/* * QEMU model of the Milkymist minimac2 block. * * Copyright (c) 2011 Michael Walle * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * * * Specification available at: * not available yet * */ #include "hw.h" #include "sysbus.h" #include "trace.h" #include "net.h" #include "qemu-error.h" #include "qdev-addr.h" #include enum { R_SETUP = 0, R_MDIO, R_STATE0, R_COUNT0, R_STATE1, R_COUNT1, R_TXCOUNT, R_MAX }; enum { SETUP_PHY_RST = (1<<0), }; enum { MDIO_DO = (1<<0), MDIO_DI = (1<<1), MDIO_OE = (1<<2), MDIO_CLK = (1<<3), }; enum { STATE_EMPTY = 0, STATE_LOADED = 1, STATE_PENDING = 2, }; enum { MDIO_OP_WRITE = 1, MDIO_OP_READ = 2, }; enum mdio_state { MDIO_STATE_IDLE, MDIO_STATE_READING, MDIO_STATE_WRITING, }; enum { R_PHY_ID1 = 2, R_PHY_ID2 = 3, R_PHY_MAX = 32 }; #define MINIMAC2_MTU 1530 #define MINIMAC2_BUFFER_SIZE 2048 struct MilkymistMinimac2MdioState { int last_clk; int count; uint32_t data; uint16_t data_out; int state; uint8_t phy_addr; uint8_t reg_addr; }; typedef struct MilkymistMinimac2MdioState MilkymistMinimac2MdioState; struct MilkymistMinimac2State { SysBusDevice busdev; NICState *nic; NICConf conf; char *phy_model; target_phys_addr_t buffers_base; MemoryRegion buffers; MemoryRegion regs_region; qemu_irq rx_irq; qemu_irq tx_irq; uint32_t regs[R_MAX]; MilkymistMinimac2MdioState mdio; uint16_t phy_regs[R_PHY_MAX]; uint8_t *rx0_buf; uint8_t *rx1_buf; uint8_t *tx_buf; }; typedef struct MilkymistMinimac2State MilkymistMinimac2State; static const uint8_t preamble_sfd[] = { 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0xd5 }; static void minimac2_mdio_write_reg(MilkymistMinimac2State *s, uint8_t phy_addr, uint8_t reg_addr, uint16_t value) { trace_milkymist_minimac2_mdio_write(phy_addr, reg_addr, value); /* nop */ } static uint16_t minimac2_mdio_read_reg(MilkymistMinimac2State *s, uint8_t phy_addr, uint8_t reg_addr) { uint16_t r = s->phy_regs[reg_addr]; trace_milkymist_minimac2_mdio_read(phy_addr, reg_addr, r); return r; } static void minimac2_update_mdio(MilkymistMinimac2State *s) { MilkymistMinimac2MdioState *m = &s->mdio; /* detect rising clk edge */ if (m->last_clk == 0 && (s->regs[R_MDIO] & MDIO_CLK)) { /* shift data in */ int bit = ((s->regs[R_MDIO] & MDIO_DO) && (s->regs[R_MDIO] & MDIO_OE)) ? 1 : 0; m->data = (m->data << 1) | bit; /* check for sync */ if (m->data == 0xffffffff) { m->count = 32; } if (m->count == 16) { uint8_t start = (m->data >> 14) & 0x3; uint8_t op = (m->data >> 12) & 0x3; uint8_t ta = (m->data) & 0x3; if (start == 1 && op == MDIO_OP_WRITE && ta == 2) { m->state = MDIO_STATE_WRITING; } else if (start == 1 && op == MDIO_OP_READ && (ta & 1) == 0) { m->state = MDIO_STATE_READING; } else { m->state = MDIO_STATE_IDLE; } if (m->state != MDIO_STATE_IDLE) { m->phy_addr = (m->data >> 7) & 0x1f; m->reg_addr = (m->data >> 2) & 0x1f; } if (m->state == MDIO_STATE_READING) { m->data_out = minimac2_mdio_read_reg(s, m->phy_addr, m->reg_addr); } } if (m->count < 16 && m->state == MDIO_STATE_READING) { int bit = (m->data_out & 0x8000) ? 1 : 0; m->data_out <<= 1; if (bit) { s->regs[R_MDIO] |= MDIO_DI; } else { s->regs[R_MDIO] &= ~MDIO_DI; } } if (m->count == 0 && m->state) { if (m->state == MDIO_STATE_WRITING) { uint16_t data = m->data & 0xffff; minimac2_mdio_write_reg(s, m->phy_addr, m->reg_addr, data); } m->state = MDIO_STATE_IDLE; } m->count--; } m->last_clk = (s->regs[R_MDIO] & MDIO_CLK) ? 1 : 0; } static size_t assemble_frame(uint8_t *buf, size_t size, const uint8_t *payload, size_t payload_size) { uint32_t crc; if (size < payload_size + 12) { error_report("milkymist_minimac2: received too big ethernet frame"); return 0; } /* prepend preamble and sfd */ memcpy(buf, preamble_sfd, 8); /* now copy the payload */ memcpy(buf + 8, payload, payload_size); /* pad frame if needed */ if (payload_size < 60) { memset(buf + payload_size + 8, 0, 60 - payload_size); payload_size = 60; } /* append fcs */ crc = cpu_to_le32(crc32(0, buf + 8, payload_size)); memcpy(buf + payload_size + 8, &crc, 4); return payload_size + 12; } static void minimac2_tx(MilkymistMinimac2State *s) { uint32_t txcount = s->regs[R_TXCOUNT]; uint8_t *buf = s->tx_buf; if (txcount < 64) { error_report("milkymist_minimac2: ethernet frame too small (%u < %u)", txcount, 64); goto err; } if (txcount > MINIMAC2_MTU) { error_report("milkymist_minimac2: MTU exceeded (%u > %u)", txcount, MINIMAC2_MTU); goto err; } if (memcmp(buf, preamble_sfd, 8) != 0) { error_report("milkymist_minimac2: frame doesn't contain the preamble " "and/or the SFD (%02x %02x %02x %02x %02x %02x %02x %02x)", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]); goto err; } trace_milkymist_minimac2_tx_frame(txcount - 12); /* send packet, skipping preamble and sfd */ qemu_send_packet_raw(&s->nic->nc, buf + 8, txcount - 12); s->regs[R_TXCOUNT] = 0; err: trace_milkymist_minimac2_pulse_irq_tx(); qemu_irq_pulse(s->tx_irq); } static void update_rx_interrupt(MilkymistMinimac2State *s) { if (s->regs[R_STATE0] == STATE_PENDING || s->regs[R_STATE1] == STATE_PENDING) { trace_milkymist_minimac2_raise_irq_rx(); qemu_irq_raise(s->rx_irq); } else { trace_milkymist_minimac2_lower_irq_rx(); qemu_irq_lower(s->rx_irq); } } static ssize_t minimac2_rx(VLANClientState *nc, const uint8_t *buf, size_t size) { MilkymistMinimac2State *s = DO_UPCAST(NICState, nc, nc)->opaque; uint32_t r_count; uint32_t r_state; uint8_t *rx_buf; size_t frame_size; trace_milkymist_minimac2_rx_frame(buf, size); /* choose appropriate slot */ if (s->regs[R_STATE0] == STATE_LOADED) { r_count = R_COUNT0; r_state = R_STATE0; rx_buf = s->rx0_buf; } else if (s->regs[R_STATE1] == STATE_LOADED) { r_count = R_COUNT1; r_state = R_STATE1; rx_buf = s->rx1_buf; } else { trace_milkymist_minimac2_drop_rx_frame(buf); return size; } /* assemble frame */ frame_size = assemble_frame(rx_buf, MINIMAC2_BUFFER_SIZE, buf, size); if (frame_size == 0) { return size; } trace_milkymist_minimac2_rx_transfer(rx_buf, frame_size); /* update slot */ s->regs[r_count] = frame_size; s->regs[r_state] = STATE_PENDING; update_rx_interrupt(s); return size; } static uint64_t minimac2_read(void *opaque, target_phys_addr_t addr, unsigned size) { MilkymistMinimac2State *s = opaque; uint32_t r = 0; addr >>= 2; switch (addr) { case R_SETUP: case R_MDIO: case R_STATE0: case R_COUNT0: case R_STATE1: case R_COUNT1: case R_TXCOUNT: r = s->regs[addr]; break; default: error_report("milkymist_minimac2: read access to unknown register 0x" TARGET_FMT_plx, addr << 2); break; } trace_milkymist_minimac2_memory_read(addr << 2, r); return r; } static void minimac2_write(void *opaque, target_phys_addr_t addr, uint64_t value, unsigned size) { MilkymistMinimac2State *s = opaque; trace_milkymist_minimac2_memory_read(addr, value); addr >>= 2; switch (addr) { case R_MDIO: { /* MDIO_DI is read only */ int mdio_di = (s->regs[R_MDIO] & MDIO_DI); s->regs[R_MDIO] = value; if (mdio_di) { s->regs[R_MDIO] |= mdio_di; } else { s->regs[R_MDIO] &= ~mdio_di; } minimac2_update_mdio(s); } break; case R_TXCOUNT: s->regs[addr] = value; if (value > 0) { minimac2_tx(s); } break; case R_STATE0: case R_STATE1: s->regs[addr] = value; update_rx_interrupt(s); break; case R_SETUP: case R_COUNT0: case R_COUNT1: s->regs[addr] = value; break; default: error_report("milkymist_minimac2: write access to unknown register 0x" TARGET_FMT_plx, addr << 2); break; } } static const MemoryRegionOps minimac2_ops = { .read = minimac2_read, .write = minimac2_write, .valid = { .min_access_size = 4, .max_access_size = 4, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static int minimac2_can_rx(VLANClientState *nc) { MilkymistMinimac2State *s = DO_UPCAST(NICState, nc, nc)->opaque; if (s->regs[R_STATE0] == STATE_LOADED) { return 1; } if (s->regs[R_STATE1] == STATE_LOADED) { return 1; } return 0; } static void minimac2_cleanup(VLANClientState *nc) { MilkymistMinimac2State *s = DO_UPCAST(NICState, nc, nc)->opaque; s->nic = NULL; } static void milkymist_minimac2_reset(DeviceState *d) { MilkymistMinimac2State *s = container_of(d, MilkymistMinimac2State, busdev.qdev); int i; for (i = 0; i < R_MAX; i++) { s->regs[i] = 0; } for (i = 0; i < R_PHY_MAX; i++) { s->phy_regs[i] = 0; } /* defaults */ s->phy_regs[R_PHY_ID1] = 0x0022; /* Micrel KSZ8001L */ s->phy_regs[R_PHY_ID2] = 0x161a; } static NetClientInfo net_milkymist_minimac2_info = { .type = NET_CLIENT_TYPE_NIC, .size = sizeof(NICState), .can_receive = minimac2_can_rx, .receive = minimac2_rx, .cleanup = minimac2_cleanup, }; static int milkymist_minimac2_init(SysBusDevice *dev) { MilkymistMinimac2State *s = FROM_SYSBUS(typeof(*s), dev); size_t buffers_size = TARGET_PAGE_ALIGN(3 * MINIMAC2_BUFFER_SIZE); sysbus_init_irq(dev, &s->rx_irq); sysbus_init_irq(dev, &s->tx_irq); memory_region_init_io(&s->regs_region, &minimac2_ops, s, "milkymist-minimac2", R_MAX * 4); sysbus_init_mmio(dev, &s->regs_region); /* register buffers memory */ memory_region_init_ram(&s->buffers, "milkymist-minimac2.buffers", buffers_size); vmstate_register_ram_global(&s->buffers); s->rx0_buf = memory_region_get_ram_ptr(&s->buffers); s->rx1_buf = s->rx0_buf + MINIMAC2_BUFFER_SIZE; s->tx_buf = s->rx1_buf + MINIMAC2_BUFFER_SIZE; sysbus_add_memory(dev, s->buffers_base, &s->buffers); qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&net_milkymist_minimac2_info, &s->conf, object_get_typename(OBJECT(dev)), dev->qdev.id, s); qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a); return 0; } static const VMStateDescription vmstate_milkymist_minimac2_mdio = { .name = "milkymist-minimac2-mdio", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_INT32(last_clk, MilkymistMinimac2MdioState), VMSTATE_INT32(count, MilkymistMinimac2MdioState), VMSTATE_UINT32(data, MilkymistMinimac2MdioState), VMSTATE_UINT16(data_out, MilkymistMinimac2MdioState), VMSTATE_INT32(state, MilkymistMinimac2MdioState), VMSTATE_UINT8(phy_addr, MilkymistMinimac2MdioState), VMSTATE_UINT8(reg_addr, MilkymistMinimac2MdioState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_milkymist_minimac2 = { .name = "milkymist-minimac2", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, MilkymistMinimac2State, R_MAX), VMSTATE_UINT16_ARRAY(phy_regs, MilkymistMinimac2State, R_PHY_MAX), VMSTATE_STRUCT(mdio, MilkymistMinimac2State, 0, vmstate_milkymist_minimac2_mdio, MilkymistMinimac2MdioState), VMSTATE_END_OF_LIST() } }; static Property milkymist_minimac2_properties[] = { DEFINE_PROP_TADDR("buffers_base", MilkymistMinimac2State, buffers_base, 0), DEFINE_NIC_PROPERTIES(MilkymistMinimac2State, conf), DEFINE_PROP_STRING("phy_model", MilkymistMinimac2State, phy_model), DEFINE_PROP_END_OF_LIST(), }; static void milkymist_minimac2_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = milkymist_minimac2_init; dc->reset = milkymist_minimac2_reset; dc->vmsd = &vmstate_milkymist_minimac2; dc->props = milkymist_minimac2_properties; } static TypeInfo milkymist_minimac2_info = { .name = "milkymist-minimac2", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(MilkymistMinimac2State), .class_init = milkymist_minimac2_class_init, }; static void milkymist_minimac2_register_types(void) { type_register_static(&milkymist_minimac2_info); } type_init(milkymist_minimac2_register_types)