/* * ColdFire UART emulation. * * Copyright (c) 2007 CodeSourcery. * * This code is licenced under the GPL */ #include "hw.h" #include "mcf.h" #include "qemu-char.h" typedef struct { uint8_t mr[2]; uint8_t sr; uint8_t isr; uint8_t imr; uint8_t bg1; uint8_t bg2; uint8_t fifo[4]; uint8_t tb; int current_mr; int fifo_len; int tx_enabled; int rx_enabled; qemu_irq irq; CharDriverState *chr; } mcf_uart_state; /* UART Status Register bits. */ #define MCF_UART_RxRDY 0x01 #define MCF_UART_FFULL 0x02 #define MCF_UART_TxRDY 0x04 #define MCF_UART_TxEMP 0x08 #define MCF_UART_OE 0x10 #define MCF_UART_PE 0x20 #define MCF_UART_FE 0x40 #define MCF_UART_RB 0x80 /* Interrupt flags. */ #define MCF_UART_TxINT 0x01 #define MCF_UART_RxINT 0x02 #define MCF_UART_DBINT 0x04 #define MCF_UART_COSINT 0x80 /* UMR1 flags. */ #define MCF_UART_BC0 0x01 #define MCF_UART_BC1 0x02 #define MCF_UART_PT 0x04 #define MCF_UART_PM0 0x08 #define MCF_UART_PM1 0x10 #define MCF_UART_ERR 0x20 #define MCF_UART_RxIRQ 0x40 #define MCF_UART_RxRTS 0x80 static void mcf_uart_update(mcf_uart_state *s) { s->isr &= ~(MCF_UART_TxINT | MCF_UART_RxINT); if (s->sr & MCF_UART_TxRDY) s->isr |= MCF_UART_TxINT; if ((s->sr & ((s->mr[0] & MCF_UART_RxIRQ) ? MCF_UART_FFULL : MCF_UART_RxRDY)) != 0) s->isr |= MCF_UART_RxINT; qemu_set_irq(s->irq, (s->isr & s->imr) != 0); } uint32_t mcf_uart_read(void *opaque, target_phys_addr_t addr) { mcf_uart_state *s = (mcf_uart_state *)opaque; switch (addr & 0x3f) { case 0x00: return s->mr[s->current_mr]; case 0x04: return s->sr; case 0x0c: { uint8_t val; int i; if (s->fifo_len == 0) return 0; val = s->fifo[0]; s->fifo_len--; for (i = 0; i < s->fifo_len; i++) s->fifo[i] = s->fifo[i + 1]; s->sr &= ~MCF_UART_FFULL; if (s->fifo_len == 0) s->sr &= ~MCF_UART_RxRDY; mcf_uart_update(s); qemu_chr_accept_input(s->chr); return val; } case 0x10: /* TODO: Implement IPCR. */ return 0; case 0x14: return s->isr; case 0x18: return s->bg1; case 0x1c: return s->bg2; default: return 0; } } /* Update TxRDY flag and set data if present and enabled. */ static void mcf_uart_do_tx(mcf_uart_state *s) { if (s->tx_enabled && (s->sr & MCF_UART_TxEMP) == 0) { if (s->chr) qemu_chr_write(s->chr, (unsigned char *)&s->tb, 1); s->sr |= MCF_UART_TxEMP; } if (s->tx_enabled) { s->sr |= MCF_UART_TxRDY; } else { s->sr &= ~MCF_UART_TxRDY; } } static void mcf_do_command(mcf_uart_state *s, uint8_t cmd) { /* Misc command. */ switch ((cmd >> 4) & 3) { case 0: /* No-op. */ break; case 1: /* Reset mode register pointer. */ s->current_mr = 0; break; case 2: /* Reset receiver. */ s->rx_enabled = 0; s->fifo_len = 0; s->sr &= ~(MCF_UART_RxRDY | MCF_UART_FFULL); break; case 3: /* Reset transmitter. */ s->tx_enabled = 0; s->sr |= MCF_UART_TxEMP; s->sr &= ~MCF_UART_TxRDY; break; case 4: /* Reset error status. */ break; case 5: /* Reset break-change interrupt. */ s->isr &= ~MCF_UART_DBINT; break; case 6: /* Start break. */ case 7: /* Stop break. */ break; } /* Transmitter command. */ switch ((cmd >> 2) & 3) { case 0: /* No-op. */ break; case 1: /* Enable. */ s->tx_enabled = 1; mcf_uart_do_tx(s); break; case 2: /* Disable. */ s->tx_enabled = 0; mcf_uart_do_tx(s); break; case 3: /* Reserved. */ fprintf(stderr, "mcf_uart: Bad TX command\n"); break; } /* Receiver command. */ switch (cmd & 3) { case 0: /* No-op. */ break; case 1: /* Enable. */ s->rx_enabled = 1; break; case 2: s->rx_enabled = 0; break; case 3: /* Reserved. */ fprintf(stderr, "mcf_uart: Bad RX command\n"); break; } } void mcf_uart_write(void *opaque, target_phys_addr_t addr, uint32_t val) { mcf_uart_state *s = (mcf_uart_state *)opaque; switch (addr & 0x3f) { case 0x00: s->mr[s->current_mr] = val; s->current_mr = 1; break; case 0x04: /* CSR is ignored. */ break; case 0x08: /* Command Register. */ mcf_do_command(s, val); break; case 0x0c: /* Transmit Buffer. */ s->sr &= ~MCF_UART_TxEMP; s->tb = val; mcf_uart_do_tx(s); break; case 0x10: /* ACR is ignored. */ break; case 0x14: s->imr = val; break; default: break; } mcf_uart_update(s); } static void mcf_uart_reset(mcf_uart_state *s) { s->fifo_len = 0; s->mr[0] = 0; s->mr[1] = 0; s->sr = MCF_UART_TxEMP; s->tx_enabled = 0; s->rx_enabled = 0; s->isr = 0; s->imr = 0; } static void mcf_uart_push_byte(mcf_uart_state *s, uint8_t data) { /* Break events overwrite the last byte if the fifo is full. */ if (s->fifo_len == 4) s->fifo_len--; s->fifo[s->fifo_len] = data; s->fifo_len++; s->sr |= MCF_UART_RxRDY; if (s->fifo_len == 4) s->sr |= MCF_UART_FFULL; mcf_uart_update(s); } static void mcf_uart_event(void *opaque, int event) { mcf_uart_state *s = (mcf_uart_state *)opaque; switch (event) { case CHR_EVENT_BREAK: s->isr |= MCF_UART_DBINT; mcf_uart_push_byte(s, 0); break; default: break; } } static int mcf_uart_can_receive(void *opaque) { mcf_uart_state *s = (mcf_uart_state *)opaque; return s->rx_enabled && (s->sr & MCF_UART_FFULL) == 0; } static void mcf_uart_receive(void *opaque, const uint8_t *buf, int size) { mcf_uart_state *s = (mcf_uart_state *)opaque; mcf_uart_push_byte(s, buf[0]); } void *mcf_uart_init(qemu_irq irq, CharDriverState *chr) { mcf_uart_state *s; s = qemu_mallocz(sizeof(mcf_uart_state)); s->chr = chr; s->irq = irq; if (chr) { qemu_chr_add_handlers(chr, mcf_uart_can_receive, mcf_uart_receive, mcf_uart_event, s); } mcf_uart_reset(s); return s; } static CPUReadMemoryFunc *mcf_uart_readfn[] = { mcf_uart_read, mcf_uart_read, mcf_uart_read }; static CPUWriteMemoryFunc *mcf_uart_writefn[] = { mcf_uart_write, mcf_uart_write, mcf_uart_write }; void mcf_uart_mm_init(target_phys_addr_t base, qemu_irq irq, CharDriverState *chr) { mcf_uart_state *s; int iomemtype; s = mcf_uart_init(irq, chr); iomemtype = cpu_register_io_memory(0, mcf_uart_readfn, mcf_uart_writefn, s); cpu_register_physical_memory(base, 0x40, iomemtype); }