/* * QEMU NE2000 emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "pci.h" #include "net.h" #include "ne2000.h" #include "loader.h" #include "sysemu.h" /* debug NE2000 card */ //#define DEBUG_NE2000 #define MAX_ETH_FRAME_SIZE 1514 #define E8390_CMD 0x00 /* The command register (for all pages) */ /* Page 0 register offsets. */ #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */ #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */ #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */ #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */ #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */ #define EN0_TSR 0x04 /* Transmit status reg RD */ #define EN0_TPSR 0x04 /* Transmit starting page WR */ #define EN0_NCR 0x05 /* Number of collision reg RD */ #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */ #define EN0_FIFO 0x06 /* FIFO RD */ #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */ #define EN0_ISR 0x07 /* Interrupt status reg RD WR */ #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */ #define EN0_RSARLO 0x08 /* Remote start address reg 0 */ #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */ #define EN0_RSARHI 0x09 /* Remote start address reg 1 */ #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */ #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */ #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */ #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */ #define EN0_RSR 0x0c /* rx status reg RD */ #define EN0_RXCR 0x0c /* RX configuration reg WR */ #define EN0_TXCR 0x0d /* TX configuration reg WR */ #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */ #define EN0_DCFG 0x0e /* Data configuration reg WR */ #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */ #define EN0_IMR 0x0f /* Interrupt mask reg WR */ #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */ #define EN1_PHYS 0x11 #define EN1_CURPAG 0x17 #define EN1_MULT 0x18 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */ #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */ #define EN3_CONFIG0 0x33 #define EN3_CONFIG1 0x34 #define EN3_CONFIG2 0x35 #define EN3_CONFIG3 0x36 /* Register accessed at EN_CMD, the 8390 base addr. */ #define E8390_STOP 0x01 /* Stop and reset the chip */ #define E8390_START 0x02 /* Start the chip, clear reset */ #define E8390_TRANS 0x04 /* Transmit a frame */ #define E8390_RREAD 0x08 /* Remote read */ #define E8390_RWRITE 0x10 /* Remote write */ #define E8390_NODMA 0x20 /* Remote DMA */ #define E8390_PAGE0 0x00 /* Select page chip registers */ #define E8390_PAGE1 0x40 /* using the two high-order bits */ #define E8390_PAGE2 0x80 /* Page 3 is invalid. */ /* Bits in EN0_ISR - Interrupt status register */ #define ENISR_RX 0x01 /* Receiver, no error */ #define ENISR_TX 0x02 /* Transmitter, no error */ #define ENISR_RX_ERR 0x04 /* Receiver, with error */ #define ENISR_TX_ERR 0x08 /* Transmitter, with error */ #define ENISR_OVER 0x10 /* Receiver overwrote the ring */ #define ENISR_COUNTERS 0x20 /* Counters need emptying */ #define ENISR_RDC 0x40 /* remote dma complete */ #define ENISR_RESET 0x80 /* Reset completed */ #define ENISR_ALL 0x3f /* Interrupts we will enable */ /* Bits in received packet status byte and EN0_RSR*/ #define ENRSR_RXOK 0x01 /* Received a good packet */ #define ENRSR_CRC 0x02 /* CRC error */ #define ENRSR_FAE 0x04 /* frame alignment error */ #define ENRSR_FO 0x08 /* FIFO overrun */ #define ENRSR_MPA 0x10 /* missed pkt */ #define ENRSR_PHY 0x20 /* physical/multicast address */ #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */ #define ENRSR_DEF 0x80 /* deferring */ /* Transmitted packet status, EN0_TSR. */ #define ENTSR_PTX 0x01 /* Packet transmitted without error */ #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */ #define ENTSR_COL 0x04 /* The transmit collided at least once. */ #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */ #define ENTSR_CRS 0x10 /* The carrier sense was lost. */ #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */ #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */ #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */ typedef struct PCINE2000State { PCIDevice dev; NE2000State ne2000; } PCINE2000State; void ne2000_reset(NE2000State *s) { int i; s->isr = ENISR_RESET; memcpy(s->mem, &s->c.macaddr, 6); s->mem[14] = 0x57; s->mem[15] = 0x57; /* duplicate prom data */ for(i = 15;i >= 0; i--) { s->mem[2 * i] = s->mem[i]; s->mem[2 * i + 1] = s->mem[i]; } } static void ne2000_update_irq(NE2000State *s) { int isr; isr = (s->isr & s->imr) & 0x7f; #if defined(DEBUG_NE2000) printf("NE2000: Set IRQ to %d (%02x %02x)\n", isr ? 1 : 0, s->isr, s->imr); #endif qemu_set_irq(s->irq, (isr != 0)); } #define POLYNOMIAL 0x04c11db6 /* From FreeBSD */ /* XXX: optimize */ static int compute_mcast_idx(const uint8_t *ep) { uint32_t crc; int carry, i, j; uint8_t b; crc = 0xffffffff; for (i = 0; i < 6; i++) { b = *ep++; for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01); crc <<= 1; b >>= 1; if (carry) crc = ((crc ^ POLYNOMIAL) | carry); } } return (crc >> 26); } static int ne2000_buffer_full(NE2000State *s) { int avail, index, boundary; index = s->curpag << 8; boundary = s->boundary << 8; if (index < boundary) avail = boundary - index; else avail = (s->stop - s->start) - (index - boundary); if (avail < (MAX_ETH_FRAME_SIZE + 4)) return 1; return 0; } int ne2000_can_receive(VLANClientState *nc) { NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque; if (s->cmd & E8390_STOP) return 1; return !ne2000_buffer_full(s); } #define MIN_BUF_SIZE 60 ssize_t ne2000_receive(VLANClientState *nc, const uint8_t *buf, size_t size_) { NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque; int size = size_; uint8_t *p; unsigned int total_len, next, avail, len, index, mcast_idx; uint8_t buf1[60]; static const uint8_t broadcast_macaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; #if defined(DEBUG_NE2000) printf("NE2000: received len=%d\n", size); #endif if (s->cmd & E8390_STOP || ne2000_buffer_full(s)) return -1; /* XXX: check this */ if (s->rxcr & 0x10) { /* promiscuous: receive all */ } else { if (!memcmp(buf, broadcast_macaddr, 6)) { /* broadcast address */ if (!(s->rxcr & 0x04)) return size; } else if (buf[0] & 0x01) { /* multicast */ if (!(s->rxcr & 0x08)) return size; mcast_idx = compute_mcast_idx(buf); if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) return size; } else if (s->mem[0] == buf[0] && s->mem[2] == buf[1] && s->mem[4] == buf[2] && s->mem[6] == buf[3] && s->mem[8] == buf[4] && s->mem[10] == buf[5]) { /* match */ } else { return size; } } /* if too small buffer, then expand it */ if (size < MIN_BUF_SIZE) { memcpy(buf1, buf, size); memset(buf1 + size, 0, MIN_BUF_SIZE - size); buf = buf1; size = MIN_BUF_SIZE; } index = s->curpag << 8; /* 4 bytes for header */ total_len = size + 4; /* address for next packet (4 bytes for CRC) */ next = index + ((total_len + 4 + 255) & ~0xff); if (next >= s->stop) next -= (s->stop - s->start); /* prepare packet header */ p = s->mem + index; s->rsr = ENRSR_RXOK; /* receive status */ /* XXX: check this */ if (buf[0] & 0x01) s->rsr |= ENRSR_PHY; p[0] = s->rsr; p[1] = next >> 8; p[2] = total_len; p[3] = total_len >> 8; index += 4; /* write packet data */ while (size > 0) { if (index <= s->stop) avail = s->stop - index; else avail = 0; len = size; if (len > avail) len = avail; memcpy(s->mem + index, buf, len); buf += len; index += len; if (index == s->stop) index = s->start; size -= len; } s->curpag = next >> 8; /* now we can signal we have received something */ s->isr |= ENISR_RX; ne2000_update_irq(s); return size_; } static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val) { NE2000State *s = opaque; int offset, page, index; addr &= 0xf; #ifdef DEBUG_NE2000 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val); #endif if (addr == E8390_CMD) { /* control register */ s->cmd = val; if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */ s->isr &= ~ENISR_RESET; /* test specific case: zero length transfer */ if ((val & (E8390_RREAD | E8390_RWRITE)) && s->rcnt == 0) { s->isr |= ENISR_RDC; ne2000_update_irq(s); } if (val & E8390_TRANS) { index = (s->tpsr << 8); /* XXX: next 2 lines are a hack to make netware 3.11 work */ if (index >= NE2000_PMEM_END) index -= NE2000_PMEM_SIZE; /* fail safe: check range on the transmitted length */ if (index + s->tcnt <= NE2000_PMEM_END) { qemu_send_packet(&s->nic->nc, s->mem + index, s->tcnt); } /* signal end of transfer */ s->tsr = ENTSR_PTX; s->isr |= ENISR_TX; s->cmd &= ~E8390_TRANS; ne2000_update_irq(s); } } } else { page = s->cmd >> 6; offset = addr | (page << 4); switch(offset) { case EN0_STARTPG: s->start = val << 8; break; case EN0_STOPPG: s->stop = val << 8; break; case EN0_BOUNDARY: s->boundary = val; break; case EN0_IMR: s->imr = val; ne2000_update_irq(s); break; case EN0_TPSR: s->tpsr = val; break; case EN0_TCNTLO: s->tcnt = (s->tcnt & 0xff00) | val; break; case EN0_TCNTHI: s->tcnt = (s->tcnt & 0x00ff) | (val << 8); break; case EN0_RSARLO: s->rsar = (s->rsar & 0xff00) | val; break; case EN0_RSARHI: s->rsar = (s->rsar & 0x00ff) | (val << 8); break; case EN0_RCNTLO: s->rcnt = (s->rcnt & 0xff00) | val; break; case EN0_RCNTHI: s->rcnt = (s->rcnt & 0x00ff) | (val << 8); break; case EN0_RXCR: s->rxcr = val; break; case EN0_DCFG: s->dcfg = val; break; case EN0_ISR: s->isr &= ~(val & 0x7f); ne2000_update_irq(s); break; case EN1_PHYS ... EN1_PHYS + 5: s->phys[offset - EN1_PHYS] = val; break; case EN1_CURPAG: s->curpag = val; break; case EN1_MULT ... EN1_MULT + 7: s->mult[offset - EN1_MULT] = val; break; } } } static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr) { NE2000State *s = opaque; int offset, page, ret; addr &= 0xf; if (addr == E8390_CMD) { ret = s->cmd; } else { page = s->cmd >> 6; offset = addr | (page << 4); switch(offset) { case EN0_TSR: ret = s->tsr; break; case EN0_BOUNDARY: ret = s->boundary; break; case EN0_ISR: ret = s->isr; break; case EN0_RSARLO: ret = s->rsar & 0x00ff; break; case EN0_RSARHI: ret = s->rsar >> 8; break; case EN1_PHYS ... EN1_PHYS + 5: ret = s->phys[offset - EN1_PHYS]; break; case EN1_CURPAG: ret = s->curpag; break; case EN1_MULT ... EN1_MULT + 7: ret = s->mult[offset - EN1_MULT]; break; case EN0_RSR: ret = s->rsr; break; case EN2_STARTPG: ret = s->start >> 8; break; case EN2_STOPPG: ret = s->stop >> 8; break; case EN0_RTL8029ID0: ret = 0x50; break; case EN0_RTL8029ID1: ret = 0x43; break; case EN3_CONFIG0: ret = 0; /* 10baseT media */ break; case EN3_CONFIG2: ret = 0x40; /* 10baseT active */ break; case EN3_CONFIG3: ret = 0x40; /* Full duplex */ break; default: ret = 0x00; break; } } #ifdef DEBUG_NE2000 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret); #endif return ret; } static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, uint32_t val) { if (addr < 32 || (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { s->mem[addr] = val; } } static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, uint32_t val) { addr &= ~1; /* XXX: check exact behaviour if not even */ if (addr < 32 || (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { *(uint16_t *)(s->mem + addr) = cpu_to_le16(val); } } static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, uint32_t val) { addr &= ~1; /* XXX: check exact behaviour if not even */ if (addr < 32 || (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { cpu_to_le32wu((uint32_t *)(s->mem + addr), val); } } static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr) { if (addr < 32 || (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { return s->mem[addr]; } else { return 0xff; } } static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr) { addr &= ~1; /* XXX: check exact behaviour if not even */ if (addr < 32 || (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { return le16_to_cpu(*(uint16_t *)(s->mem + addr)); } else { return 0xffff; } } static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr) { addr &= ~1; /* XXX: check exact behaviour if not even */ if (addr < 32 || (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { return le32_to_cpupu((uint32_t *)(s->mem + addr)); } else { return 0xffffffff; } } static inline void ne2000_dma_update(NE2000State *s, int len) { s->rsar += len; /* wrap */ /* XXX: check what to do if rsar > stop */ if (s->rsar == s->stop) s->rsar = s->start; if (s->rcnt <= len) { s->rcnt = 0; /* signal end of transfer */ s->isr |= ENISR_RDC; ne2000_update_irq(s); } else { s->rcnt -= len; } } static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val) { NE2000State *s = opaque; #ifdef DEBUG_NE2000 printf("NE2000: asic write val=0x%04x\n", val); #endif if (s->rcnt == 0) return; if (s->dcfg & 0x01) { /* 16 bit access */ ne2000_mem_writew(s, s->rsar, val); ne2000_dma_update(s, 2); } else { /* 8 bit access */ ne2000_mem_writeb(s, s->rsar, val); ne2000_dma_update(s, 1); } } static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr) { NE2000State *s = opaque; int ret; if (s->dcfg & 0x01) { /* 16 bit access */ ret = ne2000_mem_readw(s, s->rsar); ne2000_dma_update(s, 2); } else { /* 8 bit access */ ret = ne2000_mem_readb(s, s->rsar); ne2000_dma_update(s, 1); } #ifdef DEBUG_NE2000 printf("NE2000: asic read val=0x%04x\n", ret); #endif return ret; } static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val) { NE2000State *s = opaque; #ifdef DEBUG_NE2000 printf("NE2000: asic writel val=0x%04x\n", val); #endif if (s->rcnt == 0) return; /* 32 bit access */ ne2000_mem_writel(s, s->rsar, val); ne2000_dma_update(s, 4); } static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr) { NE2000State *s = opaque; int ret; /* 32 bit access */ ret = ne2000_mem_readl(s, s->rsar); ne2000_dma_update(s, 4); #ifdef DEBUG_NE2000 printf("NE2000: asic readl val=0x%04x\n", ret); #endif return ret; } static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val) { /* nothing to do (end of reset pulse) */ } static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr) { NE2000State *s = opaque; ne2000_reset(s); return 0; } static int ne2000_post_load(void* opaque, int version_id) { NE2000State* s = opaque; if (version_id < 2) { s->rxcr = 0x0c; } return 0; } const VMStateDescription vmstate_ne2000 = { .name = "ne2000", .version_id = 2, .minimum_version_id = 0, .minimum_version_id_old = 0, .post_load = ne2000_post_load, .fields = (VMStateField []) { VMSTATE_UINT8_V(rxcr, NE2000State, 2), VMSTATE_UINT8(cmd, NE2000State), VMSTATE_UINT32(start, NE2000State), VMSTATE_UINT32(stop, NE2000State), VMSTATE_UINT8(boundary, NE2000State), VMSTATE_UINT8(tsr, NE2000State), VMSTATE_UINT8(tpsr, NE2000State), VMSTATE_UINT16(tcnt, NE2000State), VMSTATE_UINT16(rcnt, NE2000State), VMSTATE_UINT32(rsar, NE2000State), VMSTATE_UINT8(rsr, NE2000State), VMSTATE_UINT8(isr, NE2000State), VMSTATE_UINT8(dcfg, NE2000State), VMSTATE_UINT8(imr, NE2000State), VMSTATE_BUFFER(phys, NE2000State), VMSTATE_UINT8(curpag, NE2000State), VMSTATE_BUFFER(mult, NE2000State), VMSTATE_UNUSED(4), /* was irq */ VMSTATE_BUFFER(mem, NE2000State), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_pci_ne2000 = { .name = "ne2000", .version_id = 3, .minimum_version_id = 3, .minimum_version_id_old = 3, .fields = (VMStateField []) { VMSTATE_PCI_DEVICE(dev, PCINE2000State), VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State), VMSTATE_END_OF_LIST() } }; static uint64_t ne2000_read(void *opaque, target_phys_addr_t addr, unsigned size) { NE2000State *s = opaque; if (addr < 0x10 && size == 1) { return ne2000_ioport_read(s, addr); } else if (addr == 0x10) { if (size <= 2) { return ne2000_asic_ioport_read(s, addr); } else { return ne2000_asic_ioport_readl(s, addr); } } else if (addr == 0x1f && size == 1) { return ne2000_reset_ioport_read(s, addr); } return ((uint64_t)1 << (size * 8)) - 1; } static void ne2000_write(void *opaque, target_phys_addr_t addr, uint64_t data, unsigned size) { NE2000State *s = opaque; if (addr < 0x10 && size == 1) { return ne2000_ioport_write(s, addr, data); } else if (addr == 0x10) { if (size <= 2) { return ne2000_asic_ioport_write(s, addr, data); } else { return ne2000_asic_ioport_writel(s, addr, data); } } else if (addr == 0x1f && size == 1) { return ne2000_reset_ioport_write(s, addr, data); } } static const MemoryRegionOps ne2000_ops = { .read = ne2000_read, .write = ne2000_write, .endianness = DEVICE_NATIVE_ENDIAN, }; /***********************************************************/ /* PCI NE2000 definitions */ void ne2000_setup_io(NE2000State *s, unsigned size) { memory_region_init_io(&s->io, &ne2000_ops, s, "ne2000", size); } static void ne2000_cleanup(VLANClientState *nc) { NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque; s->nic = NULL; } static NetClientInfo net_ne2000_info = { .type = NET_CLIENT_TYPE_NIC, .size = sizeof(NICState), .can_receive = ne2000_can_receive, .receive = ne2000_receive, .cleanup = ne2000_cleanup, }; static int pci_ne2000_init(PCIDevice *pci_dev) { PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); NE2000State *s; uint8_t *pci_conf; pci_conf = d->dev.config; pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ s = &d->ne2000; ne2000_setup_io(s, 0x100); pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io); s->irq = d->dev.irq[0]; qemu_macaddr_default_if_unset(&s->c.macaddr); ne2000_reset(s); s->nic = qemu_new_nic(&net_ne2000_info, &s->c, object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s); qemu_format_nic_info_str(&s->nic->nc, s->c.macaddr.a); if (!pci_dev->qdev.hotplugged) { static int loaded = 0; if (!loaded) { rom_add_option("pxe-ne2k_pci.rom", -1); loaded = 1; } } add_boot_device_path(s->c.bootindex, &pci_dev->qdev, "/ethernet-phy@0"); return 0; } static int pci_ne2000_exit(PCIDevice *pci_dev) { PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev); NE2000State *s = &d->ne2000; memory_region_destroy(&s->io); qemu_del_vlan_client(&s->nic->nc); return 0; } static Property ne2000_properties[] = { DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c), DEFINE_PROP_END_OF_LIST(), }; static void ne2000_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = pci_ne2000_init; k->exit = pci_ne2000_exit; k->vendor_id = PCI_VENDOR_ID_REALTEK; k->device_id = PCI_DEVICE_ID_REALTEK_8029; k->class_id = PCI_CLASS_NETWORK_ETHERNET; dc->vmsd = &vmstate_pci_ne2000; dc->props = ne2000_properties; } static TypeInfo ne2000_info = { .name = "ne2k_pci", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(PCINE2000State), .class_init = ne2000_class_init, }; static void ne2000_register_types(void) { type_register_static(&ne2000_info); } type_init(ne2000_register_types)