/* * QEMU ESP emulation * * Copyright (c) 2005-2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" /* debug ESP card */ //#define DEBUG_ESP #ifdef DEBUG_ESP #define DPRINTF(fmt, args...) \ do { printf("ESP: " fmt , ##args); } while (0) #define pic_set_irq(irq, level) \ do { printf("ESP: set_irq(%d): %d\n", (irq), (level)); pic_set_irq((irq),(level));} while (0) #else #define DPRINTF(fmt, args...) #endif #define ESPDMA_REGS 4 #define ESPDMA_MAXADDR (ESPDMA_REGS * 4 - 1) #define ESP_MAXREG 0x3f #define TI_BUFSZ 1024*1024 // XXX #define DMA_VER 0xa0000000 #define DMA_INTR 1 #define DMA_INTREN 0x10 #define DMA_LOADED 0x04000000 typedef struct ESPState ESPState; typedef int ESPDMAFunc(ESPState *s, target_phys_addr_t phys_addr, int transfer_size1); struct ESPState { BlockDriverState **bd; uint8_t rregs[ESP_MAXREG]; uint8_t wregs[ESP_MAXREG]; int irq; uint32_t espdmaregs[ESPDMA_REGS]; uint32_t ti_size; uint32_t ti_rptr, ti_wptr; int ti_dir; uint8_t ti_buf[TI_BUFSZ]; int dma; ESPDMAFunc *dma_cb; int64_t offset, len; int target; }; #define STAT_DO 0x00 #define STAT_DI 0x01 #define STAT_CD 0x02 #define STAT_ST 0x03 #define STAT_MI 0x06 #define STAT_MO 0x07 #define STAT_TC 0x10 #define STAT_IN 0x80 #define INTR_FC 0x08 #define INTR_BS 0x10 #define INTR_DC 0x20 #define INTR_RST 0x80 #define SEQ_0 0x0 #define SEQ_CD 0x4 /* XXX: stolen from ide.c, move to common ATAPI/SCSI library */ static void lba_to_msf(uint8_t *buf, int lba) { lba += 150; buf[0] = (lba / 75) / 60; buf[1] = (lba / 75) % 60; buf[2] = lba % 75; } static inline void cpu_to_ube16(uint8_t *buf, int val) { buf[0] = val >> 8; buf[1] = val; } static inline void cpu_to_ube32(uint8_t *buf, unsigned int val) { buf[0] = val >> 24; buf[1] = val >> 16; buf[2] = val >> 8; buf[3] = val; } /* same toc as bochs. Return -1 if error or the toc length */ /* XXX: check this */ static int cdrom_read_toc(int nb_sectors, uint8_t *buf, int msf, int start_track) { uint8_t *q; int len; if (start_track > 1 && start_track != 0xaa) return -1; q = buf + 2; *q++ = 1; /* first session */ *q++ = 1; /* last session */ if (start_track <= 1) { *q++ = 0; /* reserved */ *q++ = 0x14; /* ADR, control */ *q++ = 1; /* track number */ *q++ = 0; /* reserved */ if (msf) { *q++ = 0; /* reserved */ lba_to_msf(q, 0); q += 3; } else { /* sector 0 */ cpu_to_ube32(q, 0); q += 4; } } /* lead out track */ *q++ = 0; /* reserved */ *q++ = 0x16; /* ADR, control */ *q++ = 0xaa; /* track number */ *q++ = 0; /* reserved */ if (msf) { *q++ = 0; /* reserved */ lba_to_msf(q, nb_sectors); q += 3; } else { cpu_to_ube32(q, nb_sectors); q += 4; } len = q - buf; cpu_to_ube16(buf, len - 2); return len; } /* mostly same info as PearPc */ static int cdrom_read_toc_raw(int nb_sectors, uint8_t *buf, int msf, int session_num) { uint8_t *q; int len; q = buf + 2; *q++ = 1; /* first session */ *q++ = 1; /* last session */ *q++ = 1; /* session number */ *q++ = 0x14; /* data track */ *q++ = 0; /* track number */ *q++ = 0xa0; /* lead-in */ *q++ = 0; /* min */ *q++ = 0; /* sec */ *q++ = 0; /* frame */ *q++ = 0; *q++ = 1; /* first track */ *q++ = 0x00; /* disk type */ *q++ = 0x00; *q++ = 1; /* session number */ *q++ = 0x14; /* data track */ *q++ = 0; /* track number */ *q++ = 0xa1; *q++ = 0; /* min */ *q++ = 0; /* sec */ *q++ = 0; /* frame */ *q++ = 0; *q++ = 1; /* last track */ *q++ = 0x00; *q++ = 0x00; *q++ = 1; /* session number */ *q++ = 0x14; /* data track */ *q++ = 0; /* track number */ *q++ = 0xa2; /* lead-out */ *q++ = 0; /* min */ *q++ = 0; /* sec */ *q++ = 0; /* frame */ if (msf) { *q++ = 0; /* reserved */ lba_to_msf(q, nb_sectors); q += 3; } else { cpu_to_ube32(q, nb_sectors); q += 4; } *q++ = 1; /* session number */ *q++ = 0x14; /* ADR, control */ *q++ = 0; /* track number */ *q++ = 1; /* point */ *q++ = 0; /* min */ *q++ = 0; /* sec */ *q++ = 0; /* frame */ if (msf) { *q++ = 0; lba_to_msf(q, 0); q += 3; } else { *q++ = 0; *q++ = 0; *q++ = 0; *q++ = 0; } len = q - buf; cpu_to_ube16(buf, len - 2); return len; } static int esp_write_dma_cb(ESPState *s, target_phys_addr_t phys_addr, int transfer_size1) { DPRINTF("Write callback (offset %lld len %lld size %d trans_size %d)\n", s->offset, s->len, s->ti_size, transfer_size1); bdrv_write(s->bd[s->target], s->offset, s->ti_buf, s->len); s->offset = 0; s->len = 0; s->target = 0; return 0; } static void handle_satn(ESPState *s) { uint8_t buf[32]; uint32_t dmaptr, dmalen; unsigned int i; int64_t nb_sectors; int target; dmalen = s->wregs[0] | (s->wregs[1] << 8); target = s->wregs[4] & 7; DPRINTF("Select with ATN len %d target %d\n", dmalen, target); if (s->dma) { dmaptr = iommu_translate(s->espdmaregs[1]); DPRINTF("DMA Direction: %c, addr 0x%8.8x\n", s->espdmaregs[0] & 0x100? 'w': 'r', dmaptr); cpu_physical_memory_read(dmaptr, buf, dmalen); } else { buf[0] = 0; memcpy(&buf[1], s->ti_buf, dmalen); dmalen++; } for (i = 0; i < dmalen; i++) { DPRINTF("Command %2.2x\n", buf[i]); } s->ti_dir = 0; s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; if (target >= 4 || !s->bd[target]) { // No such drive s->rregs[4] = STAT_IN; s->rregs[5] = INTR_DC; s->rregs[6] = SEQ_0; s->espdmaregs[0] |= DMA_INTR; pic_set_irq(s->irq, 1); return; } switch (buf[1]) { case 0x0: DPRINTF("Test Unit Ready (len %d)\n", buf[5]); break; case 0x12: DPRINTF("Inquiry (len %d)\n", buf[5]); memset(s->ti_buf, 0, 36); if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) { s->ti_buf[0] = 5; memcpy(&s->ti_buf[16], "QEMU CDROM ", 16); } else { s->ti_buf[0] = 0; memcpy(&s->ti_buf[16], "QEMU HARDDISK ", 16); } memcpy(&s->ti_buf[8], "QEMU ", 8); s->ti_buf[2] = 1; s->ti_buf[3] = 2; s->ti_buf[4] = 32; s->ti_dir = 1; s->ti_size = 36; break; case 0x1a: DPRINTF("Mode Sense(6) (page %d, len %d)\n", buf[3], buf[5]); break; case 0x25: DPRINTF("Read Capacity (len %d)\n", buf[5]); memset(s->ti_buf, 0, 8); bdrv_get_geometry(s->bd[target], &nb_sectors); s->ti_buf[0] = (nb_sectors >> 24) & 0xff; s->ti_buf[1] = (nb_sectors >> 16) & 0xff; s->ti_buf[2] = (nb_sectors >> 8) & 0xff; s->ti_buf[3] = nb_sectors & 0xff; s->ti_buf[4] = 0; s->ti_buf[5] = 0; if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) s->ti_buf[6] = 8; // sector size 2048 else s->ti_buf[6] = 2; // sector size 512 s->ti_buf[7] = 0; s->ti_dir = 1; s->ti_size = 8; break; case 0x28: { int64_t offset, len; if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) { offset = ((buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]) * 4; len = ((buf[8] << 8) | buf[9]) * 4; s->ti_size = len * 2048; } else { offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]; len = (buf[8] << 8) | buf[9]; s->ti_size = len * 512; } DPRINTF("Read (10) (offset %lld len %lld)\n", offset, len); if (s->ti_size > TI_BUFSZ) { DPRINTF("size too large %d\n", s->ti_size); } bdrv_read(s->bd[target], offset, s->ti_buf, len); // XXX error handling s->ti_dir = 1; break; } case 0x2a: { int64_t offset, len; if (bdrv_get_type_hint(s->bd[target]) == BDRV_TYPE_CDROM) { offset = ((buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]) * 4; len = ((buf[8] << 8) | buf[9]) * 4; s->ti_size = len * 2048; } else { offset = (buf[3] << 24) | (buf[4] << 16) | (buf[5] << 8) | buf[6]; len = (buf[8] << 8) | buf[9]; s->ti_size = len * 512; } DPRINTF("Write (10) (offset %lld len %lld)\n", offset, len); if (s->ti_size > TI_BUFSZ) { DPRINTF("size too large %d\n", s->ti_size); } s->dma_cb = esp_write_dma_cb; s->offset = offset; s->len = len; s->target = target; // XXX error handling s->ti_dir = 0; break; } case 0x43: { int start_track, format, msf, len; msf = buf[2] & 2; format = buf[3] & 0xf; start_track = buf[7]; bdrv_get_geometry(s->bd[target], &nb_sectors); DPRINTF("Read TOC (track %d format %d msf %d)\n", start_track, format, msf >> 1); switch(format) { case 0: len = cdrom_read_toc(nb_sectors, buf, msf, start_track); if (len < 0) goto error_cmd; s->ti_size = len; break; case 1: /* multi session : only a single session defined */ memset(buf, 0, 12); buf[1] = 0x0a; buf[2] = 0x01; buf[3] = 0x01; s->ti_size = 12; break; case 2: len = cdrom_read_toc_raw(nb_sectors, buf, msf, start_track); if (len < 0) goto error_cmd; s->ti_size = len; break; default: error_cmd: DPRINTF("Read TOC error\n"); // XXX error handling break; } s->ti_dir = 1; break; } default: DPRINTF("Unknown SCSI command (%2.2x)\n", buf[1]); break; } s->rregs[4] = STAT_IN | STAT_TC | STAT_DI; s->rregs[5] = INTR_BS | INTR_FC; s->rregs[6] = SEQ_CD; s->espdmaregs[0] |= DMA_INTR; pic_set_irq(s->irq, 1); } static void dma_write(ESPState *s, const uint8_t *buf, uint32_t len) { uint32_t dmaptr, dmalen; dmalen = s->wregs[0] | (s->wregs[1] << 8); DPRINTF("Transfer status len %d\n", dmalen); if (s->dma) { dmaptr = iommu_translate(s->espdmaregs[1]); DPRINTF("DMA Direction: %c\n", s->espdmaregs[0] & 0x100? 'w': 'r'); cpu_physical_memory_write(dmaptr, buf, len); s->rregs[4] = STAT_IN | STAT_TC | STAT_ST; s->rregs[5] = INTR_BS | INTR_FC; s->rregs[6] = SEQ_CD; } else { memcpy(s->ti_buf, buf, len); s->ti_size = dmalen; s->ti_rptr = 0; s->ti_wptr = 0; s->rregs[7] = dmalen; } s->espdmaregs[0] |= DMA_INTR; pic_set_irq(s->irq, 1); } static const uint8_t okbuf[] = {0, 0}; static void handle_ti(ESPState *s) { uint32_t dmaptr, dmalen; unsigned int i; dmalen = s->wregs[0] | (s->wregs[1] << 8); DPRINTF("Transfer Information len %d\n", dmalen); if (s->dma) { dmaptr = iommu_translate(s->espdmaregs[1]); DPRINTF("DMA Direction: %c, addr 0x%8.8x\n", s->espdmaregs[0] & 0x100? 'w': 'r', dmaptr); for (i = 0; i < s->ti_size; i++) { dmaptr = iommu_translate(s->espdmaregs[1] + i); if (s->ti_dir) cpu_physical_memory_write(dmaptr, &s->ti_buf[i], 1); else cpu_physical_memory_read(dmaptr, &s->ti_buf[i], 1); } if (s->dma_cb) { s->dma_cb(s, s->espdmaregs[1], dmalen); s->dma_cb = NULL; } s->rregs[4] = STAT_IN | STAT_TC | STAT_ST; s->rregs[5] = INTR_BS; s->rregs[6] = 0; s->espdmaregs[0] |= DMA_INTR; } else { s->ti_size = dmalen; s->ti_rptr = 0; s->ti_wptr = 0; s->rregs[7] = dmalen; } pic_set_irq(s->irq, 1); } static void esp_reset(void *opaque) { ESPState *s = opaque; memset(s->rregs, 0, ESP_MAXREG); memset(s->wregs, 0, ESP_MAXREG); s->rregs[0x0e] = 0x4; // Indicate fas100a memset(s->espdmaregs, 0, ESPDMA_REGS * 4); s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; s->ti_dir = 0; s->dma = 0; s->dma_cb = NULL; } static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESP_MAXREG) >> 2; DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]); switch (saddr) { case 2: // FIFO if (s->ti_size > 0) { s->ti_size--; s->rregs[saddr] = s->ti_buf[s->ti_rptr++]; pic_set_irq(s->irq, 1); } if (s->ti_size == 0) { s->ti_rptr = 0; s->ti_wptr = 0; } break; case 5: // interrupt // Clear status bits except TC s->rregs[4] &= STAT_TC; pic_set_irq(s->irq, 0); s->espdmaregs[0] &= ~DMA_INTR; break; default: break; } return s->rregs[saddr]; } static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESP_MAXREG) >> 2; DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val); switch (saddr) { case 0: case 1: s->rregs[saddr] = val; break; case 2: // FIFO s->ti_size++; s->ti_buf[s->ti_wptr++] = val & 0xff; break; case 3: s->rregs[saddr] = val; // Command if (val & 0x80) { s->dma = 1; } else { s->dma = 0; } switch(val & 0x7f) { case 0: DPRINTF("NOP (%2.2x)\n", val); break; case 1: DPRINTF("Flush FIFO (%2.2x)\n", val); //s->ti_size = 0; s->rregs[5] = INTR_FC; s->rregs[6] = 0; break; case 2: DPRINTF("Chip reset (%2.2x)\n", val); esp_reset(s); break; case 3: DPRINTF("Bus reset (%2.2x)\n", val); s->rregs[5] = INTR_RST; if (!(s->wregs[8] & 0x40)) { s->espdmaregs[0] |= DMA_INTR; pic_set_irq(s->irq, 1); } break; case 0x10: handle_ti(s); break; case 0x11: DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val); dma_write(s, okbuf, 2); break; case 0x12: DPRINTF("Message Accepted (%2.2x)\n", val); dma_write(s, okbuf, 2); s->rregs[5] = INTR_DC; s->rregs[6] = 0; break; case 0x1a: DPRINTF("Set ATN (%2.2x)\n", val); break; case 0x42: handle_satn(s); break; case 0x43: DPRINTF("Set ATN & stop (%2.2x)\n", val); handle_satn(s); break; default: DPRINTF("Unhandled ESP command (%2.2x)\n", val); break; } break; case 4 ... 7: break; case 8: s->rregs[saddr] = val; break; case 9 ... 10: break; case 11: s->rregs[saddr] = val & 0x15; break; case 12 ... 15: s->rregs[saddr] = val; break; default: break; } s->wregs[saddr] = val; } static CPUReadMemoryFunc *esp_mem_read[3] = { esp_mem_readb, esp_mem_readb, esp_mem_readb, }; static CPUWriteMemoryFunc *esp_mem_write[3] = { esp_mem_writeb, esp_mem_writeb, esp_mem_writeb, }; static uint32_t espdma_mem_readl(void *opaque, target_phys_addr_t addr) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESPDMA_MAXADDR) >> 2; DPRINTF("read dmareg[%d]: 0x%8.8x\n", saddr, s->espdmaregs[saddr]); return s->espdmaregs[saddr]; } static void espdma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { ESPState *s = opaque; uint32_t saddr; saddr = (addr & ESPDMA_MAXADDR) >> 2; DPRINTF("write dmareg[%d]: 0x%8.8x -> 0x%8.8x\n", saddr, s->espdmaregs[saddr], val); switch (saddr) { case 0: if (!(val & DMA_INTREN)) pic_set_irq(s->irq, 0); if (val & 0x80) { esp_reset(s); } else if (val & 0x40) { val &= ~0x40; } else if (val == 0) val = 0x40; val &= 0x0fffffff; val |= DMA_VER; break; case 1: s->espdmaregs[0] = DMA_LOADED; break; default: break; } s->espdmaregs[saddr] = val; } static CPUReadMemoryFunc *espdma_mem_read[3] = { espdma_mem_readl, espdma_mem_readl, espdma_mem_readl, }; static CPUWriteMemoryFunc *espdma_mem_write[3] = { espdma_mem_writel, espdma_mem_writel, espdma_mem_writel, }; static void esp_save(QEMUFile *f, void *opaque) { ESPState *s = opaque; unsigned int i; qemu_put_buffer(f, s->rregs, ESP_MAXREG); qemu_put_buffer(f, s->wregs, ESP_MAXREG); qemu_put_be32s(f, &s->irq); for (i = 0; i < ESPDMA_REGS; i++) qemu_put_be32s(f, &s->espdmaregs[i]); qemu_put_be32s(f, &s->ti_size); qemu_put_be32s(f, &s->ti_rptr); qemu_put_be32s(f, &s->ti_wptr); qemu_put_be32s(f, &s->ti_dir); qemu_put_buffer(f, s->ti_buf, TI_BUFSZ); qemu_put_be32s(f, &s->dma); } static int esp_load(QEMUFile *f, void *opaque, int version_id) { ESPState *s = opaque; unsigned int i; if (version_id != 1) return -EINVAL; qemu_get_buffer(f, s->rregs, ESP_MAXREG); qemu_get_buffer(f, s->wregs, ESP_MAXREG); qemu_get_be32s(f, &s->irq); for (i = 0; i < ESPDMA_REGS; i++) qemu_get_be32s(f, &s->espdmaregs[i]); qemu_get_be32s(f, &s->ti_size); qemu_get_be32s(f, &s->ti_rptr); qemu_get_be32s(f, &s->ti_wptr); qemu_get_be32s(f, &s->ti_dir); qemu_get_buffer(f, s->ti_buf, TI_BUFSZ); qemu_get_be32s(f, &s->dma); return 0; } void esp_init(BlockDriverState **bd, int irq, uint32_t espaddr, uint32_t espdaddr) { ESPState *s; int esp_io_memory, espdma_io_memory; s = qemu_mallocz(sizeof(ESPState)); if (!s) return; s->bd = bd; s->irq = irq; esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s); cpu_register_physical_memory(espaddr, ESP_MAXREG*4, esp_io_memory); espdma_io_memory = cpu_register_io_memory(0, espdma_mem_read, espdma_mem_write, s); cpu_register_physical_memory(espdaddr, 16, espdma_io_memory); esp_reset(s); register_savevm("esp", espaddr, 1, esp_save, esp_load, s); qemu_register_reset(esp_reset, s); }