#ifndef CPU_COMMON_H #define CPU_COMMON_H 1 /* CPU interfaces that are target indpendent. */ #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__) || defined(__ia64__) #define WORDS_ALIGNED #endif #ifdef TARGET_PHYS_ADDR_BITS #include "targphys.h" #endif #ifndef NEED_CPU_H #include "poison.h" #endif #include "bswap.h" #include "qemu-queue.h" #if !defined(CONFIG_USER_ONLY) enum device_endian { DEVICE_NATIVE_ENDIAN, DEVICE_BIG_ENDIAN, DEVICE_LITTLE_ENDIAN, }; /* address in the RAM (different from a physical address) */ typedef unsigned long ram_addr_t; /* memory API */ typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value); typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr); void cpu_register_physical_memory_log(target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset, ram_addr_t region_offset, bool log_dirty); static inline void cpu_register_physical_memory_offset(target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset, ram_addr_t region_offset) { cpu_register_physical_memory_log(start_addr, size, phys_offset, region_offset, false); } static inline void cpu_register_physical_memory(target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset) { cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0); } ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr); ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name, ram_addr_t size, void *host); ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size); void qemu_ram_free(ram_addr_t addr); void qemu_ram_free_from_ptr(ram_addr_t addr); void qemu_ram_remap(ram_addr_t addr, ram_addr_t length); /* This should only be used for ram local to a device. */ void *qemu_get_ram_ptr(ram_addr_t addr); void *qemu_ram_ptr_length(target_phys_addr_t addr, target_phys_addr_t *size); /* Same but slower, to use for migration, where the order of * RAMBlocks must not change. */ void *qemu_safe_ram_ptr(ram_addr_t addr); void qemu_put_ram_ptr(void *addr); /* This should not be used by devices. */ int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr); ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr); int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read, CPUWriteMemoryFunc * const *mem_write, void *opaque, enum device_endian endian); void cpu_unregister_io_memory(int table_address); void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf, int len, int is_write); static inline void cpu_physical_memory_read(target_phys_addr_t addr, void *buf, int len) { cpu_physical_memory_rw(addr, buf, len, 0); } static inline void cpu_physical_memory_write(target_phys_addr_t addr, const void *buf, int len) { cpu_physical_memory_rw(addr, (void *)buf, len, 1); } void *cpu_physical_memory_map(target_phys_addr_t addr, target_phys_addr_t *plen, int is_write); void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len, int is_write, target_phys_addr_t access_len); void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque)); void cpu_unregister_map_client(void *cookie); struct CPUPhysMemoryClient; typedef struct CPUPhysMemoryClient CPUPhysMemoryClient; struct CPUPhysMemoryClient { void (*set_memory)(struct CPUPhysMemoryClient *client, target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset, bool log_dirty); int (*sync_dirty_bitmap)(struct CPUPhysMemoryClient *client, target_phys_addr_t start_addr, target_phys_addr_t end_addr); int (*migration_log)(struct CPUPhysMemoryClient *client, int enable); int (*log_start)(struct CPUPhysMemoryClient *client, target_phys_addr_t phys_addr, ram_addr_t size); int (*log_stop)(struct CPUPhysMemoryClient *client, target_phys_addr_t phys_addr, ram_addr_t size); QLIST_ENTRY(CPUPhysMemoryClient) list; }; void cpu_register_phys_memory_client(CPUPhysMemoryClient *); void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *); /* Coalesced MMIO regions are areas where write operations can be reordered. * This usually implies that write operations are side-effect free. This allows * batching which can make a major impact on performance when using * virtualization. */ void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size); void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size); void qemu_flush_coalesced_mmio_buffer(void); uint32_t ldub_phys(target_phys_addr_t addr); uint32_t lduw_phys(target_phys_addr_t addr); uint32_t ldl_phys(target_phys_addr_t addr); uint64_t ldq_phys(target_phys_addr_t addr); void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val); void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val); void stb_phys(target_phys_addr_t addr, uint32_t val); void stw_phys(target_phys_addr_t addr, uint32_t val); void stl_phys(target_phys_addr_t addr, uint32_t val); void stq_phys(target_phys_addr_t addr, uint64_t val); void cpu_physical_memory_write_rom(target_phys_addr_t addr, const uint8_t *buf, int len); #define IO_MEM_SHIFT 3 #define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */ #define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */ #define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT) #define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT) /* Acts like a ROM when read and like a device when written. */ #define IO_MEM_ROMD (1) #define IO_MEM_SUBPAGE (2) #endif #endif /* !CPU_COMMON_H */