/* * QEMU Sparc Sun4m ECC memory controller emulation * * Copyright (c) 2007 Robert Reif * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "sysbus.h" //#define DEBUG_ECC #ifdef DEBUG_ECC #define DPRINTF(fmt, ...) \ do { printf("ECC: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) #endif /* There are 3 versions of this chip used in SMP sun4m systems: * MCC (version 0, implementation 0) SS-600MP * EMC (version 0, implementation 1) SS-10 * SMC (version 0, implementation 2) SS-10SX and SS-20 * * Chipset docs: * "Sun-4M System Architecture (revision 2.0) by Chuck Narad", 950-1373-01, * http://mediacast.sun.com/users/Barton808/media/Sun4M_SystemArchitecture_edited2.pdf */ #define ECC_MCC 0x00000000 #define ECC_EMC 0x10000000 #define ECC_SMC 0x20000000 /* Register indexes */ #define ECC_MER 0 /* Memory Enable Register */ #define ECC_MDR 1 /* Memory Delay Register */ #define ECC_MFSR 2 /* Memory Fault Status Register */ #define ECC_VCR 3 /* Video Configuration Register */ #define ECC_MFAR0 4 /* Memory Fault Address Register 0 */ #define ECC_MFAR1 5 /* Memory Fault Address Register 1 */ #define ECC_DR 6 /* Diagnostic Register */ #define ECC_ECR0 7 /* Event Count Register 0 */ #define ECC_ECR1 8 /* Event Count Register 1 */ /* ECC fault control register */ #define ECC_MER_EE 0x00000001 /* Enable ECC checking */ #define ECC_MER_EI 0x00000002 /* Enable Interrupts on correctable errors */ #define ECC_MER_MRR0 0x00000004 /* SIMM 0 */ #define ECC_MER_MRR1 0x00000008 /* SIMM 1 */ #define ECC_MER_MRR2 0x00000010 /* SIMM 2 */ #define ECC_MER_MRR3 0x00000020 /* SIMM 3 */ #define ECC_MER_MRR4 0x00000040 /* SIMM 4 */ #define ECC_MER_MRR5 0x00000080 /* SIMM 5 */ #define ECC_MER_MRR6 0x00000100 /* SIMM 6 */ #define ECC_MER_MRR7 0x00000200 /* SIMM 7 */ #define ECC_MER_REU 0x00000100 /* Memory Refresh Enable (600MP) */ #define ECC_MER_MRR 0x000003fc /* MRR mask */ #define ECC_MER_A 0x00000400 /* Memory controller addr map select */ #define ECC_MER_DCI 0x00000800 /* Disables Coherent Invalidate ACK */ #define ECC_MER_VER 0x0f000000 /* Version */ #define ECC_MER_IMPL 0xf0000000 /* Implementation */ #define ECC_MER_MASK_0 0x00000103 /* Version 0 (MCC) mask */ #define ECC_MER_MASK_1 0x00000bff /* Version 1 (EMC) mask */ #define ECC_MER_MASK_2 0x00000bff /* Version 2 (SMC) mask */ /* ECC memory delay register */ #define ECC_MDR_RRI 0x000003ff /* Refresh Request Interval */ #define ECC_MDR_MI 0x00001c00 /* MIH Delay */ #define ECC_MDR_CI 0x0000e000 /* Coherent Invalidate Delay */ #define ECC_MDR_MDL 0x001f0000 /* MBus Master arbitration delay */ #define ECC_MDR_MDH 0x03e00000 /* MBus Master arbitration delay */ #define ECC_MDR_GAD 0x7c000000 /* Graphics Arbitration Delay */ #define ECC_MDR_RSC 0x80000000 /* Refresh load control */ #define ECC_MDR_MASK 0x7fffffff /* ECC fault status register */ #define ECC_MFSR_CE 0x00000001 /* Correctable error */ #define ECC_MFSR_BS 0x00000002 /* C2 graphics bad slot access */ #define ECC_MFSR_TO 0x00000004 /* Timeout on write */ #define ECC_MFSR_UE 0x00000008 /* Uncorrectable error */ #define ECC_MFSR_DW 0x000000f0 /* Index of double word in block */ #define ECC_MFSR_SYND 0x0000ff00 /* Syndrome for correctable error */ #define ECC_MFSR_ME 0x00010000 /* Multiple errors */ #define ECC_MFSR_C2ERR 0x00020000 /* C2 graphics error */ /* ECC fault address register 0 */ #define ECC_MFAR0_PADDR 0x0000000f /* PA[32-35] */ #define ECC_MFAR0_TYPE 0x000000f0 /* Transaction type */ #define ECC_MFAR0_SIZE 0x00000700 /* Transaction size */ #define ECC_MFAR0_CACHE 0x00000800 /* Mapped cacheable */ #define ECC_MFAR0_LOCK 0x00001000 /* Error occurred in atomic cycle */ #define ECC_MFAR0_BMODE 0x00002000 /* Boot mode */ #define ECC_MFAR0_VADDR 0x003fc000 /* VA[12-19] (superset bits) */ #define ECC_MFAR0_S 0x08000000 /* Supervisor mode */ #define ECC_MFARO_MID 0xf0000000 /* Module ID */ /* ECC diagnostic register */ #define ECC_DR_CBX 0x00000001 #define ECC_DR_CB0 0x00000002 #define ECC_DR_CB1 0x00000004 #define ECC_DR_CB2 0x00000008 #define ECC_DR_CB4 0x00000010 #define ECC_DR_CB8 0x00000020 #define ECC_DR_CB16 0x00000040 #define ECC_DR_CB32 0x00000080 #define ECC_DR_DMODE 0x00000c00 #define ECC_NREGS 9 #define ECC_SIZE (ECC_NREGS * sizeof(uint32_t)) #define ECC_DIAG_SIZE 4 #define ECC_DIAG_MASK (ECC_DIAG_SIZE - 1) typedef struct ECCState { SysBusDevice busdev; qemu_irq irq; uint32_t regs[ECC_NREGS]; uint8_t diag[ECC_DIAG_SIZE]; uint32_t version; } ECCState; static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { ECCState *s = opaque; switch (addr >> 2) { case ECC_MER: if (s->version == ECC_MCC) s->regs[ECC_MER] = (val & ECC_MER_MASK_0); else if (s->version == ECC_EMC) s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_1); else if (s->version == ECC_SMC) s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_2); DPRINTF("Write memory enable %08x\n", val); break; case ECC_MDR: s->regs[ECC_MDR] = val & ECC_MDR_MASK; DPRINTF("Write memory delay %08x\n", val); break; case ECC_MFSR: s->regs[ECC_MFSR] = val; qemu_irq_lower(s->irq); DPRINTF("Write memory fault status %08x\n", val); break; case ECC_VCR: s->regs[ECC_VCR] = val; DPRINTF("Write slot configuration %08x\n", val); break; case ECC_DR: s->regs[ECC_DR] = val; DPRINTF("Write diagnostic %08x\n", val); break; case ECC_ECR0: s->regs[ECC_ECR0] = val; DPRINTF("Write event count 1 %08x\n", val); break; case ECC_ECR1: s->regs[ECC_ECR0] = val; DPRINTF("Write event count 2 %08x\n", val); break; } } static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr) { ECCState *s = opaque; uint32_t ret = 0; switch (addr >> 2) { case ECC_MER: ret = s->regs[ECC_MER]; DPRINTF("Read memory enable %08x\n", ret); break; case ECC_MDR: ret = s->regs[ECC_MDR]; DPRINTF("Read memory delay %08x\n", ret); break; case ECC_MFSR: ret = s->regs[ECC_MFSR]; DPRINTF("Read memory fault status %08x\n", ret); break; case ECC_VCR: ret = s->regs[ECC_VCR]; DPRINTF("Read slot configuration %08x\n", ret); break; case ECC_MFAR0: ret = s->regs[ECC_MFAR0]; DPRINTF("Read memory fault address 0 %08x\n", ret); break; case ECC_MFAR1: ret = s->regs[ECC_MFAR1]; DPRINTF("Read memory fault address 1 %08x\n", ret); break; case ECC_DR: ret = s->regs[ECC_DR]; DPRINTF("Read diagnostic %08x\n", ret); break; case ECC_ECR0: ret = s->regs[ECC_ECR0]; DPRINTF("Read event count 1 %08x\n", ret); break; case ECC_ECR1: ret = s->regs[ECC_ECR0]; DPRINTF("Read event count 2 %08x\n", ret); break; } return ret; } static CPUReadMemoryFunc * const ecc_mem_read[3] = { NULL, NULL, ecc_mem_readl, }; static CPUWriteMemoryFunc * const ecc_mem_write[3] = { NULL, NULL, ecc_mem_writel, }; static void ecc_diag_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { ECCState *s = opaque; DPRINTF("Write diagnostic[%d] = %02x\n", (int)addr, val); s->diag[addr & ECC_DIAG_MASK] = val; } static uint32_t ecc_diag_mem_readb(void *opaque, target_phys_addr_t addr) { ECCState *s = opaque; uint32_t ret = s->diag[(int)addr]; DPRINTF("Read diagnostic[%d] = %02x\n", (int)addr, ret); return ret; } static CPUReadMemoryFunc * const ecc_diag_mem_read[3] = { ecc_diag_mem_readb, NULL, NULL, }; static CPUWriteMemoryFunc * const ecc_diag_mem_write[3] = { ecc_diag_mem_writeb, NULL, NULL, }; static const VMStateDescription vmstate_ecc = { .name ="ECC", .version_id = 3, .minimum_version_id = 3, .minimum_version_id_old = 3, .fields = (VMStateField []) { VMSTATE_UINT32_ARRAY(regs, ECCState, ECC_NREGS), VMSTATE_BUFFER(diag, ECCState), VMSTATE_UINT32(version, ECCState), VMSTATE_END_OF_LIST() } }; static void ecc_reset(DeviceState *d) { ECCState *s = container_of(d, ECCState, busdev.qdev); if (s->version == ECC_MCC) s->regs[ECC_MER] &= ECC_MER_REU; else s->regs[ECC_MER] &= (ECC_MER_VER | ECC_MER_IMPL | ECC_MER_MRR | ECC_MER_DCI); s->regs[ECC_MDR] = 0x20; s->regs[ECC_MFSR] = 0; s->regs[ECC_VCR] = 0; s->regs[ECC_MFAR0] = 0x07c00000; s->regs[ECC_MFAR1] = 0; s->regs[ECC_DR] = 0; s->regs[ECC_ECR0] = 0; s->regs[ECC_ECR1] = 0; } static int ecc_init1(SysBusDevice *dev) { int ecc_io_memory; ECCState *s = FROM_SYSBUS(ECCState, dev); sysbus_init_irq(dev, &s->irq); s->regs[0] = s->version; ecc_io_memory = cpu_register_io_memory(ecc_mem_read, ecc_mem_write, s); sysbus_init_mmio(dev, ECC_SIZE, ecc_io_memory); if (s->version == ECC_MCC) { // SS-600MP only ecc_io_memory = cpu_register_io_memory(ecc_diag_mem_read, ecc_diag_mem_write, s); sysbus_init_mmio(dev, ECC_DIAG_SIZE, ecc_io_memory); } return 0; } static SysBusDeviceInfo ecc_info = { .init = ecc_init1, .qdev.name = "eccmemctl", .qdev.size = sizeof(ECCState), .qdev.vmsd = &vmstate_ecc, .qdev.reset = ecc_reset, .qdev.props = (Property[]) { DEFINE_PROP_HEX32("version", ECCState, version, -1), DEFINE_PROP_END_OF_LIST(), } }; static void ecc_register_devices(void) { sysbus_register_withprop(&ecc_info); } device_init(ecc_register_devices)