/* * ARMV7M System emulation. * * Copyright (c) 2006-2007 CodeSourcery. * Written by Paul Brook * * This code is licenced under the GPL. */ #include "hw.h" #include "arm-misc.h" #include "sysemu.h" /* Bitbanded IO. Each word corresponds to a single bit. */ /* Get the byte address of the real memory for a bitband acess. */ static inline uint32_t bitband_addr(void * opaque, uint32_t addr) { uint32_t res; res = *(uint32_t *)opaque; res |= (addr & 0x1ffffff) >> 5; return res; } static uint32_t bitband_readb(void *opaque, target_phys_addr_t offset) { uint8_t v; cpu_physical_memory_read(bitband_addr(opaque, offset), &v, 1); return (v & (1 << ((offset >> 2) & 7))) != 0; } static void bitband_writeb(void *opaque, target_phys_addr_t offset, uint32_t value) { uint32_t addr; uint8_t mask; uint8_t v; addr = bitband_addr(opaque, offset); mask = (1 << ((offset >> 2) & 7)); cpu_physical_memory_read(addr, &v, 1); if (value & 1) v |= mask; else v &= ~mask; cpu_physical_memory_write(addr, &v, 1); } static uint32_t bitband_readw(void *opaque, target_phys_addr_t offset) { uint32_t addr; uint16_t mask; uint16_t v; addr = bitband_addr(opaque, offset) & ~1; mask = (1 << ((offset >> 2) & 15)); mask = tswap16(mask); cpu_physical_memory_read(addr, (uint8_t *)&v, 2); return (v & mask) != 0; } static void bitband_writew(void *opaque, target_phys_addr_t offset, uint32_t value) { uint32_t addr; uint16_t mask; uint16_t v; addr = bitband_addr(opaque, offset) & ~1; mask = (1 << ((offset >> 2) & 15)); mask = tswap16(mask); cpu_physical_memory_read(addr, (uint8_t *)&v, 2); if (value & 1) v |= mask; else v &= ~mask; cpu_physical_memory_write(addr, (uint8_t *)&v, 2); } static uint32_t bitband_readl(void *opaque, target_phys_addr_t offset) { uint32_t addr; uint32_t mask; uint32_t v; addr = bitband_addr(opaque, offset) & ~3; mask = (1 << ((offset >> 2) & 31)); mask = tswap32(mask); cpu_physical_memory_read(addr, (uint8_t *)&v, 4); return (v & mask) != 0; } static void bitband_writel(void *opaque, target_phys_addr_t offset, uint32_t value) { uint32_t addr; uint32_t mask; uint32_t v; addr = bitband_addr(opaque, offset) & ~3; mask = (1 << ((offset >> 2) & 31)); mask = tswap32(mask); cpu_physical_memory_read(addr, (uint8_t *)&v, 4); if (value & 1) v |= mask; else v &= ~mask; cpu_physical_memory_write(addr, (uint8_t *)&v, 4); } static CPUReadMemoryFunc *bitband_readfn[] = { bitband_readb, bitband_readw, bitband_readl }; static CPUWriteMemoryFunc *bitband_writefn[] = { bitband_writeb, bitband_writew, bitband_writel }; static void armv7m_bitband_init(void) { int iomemtype; static uint32_t bitband1_offset = 0x20000000; static uint32_t bitband2_offset = 0x40000000; iomemtype = cpu_register_io_memory(0, bitband_readfn, bitband_writefn, &bitband1_offset); cpu_register_physical_memory(0x22000000, 0x02000000, iomemtype); iomemtype = cpu_register_io_memory(0, bitband_readfn, bitband_writefn, &bitband2_offset); cpu_register_physical_memory(0x42000000, 0x02000000, iomemtype); } /* Board init. */ /* Init CPU and memory for a v7-M based board. flash_size and sram_size are in kb. Returns the NVIC array. */ qemu_irq *armv7m_init(int flash_size, int sram_size, const char *kernel_filename, const char *cpu_model) { CPUState *env; qemu_irq *pic; uint32_t pc; int image_size; uint64_t entry; uint64_t lowaddr; flash_size *= 1024; sram_size *= 1024; if (!cpu_model) cpu_model = "cortex-m3"; env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } #if 0 /* > 32Mb SRAM gets complicated because it overlaps the bitband area. We don't have proper commandline options, so allocate half of memory as SRAM, up to a maximum of 32Mb, and the rest as code. */ if (ram_size > (512 + 32) * 1024 * 1024) ram_size = (512 + 32) * 1024 * 1024; sram_size = (ram_size / 2) & TARGET_PAGE_MASK; if (sram_size > 32 * 1024 * 1024) sram_size = 32 * 1024 * 1024; code_size = ram_size - sram_size; #endif /* Flash programming is done via the SCU, so pretend it is ROM. */ cpu_register_physical_memory(0, flash_size, qemu_ram_alloc(flash_size) | IO_MEM_ROM); cpu_register_physical_memory(0x20000000, sram_size, qemu_ram_alloc(sram_size) | IO_MEM_RAM); armv7m_bitband_init(); pic = armv7m_nvic_init(env); image_size = load_elf(kernel_filename, 0, &entry, &lowaddr, NULL); if (image_size < 0) { image_size = load_image_targphys(kernel_filename, 0, flash_size); lowaddr = 0; } if (image_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* If the image was loaded at address zero then assume it is a regular ROM image and perform the normal CPU reset sequence. Otherwise jump directly to the entry point. */ if (lowaddr == 0) { env->regs[13] = tswap32(*(uint32_t *)phys_ram_base); pc = tswap32(*(uint32_t *)(phys_ram_base + 4)); } else { pc = entry; } env->thumb = pc & 1; env->regs[15] = pc & ~1; /* Hack to map an additional page of ram at the top of the address space. This stops qemu complaining about executing code outside RAM when returning from an exception. */ cpu_register_physical_memory(0xfffff000, 0x1000, qemu_ram_alloc(0x1000) | IO_MEM_RAM); return pic; }