/* * QEMU ETRAX Ethernet Controller. * * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "hw.h" #include "net.h" #include "etraxfs_dma.h" #define D(x) /* * The MDIO extensions in the TDK PHY model were reversed engineered from the * linux driver (PHYID and Diagnostics reg). * TODO: Add friendly names for the register nums. */ struct qemu_phy { uint32_t regs[32]; unsigned int (*read)(struct qemu_phy *phy, unsigned int req); void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data); }; static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req) { int regnum; unsigned r = 0; regnum = req & 0x1f; switch (regnum) { case 1: /* MR1. */ /* Speeds and modes. */ r |= (1 << 13) | (1 << 14); r |= (1 << 11) | (1 << 12); r |= (1 << 5); /* Autoneg complete. */ r |= (1 << 3); /* Autoneg able. */ r |= (1 << 2); /* Link. */ break; case 5: /* Link partner ability. We are kind; always agree with whatever best mode the guest advertises. */ r = 1 << 14; /* Success. */ /* Copy advertised modes. */ r |= phy->regs[4] & (15 << 5); /* Autoneg support. */ r |= 1; break; case 18: { /* Diagnostics reg. */ int duplex = 0; int speed_100 = 0; /* Are we advertising 100 half or 100 duplex ? */ speed_100 = !!(phy->regs[4] & 0x180); /* Are we advertising 10 duplex or 100 duplex ? */ duplex = !!(phy->regs[4] & 0x180); r = (speed_100 << 10) | (duplex << 11); } break; default: r = phy->regs[regnum]; break; } D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum)); return r; } static void tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data) { int regnum; regnum = req & 0x1f; D(printf("%s reg[%d] = %x\n", __func__, regnum, data)); switch (regnum) { default: phy->regs[regnum] = data; break; } } static void tdk_init(struct qemu_phy *phy) { phy->regs[0] = 0x3100; /* PHY Id. */ phy->regs[2] = 0x0300; phy->regs[3] = 0xe400; /* Autonegotiation advertisement reg. */ phy->regs[4] = 0x01E1; phy->read = tdk_read; phy->write = tdk_write; } struct qemu_mdio { /* bus. */ int mdc; int mdio; /* decoder. */ enum { PREAMBLE, SOF, OPC, ADDR, REQ, TURNAROUND, DATA } state; unsigned int drive; unsigned int cnt; unsigned int addr; unsigned int opc; unsigned int req; unsigned int data; struct qemu_phy *devs[32]; }; static void mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) { bus->devs[addr & 0x1f] = phy; } #ifdef USE_THIS_DEAD_CODE static void mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) { bus->devs[addr & 0x1f] = NULL; } #endif static void mdio_read_req(struct qemu_mdio *bus) { struct qemu_phy *phy; phy = bus->devs[bus->addr]; if (phy && phy->read) bus->data = phy->read(phy, bus->req); else bus->data = 0xffff; } static void mdio_write_req(struct qemu_mdio *bus) { struct qemu_phy *phy; phy = bus->devs[bus->addr]; if (phy && phy->write) phy->write(phy, bus->req, bus->data); } static void mdio_cycle(struct qemu_mdio *bus) { bus->cnt++; D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n", bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive)); #if 0 if (bus->mdc) printf("%d", bus->mdio); #endif switch (bus->state) { case PREAMBLE: if (bus->mdc) { if (bus->cnt >= (32 * 2) && !bus->mdio) { bus->cnt = 0; bus->state = SOF; bus->data = 0; } } break; case SOF: if (bus->mdc) { if (bus->mdio != 1) printf("WARNING: no SOF\n"); if (bus->cnt == 1*2) { bus->cnt = 0; bus->opc = 0; bus->state = OPC; } } break; case OPC: if (bus->mdc) { bus->opc <<= 1; bus->opc |= bus->mdio & 1; if (bus->cnt == 2*2) { bus->cnt = 0; bus->addr = 0; bus->state = ADDR; } } break; case ADDR: if (bus->mdc) { bus->addr <<= 1; bus->addr |= bus->mdio & 1; if (bus->cnt == 5*2) { bus->cnt = 0; bus->req = 0; bus->state = REQ; } } break; case REQ: if (bus->mdc) { bus->req <<= 1; bus->req |= bus->mdio & 1; if (bus->cnt == 5*2) { bus->cnt = 0; bus->state = TURNAROUND; } } break; case TURNAROUND: if (bus->mdc && bus->cnt == 2*2) { bus->mdio = 0; bus->cnt = 0; if (bus->opc == 2) { bus->drive = 1; mdio_read_req(bus); bus->mdio = bus->data & 1; } bus->state = DATA; } break; case DATA: if (!bus->mdc) { if (bus->drive) { bus->mdio = !!(bus->data & (1 << 15)); bus->data <<= 1; } } else { if (!bus->drive) { bus->data <<= 1; bus->data |= bus->mdio; } if (bus->cnt == 16 * 2) { bus->cnt = 0; bus->state = PREAMBLE; if (!bus->drive) mdio_write_req(bus); bus->drive = 0; } } break; default: break; } } /* ETRAX-FS Ethernet MAC block starts here. */ #define RW_MA0_LO 0x00 #define RW_MA0_HI 0x04 #define RW_MA1_LO 0x08 #define RW_MA1_HI 0x0c #define RW_GA_LO 0x10 #define RW_GA_HI 0x14 #define RW_GEN_CTRL 0x18 #define RW_REC_CTRL 0x1c #define RW_TR_CTRL 0x20 #define RW_CLR_ERR 0x24 #define RW_MGM_CTRL 0x28 #define R_STAT 0x2c #define FS_ETH_MAX_REGS 0x5c struct fs_eth { CPUState *env; qemu_irq *irq; target_phys_addr_t base; VLANClientState *vc; int ethregs; /* Two addrs in the filter. */ uint8_t macaddr[2][6]; uint32_t regs[FS_ETH_MAX_REGS]; unsigned char rx_fifo[1536]; int rx_fifo_len; int rx_fifo_pos; struct etraxfs_dma_client *dma_out; struct etraxfs_dma_client *dma_in; /* MDIO bus. */ struct qemu_mdio mdio_bus; /* PHY. */ struct qemu_phy phy; }; static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr) { struct fs_eth *eth = opaque; CPUState *env = eth->env; cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n", addr); return 0; } static uint32_t eth_readl (void *opaque, target_phys_addr_t addr) { struct fs_eth *eth = opaque; uint32_t r = 0; /* Make addr relative to this instances base. */ addr -= eth->base; switch (addr) { case R_STAT: /* Attach an MDIO/PHY abstraction. */ r = eth->mdio_bus.mdio & 1; break; default: r = eth->regs[addr]; D(printf ("%s %x\n", __func__, addr)); break; } return r; } static void eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value) { struct fs_eth *eth = opaque; CPUState *env = eth->env; cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n", addr); } static void eth_update_ma(struct fs_eth *eth, int ma) { int reg; int i = 0; ma &= 1; reg = RW_MA0_LO; if (ma) reg = RW_MA1_LO; eth->macaddr[ma][i++] = eth->regs[reg]; eth->macaddr[ma][i++] = eth->regs[reg] >> 8; eth->macaddr[ma][i++] = eth->regs[reg] >> 16; eth->macaddr[ma][i++] = eth->regs[reg] >> 24; eth->macaddr[ma][i++] = eth->regs[reg + 4]; eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8; D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma, eth->macaddr[ma][0], eth->macaddr[ma][1], eth->macaddr[ma][2], eth->macaddr[ma][3], eth->macaddr[ma][4], eth->macaddr[ma][5])); } static void eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { struct fs_eth *eth = opaque; /* Make addr relative to this instances base. */ addr -= eth->base; switch (addr) { case RW_MA0_LO: eth->regs[addr] = value; eth_update_ma(eth, 0); break; case RW_MA0_HI: eth->regs[addr] = value; eth_update_ma(eth, 0); break; case RW_MA1_LO: eth->regs[addr] = value; eth_update_ma(eth, 1); break; case RW_MA1_HI: eth->regs[addr] = value; eth_update_ma(eth, 1); break; case RW_MGM_CTRL: /* Attach an MDIO/PHY abstraction. */ if (value & 2) eth->mdio_bus.mdio = value & 1; if (eth->mdio_bus.mdc != (value & 4)) mdio_cycle(ð->mdio_bus); eth->mdio_bus.mdc = !!(value & 4); break; default: eth->regs[addr] = value; D(printf ("%s %x %x\n", __func__, addr, value)); break; } } /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom filter dropping group addresses we have not joined. The filter has 64 bits (m). The has function is a simple nible xor of the group addr. */ static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa) { unsigned int hsh; int m_individual = eth->regs[RW_REC_CTRL] & 4; int match; /* First bit on the wire of a MAC address signals multicast or physical address. */ if (!m_individual && !sa[0] & 1) return 0; /* Calculate the hash index for the GA registers. */ hsh = 0; hsh ^= (*sa) & 0x3f; hsh ^= ((*sa) >> 6) & 0x03; ++sa; hsh ^= ((*sa) << 2) & 0x03c; hsh ^= ((*sa) >> 4) & 0xf; ++sa; hsh ^= ((*sa) << 4) & 0x30; hsh ^= ((*sa) >> 2) & 0x3f; ++sa; hsh ^= (*sa) & 0x3f; hsh ^= ((*sa) >> 6) & 0x03; ++sa; hsh ^= ((*sa) << 2) & 0x03c; hsh ^= ((*sa) >> 4) & 0xf; ++sa; hsh ^= ((*sa) << 4) & 0x30; hsh ^= ((*sa) >> 2) & 0x3f; hsh &= 63; if (hsh > 31) match = eth->regs[RW_GA_HI] & (1 << (hsh - 32)); else match = eth->regs[RW_GA_LO] & (1 << hsh); D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh, eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match)); return match; } static int eth_can_receive(void *opaque) { struct fs_eth *eth = opaque; int r; r = eth->rx_fifo_len == 0; if (!r) { /* TODO: signal fifo overrun. */ printf("PACKET LOSS!\n"); } return r; } static void eth_receive(void *opaque, const uint8_t *buf, int size) { unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; struct fs_eth *eth = opaque; int use_ma0 = eth->regs[RW_REC_CTRL] & 1; int use_ma1 = eth->regs[RW_REC_CTRL] & 2; int r_bcast = eth->regs[RW_REC_CTRL] & 8; if (size < 12) return; D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], use_ma0, use_ma1, r_bcast)); /* Does the frame get through the address filters? */ if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6)) && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6)) && (!r_bcast || memcmp(buf, sa_bcast, 6)) && !eth_match_groupaddr(eth, buf)) return; if (size > sizeof(eth->rx_fifo)) { /* TODO: signal error. */ } else if (eth->rx_fifo_len) { /* FIFO overrun. */ } else { memcpy(eth->rx_fifo, buf, size); /* +4, HW passes the CRC to sw. */ eth->rx_fifo_len = size + 4; eth->rx_fifo_pos = 0; } } static void eth_rx_pull(void *opaque) { struct fs_eth *eth = opaque; int len; if (eth->rx_fifo_len) { D(printf("%s %d\n", __func__, eth->rx_fifo_len)); #if 0 { int i; for (i = 0; i < 32; i++) printf("%2.2x", eth->rx_fifo[i]); printf("\n"); } #endif len = etraxfs_dmac_input(eth->dma_in, eth->rx_fifo + eth->rx_fifo_pos, eth->rx_fifo_len, 1); eth->rx_fifo_len -= len; eth->rx_fifo_pos += len; } } static int eth_tx_push(void *opaque, unsigned char *buf, int len) { struct fs_eth *eth = opaque; D(printf("%s buf=%p len=%d\n", __func__, buf, len)); qemu_send_packet(eth->vc, buf, len); return len; } static CPUReadMemoryFunc *eth_read[] = { ð_rinvalid, ð_rinvalid, ð_readl, }; static CPUWriteMemoryFunc *eth_write[] = { ð_winvalid, ð_winvalid, ð_writel, }; void *etraxfs_eth_init(NICInfo *nd, CPUState *env, qemu_irq *irq, target_phys_addr_t base) { struct etraxfs_dma_client *dma = NULL; struct fs_eth *eth = NULL; dma = qemu_mallocz(sizeof *dma * 2); if (!dma) return NULL; eth = qemu_mallocz(sizeof *eth); if (!eth) goto err; dma[0].client.push = eth_tx_push; dma[0].client.opaque = eth; dma[1].client.opaque = eth; dma[1].client.pull = eth_rx_pull; eth->env = env; eth->base = base; eth->irq = irq; eth->dma_out = dma; eth->dma_in = dma + 1; /* Connect the phy. */ tdk_init(ð->phy); mdio_attach(ð->mdio_bus, ð->phy, 0x1); eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth); cpu_register_physical_memory (base, 0x5c, eth->ethregs); eth->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, eth); return dma; err: qemu_free(eth); qemu_free(dma); return NULL; }