/* * QEMU ESP emulation * * Copyright (c) 2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" /* debug ESP card */ //#define DEBUG_ESP #ifdef DEBUG_ESP #define DPRINTF(fmt, args...) \ do { printf("ESP: " fmt , ##args); } while (0) #else #define DPRINTF(fmt, args...) #endif #define ESPDMA_REGS 4 #define ESPDMA_MAXADDR (ESPDMA_REGS * 4 - 1) #define ESP_MAXREG 0x3f typedef struct ESPState { BlockDriverState **bd; uint8_t rregs[ESP_MAXREG]; uint8_t wregs[ESP_MAXREG]; int irq; uint32_t espdmaregs[ESPDMA_REGS]; uint32_t ti_size; int ti_dir; uint8_t ti_buf[65536]; } ESPState; #define STAT_DO 0x00 #define STAT_DI 0x01 #define STAT_CD 0x02 #define STAT_ST 0x03 #define STAT_MI 0x06 #define STAT_MO 0x07 #define STAT_TC 0x10 #define STAT_IN 0x80 #define INTR_FC 0x08 #define INTR_BS 0x10 #define INTR_DC 0x20 #define SEQ_0 0x0 #define SEQ_CD 0x4 static void handle_satn(ESPState *s) { uint8_t buf[32]; uint32_t dmaptr, dmalen; unsigned int i; int64_t nb_sectors; int target; dmaptr = iommu_translate(s->espdmaregs[1]); dmalen = s->wregs[0] | (s->wregs[1] << 8); DPRINTF("Select with ATN at %8.8x len %d\n", dmaptr, dmalen); DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r'); cpu_physical_memory_read(dmaptr, buf, dmalen); for (i = 0; i < dmalen; i++) { DPRINTF("Command %2.2x\n", buf[i]); } s->ti_dir = 0; s->ti_size = 0; target = s->wregs[4] & 7; if (target > 4 || !s->bd[target]) { // No such drive s->rregs[4] = STAT_IN; s->rregs[5] = INTR_DC; s->rregs[6] = SEQ_0; s->espdmaregs[0] |= 1; pic_set_irq(s->irq, 1); return; } switch (buf[1]) { case 0x0: DPRINTF("Test Unit Ready (len %d)\n", buf[5]); break; case 0x12: DPRINTF("Inquiry (len %d)\n", buf[5]); memset(s->ti_buf, 0, 36); if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) { s->ti_buf[0] = 5; memcpy(&s->ti_buf[16], "QEMU CDROM ", 16); } else { s->ti_buf[0] = 0; memcpy(&s->ti_buf[16], "QEMU HARDDISK ", 16); } memcpy(&s->ti_buf[8], "QEMU ", 8); s->ti_buf[2] = 1; s->ti_buf[3] = 2; s->ti_dir = 1; s->ti_size = 36; break; case 0x1a: DPRINTF("Mode Sense(6) (page %d, len %d)\n", buf[3], buf[5]); break; case 0x25: DPRINTF("Read Capacity (len %d)\n", buf[5]); memset(s->ti_buf, 0, 8); bdrv_get_geometry(s->bd[target], &nb_sectors); s->ti_buf[0] = (nb_sectors >> 24) & 0xff; s->ti_buf[1] = (nb_sectors >> 16) & 0xff; s->ti_buf[2] = (nb_sectors >> 8) & 0xff; s->ti_buf[3] = nb_sectors & 0xff; s->ti_buf[4] = 0; s->ti_buf[5] = 0; s->ti_buf[6] = 2; s->ti_buf[7] = 0; s->ti_dir = 1; s->ti_size = 8; break; case 0x28: { int64_t offset, len; offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]; len = (buf[8] << 8) | buf[9]; DPRINTF("Read (10) (offset %lld len %lld)\n", offset, len); bdrv_read(s->bd[target], offset, s->ti_buf, len); s->ti_dir = 1; s->ti_size = len * 512; break; } case 0x2a: { int64_t offset, len; offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]; len = (buf[8] << 8) | buf[9]; DPRINTF("Write (10) (offset %lld len %lld)\n", offset, len); bdrv_write(s->bd[target], offset, s->ti_buf, len); s->ti_dir = 0; s->ti_size = len * 512; break; } default: DPRINTF("Unknown command (%2.2x)\n", buf[1]); break; } s->rregs[4] = STAT_IN | STAT_TC | STAT_DI; s->rregs[5] = INTR_BS | INTR_FC; s->rregs[6] = SEQ_CD; s->espdmaregs[0] |= 1; pic_set_irq(s->irq, 1); } static void dma_write(ESPState *s, const uint8_t *buf, uint32_t len) { uint32_t dmaptr, dmalen; dmaptr = iommu_translate(s->espdmaregs[1]); dmalen = s->wregs[0] | (s->wregs[1] << 8); DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r'); cpu_physical_memory_write(dmaptr, buf, len); s->rregs[4] = STAT_IN | STAT_TC | STAT_ST; s->rregs[5] = INTR_BS | INTR_FC; s->rregs[6] = SEQ_CD; s->espdmaregs[0] |= 1; pic_set_irq(s->irq, 1); } static const uint8_t okbuf[] = {0, 0}; static void handle_ti(ESPState *s) { uint32_t dmaptr, dmalen; unsigned int i; dmaptr = iommu_translate(s->espdmaregs[1]); dmalen = s->wregs[0] | (s->wregs[1] << 8); DPRINTF("Transfer Information at %8.8x len %d\n", dmaptr, dmalen); DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r'); for (i = 0; i < s->ti_size; i++) { dmaptr = iommu_translate(s->espdmaregs[1] + i); if (s->ti_dir) cpu_physical_memory_write(dmaptr, &s->ti_buf[i], 1); else cpu_physical_memory_read(dmaptr, &s->ti_buf[i], 1); } s->rregs[4] = STAT_IN | STAT_TC | STAT_ST; s->rregs[5] = INTR_BS; s->rregs[6] = 0; s->espdmaregs[0] |= 1; pic_set_irq(s->irq, 1); } static void esp_reset(void *opaque) { ESPState *s = opaque; memset(s->rregs, 0, ESP_MAXREG); s->rregs[0x0e] = 0x4; // Indicate fas100a memset(s->espdmaregs, 0, ESPDMA_REGS * 4); } static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESP_MAXREG) >> 2; switch (saddr) { default: break; } DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]); return s->rregs[saddr]; } static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESP_MAXREG) >> 2; DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val); switch (saddr) { case 3: // Command switch(val & 0x7f) { case 0: DPRINTF("NOP (%2.2x)\n", val); break; case 1: DPRINTF("Flush FIFO (%2.2x)\n", val); s->rregs[6] = 0; s->rregs[5] = INTR_FC; break; case 2: DPRINTF("Chip reset (%2.2x)\n", val); esp_reset(s); break; case 3: DPRINTF("Bus reset (%2.2x)\n", val); break; case 0x10: handle_ti(s); break; case 0x11: DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val); dma_write(s, okbuf, 2); break; case 0x12: DPRINTF("Message Accepted (%2.2x)\n", val); dma_write(s, okbuf, 2); s->rregs[5] = INTR_DC; s->rregs[6] = 0; break; case 0x1a: DPRINTF("Set ATN (%2.2x)\n", val); break; case 0x42: handle_satn(s); break; case 0x43: DPRINTF("Set ATN & stop (%2.2x)\n", val); handle_satn(s); break; default: DPRINTF("Unhandled command (%2.2x)\n", val); break; } break; case 4 ... 7: case 9 ... 0xf: break; default: break; } s->wregs[saddr] = val; } static CPUReadMemoryFunc *esp_mem_read[3] = { esp_mem_readb, esp_mem_readb, esp_mem_readb, }; static CPUWriteMemoryFunc *esp_mem_write[3] = { esp_mem_writeb, esp_mem_writeb, esp_mem_writeb, }; static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESPDMA_MAXADDR) >> 2; DPRINTF("read dmareg[%d]: 0x%2.2x\n", saddr, s->espdmaregs[saddr]); return s->espdmaregs[saddr]; } static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESPDMA_MAXADDR) >> 2; DPRINTF("write dmareg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->espdmaregs[saddr], val); switch (saddr) { case 0: if (!(val & 0x10)) pic_set_irq(s->irq, 0); break; default: break; } s->espdmaregs[saddr] = val; } static CPUReadMemoryFunc *espdma_mem_read[3] = { espdma_mem_readl, espdma_mem_readl, espdma_mem_readl, }; static CPUWriteMemoryFunc *espdma_mem_write[3] = { espdma_mem_writel, espdma_mem_writel, espdma_mem_writel, }; static void esp_save(QEMUFile *f, void *opaque) { ESPState *s = opaque; unsigned int i; qemu_put_buffer(f, s->rregs, ESP_MAXREG); qemu_put_buffer(f, s->wregs, ESP_MAXREG); qemu_put_be32s(f, &s->irq); for (i = 0; i < ESPDMA_REGS; i++) qemu_put_be32s(f, &s->espdmaregs[i]); } static int esp_load(QEMUFile *f, void *opaque, int version_id) { ESPState *s = opaque; unsigned int i; if (version_id != 1) return -EINVAL; qemu_get_buffer(f, s->rregs, ESP_MAXREG); qemu_get_buffer(f, s->wregs, ESP_MAXREG); qemu_get_be32s(f, &s->irq); for (i = 0; i < ESPDMA_REGS; i++) qemu_get_be32s(f, &s->espdmaregs[i]); return 0; } void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr) { ESPState *s; int esp_io_memory, espdma_io_memory; s = qemu_mallocz(sizeof(ESPState)); if (!s) return; s->bd = bd; s->irq = irq; esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s); cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory); espdma_io_memory = cpu_register_io_memory(0, espdma_mem_read, espdma_mem_write, s); cpu_register_physical_memory(espdaddr, 16, espdma_io_memory); esp_reset(s); register_savevm("esp", espaddr, 1, esp_save, esp_load, s); qemu_register_reset(esp_reset, s); }