/* * Copyright (C) 2010 Red Hat, Inc. * * written by Gerd Hoffmann * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "hw.h" #include "pci.h" #include "msi.h" #include "qemu-timer.h" #include "audiodev.h" #include "intel-hda.h" #include "intel-hda-defs.h" #include "dma.h" /* --------------------------------------------------------------------- */ /* hda bus */ static struct BusInfo hda_codec_bus_info = { .name = "HDA", .size = sizeof(HDACodecBus), .props = (Property[]) { DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1), DEFINE_PROP_END_OF_LIST() } }; void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, hda_codec_response_func response, hda_codec_xfer_func xfer) { qbus_create_inplace(&bus->qbus, &hda_codec_bus_info, dev, NULL); bus->response = response; bus->xfer = xfer; } static int hda_codec_dev_init(DeviceState *qdev) { HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus); HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev); HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); if (dev->cad == -1) { dev->cad = bus->next_cad; } if (dev->cad >= 15) { return -1; } bus->next_cad = dev->cad + 1; return cdc->init(dev); } static int hda_codec_dev_exit(DeviceState *qdev) { HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev); HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev); if (cdc->exit) { cdc->exit(dev); } return 0; } HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad) { DeviceState *qdev; HDACodecDevice *cdev; QTAILQ_FOREACH(qdev, &bus->qbus.children, sibling) { cdev = DO_UPCAST(HDACodecDevice, qdev, qdev); if (cdev->cad == cad) { return cdev; } } return NULL; } void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response) { HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); bus->response(dev, solicited, response); } bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, uint8_t *buf, uint32_t len) { HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); return bus->xfer(dev, stnr, output, buf, len); } /* --------------------------------------------------------------------- */ /* intel hda emulation */ typedef struct IntelHDAStream IntelHDAStream; typedef struct IntelHDAState IntelHDAState; typedef struct IntelHDAReg IntelHDAReg; typedef struct bpl { uint64_t addr; uint32_t len; uint32_t flags; } bpl; struct IntelHDAStream { /* registers */ uint32_t ctl; uint32_t lpib; uint32_t cbl; uint32_t lvi; uint32_t fmt; uint32_t bdlp_lbase; uint32_t bdlp_ubase; /* state */ bpl *bpl; uint32_t bentries; uint32_t bsize, be, bp; }; struct IntelHDAState { PCIDevice pci; const char *name; HDACodecBus codecs; /* registers */ uint32_t g_ctl; uint32_t wake_en; uint32_t state_sts; uint32_t int_ctl; uint32_t int_sts; uint32_t wall_clk; uint32_t corb_lbase; uint32_t corb_ubase; uint32_t corb_rp; uint32_t corb_wp; uint32_t corb_ctl; uint32_t corb_sts; uint32_t corb_size; uint32_t rirb_lbase; uint32_t rirb_ubase; uint32_t rirb_wp; uint32_t rirb_cnt; uint32_t rirb_ctl; uint32_t rirb_sts; uint32_t rirb_size; uint32_t dp_lbase; uint32_t dp_ubase; uint32_t icw; uint32_t irr; uint32_t ics; /* streams */ IntelHDAStream st[8]; /* state */ MemoryRegion mmio; uint32_t rirb_count; int64_t wall_base_ns; /* debug logging */ const IntelHDAReg *last_reg; uint32_t last_val; uint32_t last_write; uint32_t last_sec; uint32_t repeat_count; /* properties */ uint32_t debug; uint32_t msi; }; struct IntelHDAReg { const char *name; /* register name */ uint32_t size; /* size in bytes */ uint32_t reset; /* reset value */ uint32_t wmask; /* write mask */ uint32_t wclear; /* write 1 to clear bits */ uint32_t offset; /* location in IntelHDAState */ uint32_t shift; /* byte access entries for dwords */ uint32_t stream; void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old); void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg); }; static void intel_hda_reset(DeviceState *dev); /* --------------------------------------------------------------------- */ static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase) { target_phys_addr_t addr; #if TARGET_PHYS_ADDR_BITS == 32 addr = lbase; #else addr = ubase; addr <<= 32; addr |= lbase; #endif return addr; } static void intel_hda_update_int_sts(IntelHDAState *d) { uint32_t sts = 0; uint32_t i; /* update controller status */ if (d->rirb_sts & ICH6_RBSTS_IRQ) { sts |= (1 << 30); } if (d->rirb_sts & ICH6_RBSTS_OVERRUN) { sts |= (1 << 30); } if (d->state_sts & d->wake_en) { sts |= (1 << 30); } /* update stream status */ for (i = 0; i < 8; i++) { /* buffer completion interrupt */ if (d->st[i].ctl & (1 << 26)) { sts |= (1 << i); } } /* update global status */ if (sts & d->int_ctl) { sts |= (1 << 31); } d->int_sts = sts; } static void intel_hda_update_irq(IntelHDAState *d) { int msi = d->msi && msi_enabled(&d->pci); int level; intel_hda_update_int_sts(d); if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) { level = 1; } else { level = 0; } dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__, level, msi ? "msi" : "intx"); if (msi) { if (level) { msi_notify(&d->pci, 0); } } else { qemu_set_irq(d->pci.irq[0], level); } } static int intel_hda_send_command(IntelHDAState *d, uint32_t verb) { uint32_t cad, nid, data; HDACodecDevice *codec; HDACodecDeviceClass *cdc; cad = (verb >> 28) & 0x0f; if (verb & (1 << 27)) { /* indirect node addressing, not specified in HDA 1.0 */ dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__); return -1; } nid = (verb >> 20) & 0x7f; data = verb & 0xfffff; codec = hda_codec_find(&d->codecs, cad); if (codec == NULL) { dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__); return -1; } cdc = HDA_CODEC_DEVICE_GET_CLASS(codec); cdc->command(codec, nid, data); return 0; } static void intel_hda_corb_run(IntelHDAState *d) { target_phys_addr_t addr; uint32_t rp, verb; if (d->ics & ICH6_IRS_BUSY) { dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw); intel_hda_send_command(d, d->icw); return; } for (;;) { if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) { dprint(d, 2, "%s: !run\n", __FUNCTION__); return; } if ((d->corb_rp & 0xff) == d->corb_wp) { dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__); return; } if (d->rirb_count == d->rirb_cnt) { dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__); return; } rp = (d->corb_rp + 1) & 0xff; addr = intel_hda_addr(d->corb_lbase, d->corb_ubase); verb = ldl_le_pci_dma(&d->pci, addr + 4*rp); d->corb_rp = rp; dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb); intel_hda_send_command(d, verb); } } static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response) { HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); IntelHDAState *d = container_of(bus, IntelHDAState, codecs); target_phys_addr_t addr; uint32_t wp, ex; if (d->ics & ICH6_IRS_BUSY) { dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n", __FUNCTION__, response, dev->cad); d->irr = response; d->ics &= ~(ICH6_IRS_BUSY | 0xf0); d->ics |= (ICH6_IRS_VALID | (dev->cad << 4)); return; } if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) { dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__); return; } ex = (solicited ? 0 : (1 << 4)) | dev->cad; wp = (d->rirb_wp + 1) & 0xff; addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase); stl_le_pci_dma(&d->pci, addr + 8*wp, response); stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex); d->rirb_wp = wp; dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n", __FUNCTION__, wp, response, ex); d->rirb_count++; if (d->rirb_count == d->rirb_cnt) { dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count); if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { d->rirb_sts |= ICH6_RBSTS_IRQ; intel_hda_update_irq(d); } } else if ((d->corb_rp & 0xff) == d->corb_wp) { dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__, d->rirb_count, d->rirb_cnt); if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) { d->rirb_sts |= ICH6_RBSTS_IRQ; intel_hda_update_irq(d); } } } static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output, uint8_t *buf, uint32_t len) { HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus); IntelHDAState *d = container_of(bus, IntelHDAState, codecs); target_phys_addr_t addr; uint32_t s, copy, left; IntelHDAStream *st; bool irq = false; st = output ? d->st + 4 : d->st; for (s = 0; s < 4; s++) { if (stnr == ((st[s].ctl >> 20) & 0x0f)) { st = st + s; break; } } if (s == 4) { return false; } if (st->bpl == NULL) { return false; } if (st->ctl & (1 << 26)) { /* * Wait with the next DMA xfer until the guest * has acked the buffer completion interrupt */ return false; } left = len; while (left > 0) { copy = left; if (copy > st->bsize - st->lpib) copy = st->bsize - st->lpib; if (copy > st->bpl[st->be].len - st->bp) copy = st->bpl[st->be].len - st->bp; dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n", st->be, st->bp, st->bpl[st->be].len, copy); pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output); st->lpib += copy; st->bp += copy; buf += copy; left -= copy; if (st->bpl[st->be].len == st->bp) { /* bpl entry filled */ if (st->bpl[st->be].flags & 0x01) { irq = true; } st->bp = 0; st->be++; if (st->be == st->bentries) { /* bpl wrap around */ st->be = 0; st->lpib = 0; } } } if (d->dp_lbase & 0x01) { addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase); stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib); } dprint(d, 3, "dma: --\n"); if (irq) { st->ctl |= (1 << 26); /* buffer completion interrupt */ intel_hda_update_irq(d); } return true; } static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st) { target_phys_addr_t addr; uint8_t buf[16]; uint32_t i; addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase); st->bentries = st->lvi +1; g_free(st->bpl); st->bpl = g_malloc(sizeof(bpl) * st->bentries); for (i = 0; i < st->bentries; i++, addr += 16) { pci_dma_read(&d->pci, addr, buf, 16); st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf); st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8)); st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12)); dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n", i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags); } st->bsize = st->cbl; st->lpib = 0; st->be = 0; st->bp = 0; } static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output) { DeviceState *qdev; HDACodecDevice *cdev; QTAILQ_FOREACH(qdev, &d->codecs.qbus.children, sibling) { HDACodecDeviceClass *cdc; cdev = DO_UPCAST(HDACodecDevice, qdev, qdev); cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev); if (cdc->stream) { cdc->stream(cdev, stream, running, output); } } } /* --------------------------------------------------------------------- */ static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { if ((d->g_ctl & ICH6_GCTL_RESET) == 0) { intel_hda_reset(&d->pci.qdev); } } static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { intel_hda_update_irq(d); } static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { intel_hda_update_irq(d); } static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { intel_hda_update_irq(d); } static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg) { int64_t ns; ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns; d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */ } static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { intel_hda_corb_run(d); } static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { intel_hda_corb_run(d); } static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { if (d->rirb_wp & ICH6_RIRBWP_RST) { d->rirb_wp = 0; } } static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { intel_hda_update_irq(d); if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) { /* cleared ICH6_RBSTS_IRQ */ d->rirb_count = 0; intel_hda_corb_run(d); } } static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { if (d->ics & ICH6_IRS_BUSY) { intel_hda_corb_run(d); } } static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old) { bool output = reg->stream >= 4; IntelHDAStream *st = d->st + reg->stream; if (st->ctl & 0x01) { /* reset */ dprint(d, 1, "st #%d: reset\n", reg->stream); st->ctl = 0; } if ((st->ctl & 0x02) != (old & 0x02)) { uint32_t stnr = (st->ctl >> 20) & 0x0f; /* run bit flipped */ if (st->ctl & 0x02) { /* start */ dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n", reg->stream, stnr, st->cbl); intel_hda_parse_bdl(d, st); intel_hda_notify_codecs(d, stnr, true, output); } else { /* stop */ dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr); intel_hda_notify_codecs(d, stnr, false, output); } } intel_hda_update_irq(d); } /* --------------------------------------------------------------------- */ #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o)) static const struct IntelHDAReg regtab[] = { /* global */ [ ICH6_REG_GCAP ] = { .name = "GCAP", .size = 2, .reset = 0x4401, }, [ ICH6_REG_VMIN ] = { .name = "VMIN", .size = 1, }, [ ICH6_REG_VMAJ ] = { .name = "VMAJ", .size = 1, .reset = 1, }, [ ICH6_REG_OUTPAY ] = { .name = "OUTPAY", .size = 2, .reset = 0x3c, }, [ ICH6_REG_INPAY ] = { .name = "INPAY", .size = 2, .reset = 0x1d, }, [ ICH6_REG_GCTL ] = { .name = "GCTL", .size = 4, .wmask = 0x0103, .offset = offsetof(IntelHDAState, g_ctl), .whandler = intel_hda_set_g_ctl, }, [ ICH6_REG_WAKEEN ] = { .name = "WAKEEN", .size = 2, .wmask = 0x7fff, .offset = offsetof(IntelHDAState, wake_en), .whandler = intel_hda_set_wake_en, }, [ ICH6_REG_STATESTS ] = { .name = "STATESTS", .size = 2, .wmask = 0x7fff, .wclear = 0x7fff, .offset = offsetof(IntelHDAState, state_sts), .whandler = intel_hda_set_state_sts, }, /* interrupts */ [ ICH6_REG_INTCTL ] = { .name = "INTCTL", .size = 4, .wmask = 0xc00000ff, .offset = offsetof(IntelHDAState, int_ctl), .whandler = intel_hda_set_int_ctl, }, [ ICH6_REG_INTSTS ] = { .name = "INTSTS", .size = 4, .wmask = 0xc00000ff, .wclear = 0xc00000ff, .offset = offsetof(IntelHDAState, int_sts), }, /* misc */ [ ICH6_REG_WALLCLK ] = { .name = "WALLCLK", .size = 4, .offset = offsetof(IntelHDAState, wall_clk), .rhandler = intel_hda_get_wall_clk, }, [ ICH6_REG_WALLCLK + 0x2000 ] = { .name = "WALLCLK(alias)", .size = 4, .offset = offsetof(IntelHDAState, wall_clk), .rhandler = intel_hda_get_wall_clk, }, /* dma engine */ [ ICH6_REG_CORBLBASE ] = { .name = "CORBLBASE", .size = 4, .wmask = 0xffffff80, .offset = offsetof(IntelHDAState, corb_lbase), }, [ ICH6_REG_CORBUBASE ] = { .name = "CORBUBASE", .size = 4, .wmask = 0xffffffff, .offset = offsetof(IntelHDAState, corb_ubase), }, [ ICH6_REG_CORBWP ] = { .name = "CORBWP", .size = 2, .wmask = 0xff, .offset = offsetof(IntelHDAState, corb_wp), .whandler = intel_hda_set_corb_wp, }, [ ICH6_REG_CORBRP ] = { .name = "CORBRP", .size = 2, .wmask = 0x80ff, .offset = offsetof(IntelHDAState, corb_rp), }, [ ICH6_REG_CORBCTL ] = { .name = "CORBCTL", .size = 1, .wmask = 0x03, .offset = offsetof(IntelHDAState, corb_ctl), .whandler = intel_hda_set_corb_ctl, }, [ ICH6_REG_CORBSTS ] = { .name = "CORBSTS", .size = 1, .wmask = 0x01, .wclear = 0x01, .offset = offsetof(IntelHDAState, corb_sts), }, [ ICH6_REG_CORBSIZE ] = { .name = "CORBSIZE", .size = 1, .reset = 0x42, .offset = offsetof(IntelHDAState, corb_size), }, [ ICH6_REG_RIRBLBASE ] = { .name = "RIRBLBASE", .size = 4, .wmask = 0xffffff80, .offset = offsetof(IntelHDAState, rirb_lbase), }, [ ICH6_REG_RIRBUBASE ] = { .name = "RIRBUBASE", .size = 4, .wmask = 0xffffffff, .offset = offsetof(IntelHDAState, rirb_ubase), }, [ ICH6_REG_RIRBWP ] = { .name = "RIRBWP", .size = 2, .wmask = 0x8000, .offset = offsetof(IntelHDAState, rirb_wp), .whandler = intel_hda_set_rirb_wp, }, [ ICH6_REG_RINTCNT ] = { .name = "RINTCNT", .size = 2, .wmask = 0xff, .offset = offsetof(IntelHDAState, rirb_cnt), }, [ ICH6_REG_RIRBCTL ] = { .name = "RIRBCTL", .size = 1, .wmask = 0x07, .offset = offsetof(IntelHDAState, rirb_ctl), }, [ ICH6_REG_RIRBSTS ] = { .name = "RIRBSTS", .size = 1, .wmask = 0x05, .wclear = 0x05, .offset = offsetof(IntelHDAState, rirb_sts), .whandler = intel_hda_set_rirb_sts, }, [ ICH6_REG_RIRBSIZE ] = { .name = "RIRBSIZE", .size = 1, .reset = 0x42, .offset = offsetof(IntelHDAState, rirb_size), }, [ ICH6_REG_DPLBASE ] = { .name = "DPLBASE", .size = 4, .wmask = 0xffffff81, .offset = offsetof(IntelHDAState, dp_lbase), }, [ ICH6_REG_DPUBASE ] = { .name = "DPUBASE", .size = 4, .wmask = 0xffffffff, .offset = offsetof(IntelHDAState, dp_ubase), }, [ ICH6_REG_IC ] = { .name = "ICW", .size = 4, .wmask = 0xffffffff, .offset = offsetof(IntelHDAState, icw), }, [ ICH6_REG_IR ] = { .name = "IRR", .size = 4, .offset = offsetof(IntelHDAState, irr), }, [ ICH6_REG_IRS ] = { .name = "ICS", .size = 2, .wmask = 0x0003, .wclear = 0x0002, .offset = offsetof(IntelHDAState, ics), .whandler = intel_hda_set_ics, }, #define HDA_STREAM(_t, _i) \ [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \ .stream = _i, \ .name = _t stringify(_i) " CTL", \ .size = 4, \ .wmask = 0x1cff001f, \ .offset = offsetof(IntelHDAState, st[_i].ctl), \ .whandler = intel_hda_set_st_ctl, \ }, \ [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \ .stream = _i, \ .name = _t stringify(_i) " CTL(stnr)", \ .size = 1, \ .shift = 16, \ .wmask = 0x00ff0000, \ .offset = offsetof(IntelHDAState, st[_i].ctl), \ .whandler = intel_hda_set_st_ctl, \ }, \ [ ST_REG(_i, ICH6_REG_SD_STS)] = { \ .stream = _i, \ .name = _t stringify(_i) " CTL(sts)", \ .size = 1, \ .shift = 24, \ .wmask = 0x1c000000, \ .wclear = 0x1c000000, \ .offset = offsetof(IntelHDAState, st[_i].ctl), \ .whandler = intel_hda_set_st_ctl, \ }, \ [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \ .stream = _i, \ .name = _t stringify(_i) " LPIB", \ .size = 4, \ .offset = offsetof(IntelHDAState, st[_i].lpib), \ }, \ [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \ .stream = _i, \ .name = _t stringify(_i) " LPIB(alias)", \ .size = 4, \ .offset = offsetof(IntelHDAState, st[_i].lpib), \ }, \ [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \ .stream = _i, \ .name = _t stringify(_i) " CBL", \ .size = 4, \ .wmask = 0xffffffff, \ .offset = offsetof(IntelHDAState, st[_i].cbl), \ }, \ [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \ .stream = _i, \ .name = _t stringify(_i) " LVI", \ .size = 2, \ .wmask = 0x00ff, \ .offset = offsetof(IntelHDAState, st[_i].lvi), \ }, \ [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \ .stream = _i, \ .name = _t stringify(_i) " FIFOS", \ .size = 2, \ .reset = HDA_BUFFER_SIZE, \ }, \ [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \ .stream = _i, \ .name = _t stringify(_i) " FMT", \ .size = 2, \ .wmask = 0x7f7f, \ .offset = offsetof(IntelHDAState, st[_i].fmt), \ }, \ [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \ .stream = _i, \ .name = _t stringify(_i) " BDLPL", \ .size = 4, \ .wmask = 0xffffff80, \ .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \ }, \ [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \ .stream = _i, \ .name = _t stringify(_i) " BDLPU", \ .size = 4, \ .wmask = 0xffffffff, \ .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \ }, \ HDA_STREAM("IN", 0) HDA_STREAM("IN", 1) HDA_STREAM("IN", 2) HDA_STREAM("IN", 3) HDA_STREAM("OUT", 4) HDA_STREAM("OUT", 5) HDA_STREAM("OUT", 6) HDA_STREAM("OUT", 7) }; static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr) { const IntelHDAReg *reg; if (addr >= sizeof(regtab)/sizeof(regtab[0])) { goto noreg; } reg = regtab+addr; if (reg->name == NULL) { goto noreg; } return reg; noreg: dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr); return NULL; } static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg) { uint8_t *addr = (void*)d; addr += reg->offset; return (uint32_t*)addr; } static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val, uint32_t wmask) { uint32_t *addr; uint32_t old; if (!reg) { return; } if (d->debug) { time_t now = time(NULL); if (d->last_write && d->last_reg == reg && d->last_val == val) { d->repeat_count++; if (d->last_sec != now) { dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); d->last_sec = now; d->repeat_count = 0; } } else { if (d->repeat_count) { dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); } dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask); d->last_write = 1; d->last_reg = reg; d->last_val = val; d->last_sec = now; d->repeat_count = 0; } } assert(reg->offset != 0); addr = intel_hda_reg_addr(d, reg); old = *addr; if (reg->shift) { val <<= reg->shift; wmask <<= reg->shift; } wmask &= reg->wmask; *addr &= ~wmask; *addr |= wmask & val; *addr &= ~(val & reg->wclear); if (reg->whandler) { reg->whandler(d, reg, old); } } static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg, uint32_t rmask) { uint32_t *addr, ret; if (!reg) { return 0; } if (reg->rhandler) { reg->rhandler(d, reg); } if (reg->offset == 0) { /* constant read-only register */ ret = reg->reset; } else { addr = intel_hda_reg_addr(d, reg); ret = *addr; if (reg->shift) { ret >>= reg->shift; } ret &= rmask; } if (d->debug) { time_t now = time(NULL); if (!d->last_write && d->last_reg == reg && d->last_val == ret) { d->repeat_count++; if (d->last_sec != now) { dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); d->last_sec = now; d->repeat_count = 0; } } else { if (d->repeat_count) { dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count); } dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask); d->last_write = 0; d->last_reg = reg; d->last_val = ret; d->last_sec = now; d->repeat_count = 0; } } return ret; } static void intel_hda_regs_reset(IntelHDAState *d) { uint32_t *addr; int i; for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) { if (regtab[i].name == NULL) { continue; } if (regtab[i].offset == 0) { continue; } addr = intel_hda_reg_addr(d, regtab + i); *addr = regtab[i].reset; } } /* --------------------------------------------------------------------- */ static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { IntelHDAState *d = opaque; const IntelHDAReg *reg = intel_hda_reg_find(d, addr); intel_hda_reg_write(d, reg, val, 0xff); } static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val) { IntelHDAState *d = opaque; const IntelHDAReg *reg = intel_hda_reg_find(d, addr); intel_hda_reg_write(d, reg, val, 0xffff); } static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { IntelHDAState *d = opaque; const IntelHDAReg *reg = intel_hda_reg_find(d, addr); intel_hda_reg_write(d, reg, val, 0xffffffff); } static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr) { IntelHDAState *d = opaque; const IntelHDAReg *reg = intel_hda_reg_find(d, addr); return intel_hda_reg_read(d, reg, 0xff); } static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr) { IntelHDAState *d = opaque; const IntelHDAReg *reg = intel_hda_reg_find(d, addr); return intel_hda_reg_read(d, reg, 0xffff); } static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr) { IntelHDAState *d = opaque; const IntelHDAReg *reg = intel_hda_reg_find(d, addr); return intel_hda_reg_read(d, reg, 0xffffffff); } static const MemoryRegionOps intel_hda_mmio_ops = { .old_mmio = { .read = { intel_hda_mmio_readb, intel_hda_mmio_readw, intel_hda_mmio_readl, }, .write = { intel_hda_mmio_writeb, intel_hda_mmio_writew, intel_hda_mmio_writel, }, }, .endianness = DEVICE_NATIVE_ENDIAN, }; /* --------------------------------------------------------------------- */ static void intel_hda_reset(DeviceState *dev) { IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev); DeviceState *qdev; HDACodecDevice *cdev; intel_hda_regs_reset(d); d->wall_base_ns = qemu_get_clock_ns(vm_clock); /* reset codecs */ QTAILQ_FOREACH(qdev, &d->codecs.qbus.children, sibling) { cdev = DO_UPCAST(HDACodecDevice, qdev, qdev); device_reset(DEVICE(cdev)); d->state_sts |= (1 << cdev->cad); } intel_hda_update_irq(d); } static int intel_hda_init(PCIDevice *pci) { IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci); uint8_t *conf = d->pci.config; d->name = object_get_typename(OBJECT(d)); pci_config_set_interrupt_pin(conf, 1); /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */ conf[0x40] = 0x01; memory_region_init_io(&d->mmio, &intel_hda_mmio_ops, d, "intel-hda", 0x4000); pci_register_bar(&d->pci, 0, 0, &d->mmio); if (d->msi) { msi_init(&d->pci, 0x50, 1, true, false); } hda_codec_bus_init(&d->pci.qdev, &d->codecs, intel_hda_response, intel_hda_xfer); return 0; } static int intel_hda_exit(PCIDevice *pci) { IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci); msi_uninit(&d->pci); memory_region_destroy(&d->mmio); return 0; } static void intel_hda_write_config(PCIDevice *pci, uint32_t addr, uint32_t val, int len) { IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci); pci_default_write_config(pci, addr, val, len); if (d->msi) { msi_write_config(pci, addr, val, len); } } static int intel_hda_post_load(void *opaque, int version) { IntelHDAState* d = opaque; int i; dprint(d, 1, "%s\n", __FUNCTION__); for (i = 0; i < ARRAY_SIZE(d->st); i++) { if (d->st[i].ctl & 0x02) { intel_hda_parse_bdl(d, &d->st[i]); } } intel_hda_update_irq(d); return 0; } static const VMStateDescription vmstate_intel_hda_stream = { .name = "intel-hda-stream", .version_id = 1, .fields = (VMStateField []) { VMSTATE_UINT32(ctl, IntelHDAStream), VMSTATE_UINT32(lpib, IntelHDAStream), VMSTATE_UINT32(cbl, IntelHDAStream), VMSTATE_UINT32(lvi, IntelHDAStream), VMSTATE_UINT32(fmt, IntelHDAStream), VMSTATE_UINT32(bdlp_lbase, IntelHDAStream), VMSTATE_UINT32(bdlp_ubase, IntelHDAStream), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_intel_hda = { .name = "intel-hda", .version_id = 1, .post_load = intel_hda_post_load, .fields = (VMStateField []) { VMSTATE_PCI_DEVICE(pci, IntelHDAState), /* registers */ VMSTATE_UINT32(g_ctl, IntelHDAState), VMSTATE_UINT32(wake_en, IntelHDAState), VMSTATE_UINT32(state_sts, IntelHDAState), VMSTATE_UINT32(int_ctl, IntelHDAState), VMSTATE_UINT32(int_sts, IntelHDAState), VMSTATE_UINT32(wall_clk, IntelHDAState), VMSTATE_UINT32(corb_lbase, IntelHDAState), VMSTATE_UINT32(corb_ubase, IntelHDAState), VMSTATE_UINT32(corb_rp, IntelHDAState), VMSTATE_UINT32(corb_wp, IntelHDAState), VMSTATE_UINT32(corb_ctl, IntelHDAState), VMSTATE_UINT32(corb_sts, IntelHDAState), VMSTATE_UINT32(corb_size, IntelHDAState), VMSTATE_UINT32(rirb_lbase, IntelHDAState), VMSTATE_UINT32(rirb_ubase, IntelHDAState), VMSTATE_UINT32(rirb_wp, IntelHDAState), VMSTATE_UINT32(rirb_cnt, IntelHDAState), VMSTATE_UINT32(rirb_ctl, IntelHDAState), VMSTATE_UINT32(rirb_sts, IntelHDAState), VMSTATE_UINT32(rirb_size, IntelHDAState), VMSTATE_UINT32(dp_lbase, IntelHDAState), VMSTATE_UINT32(dp_ubase, IntelHDAState), VMSTATE_UINT32(icw, IntelHDAState), VMSTATE_UINT32(irr, IntelHDAState), VMSTATE_UINT32(ics, IntelHDAState), VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0, vmstate_intel_hda_stream, IntelHDAStream), /* additional state info */ VMSTATE_UINT32(rirb_count, IntelHDAState), VMSTATE_INT64(wall_base_ns, IntelHDAState), VMSTATE_END_OF_LIST() } }; static Property intel_hda_properties[] = { DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0), DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1), DEFINE_PROP_END_OF_LIST(), }; static void intel_hda_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = intel_hda_init; k->exit = intel_hda_exit; k->config_write = intel_hda_write_config; k->vendor_id = PCI_VENDOR_ID_INTEL; k->device_id = 0x2668; k->revision = 1; k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO; dc->desc = "Intel HD Audio Controller"; dc->reset = intel_hda_reset; dc->vmsd = &vmstate_intel_hda; dc->props = intel_hda_properties; } static TypeInfo intel_hda_info = { .name = "intel-hda", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(IntelHDAState), .class_init = intel_hda_class_init, }; static void hda_codec_device_class_init(ObjectClass *klass, void *data) { DeviceClass *k = DEVICE_CLASS(klass); k->init = hda_codec_dev_init; k->exit = hda_codec_dev_exit; k->bus_info = &hda_codec_bus_info; } static TypeInfo hda_codec_device_type_info = { .name = TYPE_HDA_CODEC_DEVICE, .parent = TYPE_DEVICE, .instance_size = sizeof(HDACodecDevice), .abstract = true, .class_size = sizeof(HDACodecDeviceClass), .class_init = hda_codec_device_class_init, }; static void intel_hda_register_types(void) { type_register_static(&intel_hda_info); type_register_static(&hda_codec_device_type_info); } type_init(intel_hda_register_types) /* * create intel hda controller with codec attached to it, * so '-soundhw hda' works. */ int intel_hda_and_codec_init(PCIBus *bus) { PCIDevice *controller; BusState *hdabus; DeviceState *codec; controller = pci_create_simple(bus, -1, "intel-hda"); hdabus = QLIST_FIRST(&controller->qdev.child_bus); codec = qdev_create(hdabus, "hda-duplex"); qdev_init_nofail(codec); return 0; }