/* * QEMU interrupt controller emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" //#define DEBUG_IRQ_COUNT /* These registers are used for sending/receiving irqs from/to * different cpu's. */ struct sun4m_intreg_percpu { unsigned int tbt; /* Intrs pending for this cpu, by PIL. */ /* These next two registers are WRITE-ONLY and are only * "on bit" sensitive, "off bits" written have NO affect. */ unsigned int clear; /* Clear this cpus irqs here. */ unsigned int set; /* Set this cpus irqs here. */ }; /* * djhr * Actually the clear and set fields in this struct are misleading.. * according to the SLAVIO manual (and the same applies for the SEC) * the clear field clears bits in the mask which will ENABLE that IRQ * the set field sets bits in the mask to DISABLE the IRQ. * * Also the undirected_xx address in the SLAVIO is defined as * RESERVED and write only.. * * DAVEM_NOTE: The SLAVIO only specifies behavior on uniprocessor * sun4m machines, for MP the layout makes more sense. */ struct sun4m_intreg_master { unsigned int tbt; /* IRQ's that are pending, see sun4m masks. */ unsigned int irqs; /* Master IRQ bits. */ /* Again, like the above, two these registers are WRITE-ONLY. */ unsigned int clear; /* Clear master IRQ's by setting bits here. */ unsigned int set; /* Set master IRQ's by setting bits here. */ /* This register is both READ and WRITE. */ unsigned int undirected_target; /* Which cpu gets undirected irqs. */ }; #define SUN4M_INT_ENABLE 0x80000000 #define SUN4M_INT_E14 0x00000080 #define SUN4M_INT_E10 0x00080000 #define SUN4M_HARD_INT(x) (0x000000001 << (x)) #define SUN4M_SOFT_INT(x) (0x000010000 << (x)) #define SUN4M_INT_MASKALL 0x80000000 /* mask all interrupts */ #define SUN4M_INT_MODULE_ERR 0x40000000 /* module error */ #define SUN4M_INT_M2S_WRITE 0x20000000 /* write buffer error */ #define SUN4M_INT_ECC 0x10000000 /* ecc memory error */ #define SUN4M_INT_FLOPPY 0x00400000 /* floppy disk */ #define SUN4M_INT_MODULE 0x00200000 /* module interrupt */ #define SUN4M_INT_VIDEO 0x00100000 /* onboard video */ #define SUN4M_INT_REALTIME 0x00080000 /* system timer */ #define SUN4M_INT_SCSI 0x00040000 /* onboard scsi */ #define SUN4M_INT_AUDIO 0x00020000 /* audio/isdn */ #define SUN4M_INT_ETHERNET 0x00010000 /* onboard ethernet */ #define SUN4M_INT_SERIAL 0x00008000 /* serial ports */ #define SUN4M_INT_SBUSBITS 0x00003F80 /* sbus int bits */ #define SUN4M_INT_SBUS(x) (1 << (x+7)) #define SUN4M_INT_VME(x) (1 << (x)) typedef struct SCHEDState { uint32_t addr, addrg; uint32_t intreg_pending; uint32_t intreg_enabled; uint32_t intregm_pending; uint32_t intregm_enabled; } SCHEDState; static SCHEDState *ps; #ifdef DEBUG_IRQ_COUNT static uint64_t irq_count[32]; #endif static uint32_t intreg_mem_readl(void *opaque, target_phys_addr_t addr) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - s->addr) >> 2; switch (saddr) { case 0: return s->intreg_pending; break; default: break; } return 0; } static void intreg_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - s->addr) >> 2; switch (saddr) { case 0: s->intreg_pending = val; break; case 1: // clear s->intreg_enabled &= ~val; break; case 2: // set s->intreg_enabled |= val; break; default: break; } } static CPUReadMemoryFunc *intreg_mem_read[3] = { intreg_mem_readl, intreg_mem_readl, intreg_mem_readl, }; static CPUWriteMemoryFunc *intreg_mem_write[3] = { intreg_mem_writel, intreg_mem_writel, intreg_mem_writel, }; static uint32_t intregm_mem_readl(void *opaque, target_phys_addr_t addr) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - s->addrg) >> 2; switch (saddr) { case 0: return s->intregm_pending; break; case 1: return s->intregm_enabled; break; default: break; } return 0; } static void intregm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SCHEDState *s = opaque; uint32_t saddr; saddr = (addr - s->addrg) >> 2; switch (saddr) { case 0: s->intregm_pending = val; break; case 1: s->intregm_enabled = val; break; case 2: // clear s->intregm_enabled &= ~val; break; case 3: // set s->intregm_enabled |= val; break; default: break; } } static CPUReadMemoryFunc *intregm_mem_read[3] = { intregm_mem_readl, intregm_mem_readl, intregm_mem_readl, }; static CPUWriteMemoryFunc *intregm_mem_write[3] = { intregm_mem_writel, intregm_mem_writel, intregm_mem_writel, }; void pic_info(void) { term_printf("per-cpu: pending 0x%08x, enabled 0x%08x\n", ps->intreg_pending, ps->intreg_enabled); term_printf("master: pending 0x%08x, enabled 0x%08x\n", ps->intregm_pending, ps->intregm_enabled); } void irq_info(void) { #ifndef DEBUG_IRQ_COUNT term_printf("irq statistic code not compiled.\n"); #else int i; int64_t count; term_printf("IRQ statistics:\n"); for (i = 0; i < 32; i++) { count = irq_count[i]; if (count > 0) term_printf("%2d: %lld\n", i, count); } #endif } static const unsigned int intr_to_mask[16] = { 0, 0, 0, 0, 0, 0, SUN4M_INT_ETHERNET, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; void pic_set_irq(int irq, int level) { if (irq < 16) { unsigned int mask = intr_to_mask[irq]; ps->intreg_pending |= 1 << irq; if (ps->intregm_enabled & mask) { cpu_single_env->interrupt_index = irq; cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD); } } #ifdef DEBUG_IRQ_COUNT if (level == 1) irq_count[irq]++; #endif } void sched_init(uint32_t addr, uint32_t addrg) { int intreg_io_memory, intregm_io_memory; SCHEDState *s; s = qemu_mallocz(sizeof(SCHEDState)); if (!s) return; s->addr = addr; s->addrg = addrg; intreg_io_memory = cpu_register_io_memory(0, intreg_mem_read, intreg_mem_write, s); cpu_register_physical_memory(addr, 3, intreg_io_memory); intregm_io_memory = cpu_register_io_memory(0, intregm_mem_read, intregm_mem_write, s); cpu_register_physical_memory(addrg, 5, intregm_io_memory); ps = s; }