/* * QEMU 8253/8254 interval timer emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" //#define DEBUG_PIT #define RW_STATE_LSB 1 #define RW_STATE_MSB 2 #define RW_STATE_WORD0 3 #define RW_STATE_WORD1 4 typedef struct PITChannelState { int count; /* can be 65536 */ uint16_t latched_count; uint8_t count_latched; uint8_t status_latched; uint8_t status; uint8_t read_state; uint8_t write_state; uint8_t write_latch; uint8_t rw_mode; uint8_t mode; uint8_t bcd; /* not supported */ uint8_t gate; /* timer start */ int64_t count_load_time; /* irq handling */ int64_t next_transition_time; QEMUTimer *irq_timer; int irq; } PITChannelState; struct PITState { PITChannelState channels[3]; }; static PITState pit_state; static void pit_irq_timer_update(PITChannelState *s, int64_t current_time); static int pit_get_count(PITChannelState *s) { uint64_t d; int counter; d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec); switch(s->mode) { case 0: case 1: case 4: case 5: counter = (s->count - d) & 0xffff; break; case 3: /* XXX: may be incorrect for odd counts */ counter = s->count - ((2 * d) % s->count); break; default: counter = s->count - (d % s->count); break; } return counter; } /* get pit output bit */ static int pit_get_out1(PITChannelState *s, int64_t current_time) { uint64_t d; int out; d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec); switch(s->mode) { default: case 0: out = (d >= s->count); break; case 1: out = (d < s->count); break; case 2: if ((d % s->count) == 0 && d != 0) out = 1; else out = 0; break; case 3: out = (d % s->count) < ((s->count + 1) >> 1); break; case 4: case 5: out = (d == s->count); break; } return out; } int pit_get_out(PITState *pit, int channel, int64_t current_time) { PITChannelState *s = &pit->channels[channel]; return pit_get_out1(s, current_time); } /* return -1 if no transition will occur. */ static int64_t pit_get_next_transition_time(PITChannelState *s, int64_t current_time) { uint64_t d, next_time, base; int period2; d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec); switch(s->mode) { default: case 0: case 1: if (d < s->count) next_time = s->count; else return -1; break; case 2: base = (d / s->count) * s->count; if ((d - base) == 0 && d != 0) next_time = base + s->count; else next_time = base + s->count + 1; break; case 3: base = (d / s->count) * s->count; period2 = ((s->count + 1) >> 1); if ((d - base) < period2) next_time = base + period2; else next_time = base + s->count; break; case 4: case 5: if (d < s->count) next_time = s->count; else if (d == s->count) next_time = s->count + 1; else return -1; break; } /* convert to timer units */ next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ); /* fix potential rounding problems */ /* XXX: better solution: use a clock at PIT_FREQ Hz */ if (next_time <= current_time) next_time = current_time + 1; return next_time; } /* val must be 0 or 1 */ void pit_set_gate(PITState *pit, int channel, int val) { PITChannelState *s = &pit->channels[channel]; switch(s->mode) { default: case 0: case 4: /* XXX: just disable/enable counting */ break; case 1: case 5: if (s->gate < val) { /* restart counting on rising edge */ s->count_load_time = qemu_get_clock(vm_clock); pit_irq_timer_update(s, s->count_load_time); } break; case 2: case 3: if (s->gate < val) { /* restart counting on rising edge */ s->count_load_time = qemu_get_clock(vm_clock); pit_irq_timer_update(s, s->count_load_time); } /* XXX: disable/enable counting */ break; } s->gate = val; } int pit_get_gate(PITState *pit, int channel) { PITChannelState *s = &pit->channels[channel]; return s->gate; } static inline void pit_load_count(PITChannelState *s, int val) { if (val == 0) val = 0x10000; s->count_load_time = qemu_get_clock(vm_clock); s->count = val; pit_irq_timer_update(s, s->count_load_time); } /* if already latched, do not latch again */ static void pit_latch_count(PITChannelState *s) { if (!s->count_latched) { s->latched_count = pit_get_count(s); s->count_latched = s->rw_mode; } } static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val) { PITState *pit = opaque; int channel, access; PITChannelState *s; addr &= 3; if (addr == 3) { channel = val >> 6; if (channel == 3) { /* read back command */ for(channel = 0; channel < 3; channel++) { s = &pit->channels[channel]; if (val & (2 << channel)) { if (!(val & 0x20)) { pit_latch_count(s); } if (!(val & 0x10) && !s->status_latched) { /* status latch */ /* XXX: add BCD and null count */ s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) | (s->rw_mode << 4) | (s->mode << 1) | s->bcd; s->status_latched = 1; } } } } else { s = &pit->channels[channel]; access = (val >> 4) & 3; if (access == 0) { pit_latch_count(s); } else { s->rw_mode = access; s->read_state = access; s->write_state = access; s->mode = (val >> 1) & 7; s->bcd = val & 1; /* XXX: update irq timer ? */ } } } else { s = &pit->channels[addr]; switch(s->write_state) { default: case RW_STATE_LSB: pit_load_count(s, val); break; case RW_STATE_MSB: pit_load_count(s, val << 8); break; case RW_STATE_WORD0: s->write_latch = val; s->write_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: pit_load_count(s, s->write_latch | (val << 8)); s->write_state = RW_STATE_WORD0; break; } } } static uint32_t pit_ioport_read(void *opaque, uint32_t addr) { PITState *pit = opaque; int ret, count; PITChannelState *s; addr &= 3; s = &pit->channels[addr]; if (s->status_latched) { s->status_latched = 0; ret = s->status; } else if (s->count_latched) { switch(s->count_latched) { default: case RW_STATE_LSB: ret = s->latched_count & 0xff; s->count_latched = 0; break; case RW_STATE_MSB: ret = s->latched_count >> 8; s->count_latched = 0; break; case RW_STATE_WORD0: ret = s->latched_count & 0xff; s->count_latched = RW_STATE_MSB; break; } } else { switch(s->read_state) { default: case RW_STATE_LSB: count = pit_get_count(s); ret = count & 0xff; break; case RW_STATE_MSB: count = pit_get_count(s); ret = (count >> 8) & 0xff; break; case RW_STATE_WORD0: count = pit_get_count(s); ret = count & 0xff; s->read_state = RW_STATE_WORD1; break; case RW_STATE_WORD1: count = pit_get_count(s); ret = (count >> 8) & 0xff; s->read_state = RW_STATE_WORD0; break; } } return ret; } static void pit_irq_timer_update(PITChannelState *s, int64_t current_time) { int64_t expire_time; int irq_level; if (!s->irq_timer) return; expire_time = pit_get_next_transition_time(s, current_time); irq_level = pit_get_out1(s, current_time); pic_set_irq(s->irq, irq_level); #ifdef DEBUG_PIT printf("irq_level=%d next_delay=%f\n", irq_level, (double)(expire_time - current_time) / ticks_per_sec); #endif s->next_transition_time = expire_time; if (expire_time != -1) qemu_mod_timer(s->irq_timer, expire_time); else qemu_del_timer(s->irq_timer); } static void pit_irq_timer(void *opaque) { PITChannelState *s = opaque; pit_irq_timer_update(s, s->next_transition_time); } static void pit_save(QEMUFile *f, void *opaque) { PITState *pit = opaque; PITChannelState *s; int i; for(i = 0; i < 3; i++) { s = &pit->channels[i]; qemu_put_be32s(f, &s->count); qemu_put_be16s(f, &s->latched_count); qemu_put_8s(f, &s->count_latched); qemu_put_8s(f, &s->status_latched); qemu_put_8s(f, &s->status); qemu_put_8s(f, &s->read_state); qemu_put_8s(f, &s->write_state); qemu_put_8s(f, &s->write_latch); qemu_put_8s(f, &s->rw_mode); qemu_put_8s(f, &s->mode); qemu_put_8s(f, &s->bcd); qemu_put_8s(f, &s->gate); qemu_put_be64s(f, &s->count_load_time); if (s->irq_timer) { qemu_put_be64s(f, &s->next_transition_time); qemu_put_timer(f, s->irq_timer); } } } static int pit_load(QEMUFile *f, void *opaque, int version_id) { PITState *pit = opaque; PITChannelState *s; int i; if (version_id != 1) return -EINVAL; for(i = 0; i < 3; i++) { s = &pit->channels[i]; qemu_get_be32s(f, &s->count); qemu_get_be16s(f, &s->latched_count); qemu_get_8s(f, &s->count_latched); qemu_get_8s(f, &s->status_latched); qemu_get_8s(f, &s->status); qemu_get_8s(f, &s->read_state); qemu_get_8s(f, &s->write_state); qemu_get_8s(f, &s->write_latch); qemu_get_8s(f, &s->rw_mode); qemu_get_8s(f, &s->mode); qemu_get_8s(f, &s->bcd); qemu_get_8s(f, &s->gate); qemu_get_be64s(f, &s->count_load_time); if (s->irq_timer) { qemu_get_be64s(f, &s->next_transition_time); qemu_get_timer(f, s->irq_timer); } } return 0; } static void pit_reset(void *opaque) { PITState *pit = opaque; PITChannelState *s; int i; for(i = 0;i < 3; i++) { s = &pit->channels[i]; s->mode = 3; s->gate = (i != 2); pit_load_count(s, 0); } } PITState *pit_init(int base, int irq) { PITState *pit = &pit_state; PITChannelState *s; s = &pit->channels[0]; /* the timer 0 is connected to an IRQ */ s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s); s->irq = irq; register_savevm("i8254", base, 1, pit_save, pit_load, pit); qemu_register_reset(pit_reset, pit); register_ioport_write(base, 4, 1, pit_ioport_write, pit); register_ioport_read(base, 3, 1, pit_ioport_read, pit); pit_reset(pit); return pit; }