/* * Qemu PowerPC 440 Bamboo board emulation * * Copyright 2007 IBM Corporation. * Authors: * Jerone Young * Christian Ehrhardt * Hollis Blanchard * * This work is licensed under the GNU GPL license version 2 or later. * */ #include "config.h" #include "qemu-common.h" #include "net.h" #include "hw.h" #include "pci.h" #include "boards.h" #include "kvm.h" #include "kvm_ppc.h" #include "device_tree.h" #include "loader.h" #include "elf.h" #include "exec-memory.h" #include "pc.h" #include "ppc.h" #include "ppc405.h" #include "sysemu.h" #include "sysbus.h" #define BINARY_DEVICE_TREE_FILE "bamboo.dtb" /* from u-boot */ #define KERNEL_ADDR 0x1000000 #define FDT_ADDR 0x1800000 #define RAMDISK_ADDR 0x1900000 #define PPC440EP_PCI_CONFIG 0xeec00000 #define PPC440EP_PCI_INTACK 0xeed00000 #define PPC440EP_PCI_SPECIAL 0xeed00000 #define PPC440EP_PCI_REGS 0xef400000 #define PPC440EP_PCI_IO 0xe8000000 #define PPC440EP_PCI_IOLEN 0x00010000 #define PPC440EP_SDRAM_NR_BANKS 4 static const unsigned int ppc440ep_sdram_bank_sizes[] = { 256<<20, 128<<20, 64<<20, 32<<20, 16<<20, 8<<20, 0 }; static target_phys_addr_t entry; static int bamboo_load_device_tree(target_phys_addr_t addr, uint32_t ramsize, target_phys_addr_t initrd_base, target_phys_addr_t initrd_size, const char *kernel_cmdline) { int ret = -1; #ifdef CONFIG_FDT uint32_t mem_reg_property[] = { 0, 0, ramsize }; char *filename; int fdt_size; void *fdt; uint32_t tb_freq = 400000000; uint32_t clock_freq = 400000000; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE); if (!filename) { goto out; } fdt = load_device_tree(filename, &fdt_size); g_free(filename); if (fdt == NULL) { goto out; } /* Manipulate device tree in memory. */ ret = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property, sizeof(mem_reg_property)); if (ret < 0) fprintf(stderr, "couldn't set /memory/reg\n"); ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start", initrd_base); if (ret < 0) fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end", (initrd_base + initrd_size)); if (ret < 0) fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs", kernel_cmdline); if (ret < 0) fprintf(stderr, "couldn't set /chosen/bootargs\n"); /* Copy data from the host device tree into the guest. Since the guest can * directly access the timebase without host involvement, we must expose * the correct frequencies. */ if (kvm_enabled()) { tb_freq = kvmppc_get_tbfreq(); clock_freq = kvmppc_get_clockfreq(); } qemu_devtree_setprop_cell(fdt, "/cpus/cpu@0", "clock-frequency", clock_freq); qemu_devtree_setprop_cell(fdt, "/cpus/cpu@0", "timebase-frequency", tb_freq); ret = rom_add_blob_fixed(BINARY_DEVICE_TREE_FILE, fdt, fdt_size, addr); g_free(fdt); out: #endif return ret; } /* Create reset TLB entries for BookE, spanning the 32bit addr space. */ static void mmubooke_create_initial_mapping(CPUState *env, target_ulong va, target_phys_addr_t pa) { ppcemb_tlb_t *tlb = &env->tlb.tlbe[0]; tlb->attr = 0; tlb->prot = PAGE_VALID | ((PAGE_READ | PAGE_WRITE | PAGE_EXEC) << 4); tlb->size = 1 << 31; /* up to 0x80000000 */ tlb->EPN = va & TARGET_PAGE_MASK; tlb->RPN = pa & TARGET_PAGE_MASK; tlb->PID = 0; tlb = &env->tlb.tlbe[1]; tlb->attr = 0; tlb->prot = PAGE_VALID | ((PAGE_READ | PAGE_WRITE | PAGE_EXEC) << 4); tlb->size = 1 << 31; /* up to 0xffffffff */ tlb->EPN = 0x80000000 & TARGET_PAGE_MASK; tlb->RPN = 0x80000000 & TARGET_PAGE_MASK; tlb->PID = 0; } static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); env->gpr[1] = (16<<20) - 8; env->gpr[3] = FDT_ADDR; env->nip = entry; /* Create a mapping for the kernel. */ mmubooke_create_initial_mapping(env, 0, 0); } static void bamboo_init(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { unsigned int pci_irq_nrs[4] = { 28, 27, 26, 25 }; MemoryRegion *address_space_mem = get_system_memory(); MemoryRegion *ram_memories = g_malloc(PPC440EP_SDRAM_NR_BANKS * sizeof(*ram_memories)); target_phys_addr_t ram_bases[PPC440EP_SDRAM_NR_BANKS]; target_phys_addr_t ram_sizes[PPC440EP_SDRAM_NR_BANKS]; qemu_irq *pic; qemu_irq *irqs; PCIBus *pcibus; CPUState *env; uint64_t elf_entry; uint64_t elf_lowaddr; target_phys_addr_t loadaddr = 0; target_long initrd_size = 0; DeviceState *dev; int success; int i; /* Setup CPU. */ if (cpu_model == NULL) { cpu_model = "440EP"; } env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to initialize CPU!\n"); exit(1); } qemu_register_reset(main_cpu_reset, env); ppc_booke_timers_init(env, 400000000, 0); ppc_dcr_init(env, NULL, NULL); /* interrupt controller */ irqs = g_malloc0(sizeof(qemu_irq) * PPCUIC_OUTPUT_NB); irqs[PPCUIC_OUTPUT_INT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_INT]; irqs[PPCUIC_OUTPUT_CINT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_CINT]; pic = ppcuic_init(env, irqs, 0x0C0, 0, 1); /* SDRAM controller */ memset(ram_bases, 0, sizeof(ram_bases)); memset(ram_sizes, 0, sizeof(ram_sizes)); ram_size = ppc4xx_sdram_adjust(ram_size, PPC440EP_SDRAM_NR_BANKS, ram_memories, ram_bases, ram_sizes, ppc440ep_sdram_bank_sizes); /* XXX 440EP's ECC interrupts are on UIC1, but we've only created UIC0. */ ppc4xx_sdram_init(env, pic[14], PPC440EP_SDRAM_NR_BANKS, ram_memories, ram_bases, ram_sizes, 1); /* PCI */ dev = sysbus_create_varargs("ppc4xx-pcihost", PPC440EP_PCI_CONFIG, pic[pci_irq_nrs[0]], pic[pci_irq_nrs[1]], pic[pci_irq_nrs[2]], pic[pci_irq_nrs[3]], NULL); pcibus = (PCIBus *)qdev_get_child_bus(dev, "pci.0"); if (!pcibus) { fprintf(stderr, "couldn't create PCI controller!\n"); exit(1); } isa_mmio_init(PPC440EP_PCI_IO, PPC440EP_PCI_IOLEN); if (serial_hds[0] != NULL) { serial_mm_init(address_space_mem, 0xef600300, 0, pic[0], PPC_SERIAL_MM_BAUDBASE, serial_hds[0], DEVICE_BIG_ENDIAN); } if (serial_hds[1] != NULL) { serial_mm_init(address_space_mem, 0xef600400, 0, pic[1], PPC_SERIAL_MM_BAUDBASE, serial_hds[1], DEVICE_BIG_ENDIAN); } if (pcibus) { /* Register network interfaces. */ for (i = 0; i < nb_nics; i++) { /* There are no PCI NICs on the Bamboo board, but there are * PCI slots, so we can pick whatever default model we want. */ pci_nic_init_nofail(&nd_table[i], "e1000", NULL); } } /* Load kernel. */ if (kernel_filename) { success = load_uimage(kernel_filename, &entry, &loadaddr, NULL); if (success < 0) { success = load_elf(kernel_filename, NULL, NULL, &elf_entry, &elf_lowaddr, NULL, 1, ELF_MACHINE, 0); entry = elf_entry; loadaddr = elf_lowaddr; } /* XXX try again as binary */ if (success < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } } /* Load initrd. */ if (initrd_filename) { initrd_size = load_image_targphys(initrd_filename, RAMDISK_ADDR, ram_size - RAMDISK_ADDR); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load ram disk '%s' at %x\n", initrd_filename, RAMDISK_ADDR); exit(1); } } /* If we're loading a kernel directly, we must load the device tree too. */ if (kernel_filename) { if (bamboo_load_device_tree(FDT_ADDR, ram_size, RAMDISK_ADDR, initrd_size, kernel_cmdline) < 0) { fprintf(stderr, "couldn't load device tree\n"); exit(1); } } if (kvm_enabled()) kvmppc_init(); } static QEMUMachine bamboo_machine = { .name = "bamboo", .desc = "bamboo", .init = bamboo_init, }; static void bamboo_machine_init(void) { qemu_register_machine(&bamboo_machine); } machine_init(bamboo_machine_init);