QEMU Monitor Protocol Specification - Version 0.1 1. Introduction =============== This document specifies the QEMU Monitor Protocol (QMP), a JSON-based protocol which is available for applications to control QEMU at the machine-level. To enable QMP support, QEMU has to be run in "control mode". This is done by starting QEMU with the appropriate command-line options. Please, refer to the QEMU manual page for more information. 2. Protocol Specification ========================= This section details the protocol format. For the purpose of this document "Client" is any application which is communicating with QEMU in control mode, and "Server" is QEMU itself. JSON data structures, when mentioned in this document, are always in the following format: json-DATA-STRUCTURE-NAME Where DATA-STRUCTURE-NAME is any valid JSON data structure, as defined by the JSON standard: http://www.ietf.org/rfc/rfc4627.txt For convenience, json-object members and json-array elements mentioned in this document will be in a certain order. However, in real protocol usage they can be in ANY order, thus no particular order should be assumed. 2.1 General Definitions ----------------------- 2.1.1 All interactions transmitted by the Server are json-objects, always terminating with CRLF 2.1.2 All json-objects members are mandatory when not specified otherwise 2.2 Server Greeting ------------------- Right when connected the Server will issue a greeting message, which signals that the connection has been successfully established and that the Server is ready for capabilities negotiation (for more information refer to section '4. Capabilities Negotiation'). The format is: { "QMP": { "version": json-object, "capabilities": json-array } } Where, - The "version" member contains the Server's version information (the format is the same of the 'query-version' command) - The "capabilities" member specify the availability of features beyond the baseline specification 2.3 Issuing Commands -------------------- The format for command execution is: { "execute": json-string, "arguments": json-object, "id": json-value } Where, - The "execute" member identifies the command to be executed by the Server - The "arguments" member is used to pass any arguments required for the execution of the command, it is optional when no arguments are required - The "id" member is a transaction identification associated with the command execution, it is optional and will be part of the response if provided 2.4 Commands Responses ---------------------- There are two possible responses which the Server will issue as the result of a command execution: success or error. 2.4.1 success ------------- The success response is issued when the command execution has finished without errors. The format is: { "return": json-object, "id": json-value } Where, - The "return" member contains the command returned data, which is defined in a per-command basis or an empty json-object if the command does not return data - The "id" member contains the transaction identification associated with the command execution (if issued by the Client) 2.4.2 error ----------- The error response is issued when the command execution could not be completed because of an error condition. The format is: { "error": { "class": json-string, "data": json-object, "desc": json-string }, "id": json-value } Where, - The "class" member contains the error class name (eg. "ServiceUnavailable") - The "data" member contains specific error data and is defined in a per-command basis, it will be an empty json-object if the error has no data - The "desc" member is a human-readable error message. Clients should not attempt to parse this message. - The "id" member contains the transaction identification associated with the command execution (if issued by the Client) NOTE: Some errors can occur before the Server is able to read the "id" member, in these cases the "id" member will not be part of the error response, even if provided by the client. 2.5 Asynchronous events ----------------------- As a result of state changes, the Server may send messages unilaterally to the Client at any time. They are called 'asynchronous events'. The format is: { "event": json-string, "data": json-object, "timestamp": { "seconds": json-number, "microseconds": json-number } } Where, - The "event" member contains the event's name - The "data" member contains event specific data, which is defined in a per-event basis, it is optional - The "timestamp" member contains the exact time of when the event occurred in the Server. It is a fixed json-object with time in seconds and microseconds For a listing of supported asynchronous events, please, refer to the qmp-events.txt file. 3. QMP Examples =============== This section provides some examples of real QMP usage, in all of them 'C' stands for 'Client' and 'S' stands for 'Server'. 3.1 Server greeting ------------------- S: {"QMP": {"version": {"qemu": "0.12.50", "package": ""}, "capabilities": []}} 3.2 Simple 'stop' execution --------------------------- C: { "execute": "stop" } S: {"return": {}} 3.3 KVM information ------------------- C: { "execute": "query-kvm", "id": "example" } S: {"return": {"enabled": true, "present": true}, "id": "example"} 3.4 Parsing error ------------------ C: { "execute": } S: {"error": {"class": "JSONParsing", "desc": "Invalid JSON syntax", "data": {}}} 3.5 Powerdown event ------------------- S: {"timestamp": {"seconds": 1258551470, "microseconds": 802384}, "event": "POWERDOWN"} 4. Capabilities Negotiation ---------------------------- When a Client successfully establishes a connection, the Server is in Capabilities Negotiation mode. In this mode only the 'qmp_capabilities' command is allowed to run, all other commands will return the CommandNotFound error. Asynchronous messages are not delivered either. Clients should use the 'qmp_capabilities' command to enable capabilities advertised in the Server's greeting (section '2.2 Server Greeting') they support. When the 'qmp_capabilities' command is issued, and if it does not return an error, the Server enters in Command mode where capabilities changes take effect, all commands (except 'qmp_capabilities') are allowed and asynchronous messages are delivered. 5 Compatibility Considerations ------------------------------ All protocol changes or new features which modify the protocol format in an incompatible way are disabled by default and will be advertised by the capabilities array (section '2.2 Server Greeting'). Thus, Clients can check that array and enable the capabilities they support. Additionally, Clients must not assume any particular: - Size of json-objects or length of json-arrays - Order of json-object members or json-array elements - Amount of errors generated by a command, that is, new errors can be added to any existing command in newer versions of the Server 6. Downstream extension of QMP ------------------------------ We recommend that downstream consumers of QEMU do *not* modify QMP. Management tools should be able to support both upstream and downstream versions of QMP without special logic, and downstream extensions are inherently at odds with that. However, we recognize that it is sometimes impossible for downstreams to avoid modifying QMP. Both upstream and downstream need to take care to preserve long-term compatibility and interoperability. To help with that, QMP reserves JSON object member names beginning with '__' (double underscore) for downstream use ("downstream names"). This means upstream will never use any downstream names for its commands, arguments, errors, asynchronous events, and so forth. Any new names downstream wishes to add must begin with '__'. To ensure compatibility with other downstreams, it is strongly recommended that you prefix your downstram names with '__RFQDN_' where RFQDN is a valid, reverse fully qualified domain name which you control. For example, a qemu-kvm specific monitor command would be: (qemu) __org.linux-kvm_enable_irqchip Downstream must not change the server greeting (section 2.2) other than to offer additional capabilities. But see below for why even that is discouraged. Section '5 Compatibility Considerations' applies to downstream as well as to upstream, obviously. It follows that downstream must behave exactly like upstream for any input not containing members with downstream names ("downstream members"), except it may add members with downstream names to its output. Thus, a client should not be able to distinguish downstream from upstream as long as it doesn't send input with downstream members, and properly ignores any downstream members in the output it receives. Advice on downstream modifications: 1. Introducing new commands is okay. If you want to extend an existing command, consider introducing a new one with the new behaviour instead. 2. Introducing new asynchronous messages is okay. If you want to extend an existing message, consider adding a new one instead. 3. Introducing new errors for use in new commands is okay. Adding new errors to existing commands counts as extension, so 1. applies. 4. New capabilities are strongly discouraged. Capabilities are for evolving the basic protocol, and multiple diverging basic protocol dialects are most undesirable.