/* * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms * * Copyright (c) 2003-2005, 2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "nvram.h" #include "qemu-timer.h" #include "sysemu.h" #include "sysbus.h" #include "isa.h" //#define DEBUG_NVRAM #if defined(DEBUG_NVRAM) #define NVRAM_PRINTF(fmt, ...) do { printf(fmt , ## __VA_ARGS__); } while (0) #else #define NVRAM_PRINTF(fmt, ...) do { } while (0) #endif /* * The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has * alarm and a watchdog timer and related control registers. In the * PPC platform there is also a nvram lock function. */ /* * Chipset docs: * http://www.st.com/stonline/products/literature/ds/2410/m48t02.pdf * http://www.st.com/stonline/products/literature/ds/2411/m48t08.pdf * http://www.st.com/stonline/products/literature/od/7001/m48t59y.pdf */ struct M48t59State { /* Hardware parameters */ qemu_irq IRQ; MemoryRegion iomem; uint32_t io_base; uint32_t size; /* RTC management */ time_t time_offset; time_t stop_time; /* Alarm & watchdog */ struct tm alarm; struct QEMUTimer *alrm_timer; struct QEMUTimer *wd_timer; /* NVRAM storage */ uint8_t *buffer; /* Model parameters */ uint32_t type; /* 2 = m48t02, 8 = m48t08, 59 = m48t59 */ /* NVRAM storage */ uint16_t addr; uint8_t lock; }; typedef struct M48t59ISAState { ISADevice busdev; M48t59State state; MemoryRegion io; } M48t59ISAState; typedef struct M48t59SysBusState { SysBusDevice busdev; M48t59State state; } M48t59SysBusState; /* Fake timer functions */ /* Alarm management */ static void alarm_cb (void *opaque) { struct tm tm; uint64_t next_time; M48t59State *NVRAM = opaque; qemu_set_irq(NVRAM->IRQ, 1); if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 && (NVRAM->buffer[0x1FF4] & 0x80) == 0 && (NVRAM->buffer[0x1FF3] & 0x80) == 0 && (NVRAM->buffer[0x1FF2] & 0x80) == 0) { /* Repeat once a month */ qemu_get_timedate(&tm, NVRAM->time_offset); tm.tm_mon++; if (tm.tm_mon == 13) { tm.tm_mon = 1; tm.tm_year++; } next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset; } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 && (NVRAM->buffer[0x1FF4] & 0x80) == 0 && (NVRAM->buffer[0x1FF3] & 0x80) == 0 && (NVRAM->buffer[0x1FF2] & 0x80) == 0) { /* Repeat once a day */ next_time = 24 * 60 * 60; } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 && (NVRAM->buffer[0x1FF4] & 0x80) != 0 && (NVRAM->buffer[0x1FF3] & 0x80) == 0 && (NVRAM->buffer[0x1FF2] & 0x80) == 0) { /* Repeat once an hour */ next_time = 60 * 60; } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 && (NVRAM->buffer[0x1FF4] & 0x80) != 0 && (NVRAM->buffer[0x1FF3] & 0x80) != 0 && (NVRAM->buffer[0x1FF2] & 0x80) == 0) { /* Repeat once a minute */ next_time = 60; } else { /* Repeat once a second */ next_time = 1; } qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock_ns(rtc_clock) + next_time * 1000); qemu_set_irq(NVRAM->IRQ, 0); } static void set_alarm(M48t59State *NVRAM) { int diff; if (NVRAM->alrm_timer != NULL) { qemu_del_timer(NVRAM->alrm_timer); diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset; if (diff > 0) qemu_mod_timer(NVRAM->alrm_timer, diff * 1000); } } /* RTC management helpers */ static inline void get_time(M48t59State *NVRAM, struct tm *tm) { qemu_get_timedate(tm, NVRAM->time_offset); } static void set_time(M48t59State *NVRAM, struct tm *tm) { NVRAM->time_offset = qemu_timedate_diff(tm); set_alarm(NVRAM); } /* Watchdog management */ static void watchdog_cb (void *opaque) { M48t59State *NVRAM = opaque; NVRAM->buffer[0x1FF0] |= 0x80; if (NVRAM->buffer[0x1FF7] & 0x80) { NVRAM->buffer[0x1FF7] = 0x00; NVRAM->buffer[0x1FFC] &= ~0x40; /* May it be a hw CPU Reset instead ? */ qemu_system_reset_request(); } else { qemu_set_irq(NVRAM->IRQ, 1); qemu_set_irq(NVRAM->IRQ, 0); } } static void set_up_watchdog(M48t59State *NVRAM, uint8_t value) { uint64_t interval; /* in 1/16 seconds */ NVRAM->buffer[0x1FF0] &= ~0x80; if (NVRAM->wd_timer != NULL) { qemu_del_timer(NVRAM->wd_timer); if (value != 0) { interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F); qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) + ((interval * 1000) >> 4)); } } } /* Direct access to NVRAM */ void m48t59_write (void *opaque, uint32_t addr, uint32_t val) { M48t59State *NVRAM = opaque; struct tm tm; int tmp; if (addr > 0x1FF8 && addr < 0x2000) NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val); /* check for NVRAM access */ if ((NVRAM->type == 2 && addr < 0x7f8) || (NVRAM->type == 8 && addr < 0x1ff8) || (NVRAM->type == 59 && addr < 0x1ff0)) goto do_write; /* TOD access */ switch (addr) { case 0x1FF0: /* flags register : read-only */ break; case 0x1FF1: /* unused */ break; case 0x1FF2: /* alarm seconds */ tmp = from_bcd(val & 0x7F); if (tmp >= 0 && tmp <= 59) { NVRAM->alarm.tm_sec = tmp; NVRAM->buffer[0x1FF2] = val; set_alarm(NVRAM); } break; case 0x1FF3: /* alarm minutes */ tmp = from_bcd(val & 0x7F); if (tmp >= 0 && tmp <= 59) { NVRAM->alarm.tm_min = tmp; NVRAM->buffer[0x1FF3] = val; set_alarm(NVRAM); } break; case 0x1FF4: /* alarm hours */ tmp = from_bcd(val & 0x3F); if (tmp >= 0 && tmp <= 23) { NVRAM->alarm.tm_hour = tmp; NVRAM->buffer[0x1FF4] = val; set_alarm(NVRAM); } break; case 0x1FF5: /* alarm date */ tmp = from_bcd(val & 0x1F); if (tmp != 0) { NVRAM->alarm.tm_mday = tmp; NVRAM->buffer[0x1FF5] = val; set_alarm(NVRAM); } break; case 0x1FF6: /* interrupts */ NVRAM->buffer[0x1FF6] = val; break; case 0x1FF7: /* watchdog */ NVRAM->buffer[0x1FF7] = val; set_up_watchdog(NVRAM, val); break; case 0x1FF8: case 0x07F8: /* control */ NVRAM->buffer[addr] = (val & ~0xA0) | 0x90; break; case 0x1FF9: case 0x07F9: /* seconds (BCD) */ tmp = from_bcd(val & 0x7F); if (tmp >= 0 && tmp <= 59) { get_time(NVRAM, &tm); tm.tm_sec = tmp; set_time(NVRAM, &tm); } if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) { if (val & 0x80) { NVRAM->stop_time = time(NULL); } else { NVRAM->time_offset += NVRAM->stop_time - time(NULL); NVRAM->stop_time = 0; } } NVRAM->buffer[addr] = val & 0x80; break; case 0x1FFA: case 0x07FA: /* minutes (BCD) */ tmp = from_bcd(val & 0x7F); if (tmp >= 0 && tmp <= 59) { get_time(NVRAM, &tm); tm.tm_min = tmp; set_time(NVRAM, &tm); } break; case 0x1FFB: case 0x07FB: /* hours (BCD) */ tmp = from_bcd(val & 0x3F); if (tmp >= 0 && tmp <= 23) { get_time(NVRAM, &tm); tm.tm_hour = tmp; set_time(NVRAM, &tm); } break; case 0x1FFC: case 0x07FC: /* day of the week / century */ tmp = from_bcd(val & 0x07); get_time(NVRAM, &tm); tm.tm_wday = tmp; set_time(NVRAM, &tm); NVRAM->buffer[addr] = val & 0x40; break; case 0x1FFD: case 0x07FD: /* date */ tmp = from_bcd(val & 0x1F); if (tmp != 0) { get_time(NVRAM, &tm); tm.tm_mday = tmp; set_time(NVRAM, &tm); } break; case 0x1FFE: case 0x07FE: /* month */ tmp = from_bcd(val & 0x1F); if (tmp >= 1 && tmp <= 12) { get_time(NVRAM, &tm); tm.tm_mon = tmp - 1; set_time(NVRAM, &tm); } break; case 0x1FFF: case 0x07FF: /* year */ tmp = from_bcd(val); if (tmp >= 0 && tmp <= 99) { get_time(NVRAM, &tm); if (NVRAM->type == 8) tm.tm_year = from_bcd(val) + 68; // Base year is 1968 else tm.tm_year = from_bcd(val); set_time(NVRAM, &tm); } break; default: /* Check lock registers state */ if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1)) break; if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2)) break; do_write: if (addr < NVRAM->size) { NVRAM->buffer[addr] = val & 0xFF; } break; } } uint32_t m48t59_read (void *opaque, uint32_t addr) { M48t59State *NVRAM = opaque; struct tm tm; uint32_t retval = 0xFF; /* check for NVRAM access */ if ((NVRAM->type == 2 && addr < 0x078f) || (NVRAM->type == 8 && addr < 0x1ff8) || (NVRAM->type == 59 && addr < 0x1ff0)) goto do_read; /* TOD access */ switch (addr) { case 0x1FF0: /* flags register */ goto do_read; case 0x1FF1: /* unused */ retval = 0; break; case 0x1FF2: /* alarm seconds */ goto do_read; case 0x1FF3: /* alarm minutes */ goto do_read; case 0x1FF4: /* alarm hours */ goto do_read; case 0x1FF5: /* alarm date */ goto do_read; case 0x1FF6: /* interrupts */ goto do_read; case 0x1FF7: /* A read resets the watchdog */ set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]); goto do_read; case 0x1FF8: case 0x07F8: /* control */ goto do_read; case 0x1FF9: case 0x07F9: /* seconds (BCD) */ get_time(NVRAM, &tm); retval = (NVRAM->buffer[addr] & 0x80) | to_bcd(tm.tm_sec); break; case 0x1FFA: case 0x07FA: /* minutes (BCD) */ get_time(NVRAM, &tm); retval = to_bcd(tm.tm_min); break; case 0x1FFB: case 0x07FB: /* hours (BCD) */ get_time(NVRAM, &tm); retval = to_bcd(tm.tm_hour); break; case 0x1FFC: case 0x07FC: /* day of the week / century */ get_time(NVRAM, &tm); retval = NVRAM->buffer[addr] | tm.tm_wday; break; case 0x1FFD: case 0x07FD: /* date */ get_time(NVRAM, &tm); retval = to_bcd(tm.tm_mday); break; case 0x1FFE: case 0x07FE: /* month */ get_time(NVRAM, &tm); retval = to_bcd(tm.tm_mon + 1); break; case 0x1FFF: case 0x07FF: /* year */ get_time(NVRAM, &tm); if (NVRAM->type == 8) retval = to_bcd(tm.tm_year - 68); // Base year is 1968 else retval = to_bcd(tm.tm_year); break; default: /* Check lock registers state */ if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1)) break; if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2)) break; do_read: if (addr < NVRAM->size) { retval = NVRAM->buffer[addr]; } break; } if (addr > 0x1FF9 && addr < 0x2000) NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval); return retval; } void m48t59_set_addr (void *opaque, uint32_t addr) { M48t59State *NVRAM = opaque; NVRAM->addr = addr; } void m48t59_toggle_lock (void *opaque, int lock) { M48t59State *NVRAM = opaque; NVRAM->lock ^= 1 << lock; } /* IO access to NVRAM */ static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val) { M48t59State *NVRAM = opaque; NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val); switch (addr) { case 0: NVRAM->addr &= ~0x00FF; NVRAM->addr |= val; break; case 1: NVRAM->addr &= ~0xFF00; NVRAM->addr |= val << 8; break; case 3: m48t59_write(NVRAM, NVRAM->addr, val); NVRAM->addr = 0x0000; break; default: break; } } static uint32_t NVRAM_readb (void *opaque, uint32_t addr) { M48t59State *NVRAM = opaque; uint32_t retval; switch (addr) { case 3: retval = m48t59_read(NVRAM, NVRAM->addr); break; default: retval = -1; break; } NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval); return retval; } static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { M48t59State *NVRAM = opaque; m48t59_write(NVRAM, addr, value & 0xff); } static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { M48t59State *NVRAM = opaque; m48t59_write(NVRAM, addr, (value >> 8) & 0xff); m48t59_write(NVRAM, addr + 1, value & 0xff); } static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { M48t59State *NVRAM = opaque; m48t59_write(NVRAM, addr, (value >> 24) & 0xff); m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff); m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff); m48t59_write(NVRAM, addr + 3, value & 0xff); } static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr) { M48t59State *NVRAM = opaque; uint32_t retval; retval = m48t59_read(NVRAM, addr); return retval; } static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr) { M48t59State *NVRAM = opaque; uint32_t retval; retval = m48t59_read(NVRAM, addr) << 8; retval |= m48t59_read(NVRAM, addr + 1); return retval; } static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr) { M48t59State *NVRAM = opaque; uint32_t retval; retval = m48t59_read(NVRAM, addr) << 24; retval |= m48t59_read(NVRAM, addr + 1) << 16; retval |= m48t59_read(NVRAM, addr + 2) << 8; retval |= m48t59_read(NVRAM, addr + 3); return retval; } static const MemoryRegionOps nvram_ops = { .old_mmio = { .read = { nvram_readb, nvram_readw, nvram_readl, }, .write = { nvram_writeb, nvram_writew, nvram_writel, }, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static const VMStateDescription vmstate_m48t59 = { .name = "m48t59", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(lock, M48t59State), VMSTATE_UINT16(addr, M48t59State), VMSTATE_VBUFFER_UINT32(buffer, M48t59State, 0, NULL, 0, size), VMSTATE_END_OF_LIST() } }; static void m48t59_reset_common(M48t59State *NVRAM) { NVRAM->addr = 0; NVRAM->lock = 0; if (NVRAM->alrm_timer != NULL) qemu_del_timer(NVRAM->alrm_timer); if (NVRAM->wd_timer != NULL) qemu_del_timer(NVRAM->wd_timer); } static void m48t59_reset_isa(DeviceState *d) { M48t59ISAState *isa = container_of(d, M48t59ISAState, busdev.qdev); M48t59State *NVRAM = &isa->state; m48t59_reset_common(NVRAM); } static void m48t59_reset_sysbus(DeviceState *d) { M48t59SysBusState *sys = container_of(d, M48t59SysBusState, busdev.qdev); M48t59State *NVRAM = &sys->state; m48t59_reset_common(NVRAM); } static const MemoryRegionPortio m48t59_portio[] = { {0, 4, 1, .read = NVRAM_readb, .write = NVRAM_writeb }, PORTIO_END_OF_LIST(), }; static const MemoryRegionOps m48t59_io_ops = { .old_portio = m48t59_portio, }; /* Initialisation routine */ M48t59State *m48t59_init(qemu_irq IRQ, target_phys_addr_t mem_base, uint32_t io_base, uint16_t size, int type) { DeviceState *dev; SysBusDevice *s; M48t59SysBusState *d; M48t59State *state; dev = qdev_create(NULL, "m48t59"); qdev_prop_set_uint32(dev, "type", type); qdev_prop_set_uint32(dev, "size", size); qdev_prop_set_uint32(dev, "io_base", io_base); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); d = FROM_SYSBUS(M48t59SysBusState, s); state = &d->state; sysbus_connect_irq(s, 0, IRQ); if (io_base != 0) { register_ioport_read(io_base, 0x04, 1, NVRAM_readb, state); register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, state); } if (mem_base != 0) { sysbus_mmio_map(s, 0, mem_base); } return state; } M48t59State *m48t59_init_isa(ISABus *bus, uint32_t io_base, uint16_t size, int type) { M48t59ISAState *d; ISADevice *dev; M48t59State *s; dev = isa_create(bus, "m48t59_isa"); qdev_prop_set_uint32(&dev->qdev, "type", type); qdev_prop_set_uint32(&dev->qdev, "size", size); qdev_prop_set_uint32(&dev->qdev, "io_base", io_base); qdev_init_nofail(&dev->qdev); d = DO_UPCAST(M48t59ISAState, busdev, dev); s = &d->state; memory_region_init_io(&d->io, &m48t59_io_ops, s, "m48t59", 4); if (io_base != 0) { isa_register_ioport(dev, &d->io, io_base); } return s; } static void m48t59_init_common(M48t59State *s) { s->buffer = g_malloc0(s->size); if (s->type == 59) { s->alrm_timer = qemu_new_timer_ns(rtc_clock, &alarm_cb, s); s->wd_timer = qemu_new_timer_ns(vm_clock, &watchdog_cb, s); } qemu_get_timedate(&s->alarm, 0); vmstate_register(NULL, -1, &vmstate_m48t59, s); } static int m48t59_init_isa1(ISADevice *dev) { M48t59ISAState *d = DO_UPCAST(M48t59ISAState, busdev, dev); M48t59State *s = &d->state; isa_init_irq(dev, &s->IRQ, 8); m48t59_init_common(s); return 0; } static int m48t59_init1(SysBusDevice *dev) { M48t59SysBusState *d = FROM_SYSBUS(M48t59SysBusState, dev); M48t59State *s = &d->state; sysbus_init_irq(dev, &s->IRQ); memory_region_init_io(&s->iomem, &nvram_ops, s, "m48t59.nvram", s->size); sysbus_init_mmio(dev, &s->iomem); m48t59_init_common(s); return 0; } static Property m48t59_isa_properties[] = { DEFINE_PROP_UINT32("size", M48t59ISAState, state.size, -1), DEFINE_PROP_UINT32("type", M48t59ISAState, state.type, -1), DEFINE_PROP_HEX32( "io_base", M48t59ISAState, state.io_base, 0), DEFINE_PROP_END_OF_LIST(), }; static void m48t59_init_class_isa1(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ISADeviceClass *ic = ISA_DEVICE_CLASS(klass); ic->init = m48t59_init_isa1; dc->no_user = 1; dc->reset = m48t59_reset_isa; dc->props = m48t59_isa_properties; } static TypeInfo m48t59_isa_info = { .name = "m48t59_isa", .parent = TYPE_ISA_DEVICE, .instance_size = sizeof(M48t59ISAState), .class_init = m48t59_init_class_isa1, }; static Property m48t59_properties[] = { DEFINE_PROP_UINT32("size", M48t59SysBusState, state.size, -1), DEFINE_PROP_UINT32("type", M48t59SysBusState, state.type, -1), DEFINE_PROP_HEX32( "io_base", M48t59SysBusState, state.io_base, 0), DEFINE_PROP_END_OF_LIST(), }; static void m48t59_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = m48t59_init1; dc->reset = m48t59_reset_sysbus; dc->props = m48t59_properties; } static TypeInfo m48t59_info = { .name = "m48t59", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(M48t59SysBusState), .class_init = m48t59_class_init, }; static void m48t59_register_types(void) { type_register_static(&m48t59_info); type_register_static(&m48t59_isa_info); } type_init(m48t59_register_types)