASTER_IRQ_MASK; s->intregm_disabled |= val; slavio_check_interrupts(s, 1); trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled); break; case 4: s->target_cpu = val & (MAX_CPUS - 1); slavio_check_interrupts(s, 1); trace_slavio_intctlm_mem_writel_target(s->target_cpu); break; default: break; } } static const MemoryRegionOps slavio_intctlm_mem_ops = { .read = slavio_intctlm_mem_readl, .write = slavio_intctlm_mem_writel, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; void slavio_pic_info(Monitor *mon, DeviceState *dev) { SysBusDevice *sd; SLAVIO_INTCTLState *s; int i; sd = sysbus_from_qdev(dev); s = FROM_SYSBUS(SLAVIO_INTCTLState, sd); for (i = 0; i < MAX_CPUS; i++) { monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i, s->slaves[i].intreg_pending); } monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled); } void slavio_irq_info(Monitor *mon, DeviceState *dev) { #ifndef DEBUG_IRQ_COUNT monitor_printf(mon, "irq statistic code not compiled.\n"); #else SysBusDevice *sd; SLAVIO_INTCTLState *s; int i; int64_t count; sd = sysbus_from_qdev(dev); s = FROM_SYSBUS(SLAVIO_INTCTLState, sd); monitor_printf(mon, "IRQ statistics:\n"); for (i = 0; i < 32; i++) { count = s->irq_count[i]; if (count > 0) monitor_printf(mon, "%2d: %" PRId64 "\n", i, count); } #endif } static const uint32_t intbit_to_level[] = { 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12, 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0, }; static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs) { uint32_t pending = s->intregm_pending, pil_pending; unsigned int i, j; pending &= ~s->intregm_disabled; trace_slavio_check_interrupts(pending, s->intregm_disabled); for (i = 0; i < MAX_CPUS; i++) { pil_pending = 0; /* If we are the current interrupt target, get hard interrupts */ if (pending && !(s->intregm_disabled & MASTER_DISABLE) && (i == s->target_cpu)) { for (j = 0; j < 32; j++) { if ((pending & (1 << j)) && intbit_to_level[j]) { pil_pending |= 1 << intbit_to_level[j]; } } } /* Calculate current pending hard interrupts for display */ s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN; if (i == s->target_cpu) { for (j = 0; j < 32; j++) { if ((s->intregm_pending & (1 << j)) && intbit_to_level[j]) { s->slaves[i].intreg_pending |= 1 << intbit_to_level[j]; } } } /* Level 15 and CPU timer interrupts are only masked when the MASTER_DISABLE bit is set */ if (!(s->intregm_disabled & MASTER_DISABLE)) { pil_pending |= s->slaves[i].intreg_pending & (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN); } /* Add soft interrupts */ pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16; if (set_irqs) { /* Since there is not really an interrupt 0 (and pil_pending * and irl_out bit zero are thus always zero) there is no need * to do anything with cpu_irqs[i][0] and it is OK not to do * the j=0 iteration of this loop. */ for (j = MAX_PILS-1; j > 0; j--) { if (pil_pending & (1 << j)) { if (!(s->slaves[i].irl_out & (1 << j))) { qemu_irq_raise(s->cpu_irqs[i][j]); } } else { if (s->slaves[i].irl_out & (1 << j)) { qemu_irq_lower(s->cpu_irqs[i][j]); } } } } s->slaves[i].irl_out = pil_pending; } } /* * "irq" here is the bit number in the system interrupt register to * separate serial and keyboard interrupts sharing a level. */ static void slavio_set_irq(void *opaque, int irq, int level) { SLAVIO_INTCTLState *s = opaque; uint32_t mask = 1 << irq; uint32_t pil = intbit_to_level[irq]; unsigned int i; trace_slavio_set_irq(s->target_cpu, irq, pil, level); if (pil > 0) { if (level) { #ifdef DEBUG_IRQ_COUNT s->irq_count[pil]++; #endif s->intregm_pending |= mask; if (pil == 15) { for (i = 0; i < MAX_CPUS; i++) { s->slaves[i].intreg_pending |= 1 << pil; } } } else { s->intregm_pending &= ~mask; if (pil == 15) { for (i = 0; i < MAX_CPUS; i++) { s->slaves[i].intreg_pending &= ~(1 << pil); } } } slavio_check_interrupts(s, 1); } } static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level) { SLAVIO_INTCTLState *s = opaque; trace_slavio_set_timer_irq_cpu(cpu, level); if (level) { s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN; } else { s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN; } slavio_check_interrupts(s, 1); } static void slavio_set_irq_all(void *opaque, int irq, int level) { if (irq < 32) { slavio_set_irq(opaque, irq, level); } else { slavio_set_timer_irq_cpu(opaque, irq - 32, level); } } static int vmstate_intctl_post_load(void *opaque, int version_id) { SLAVIO_INTCTLState *s = opaque; slavio_check_interrupts(s, 0); return 0; } static const VMStateDescription vmstate_intctl_cpu = { .name ="slavio_intctl_cpu", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField []) { VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_intctl = { .name ="slavio_intctl", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .post_load = vmstate_intctl_post_load, .fields = (VMStateField []) { VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1, vmstate_intctl_cpu, SLAVIO_CPUINTCTLState), VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState), VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState), VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState), VMSTATE_END_OF_LIST() } }; static void slavio_intctl_reset(DeviceState *d) { SLAVIO_INTCTLState *s = container_of(d, SLAVIO_INTCTLState, busdev.qdev); int i; for (i = 0; i < MAX_CPUS; i++) { s->slaves[i].intreg_pending = 0; s->slaves[i].irl_out = 0; } s->intregm_disabled = ~MASTER_IRQ_MASK; s->intregm_pending = 0; s->target_cpu = 0; slavio_check_interrupts(s, 0); } static int slavio_intctl_init1(SysBusDevice *dev) { SLAVIO_INTCTLState *s = FROM_SYSBUS(SLAVIO_INTCTLState, dev); unsigned int i, j; char slave_name[45]; qdev_init_gpio_in(&dev->qdev, slavio_set_irq_all, 32 + MAX_CPUS); memory_region_init_io(&s->iomem, &slavio_intctlm_mem_ops, s, "master-interrupt-controller", INTCTLM_SIZE); sysbus_init_mmio(dev, &s->iomem); for (i = 0; i < MAX_CPUS; i++) { snprintf(slave_name, sizeof(slave_name), "slave-interrupt-controller-%i", i); for (j = 0; j < MAX_PILS; j++) { sysbus_init_irq(dev, &s->cpu_irqs[i][j]); } memory_region_init_io(&s->slaves[i].iomem, &slavio_intctl_mem_ops, &s->slaves[i], slave_name, INTCTL_SIZE); sysbus_init_mmio(dev, &s->slaves[i].iomem); s->slaves[i].cpu = i; s->slaves[i].master = s; } return 0; } static void slavio_intctl_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = slavio_intctl_init1; dc->reset = slavio_intctl_reset; dc->vmsd = &vmstate_intctl; } static TypeInfo slavio_intctl_info = { .name = "slavio_intctl", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SLAVIO_INTCTLState), .class_init = slavio_intctl_class_init, }; static void slavio_intctl_register_types(void) { type_register_static(&slavio_intctl_info); } type_init(slavio_intctl_register_types)