/* * OneNAND flash memories emulation. * * Copyright (C) 2008 Nokia Corporation * Written by Andrzej Zaborowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu-common.h" #include "hw.h" #include "flash.h" #include "irq.h" #include "blockdev.h" #include "memory.h" #include "exec-memory.h" #include "sysbus.h" #include "qemu-error.h" /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */ #define PAGE_SHIFT 11 /* Fixed */ #define BLOCK_SHIFT (PAGE_SHIFT + 6) typedef struct { SysBusDevice busdev; struct { uint16_t man; uint16_t dev; uint16_t ver; } id; int shift; target_phys_addr_t base; qemu_irq intr; qemu_irq rdy; BlockDriverState *bdrv; BlockDriverState *bdrv_cur; uint8_t *image; uint8_t *otp; uint8_t *current; MemoryRegion ram; MemoryRegion mapped_ram; uint8_t current_direction; uint8_t *boot[2]; uint8_t *data[2][2]; MemoryRegion iomem; MemoryRegion container; int cycle; int otpmode; uint16_t addr[8]; uint16_t unladdr[8]; int bufaddr; int count; uint16_t command; uint16_t config[2]; uint16_t status; uint16_t intstatus; uint16_t wpstatus; ECCState ecc; int density_mask; int secs; int secs_cur; int blocks; uint8_t *blockwp; } OneNANDState; enum { ONEN_BUF_BLOCK = 0, ONEN_BUF_BLOCK2 = 1, ONEN_BUF_DEST_BLOCK = 2, ONEN_BUF_DEST_PAGE = 3, ONEN_BUF_PAGE = 7, }; enum { ONEN_ERR_CMD = 1 << 10, ONEN_ERR_ERASE = 1 << 11, ONEN_ERR_PROG = 1 << 12, ONEN_ERR_LOAD = 1 << 13, }; enum { ONEN_INT_RESET = 1 << 4, ONEN_INT_ERASE = 1 << 5, ONEN_INT_PROG = 1 << 6, ONEN_INT_LOAD = 1 << 7, ONEN_INT = 1 << 15, }; enum { ONEN_LOCK_LOCKTIGHTEN = 1 << 0, ONEN_LOCK_LOCKED = 1 << 1, ONEN_LOCK_UNLOCKED = 1 << 2, }; static void onenand_mem_setup(OneNANDState *s) { /* XXX: We should use IO_MEM_ROMD but we broke it earlier... * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to * write boot commands. Also take note of the BWPS bit. */ memory_region_init(&s->container, "onenand", 0x10000 << s->shift); memory_region_add_subregion(&s->container, 0, &s->iomem); memory_region_init_alias(&s->mapped_ram, "onenand-mapped-ram", &s->ram, 0x0200 << s->shift, 0xbe00 << s->shift); memory_region_add_subregion_overlap(&s->container, 0x0200 << s->shift, &s->mapped_ram, 1); } static void onenand_intr_update(OneNANDState *s) { qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1); } static void onenand_pre_save(void *opaque) { OneNANDState *s = opaque; if (s->current == s->otp) { s->current_direction = 1; } else if (s->current == s->image) { s->current_direction = 2; } else { s->current_direction = 0; } } static int onenand_post_load(void *opaque, int version_id) { OneNANDState *s = opaque; switch (s->current_direction) { case 0: break; case 1: s->current = s->otp; break; case 2: s->current = s->image; break; default: return -1; } onenand_intr_update(s); return 0; } static const VMStateDescription vmstate_onenand = { .name = "onenand", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .pre_save = onenand_pre_save, .post_load = onenand_post_load, .fields = (VMStateField[]) { VMSTATE_UINT8(current_direction, OneNANDState), VMSTATE_INT32(cycle, OneNANDState), VMSTATE_INT32(otpmode, OneNANDState), VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8), VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8), VMSTATE_INT32(bufaddr, OneNANDState), VMSTATE_INT32(count, OneNANDState), VMSTATE_UINT16(command, OneNANDState), VMSTATE_UINT16_ARRAY(config, OneNANDState, 2), VMSTATE_UINT16(status, OneNANDState), VMSTATE_UINT16(intstatus, OneNANDState), VMSTATE_UINT16(wpstatus, OneNANDState), VMSTATE_INT32(secs_cur, OneNANDState), VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks), VMSTATE_UINT8(ecc.cp, OneNANDState), VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2), VMSTATE_UINT16(ecc.count, OneNANDState), VMSTATE_BUFFER_UNSAFE(otp, OneNANDState, 0, ((64 + 2) << PAGE_SHIFT)), VMSTATE_END_OF_LIST() } }; /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */ static void onenand_reset(OneNANDState *s, int cold) { memset(&s->addr, 0, sizeof(s->addr)); s->command = 0; s->count = 1; s->bufaddr = 0; s->config[0] = 0x40c0; s->config[1] = 0x0000; onenand_intr_update(s); qemu_irq_raise(s->rdy); s->status = 0x0000; s->intstatus = cold ? 0x8080 : 0x8010; s->unladdr[0] = 0; s->unladdr[1] = 0; s->wpstatus = 0x0002; s->cycle = 0; s->otpmode = 0; s->bdrv_cur = s->bdrv; s->current = s->image; s->secs_cur = s->secs; if (cold) { /* Lock the whole flash */ memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks); if (s->bdrv_cur && bdrv_read(s->bdrv_cur, 0, s->boot[0], 8) < 0) { hw_error("%s: Loading the BootRAM failed.\n", __func__); } } } static void onenand_system_reset(DeviceState *dev) { onenand_reset(FROM_SYSBUS(OneNANDState, sysbus_from_qdev(dev)), 1); } static inline int onenand_load_main(OneNANDState *s, int sec, int secn, void *dest) { if (s->bdrv_cur) return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0; else if (sec + secn > s->secs_cur) return 1; memcpy(dest, s->current + (sec << 9), secn << 9); return 0; } static inline int onenand_prog_main(OneNANDState *s, int sec, int secn, void *src) { int result = 0; if (secn > 0) { uint32_t size = (uint32_t)secn * 512; const uint8_t *sp = (const uint8_t *)src; uint8_t *dp = 0; if (s->bdrv_cur) { dp = g_malloc(size); if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) { result = 1; } } else { if (sec + secn > s->secs_cur) { result = 1; } else { dp = (uint8_t *)s->current + (sec << 9); } } if (!result) { uint32_t i; for (i = 0; i < size; i++) { dp[i] &= sp[i]; } if (s->bdrv_cur) { result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0; } } if (dp && s->bdrv_cur) { g_free(dp); } } return result; } static inline int onenand_load_spare(OneNANDState *s, int sec, int secn, void *dest) { uint8_t buf[512]; if (s->bdrv_cur) { if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) return 1; memcpy(dest, buf + ((sec & 31) << 4), secn << 4); } else if (sec + secn > s->secs_cur) return 1; else memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4); return 0; } static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn, void *src) { int result = 0; if (secn > 0) { const uint8_t *sp = (const uint8_t *)src; uint8_t *dp = 0, *dpp = 0; if (s->bdrv_cur) { dp = g_malloc(512); if (!dp || bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), dp, 1) < 0) { result = 1; } else { dpp = dp + ((sec & 31) << 4); } } else { if (sec + secn > s->secs_cur) { result = 1; } else { dpp = s->current + (s->secs_cur << 9) + (sec << 4); } } if (!result) { uint32_t i; for (i = 0; i < (secn << 4); i++) { dpp[i] &= sp[i]; } if (s->bdrv_cur) { result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), dp, 1) < 0; } } if (dp) { g_free(dp); } } return result; } static inline int onenand_erase(OneNANDState *s, int sec, int num) { uint8_t *blankbuf, *tmpbuf; blankbuf = g_malloc(512); if (!blankbuf) { return 1; } tmpbuf = g_malloc(512); if (!tmpbuf) { g_free(blankbuf); return 1; } memset(blankbuf, 0xff, 512); for (; num > 0; num--, sec++) { if (s->bdrv_cur) { int erasesec = s->secs_cur + (sec >> 5); if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1)) { goto fail; } if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) { goto fail; } memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4); if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) { goto fail; } } else { if (sec + 1 > s->secs_cur) { goto fail; } memcpy(s->current + (sec << 9), blankbuf, 512); memcpy(s->current + (s->secs_cur << 9) + (sec << 4), blankbuf, 1 << 4); } } g_free(tmpbuf); g_free(blankbuf); return 0; fail: g_free(tmpbuf); g_free(blankbuf); return 1; } static void onenand_command(OneNANDState *s) { int b; int sec; void *buf; #define SETADDR(block, page) \ sec = (s->addr[page] & 3) + \ ((((s->addr[page] >> 2) & 0x3f) + \ (((s->addr[block] & 0xfff) | \ (s->addr[block] >> 15 ? \ s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9)); #define SETBUF_M() \ buf = (s->bufaddr & 8) ? \ s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \ buf += (s->bufaddr & 3) << 9; #define SETBUF_S() \ buf = (s->bufaddr & 8) ? \ s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \ buf += (s->bufaddr & 3) << 4; switch (s->command) { case 0x00: /* Load single/multiple sector data unit into buffer */ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) SETBUF_M() if (onenand_load_main(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; #if 0 SETBUF_S() if (onenand_load_spare(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; #endif /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) * then we need two split the read/write into two chunks. */ s->intstatus |= ONEN_INT | ONEN_INT_LOAD; break; case 0x13: /* Load single/multiple spare sector into buffer */ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) SETBUF_S() if (onenand_load_spare(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) * then we need two split the read/write into two chunks. */ s->intstatus |= ONEN_INT | ONEN_INT_LOAD; break; case 0x80: /* Program single/multiple sector data unit from buffer */ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) SETBUF_M() if (onenand_prog_main(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; #if 0 SETBUF_S() if (onenand_prog_spare(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; #endif /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) * then we need two split the read/write into two chunks. */ s->intstatus |= ONEN_INT | ONEN_INT_PROG; break; case 0x1a: /* Program single/multiple spare area sector from buffer */ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) SETBUF_S() if (onenand_prog_spare(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) * then we need two split the read/write into two chunks. */ s->intstatus |= ONEN_INT | ONEN_INT_PROG; break; case 0x1b: /* Copy-back program */ SETBUF_S() SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) if (onenand_load_main(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE) if (onenand_prog_main(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; /* TODO: spare areas */ s->intstatus |= ONEN_INT | ONEN_INT_PROG; break; case 0x23: /* Unlock NAND array block(s) */ s->intstatus |= ONEN_INT; /* XXX the previous (?) area should be locked automatically */ for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { if (b >= s->blocks) { s->status |= ONEN_ERR_CMD; break; } if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) break; s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; } break; case 0x27: /* Unlock All NAND array blocks */ s->intstatus |= ONEN_INT; for (b = 0; b < s->blocks; b ++) { if (b >= s->blocks) { s->status |= ONEN_ERR_CMD; break; } if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) break; s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; } break; case 0x2a: /* Lock NAND array block(s) */ s->intstatus |= ONEN_INT; for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { if (b >= s->blocks) { s->status |= ONEN_ERR_CMD; break; } if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) break; s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED; } break; case 0x2c: /* Lock-tight NAND array block(s) */ s->intstatus |= ONEN_INT; for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { if (b >= s->blocks) { s->status |= ONEN_ERR_CMD; break; } if (s->blockwp[b] == ONEN_LOCK_UNLOCKED) continue; s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN; } break; case 0x71: /* Erase-Verify-Read */ s->intstatus |= ONEN_INT; break; case 0x95: /* Multi-block erase */ qemu_irq_pulse(s->intr); /* Fall through. */ case 0x94: /* Block erase */ sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) | (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0)) << (BLOCK_SHIFT - 9); if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9))) s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE; s->intstatus |= ONEN_INT | ONEN_INT_ERASE; break; case 0xb0: /* Erase suspend */ break; case 0x30: /* Erase resume */ s->intstatus |= ONEN_INT | ONEN_INT_ERASE; break; case 0xf0: /* Reset NAND Flash core */ onenand_reset(s, 0); break; case 0xf3: /* Reset OneNAND */ onenand_reset(s, 0); break; case 0x65: /* OTP Access */ s->intstatus |= ONEN_INT; s->bdrv_cur = NULL; s->current = s->otp; s->secs_cur = 1 << (BLOCK_SHIFT - 9); s->addr[ONEN_BUF_BLOCK] = 0; s->otpmode = 1; break; default: s->status |= ONEN_ERR_CMD; s->intstatus |= ONEN_INT; fprintf(stderr, "%s: unknown OneNAND command %x\n", __func__, s->command); } onenand_intr_update(s); } static uint64_t onenand_read(void *opaque, target_phys_addr_t addr, unsigned size) { OneNANDState *s = (OneNANDState *) opaque; int offset = addr >> s->shift; switch (offset) { case 0x0000 ... 0xc000: return lduw_le_p(s->boot[0] + addr); case 0xf000: /* Manufacturer ID */ return s->id.man; case 0xf001: /* Device ID */ return s->id.dev; case 0xf002: /* Version ID */ return s->id.ver; /* TODO: get the following values from a real chip! */ case 0xf003: /* Data Buffer size */ return 1 << PAGE_SHIFT; case 0xf004: /* Boot Buffer size */ return 0x200; case 0xf005: /* Amount of buffers */ return 1 | (2 << 8); case 0xf006: /* Technology */ return 0; case 0xf100 ... 0xf107: /* Start addresses */ return s->addr[offset - 0xf100]; case 0xf200: /* Start buffer */ return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10))); case 0xf220: /* Command */ return s->command; case 0xf221: /* System Configuration 1 */ return s->config[0] & 0xffe0; case 0xf222: /* System Configuration 2 */ return s->config[1]; case 0xf240: /* Controller Status */ return s->status; case 0xf241: /* Interrupt */ return s->intstatus; case 0xf24c: /* Unlock Start Block Address */ return s->unladdr[0]; case 0xf24d: /* Unlock End Block Address */ return s->unladdr[1]; case 0xf24e: /* Write Protection Status */ return s->wpstatus; case 0xff00: /* ECC Status */ return 0x00; case 0xff01: /* ECC Result of main area data */ case 0xff02: /* ECC Result of spare area data */ case 0xff03: /* ECC Result of main area data */ case 0xff04: /* ECC Result of spare area data */ hw_error("%s: imeplement ECC\n", __FUNCTION__); return 0x0000; } fprintf(stderr, "%s: unknown OneNAND register %x\n", __FUNCTION__, offset); return 0; } static void onenand_write(void *opaque, target_phys_addr_t addr, uint64_t value, unsigned size) { OneNANDState *s = (OneNANDState *) opaque; int offset = addr >> s->shift; int sec; switch (offset) { case 0x0000 ... 0x01ff: case 0x8000 ... 0x800f: if (s->cycle) { s->cycle = 0; if (value == 0x0000) { SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) onenand_load_main(s, sec, 1 << (PAGE_SHIFT - 9), s->data[0][0]); s->addr[ONEN_BUF_PAGE] += 4; s->addr[ONEN_BUF_PAGE] &= 0xff; } break; } switch (value) { case 0x00f0: /* Reset OneNAND */ onenand_reset(s, 0); break; case 0x00e0: /* Load Data into Buffer */ s->cycle = 1; break; case 0x0090: /* Read Identification Data */ memset(s->boot[0], 0, 3 << s->shift); s->boot[0][0 << s->shift] = s->id.man & 0xff; s->boot[0][1 << s->shift] = s->id.dev & 0xff; s->boot[0][2 << s->shift] = s->wpstatus & 0xff; break; default: fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n", __FUNCTION__, value); } break; case 0xf100 ... 0xf107: /* Start addresses */ s->addr[offset - 0xf100] = value; break; case 0xf200: /* Start buffer */ s->bufaddr = (value >> 8) & 0xf; if (PAGE_SHIFT == 11) s->count = (value & 3) ?: 4; else if (PAGE_SHIFT == 10) s->count = (value & 1) ?: 2; break; case 0xf220: /* Command */ if (s->intstatus & (1 << 15)) break; s->command = value; onenand_command(s); break; case 0xf221: /* System Configuration 1 */ s->config[0] = value; onenand_intr_update(s); qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1); break; case 0xf222: /* System Configuration 2 */ s->config[1] = value; break; case 0xf241: /* Interrupt */ s->intstatus &= value; if ((1 << 15) & ~s->intstatus) s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE | ONEN_ERR_PROG | ONEN_ERR_LOAD); onenand_intr_update(s); break; case 0xf24c: /* Unlock Start Block Address */ s->unladdr[0] = value & (s->blocks - 1); /* For some reason we have to set the end address to by default * be same as start because the software forgets to write anything * in there. */ s->unladdr[1] = value & (s->blocks - 1); break; case 0xf24d: /* Unlock End Block Address */ s->unladdr[1] = value & (s->blocks - 1); break; default: fprintf(stderr, "%s: unknown OneNAND register %x\n", __FUNCTION__, offset); } } static const MemoryRegionOps onenand_ops = { .read = onenand_read, .write = onenand_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static int onenand_initfn(SysBusDevice *dev) { OneNANDState *s = (OneNANDState *)dev; uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7)); void *ram; s->base = (target_phys_addr_t)-1; s->rdy = NULL; s->blocks = size >> BLOCK_SHIFT; s->secs = size >> 9; s->blockwp = g_malloc(s->blocks); s->density_mask = (s->id.dev & 0x08) ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0; memory_region_init_io(&s->iomem, &onenand_ops, s, "onenand", 0x10000 << s->shift); if (!s->bdrv) { s->image = memset(g_malloc(size + (size >> 5)), 0xff, size + (size >> 5)); } else { if (bdrv_is_read_only(s->bdrv)) { error_report("Can't use a read-only drive"); return -1; } s->bdrv_cur = s->bdrv; } s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT), 0xff, (64 + 2) << PAGE_SHIFT); memory_region_init_ram(&s->ram, "onenand.ram", 0xc000 << s->shift); vmstate_register_ram_global(&s->ram); ram = memory_region_get_ram_ptr(&s->ram); s->boot[0] = ram + (0x0000 << s->shift); s->boot[1] = ram + (0x8000 << s->shift); s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift); s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift); s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift); s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift); onenand_mem_setup(s); sysbus_init_irq(dev, &s->intr); sysbus_init_mmio(dev, &s->container); vmstate_register(&dev->qdev, ((s->shift & 0x7f) << 24) | ((s->id.man & 0xff) << 16) | ((s->id.dev & 0xff) << 8) | (s->id.ver & 0xff), &vmstate_onenand, s); return 0; } static Property onenand_properties[] = { DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0), DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0), DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0), DEFINE_PROP_INT32("shift", OneNANDState, shift, 0), DEFINE_PROP_DRIVE("drive", OneNANDState, bdrv), DEFINE_PROP_END_OF_LIST(), }; static void onenand_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = onenand_initfn; dc->reset = onenand_system_reset; dc->props = onenand_properties; } static TypeInfo onenand_info = { .name = "onenand", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(OneNANDState), .class_init = onenand_class_init, }; static void onenand_register_types(void) { type_register_static(&onenand_info); } void *onenand_raw_otp(DeviceState *onenand_device) { return FROM_SYSBUS(OneNANDState, sysbus_from_qdev(onenand_device))->otp; } type_init(onenand_register_types)