/* * QEMU Block driver for RADOS (Ceph) * * Copyright (C) 2010 Christian Brunner * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include "qemu-common.h" #include "qemu-error.h" #include "rbd_types.h" #include "block_int.h" #include /* * When specifying the image filename use: * * rbd:poolname/devicename * * poolname must be the name of an existing rados pool * * devicename is the basename for all objects used to * emulate the raw device. * * Metadata information (image size, ...) is stored in an * object with the name "devicename.rbd". * * The raw device is split into 4MB sized objects by default. * The sequencenumber is encoded in a 12 byte long hex-string, * and is attached to the devicename, separated by a dot. * e.g. "devicename.1234567890ab" * */ #define OBJ_MAX_SIZE (1UL << OBJ_DEFAULT_OBJ_ORDER) typedef struct RBDAIOCB { BlockDriverAIOCB common; QEMUBH *bh; int ret; QEMUIOVector *qiov; char *bounce; int write; int64_t sector_num; int aiocnt; int error; struct BDRVRBDState *s; int cancelled; } RBDAIOCB; typedef struct RADOSCB { int rcbid; RBDAIOCB *acb; struct BDRVRBDState *s; int done; int64_t segsize; char *buf; int ret; } RADOSCB; #define RBD_FD_READ 0 #define RBD_FD_WRITE 1 typedef struct BDRVRBDState { int fds[2]; rados_pool_t pool; rados_pool_t header_pool; char name[RBD_MAX_OBJ_NAME_SIZE]; char block_name[RBD_MAX_BLOCK_NAME_SIZE]; uint64_t size; uint64_t objsize; int qemu_aio_count; int event_reader_pos; RADOSCB *event_rcb; } BDRVRBDState; typedef struct rbd_obj_header_ondisk RbdHeader1; static void rbd_aio_bh_cb(void *opaque); static int rbd_next_tok(char *dst, int dst_len, char *src, char delim, const char *name, char **p) { int l; char *end; *p = NULL; if (delim != '\0') { end = strchr(src, delim); if (end) { *p = end + 1; *end = '\0'; } } l = strlen(src); if (l >= dst_len) { error_report("%s too long", name); return -EINVAL; } else if (l == 0) { error_report("%s too short", name); return -EINVAL; } pstrcpy(dst, dst_len, src); return 0; } static int rbd_parsename(const char *filename, char *pool, int pool_len, char *snap, int snap_len, char *name, int name_len) { const char *start; char *p, *buf; int ret; if (!strstart(filename, "rbd:", &start)) { return -EINVAL; } buf = qemu_strdup(start); p = buf; ret = rbd_next_tok(pool, pool_len, p, '/', "pool name", &p); if (ret < 0 || !p) { ret = -EINVAL; goto done; } ret = rbd_next_tok(name, name_len, p, '@', "object name", &p); if (ret < 0) { goto done; } if (!p) { *snap = '\0'; goto done; } ret = rbd_next_tok(snap, snap_len, p, '\0', "snap name", &p); done: qemu_free(buf); return ret; } static int create_tmap_op(uint8_t op, const char *name, char **tmap_desc) { uint32_t len = strlen(name); uint32_t len_le = cpu_to_le32(len); /* total_len = encoding op + name + empty buffer */ uint32_t total_len = 1 + (sizeof(uint32_t) + len) + sizeof(uint32_t); uint8_t *desc = NULL; desc = qemu_malloc(total_len); *tmap_desc = (char *)desc; *desc = op; desc++; memcpy(desc, &len_le, sizeof(len_le)); desc += sizeof(len_le); memcpy(desc, name, len); desc += len; len = 0; /* no need for endian conversion for 0 */ memcpy(desc, &len, sizeof(len)); desc += sizeof(len); return (char *)desc - *tmap_desc; } static void free_tmap_op(char *tmap_desc) { qemu_free(tmap_desc); } static int rbd_register_image(rados_pool_t pool, const char *name) { char *tmap_desc; const char *dir = RBD_DIRECTORY; int ret; ret = create_tmap_op(CEPH_OSD_TMAP_SET, name, &tmap_desc); if (ret < 0) { return ret; } ret = rados_tmap_update(pool, dir, tmap_desc, ret); free_tmap_op(tmap_desc); return ret; } static int touch_rbd_info(rados_pool_t pool, const char *info_oid) { int r = rados_write(pool, info_oid, 0, NULL, 0); if (r < 0) { return r; } return 0; } static int rbd_assign_bid(rados_pool_t pool, uint64_t *id) { uint64_t out[1]; const char *info_oid = RBD_INFO; *id = 0; int r = touch_rbd_info(pool, info_oid); if (r < 0) { return r; } r = rados_exec(pool, info_oid, "rbd", "assign_bid", NULL, 0, (char *)out, sizeof(out)); if (r < 0) { return r; } le64_to_cpus(out); *id = out[0]; return 0; } static int rbd_create(const char *filename, QEMUOptionParameter *options) { int64_t bytes = 0; int64_t objsize; uint64_t size; time_t mtime; uint8_t obj_order = RBD_DEFAULT_OBJ_ORDER; char pool[RBD_MAX_SEG_NAME_SIZE]; char n[RBD_MAX_SEG_NAME_SIZE]; char name[RBD_MAX_OBJ_NAME_SIZE]; char snap_buf[RBD_MAX_SEG_NAME_SIZE]; char *snap = NULL; RbdHeader1 header; rados_pool_t p; uint64_t bid; uint32_t hi, lo; int ret; if (rbd_parsename(filename, pool, sizeof(pool), snap_buf, sizeof(snap_buf), name, sizeof(name)) < 0) { return -EINVAL; } if (snap_buf[0] != '\0') { snap = snap_buf; } snprintf(n, sizeof(n), "%s%s", name, RBD_SUFFIX); /* Read out options */ while (options && options->name) { if (!strcmp(options->name, BLOCK_OPT_SIZE)) { bytes = options->value.n; } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) { if (options->value.n) { objsize = options->value.n; if ((objsize - 1) & objsize) { /* not a power of 2? */ error_report("obj size needs to be power of 2"); return -EINVAL; } if (objsize < 4096) { error_report("obj size too small"); return -EINVAL; } obj_order = ffs(objsize) - 1; } } options++; } memset(&header, 0, sizeof(header)); pstrcpy(header.text, sizeof(header.text), RBD_HEADER_TEXT); pstrcpy(header.signature, sizeof(header.signature), RBD_HEADER_SIGNATURE); pstrcpy(header.version, sizeof(header.version), RBD_HEADER_VERSION); header.image_size = cpu_to_le64(bytes); header.options.order = obj_order; header.options.crypt_type = RBD_CRYPT_NONE; header.options.comp_type = RBD_COMP_NONE; header.snap_seq = 0; header.snap_count = 0; if (rados_initialize(0, NULL) < 0) { error_report("error initializing"); return -EIO; } if (rados_open_pool(pool, &p)) { error_report("error opening pool %s", pool); rados_deinitialize(); return -EIO; } /* check for existing rbd header file */ ret = rados_stat(p, n, &size, &mtime); if (ret == 0) { ret=-EEXIST; goto done; } ret = rbd_assign_bid(p, &bid); if (ret < 0) { error_report("failed assigning block id"); rados_deinitialize(); return -EIO; } hi = bid >> 32; lo = bid & 0xFFFFFFFF; snprintf(header.block_name, sizeof(header.block_name), "rb.%x.%x", hi, lo); /* create header file */ ret = rados_write(p, n, 0, (const char *)&header, sizeof(header)); if (ret < 0) { goto done; } ret = rbd_register_image(p, name); done: rados_close_pool(p); rados_deinitialize(); return ret; } /* * This aio completion is being called from rbd_aio_event_reader() and * runs in qemu context. It schedules a bh, but just in case the aio * was not cancelled before. */ static void rbd_complete_aio(RADOSCB *rcb) { RBDAIOCB *acb = rcb->acb; int64_t r; acb->aiocnt--; if (acb->cancelled) { if (!acb->aiocnt) { qemu_vfree(acb->bounce); qemu_aio_release(acb); } goto done; } r = rcb->ret; if (acb->write) { if (r < 0) { acb->ret = r; acb->error = 1; } else if (!acb->error) { acb->ret += rcb->segsize; } } else { if (r == -ENOENT) { memset(rcb->buf, 0, rcb->segsize); if (!acb->error) { acb->ret += rcb->segsize; } } else if (r < 0) { memset(rcb->buf, 0, rcb->segsize); acb->ret = r; acb->error = 1; } else if (r < rcb->segsize) { memset(rcb->buf + r, 0, rcb->segsize - r); if (!acb->error) { acb->ret += rcb->segsize; } } else if (!acb->error) { acb->ret += r; } } /* Note that acb->bh can be NULL in case where the aio was cancelled */ if (!acb->aiocnt) { acb->bh = qemu_bh_new(rbd_aio_bh_cb, acb); qemu_bh_schedule(acb->bh); } done: qemu_free(rcb); } /* * aio fd read handler. It runs in the qemu context and calls the * completion handling of completed rados aio operations. */ static void rbd_aio_event_reader(void *opaque) { BDRVRBDState *s = opaque; ssize_t ret; do { char *p = (char *)&s->event_rcb; /* now read the rcb pointer that was sent from a non qemu thread */ if ((ret = read(s->fds[RBD_FD_READ], p + s->event_reader_pos, sizeof(s->event_rcb) - s->event_reader_pos)) > 0) { if (ret > 0) { s->event_reader_pos += ret; if (s->event_reader_pos == sizeof(s->event_rcb)) { s->event_reader_pos = 0; rbd_complete_aio(s->event_rcb); s->qemu_aio_count --; } } } } while (ret < 0 && errno == EINTR); } static int rbd_aio_flush_cb(void *opaque) { BDRVRBDState *s = opaque; return (s->qemu_aio_count > 0); } static int rbd_set_snapc(rados_pool_t pool, const char *snap, RbdHeader1 *header) { uint32_t snap_count = le32_to_cpu(header->snap_count); rados_snap_t *snaps = NULL; rados_snap_t seq; uint32_t i; uint64_t snap_names_len = le64_to_cpu(header->snap_names_len); int r; rados_snap_t snapid = 0; if (snap_count) { const char *header_snap = (const char *)&header->snaps[snap_count]; const char *end = header_snap + snap_names_len; snaps = qemu_malloc(sizeof(rados_snap_t) * header->snap_count); for (i=0; i < snap_count; i++) { snaps[i] = le64_to_cpu(header->snaps[i].id); if (snap && strcmp(snap, header_snap) == 0) { snapid = snaps[i]; } header_snap += strlen(header_snap) + 1; if (header_snap > end) { error_report("bad header, snapshot list broken"); } } } if (snap && !snapid) { error_report("snapshot not found"); qemu_free(snaps); return -ENOENT; } seq = le32_to_cpu(header->snap_seq); r = rados_set_snap_context(pool, seq, snaps, snap_count); rados_set_snap(pool, snapid); qemu_free(snaps); return r; } #define BUF_READ_START_LEN 4096 static int rbd_read_header(BDRVRBDState *s, char **hbuf) { char *buf = NULL; char n[RBD_MAX_SEG_NAME_SIZE]; uint64_t len = BUF_READ_START_LEN; int r; snprintf(n, sizeof(n), "%s%s", s->name, RBD_SUFFIX); buf = qemu_malloc(len); r = rados_read(s->header_pool, n, 0, buf, len); if (r < 0) { goto failed; } if (r < len) { goto done; } qemu_free(buf); buf = qemu_malloc(len); r = rados_stat(s->header_pool, n, &len, NULL); if (r < 0) { goto failed; } r = rados_read(s->header_pool, n, 0, buf, len); if (r < 0) { goto failed; } done: *hbuf = buf; return 0; failed: qemu_free(buf); return r; } static int rbd_open(BlockDriverState *bs, const char *filename, int flags) { BDRVRBDState *s = bs->opaque; RbdHeader1 *header; char pool[RBD_MAX_SEG_NAME_SIZE]; char snap_buf[RBD_MAX_SEG_NAME_SIZE]; char *snap = NULL; char *hbuf = NULL; int r; if (rbd_parsename(filename, pool, sizeof(pool), snap_buf, sizeof(snap_buf), s->name, sizeof(s->name)) < 0) { return -EINVAL; } if (snap_buf[0] != '\0') { snap = snap_buf; } if ((r = rados_initialize(0, NULL)) < 0) { error_report("error initializing"); return r; } if ((r = rados_open_pool(pool, &s->pool))) { error_report("error opening pool %s", pool); rados_deinitialize(); return r; } if ((r = rados_open_pool(pool, &s->header_pool))) { error_report("error opening pool %s", pool); rados_deinitialize(); return r; } if ((r = rbd_read_header(s, &hbuf)) < 0) { error_report("error reading header from %s", s->name); goto failed; } if (memcmp(hbuf + 64, RBD_HEADER_SIGNATURE, 4)) { error_report("Invalid header signature"); r = -EMEDIUMTYPE; goto failed; } if (memcmp(hbuf + 68, RBD_HEADER_VERSION, 8)) { error_report("Unknown image version"); r = -EMEDIUMTYPE; goto failed; } header = (RbdHeader1 *) hbuf; s->size = le64_to_cpu(header->image_size); s->objsize = 1ULL << header->options.order; memcpy(s->block_name, header->block_name, sizeof(header->block_name)); r = rbd_set_snapc(s->pool, snap, header); if (r < 0) { error_report("failed setting snap context: %s", strerror(-r)); goto failed; } bs->read_only = (snap != NULL); s->event_reader_pos = 0; r = qemu_pipe(s->fds); if (r < 0) { error_report("error opening eventfd"); goto failed; } fcntl(s->fds[0], F_SETFL, O_NONBLOCK); fcntl(s->fds[1], F_SETFL, O_NONBLOCK); qemu_aio_set_fd_handler(s->fds[RBD_FD_READ], rbd_aio_event_reader, NULL, rbd_aio_flush_cb, NULL, s); qemu_free(hbuf); return 0; failed: qemu_free(hbuf); rados_close_pool(s->header_pool); rados_close_pool(s->pool); rados_deinitialize(); return r; } static void rbd_close(BlockDriverState *bs) { BDRVRBDState *s = bs->opaque; close(s->fds[0]); close(s->fds[1]); qemu_aio_set_fd_handler(s->fds[RBD_FD_READ], NULL , NULL, NULL, NULL, NULL); rados_close_pool(s->header_pool); rados_close_pool(s->pool); rados_deinitialize(); } /* * Cancel aio. Since we don't reference acb in a non qemu threads, * it is safe to access it here. */ static void rbd_aio_cancel(BlockDriverAIOCB *blockacb) { RBDAIOCB *acb = (RBDAIOCB *) blockacb; acb->cancelled = 1; } static AIOPool rbd_aio_pool = { .aiocb_size = sizeof(RBDAIOCB), .cancel = rbd_aio_cancel, }; /* * This is the callback function for rados_aio_read and _write * * Note: this function is being called from a non qemu thread so * we need to be careful about what we do here. Generally we only * write to the block notification pipe, and do the rest of the * io completion handling from rbd_aio_event_reader() which * runs in a qemu context. */ static void rbd_finish_aiocb(rados_completion_t c, RADOSCB *rcb) { int ret; rcb->ret = rados_aio_get_return_value(c); rados_aio_release(c); while (1) { fd_set wfd; int fd = rcb->s->fds[RBD_FD_WRITE]; /* send the rcb pointer to the qemu thread that is responsible for the aio completion. Must do it in a qemu thread context */ ret = write(fd, (void *)&rcb, sizeof(rcb)); if (ret >= 0) { break; } if (errno == EINTR) { continue; } if (errno != EAGAIN) { break; } FD_ZERO(&wfd); FD_SET(fd, &wfd); do { ret = select(fd + 1, NULL, &wfd, NULL, NULL); } while (ret < 0 && errno == EINTR); } if (ret < 0) { error_report("failed writing to acb->s->fds\n"); qemu_free(rcb); } } /* Callback when all queued rados_aio requests are complete */ static void rbd_aio_bh_cb(void *opaque) { RBDAIOCB *acb = opaque; if (!acb->write) { qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size); } qemu_vfree(acb->bounce); acb->common.cb(acb->common.opaque, (acb->ret > 0 ? 0 : acb->ret)); qemu_bh_delete(acb->bh); acb->bh = NULL; qemu_aio_release(acb); } static BlockDriverAIOCB *rbd_aio_rw_vector(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque, int write) { RBDAIOCB *acb; RADOSCB *rcb; rados_completion_t c; char n[RBD_MAX_SEG_NAME_SIZE]; int64_t segnr, segoffs, segsize, last_segnr; int64_t off, size; char *buf; BDRVRBDState *s = bs->opaque; acb = qemu_aio_get(&rbd_aio_pool, bs, cb, opaque); acb->write = write; acb->qiov = qiov; acb->bounce = qemu_blockalign(bs, qiov->size); acb->aiocnt = 0; acb->ret = 0; acb->error = 0; acb->s = s; acb->cancelled = 0; acb->bh = NULL; if (write) { qemu_iovec_to_buffer(acb->qiov, acb->bounce); } buf = acb->bounce; off = sector_num * BDRV_SECTOR_SIZE; size = nb_sectors * BDRV_SECTOR_SIZE; segnr = off / s->objsize; segoffs = off % s->objsize; segsize = s->objsize - segoffs; last_segnr = ((off + size - 1) / s->objsize); acb->aiocnt = (last_segnr - segnr) + 1; s->qemu_aio_count += acb->aiocnt; /* All the RADOSCB */ while (size > 0) { if (size < segsize) { segsize = size; } snprintf(n, sizeof(n), "%s.%012" PRIx64, s->block_name, segnr); rcb = qemu_malloc(sizeof(RADOSCB)); rcb->done = 0; rcb->acb = acb; rcb->segsize = segsize; rcb->buf = buf; rcb->s = acb->s; if (write) { rados_aio_create_completion(rcb, NULL, (rados_callback_t) rbd_finish_aiocb, &c); rados_aio_write(s->pool, n, segoffs, buf, segsize, c); } else { rados_aio_create_completion(rcb, (rados_callback_t) rbd_finish_aiocb, NULL, &c); rados_aio_read(s->pool, n, segoffs, buf, segsize, c); } buf += segsize; size -= segsize; segoffs = 0; segsize = s->objsize; segnr++; } return &acb->common; } static BlockDriverAIOCB *rbd_aio_readv(BlockDriverState * bs, int64_t sector_num, QEMUIOVector * qiov, int nb_sectors, BlockDriverCompletionFunc * cb, void *opaque) { return rbd_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0); } static BlockDriverAIOCB *rbd_aio_writev(BlockDriverState * bs, int64_t sector_num, QEMUIOVector * qiov, int nb_sectors, BlockDriverCompletionFunc * cb, void *opaque) { return rbd_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1); } static int rbd_getinfo(BlockDriverState * bs, BlockDriverInfo * bdi) { BDRVRBDState *s = bs->opaque; bdi->cluster_size = s->objsize; return 0; } static int64_t rbd_getlength(BlockDriverState * bs) { BDRVRBDState *s = bs->opaque; return s->size; } static int rbd_snap_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info) { BDRVRBDState *s = bs->opaque; char inbuf[512], outbuf[128]; uint64_t snap_id; int r; char *p = inbuf; char *end = inbuf + sizeof(inbuf); char n[RBD_MAX_SEG_NAME_SIZE]; char *hbuf = NULL; RbdHeader1 *header; if (sn_info->name[0] == '\0') { return -EINVAL; /* we need a name for rbd snapshots */ } /* * rbd snapshots are using the name as the user controlled unique identifier * we can't use the rbd snapid for that purpose, as it can't be set */ if (sn_info->id_str[0] != '\0' && strcmp(sn_info->id_str, sn_info->name) != 0) { return -EINVAL; } if (strlen(sn_info->name) >= sizeof(sn_info->id_str)) { return -ERANGE; } r = rados_selfmanaged_snap_create(s->header_pool, &snap_id); if (r < 0) { error_report("failed to create snap id: %s", strerror(-r)); return r; } *(uint32_t *)p = strlen(sn_info->name); cpu_to_le32s((uint32_t *)p); p += sizeof(uint32_t); strncpy(p, sn_info->name, end - p); p += strlen(p); if (p + sizeof(snap_id) > end) { error_report("invalid input parameter"); return -EINVAL; } *(uint64_t *)p = snap_id; cpu_to_le64s((uint64_t *)p); snprintf(n, sizeof(n), "%s%s", s->name, RBD_SUFFIX); r = rados_exec(s->header_pool, n, "rbd", "snap_add", inbuf, sizeof(inbuf), outbuf, sizeof(outbuf)); if (r < 0) { error_report("rbd.snap_add execution failed failed: %s", strerror(-r)); return r; } sprintf(sn_info->id_str, "%s", sn_info->name); r = rbd_read_header(s, &hbuf); if (r < 0) { error_report("failed reading header: %s", strerror(-r)); return r; } header = (RbdHeader1 *) hbuf; r = rbd_set_snapc(s->pool, sn_info->name, header); if (r < 0) { error_report("failed setting snap context: %s", strerror(-r)); goto failed; } return 0; failed: qemu_free(header); return r; } static int decode32(char **p, const char *end, uint32_t *v) { if (*p + 4 > end) { return -ERANGE; } *v = *(uint32_t *)(*p); le32_to_cpus(v); *p += 4; return 0; } static int decode64(char **p, const char *end, uint64_t *v) { if (*p + 8 > end) { return -ERANGE; } *v = *(uint64_t *)(*p); le64_to_cpus(v); *p += 8; return 0; } static int decode_str(char **p, const char *end, char **s) { uint32_t len; int r; if ((r = decode32(p, end, &len)) < 0) { return r; } *s = qemu_malloc(len + 1); memcpy(*s, *p, len); *p += len; (*s)[len] = '\0'; return len; } static int rbd_snap_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab) { BDRVRBDState *s = bs->opaque; char n[RBD_MAX_SEG_NAME_SIZE]; QEMUSnapshotInfo *sn_info, *sn_tab = NULL; RbdHeader1 *header; char *hbuf = NULL; char *outbuf = NULL, *end, *buf; uint64_t len; uint64_t snap_seq; uint32_t snap_count; int r, i; /* read header to estimate how much space we need to read the snap * list */ if ((r = rbd_read_header(s, &hbuf)) < 0) { goto done_err; } header = (RbdHeader1 *)hbuf; len = le64_to_cpu(header->snap_names_len); len += 1024; /* should have already been enough, but new snapshots might already been created since we read the header. just allocate a bit more, so that in most cases it'll suffice anyway */ qemu_free(hbuf); snprintf(n, sizeof(n), "%s%s", s->name, RBD_SUFFIX); while (1) { qemu_free(outbuf); outbuf = qemu_malloc(len); r = rados_exec(s->header_pool, n, "rbd", "snap_list", NULL, 0, outbuf, len); if (r < 0) { error_report("rbd.snap_list execution failed failed: %s", strerror(-r)); goto done_err; } if (r != len) { break; } /* if we're here, we probably raced with some snaps creation */ len *= 2; } buf = outbuf; end = buf + len; if ((r = decode64(&buf, end, &snap_seq)) < 0) { goto done_err; } if ((r = decode32(&buf, end, &snap_count)) < 0) { goto done_err; } sn_tab = qemu_mallocz(snap_count * sizeof(QEMUSnapshotInfo)); for (i = 0; i < snap_count; i++) { uint64_t id, image_size; char *snap_name; if ((r = decode64(&buf, end, &id)) < 0) { goto done_err; } if ((r = decode64(&buf, end, &image_size)) < 0) { goto done_err; } if ((r = decode_str(&buf, end, &snap_name)) < 0) { goto done_err; } sn_info = sn_tab + i; pstrcpy(sn_info->id_str, sizeof(sn_info->id_str), snap_name); pstrcpy(sn_info->name, sizeof(sn_info->name), snap_name); qemu_free(snap_name); sn_info->vm_state_size = image_size; sn_info->date_sec = 0; sn_info->date_nsec = 0; sn_info->vm_clock_nsec = 0; } *psn_tab = sn_tab; qemu_free(outbuf); return snap_count; done_err: qemu_free(sn_tab); qemu_free(outbuf); return r; } static QEMUOptionParameter rbd_create_options[] = { { .name = BLOCK_OPT_SIZE, .type = OPT_SIZE, .help = "Virtual disk size" }, { .name = BLOCK_OPT_CLUSTER_SIZE, .type = OPT_SIZE, .help = "RBD object size" }, {NULL} }; static BlockDriver bdrv_rbd = { .format_name = "rbd", .instance_size = sizeof(BDRVRBDState), .bdrv_file_open = rbd_open, .bdrv_close = rbd_close, .bdrv_create = rbd_create, .bdrv_get_info = rbd_getinfo, .create_options = rbd_create_options, .bdrv_getlength = rbd_getlength, .protocol_name = "rbd", .bdrv_aio_readv = rbd_aio_readv, .bdrv_aio_writev = rbd_aio_writev, .bdrv_snapshot_create = rbd_snap_create, .bdrv_snapshot_list = rbd_snap_list, }; static void bdrv_rbd_init(void) { bdrv_register(&bdrv_rbd); } block_init(bdrv_rbd_init);