aboutsummaryrefslogtreecommitdiffstats
path: root/pySim/utils.py
blob: e30c970ec91fa1c8567faacce7ddf88d97ec1865 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
# -*- coding: utf-8 -*-

""" pySim: various utilities
"""

import json
import abc
import string
from io import BytesIO
from typing import Optional, List, Dict, Any, Tuple

# Copyright (C) 2009-2010  Sylvain Munaut <tnt@246tNt.com>
# Copyright (C) 2021 Harald Welte <laforge@osmocom.org>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

# just to differentiate strings of hex nibbles from everything else
Hexstr = str

def h2b(s:Hexstr) -> bytearray:
	"""convert from a string of hex nibbles to a sequence of bytes"""
	return bytearray.fromhex(s)

def b2h(b:bytearray) -> Hexstr:
	"""convert from a sequence of bytes to a string of hex nibbles"""
	return ''.join(['%02x'%(x) for x in b])

def h2i(s:Hexstr) -> List[int]:
	"""convert from a string of hex nibbles to a list of integers"""
	return [(int(x,16)<<4)+int(y,16) for x,y in zip(s[0::2], s[1::2])]

def i2h(s:List[int]) -> Hexstr:
	"""convert from a list of integers to a string of hex nibbles"""
	return ''.join(['%02x'%(x) for x in s])

def h2s(s:Hexstr) -> str:
	"""convert from a string of hex nibbles to an ASCII string"""
	return ''.join([chr((int(x,16)<<4)+int(y,16)) for x,y in zip(s[0::2], s[1::2])
						      if int(x + y, 16) != 0xff])

def s2h(s:str) -> Hexstr:
	"""convert from an ASCII string to a string of hex nibbles"""
	b = bytearray()
	b.extend(map(ord, s))
	return b2h(b)

def i2s(s:List[int]) -> str:
	"""convert from a list of integers to an ASCII string"""
	return ''.join([chr(x) for x in s])

def swap_nibbles(s:Hexstr) -> Hexstr:
	"""swap the nibbles in a hex string"""
	return ''.join([x+y for x,y in zip(s[1::2], s[0::2])])

def rpad(s:str, l:int, c='f') -> str:
	"""pad string on the right side.
	Args:
		s : string to pad
		l : total length to pad to
		c : padding character
	Returns:
		String 's' padded with as many 'c' as needed to reach total length of 'l'
	"""
	return s + c * (l - len(s))

def lpad(s:str, l:int, c='f') -> str:
	"""pad string on the left side.
	Args:
		s : string to pad
		l : total length to pad to
		c : padding character
	Returns:
		String 's' padded with as many 'c' as needed to reach total length of 'l'
	"""
	return c * (l - len(s)) + s

def half_round_up(n:int) -> int:
	return (n + 1)//2

def str_sanitize(s:str) -> str:
	"""replace all non printable chars, line breaks and whitespaces, with ' ', make sure that
	there are no whitespaces at the end and at the beginning of the string.

	Args:
		s : string to sanitize
	Returns:
		filtered result of string 's'
	"""

	chars_to_keep = string.digits + string.ascii_letters + string.punctuation
	res = ''.join([c if c in chars_to_keep else ' ' for c in s])
	return res.strip()

#########################################################################
# poor man's COMPREHENSION-TLV decoder.
#########################################################################

def comprehensiontlv_parse_tag_raw(binary:bytes) -> Tuple[int, bytes]:
    """Parse a single Tag according to ETSI TS 101 220 Section 7.1.1"""
    if binary[0] in [0x00, 0x80, 0xff]:
        raise ValueError("Found illegal value 0x%02x in %s" % (binary[0], binary))
    if binary[0] == 0x7f:
        # three-byte tag
        tag = binary[0] << 16 | binary[1] << 8 | binary[2]
        return (tag, binary[3:])
    elif binary[0] == 0xff:
        return None, binary
    else:
        # single byte tag
        tag = binary[0]
        return (tag, binary[1:])

def comprehensiontlv_parse_tag(binary:bytes) -> Tuple[dict, bytes]:
    """Parse a single Tag according to ETSI TS 101 220 Section 7.1.1"""
    if binary[0] in [0x00, 0x80, 0xff]:
        raise ValueError("Found illegal value 0x%02x in %s" % (binary[0], binary))
    if binary[0] == 0x7f:
        # three-byte tag
        tag = (binary[1] & 0x7f) << 8
        tag |= binary[2]
        compr = True if binary[1] & 0x80 else False
        return ({'comprehension': compr, 'tag': tag}, binary[3:])
    else:
        # single byte tag
        tag = binary[0] & 0x7f
        compr = True if binary[0] & 0x80 else False
        return ({'comprehension': compr, 'tag': tag}, binary[1:])

def comprehensiontlv_encode_tag(tag) -> bytes:
    """Encode a single Tag according to ETSI TS 101 220 Section 7.1.1"""
    # permit caller to specify tag also as integer value
    if isinstance(tag, int):
        compr = True if tag < 0xff and tag & 0x80 else False
        tag = {'tag': tag, 'comprehension': compr}
    compr = tag.get('comprehension', False)
    if tag['tag'] in [0x00, 0x80, 0xff] or tag['tag'] > 0xff:
        # 3-byte format
        byte3 = tag['tag'] & 0xff
        byte2 = (tag['tag'] >> 8) & 0x7f
        if compr:
            byte2 |= 0x80
        return b'\x7f' + byte2.to_bytes(1, 'big') + byte3.to_bytes(1, 'big')
    else:
        # 1-byte format
        ret = tag['tag']
        if compr:
            ret |= 0x80
        return ret.to_bytes(1, 'big')

# length value coding is equal to BER-TLV

def comprehensiontlv_parse_one(binary:bytes) -> (dict, int, bytes, bytes):
	"""Parse a single TLV IE at the start of the given binary data.
	Args:
		binary : binary input data of BER-TLV length field
	Returns:
		Tuple of (tag:dict, len:int, remainder:bytes)
	"""
	(tagdict, remainder) = comprehensiontlv_parse_tag(binary)
	(length, remainder) = bertlv_parse_len(remainder)
	value = remainder[:length]
	remainder = remainder[length:]
	return (tagdict, length, value, remainder)



#########################################################################
# poor man's BER-TLV decoder. To be a more sophisticated OO library later
#########################################################################

def bertlv_parse_tag_raw(binary:bytes) -> Tuple[int, bytes]:
	"""Get a single raw Tag from start of input according to ITU-T X.690 8.1.2
	Args:
		binary : binary input data of BER-TLV length field
	Returns:
        Tuple of (tag:int, remainder:bytes)
	"""
	# check for FF padding at the end, as customary in SIM card files
	if binary[0] == 0xff and len(binary) == 1 or binary[0] == 0xff and binary[1] == 0xff:
		return None, binary
	tag = binary[0] & 0x1f
	if tag <= 30:
		return binary[0], binary[1:]
	else: # multi-byte tag
		tag = binary[0]
		i = 1
		last = False
		while not last:
			last = False if binary[i] & 0x80 else True
			tag <<= 8
			tag |= binary[i]
			i += 1
		return tag, binary[i:]

def bertlv_parse_tag(binary:bytes) -> Tuple[dict, bytes]:
	"""Parse a single Tag value according to ITU-T X.690 8.1.2
	Args:
		binary : binary input data of BER-TLV length field
	Returns:
		Tuple of ({class:int, constructed:bool, tag:int}, remainder:bytes)
	"""
	cls = binary[0] >> 6
	constructed = True if binary[0] & 0x20 else False
	tag = binary[0] & 0x1f
	if tag <= 30:
		return ({'class':cls, 'constructed':constructed, 'tag': tag}, binary[1:])
	else: # multi-byte tag
		tag = 0
		i = 1
		last = False
		while not last:
			last = False if binary[i] & 0x80 else True
			tag <<= 7
			tag |= binary[i] & 0x7f
			i += 1
		return ({'class':cls, 'constructed':constructed, 'tag':tag}, binary[i:])

def bertlv_encode_tag(t) -> bytes:
    """Encode a single Tag value according to ITU-T X.690 8.1.2
    """
    def get_top7_bits(inp:int) -> Tuple[int, int]:
        """Get top 7 bits of integer. Returns those 7 bits as integer and the remaining LSBs."""
        remain_bits = inp.bit_length()
        if remain_bits >= 7:
            bitcnt = 7
        else:
            bitcnt = remain_bits
        outp = inp >> (remain_bits - bitcnt)
        remainder = inp & ~ (inp << (remain_bits - bitcnt))
        return outp, remainder

    if isinstance(t, int):
        # FIXME: multiple byte tags
        tag = t & 0x1f
        constructed = True if t & 0x20 else False
        cls = t >> 6
    else:
        tag = t['tag']
        constructed = t['constructed']
        cls = t['class']
    if tag <= 30:
        t = tag & 0x1f
        if constructed:
            t |= 0x20
        t |= (cls & 3) << 6
        return bytes([t])
    else: # multi-byte tag
        t = 0x1f
        if constructed:
            t |= 0x20
        t |= (cls & 3) << 6
        tag_bytes = bytes([t])
        remain = tag
        while True:
            t, remain = get_top7_bits(remain)
            if remain:
                t |= 0x80
            tag_bytes += bytes([t])
            if not remain:
                break
        return tag_bytes

def bertlv_parse_len(binary:bytes) -> Tuple[int, bytes]:
	"""Parse a single Length value according to ITU-T X.690 8.1.3;
	only the definite form is supported here.
	Args:
		binary : binary input data of BER-TLV length field
	Returns:
		Tuple of (length, remainder)
	"""
	if binary[0] < 0x80:
		return (binary[0], binary[1:])
	else:
		num_len_oct = binary[0] & 0x7f
		length = 0
		for i in range(1, 1+num_len_oct):
			length <<= 8
			length |= binary[i]
		return (length, binary[1+num_len_oct:])

def bertlv_encode_len(length:int) -> bytes:
	"""Encode a single Length value according to ITU-T X.690 8.1.3;
	only the definite form is supported here.
	Args:
		length : length value to be encoded
	Returns:
		binary output data of BER-TLV length field
	"""
	if length < 0x80:
		return length.to_bytes(1, 'big')
	elif length <= 0xff:
		return b'\x81' + length.to_bytes(1, 'big')
	elif length <= 0xffff:
		return b'\x82' + length.to_bytes(2, 'big')
	elif length <= 0xffffff:
		return b'\x83' + length.to_bytes(3, 'big')
	elif length <= 0xffffffff:
		return b'\x84' + length.to_bytes(4, 'big')
	else:
		raise ValueError("Length > 32bits not supported")

def bertlv_parse_one(binary:bytes) -> (dict, int, bytes, bytes):
	"""Parse a single TLV IE at the start of the given binary data.
	Args:
		binary : binary input data of BER-TLV length field
	Returns:
		Tuple of (tag:dict, len:int, remainder:bytes)
	"""
	(tagdict, remainder) = bertlv_parse_tag(binary)
	(length, remainder) = bertlv_parse_len(remainder)
	value = remainder[:length]
	remainder = remainder[length:]
	return (tagdict, length, value, remainder)



# IMSI encoded format:
# For IMSI 0123456789ABCDE:
#
# |     byte 1      | 2 upper | 2 lower  | 3 upper | 3 lower | ... | 9 upper | 9 lower |
# | length in bytes |    0    | odd/even |    2    |    1    | ... |    E    |    D    |
#
# If the IMSI is less than 15 characters, it should be padded with 'f' from the end.
#
# The length is the total number of bytes used to encoded the IMSI. This includes the odd/even
# parity bit. E.g. an IMSI of length 14 is 8 bytes long, not 7, as it uses bytes 2 to 9 to
# encode itself.
#
# Because of this, an odd length IMSI fits exactly into len(imsi) + 1 // 2 bytes, whereas an
# even length IMSI only uses half of the last byte.

def enc_imsi(imsi:str):
	"""Converts a string IMSI into the encoded value of the EF"""
	l = half_round_up(len(imsi) + 1)	# Required bytes - include space for odd/even indicator
	oe = len(imsi) & 1			# Odd (1) / Even (0)
	ei = '%02x' % l + swap_nibbles('%01x%s' % ((oe<<3)|1, rpad(imsi, 15)))
	return ei

def dec_imsi(ef:Hexstr) -> Optional[str]:
	"""Converts an EF value to the IMSI string representation"""
	if len(ef) < 4:
		return None
	l = int(ef[0:2], 16) * 2		# Length of the IMSI string
	l = l - 1						# Encoded length byte includes oe nibble
	swapped = swap_nibbles(ef[2:]).rstrip('f')
	if len(swapped) < 1:
		return None
	oe = (int(swapped[0])>>3) & 1	# Odd (1) / Even (0)
	if not oe:
		# if even, only half of last byte was used
		l = l-1
	if l != len(swapped) - 1:
		return None
	imsi = swapped[1:]
	return imsi

def dec_iccid(ef:Hexstr) -> str:
	return swap_nibbles(ef).strip('f')

def enc_iccid(iccid:str) -> Hexstr:
	return swap_nibbles(rpad(iccid, 20))

def enc_plmn(mcc:Hexstr, mnc:Hexstr) -> Hexstr:
	"""Converts integer MCC/MNC into 3 bytes for EF"""

	# Make sure there are no excess whitespaces in the input
	# parameters
	mcc = mcc.strip()
	mnc = mnc.strip()

	# Make sure that MCC/MNC are correctly padded with leading
	# zeros or 'F', depending on the length.
	if len(mnc) == 0:
		mnc = "FFF"
	elif len(mnc) == 1:
		mnc = "F0" + mnc
	elif len(mnc) == 2:
		mnc += "F"

	if len(mcc) == 0:
		mcc = "FFF"
	elif len(mcc) == 1:
		mcc = "00" + mcc
	elif len(mcc) == 2:
		mcc = "0" + mcc

	return (mcc[1] + mcc[0]) + (mnc[2] + mcc[2]) + (mnc[1] + mnc[0])

def dec_plmn(threehexbytes:Hexstr) -> dict:
	res = {'mcc': "0", 'mnc': "0" }
	dec_mcc_from_plmn_str(threehexbytes)
	res['mcc'] = dec_mcc_from_plmn_str(threehexbytes)
	res['mnc'] = dec_mnc_from_plmn_str(threehexbytes)
	return res

def dec_spn(ef):
	"""Obsolete, kept for API compatibility"""
	from ts_51_011 import EF_SPN
	abstract_data = EF_SPN().decode_hex(ef)
	show_in_hplmn = abstract_data['show_in_hplmn']
	hide_in_oplmn = abstract_data['hide_in_oplmn']
	name = abstract_data['spn']
	return (name, show_in_hplmn, hide_in_oplmn)

def enc_spn(name:str, show_in_hplmn=False, hide_in_oplmn=False):
	"""Obsolete, kept for API compatibility"""
	from ts_51_011 import EF_SPN
	abstract_data = {
		'hide_in_oplmn' : hide_in_oplmn,
		'show_in_hplmn' : show_in_hplmn,
		'spn' : name,
	}
	return EF_SPN().encode_hex(abstract_data)

def hexstr_to_Nbytearr(s, nbytes):
	return [s[i:i+(nbytes*2)] for i in range(0, len(s), (nbytes*2)) ]

# Accepts hex string representing three bytes
def dec_mcc_from_plmn(plmn:Hexstr) -> int:
	ia = h2i(plmn)
	digit1 = ia[0] & 0x0F		# 1st byte, LSB
	digit2 = (ia[0] & 0xF0) >> 4	# 1st byte, MSB
	digit3 = ia[1] & 0x0F		# 2nd byte, LSB
	if digit3 == 0xF and digit2 == 0xF and digit1 == 0xF:
		return 0xFFF # 4095
	return derive_mcc(digit1, digit2, digit3)

def dec_mcc_from_plmn_str(plmn:Hexstr) -> str:
	digit1 = plmn[1] # 1st byte, LSB
	digit2 = plmn[0] # 1st byte, MSB
	digit3 = plmn[3] # 2nd byte, LSB
	res = digit1 + digit2 + digit3
	return res.upper().strip("F")

def dec_mnc_from_plmn(plmn:Hexstr) -> int:
	ia = h2i(plmn)
	digit1 = ia[2] & 0x0F		# 3rd byte, LSB
	digit2 = (ia[2] & 0xF0) >> 4	# 3rd byte, MSB
	digit3 = (ia[1] & 0xF0) >> 4	# 2nd byte, MSB
	if digit3 == 0xF and digit2 == 0xF and digit1 == 0xF:
		return 0xFFF # 4095
	return derive_mnc(digit1, digit2, digit3)

def dec_mnc_from_plmn_str(plmn:Hexstr) -> str:
	digit1 = plmn[5] # 3rd byte, LSB
	digit2 = plmn[4] # 3rd byte, MSB
	digit3 = plmn[2] # 2nd byte, MSB
	res = digit1 + digit2 + digit3
	return res.upper().strip("F")

def dec_act(twohexbytes:Hexstr) -> List[str]:
	act_list = [
		{'bit': 15, 'name': "UTRAN"},
		{'bit': 14, 'name': "E-UTRAN"},
		{'bit':  7, 'name': "GSM"},
		{'bit':  6, 'name': "GSM COMPACT"},
		{'bit':  5, 'name': "cdma2000 HRPD"},
		{'bit':  4, 'name': "cdma2000 1xRTT"},
	]
	ia = h2i(twohexbytes)
	u16t = (ia[0] << 8)|ia[1]
	sel = []
	for a in act_list:
		if u16t & (1 << a['bit']):
			if a['name'] == "E-UTRAN":
				# The Access technology identifier of E-UTRAN
				# allows a more detailed specification:
				if u16t & (1 << 13) and u16t & (1 << 12):
					sel.append("E-UTRAN WB-S1")
					sel.append("E-UTRAN NB-S1")
				elif u16t & (1 << 13):
					sel.append("E-UTRAN WB-S1")
				elif u16t & (1 << 12):
					sel.append("E-UTRAN NB-S1")
				else:
					sel.append("E-UTRAN")
			else:
				sel.append(a['name'])
	return sel

def dec_xplmn_w_act(fivehexbytes:Hexstr) -> Dict[str,Any]:
	res = {'mcc': "0", 'mnc': "0", 'act': []}
	plmn_chars = 6
	act_chars = 4
	plmn_str = fivehexbytes[:plmn_chars]				# first three bytes (six ascii hex chars)
	act_str = fivehexbytes[plmn_chars:plmn_chars + act_chars]	# two bytes after first three bytes
	res['mcc'] = dec_mcc_from_plmn_str(plmn_str)
	res['mnc'] = dec_mnc_from_plmn_str(plmn_str)
	res['act'] = dec_act(act_str)
	return res

def format_xplmn_w_act(hexstr):
	s = ""
	for rec_data in hexstr_to_Nbytearr(hexstr, 5):
		rec_info = dec_xplmn_w_act(rec_data)
		if rec_info['mcc'] == "" and rec_info['mnc'] == "":
			rec_str = "unused"
		else:
			rec_str = "MCC: %s MNC: %s AcT: %s" % (rec_info['mcc'], rec_info['mnc'], ", ".join(rec_info['act']))
		s += "\t%s # %s\n" % (rec_data, rec_str)
	return s

def dec_loci(hexstr):
	res = {'tmsi': '',  'mcc': 0, 'mnc': 0, 'lac': '', 'status': 0}
	res['tmsi'] = hexstr[:8]
	res['mcc'] = dec_mcc_from_plmn(hexstr[8:14])
	res['mnc'] = dec_mnc_from_plmn(hexstr[8:14])
	res['lac'] = hexstr[14:18]
	res['status'] = h2i(hexstr[20:22])
	return res

def dec_psloci(hexstr):
	res = {'p-tmsi': '', 'p-tmsi-sig': '', 'mcc': 0, 'mnc': 0, 'lac': '', 'rac': '', 'status': 0}
	res['p-tmsi'] = hexstr[:8]
	res['p-tmsi-sig'] = hexstr[8:14]
	res['mcc'] = dec_mcc_from_plmn(hexstr[14:20])
	res['mnc'] = dec_mnc_from_plmn(hexstr[14:20])
	res['lac'] = hexstr[20:24]
	res['rac'] = hexstr[24:26]
	res['status'] = h2i(hexstr[26:28])
	return res

def dec_epsloci(hexstr):
	res = {'guti': '', 'mcc': 0, 'mnc': 0, 'tac': '', 'status': 0}
	res['guti'] = hexstr[:24]
	res['tai'] = hexstr[24:34]
	res['mcc'] = dec_mcc_from_plmn(hexstr[24:30])
	res['mnc'] = dec_mnc_from_plmn(hexstr[24:30])
	res['tac'] = hexstr[30:34]
	res['status'] = h2i(hexstr[34:36])
	return res

def dec_xplmn(threehexbytes:Hexstr) -> dict:
	res = {'mcc': 0, 'mnc': 0, 'act': []}
	plmn_chars = 6
	plmn_str = threehexbytes[:plmn_chars]				# first three bytes (six ascii hex chars)
	res['mcc'] = dec_mcc_from_plmn(plmn_str)
	res['mnc'] = dec_mnc_from_plmn(plmn_str)
	return res

def format_xplmn(hexstr:Hexstr) -> str:
	s = ""
	for rec_data in hexstr_to_Nbytearr(hexstr, 3):
		rec_info = dec_xplmn(rec_data)
		if rec_info['mcc'] == 0xFFF and rec_info['mnc'] == 0xFFF:
			rec_str = "unused"
		else:
			rec_str = "MCC: %03d MNC: %03d" % (rec_info['mcc'], rec_info['mnc'])
		s += "\t%s # %s\n" % (rec_data, rec_str)
	return s

def derive_milenage_opc(ki_hex:Hexstr, op_hex:Hexstr) -> Hexstr:
	"""
	Run the milenage algorithm to calculate OPC from Ki and OP
	"""
	from Crypto.Cipher import AES
	from Crypto.Util.strxor import strxor
	from pySim.utils import b2h

	# We pass in hex string and now need to work on bytes
	ki_bytes = bytes(h2b(ki_hex))
	op_bytes = bytes(h2b(op_hex))
	aes = AES.new(ki_bytes, AES.MODE_ECB)
	opc_bytes = aes.encrypt(op_bytes)
	return b2h(strxor(opc_bytes, op_bytes))

def calculate_luhn(cc) -> int:
	"""
	Calculate Luhn checksum used in e.g. ICCID and IMEI
	"""
	num = list(map(int, str(cc)))
	check_digit = 10 - sum(num[-2::-2] + [sum(divmod(d * 2, 10)) for d in num[::-2]]) % 10
	return 0 if check_digit == 10 else check_digit

def mcc_from_imsi(imsi:str) -> Optional[str]:
	"""
	Derive the MCC (Mobile Country Code) from the first three digits of an IMSI
	"""
	if imsi == None:
		return None

	if len(imsi) > 3:
		return imsi[:3]
	else:
		return None

def mnc_from_imsi(imsi:str, long:bool=False) -> Optional[str]:
	"""
	Derive the MNC (Mobile Country Code) from the 4th to 6th digit of an IMSI
	"""
	if imsi == None:
		return None

	if len(imsi) > 3:
		if long:
			return imsi[3:6]
		else:
			return imsi[3:5]
	else:
		return None

def derive_mcc(digit1:int, digit2:int, digit3:int) -> int:
	"""
	Derive decimal representation of the MCC (Mobile Country Code)
	from three given digits.
	"""

	mcc = 0

	if digit1 != 0x0f:
		mcc += digit1 * 100
	if digit2 != 0x0f:
		mcc += digit2 * 10
	if digit3 != 0x0f:
		mcc += digit3

	return mcc

def derive_mnc(digit1:int, digit2:int, digit3:int=0x0f) -> int:
	"""
	Derive decimal representation of the MNC (Mobile Network Code)
	from two or (optionally) three given digits.
	"""

	mnc = 0

	# 3-rd digit is optional for the MNC. If present
	# the algorythm is the same as for the MCC.
	if digit3 != 0x0f:
		return derive_mcc(digit1, digit2, digit3)

	if digit1 != 0x0f:
		mnc += digit1 * 10
	if digit2 != 0x0f:
		mnc += digit2

	return mnc

def dec_msisdn(ef_msisdn:Hexstr) -> Optional[Tuple[int,int,Optional[str]]]:
	"""
	Decode MSISDN from EF.MSISDN or EF.ADN (same structure).
	See 3GPP TS 31.102, section 4.2.26 and 4.4.2.3.
	"""

	# Convert from str to (kind of) 'bytes'
	ef_msisdn = h2b(ef_msisdn)

	# Make sure mandatory fields are present
	if len(ef_msisdn) < 14:
		raise ValueError("EF.MSISDN is too short")

	# Skip optional Alpha Identifier
	xlen = len(ef_msisdn) - 14
	msisdn_lhv = ef_msisdn[xlen:]

	# Parse the length (in bytes) of the BCD encoded number
	bcd_len = msisdn_lhv[0]
	# BCD length = length of dial num (max. 10 bytes) + 1 byte ToN and NPI
	if bcd_len == 0xff:
		return None
	elif bcd_len > 11 or bcd_len < 1:
		raise ValueError("Length of MSISDN (%d bytes) is out of range" % bcd_len)

	# Parse ToN / NPI
	ton = (msisdn_lhv[1] >> 4) & 0x07
	npi = msisdn_lhv[1] & 0x0f
	bcd_len -= 1

	# No MSISDN?
	if not bcd_len:
		return (npi, ton, None)

	msisdn = swap_nibbles(b2h(msisdn_lhv[2:][:bcd_len])).rstrip('f')
	# International number 10.5.118/3GPP TS 24.008
	if ton == 0x01:
		msisdn = '+' + msisdn

	return (npi, ton, msisdn)

def enc_msisdn(msisdn:str, npi:int=0x01, ton:int=0x03) -> Hexstr:
	"""
	Encode MSISDN as LHV so it can be stored to EF.MSISDN.
	See 3GPP TS 31.102, section 4.2.26 and 4.4.2.3. (The result
	will not contain the optional Alpha Identifier at the beginning.)

	Default NPI / ToN values:
	  - NPI: ISDN / telephony numbering plan (E.164 / E.163),
	  - ToN: network specific or international number (if starts with '+').
	"""

	# If no MSISDN is supplied then encode the file contents as all "ff"
	if msisdn == "" or msisdn == "+":
		return "ff" * 14

	# Leading '+' indicates International Number
	if msisdn[0] == '+':
		msisdn = msisdn[1:]
		ton = 0x01

	# An MSISDN must not exceed 20 digits
	if len(msisdn) > 20:
		raise ValueError("msisdn must not be longer than 20 digits")

	# Append 'f' padding if number of digits is odd
	if len(msisdn) % 2 > 0:
		msisdn += 'f'

	# BCD length also includes NPI/ToN header
	bcd_len = len(msisdn) // 2 + 1
	npi_ton = (npi & 0x0f) | ((ton & 0x07) << 4) | 0x80
	bcd = rpad(swap_nibbles(msisdn), 10 * 2) # pad to 10 octets

	return ('%02x' % bcd_len) + ('%02x' % npi_ton) + bcd + ("ff" * 2)


def dec_st(st, table="sim") -> str:
	"""
	Parses the EF S/U/IST and prints the list of available services in EF S/U/IST
	"""

	if table == "isim":
		from pySim.ts_31_103 import EF_IST_map
		lookup_map = EF_IST_map
	elif table == "usim":
		from pySim.ts_31_102 import EF_UST_map
		lookup_map = EF_UST_map
	else:
		from pySim.ts_51_011 import EF_SST_map
		lookup_map = EF_SST_map

	st_bytes = [st[i:i+2] for i in range(0, len(st), 2) ]

	avail_st = ""
	# Get each byte and check for available services
	for i in range(0, len(st_bytes)):
		# Byte i contains info about Services num (8i+1) to num (8i+8)
		byte = int(st_bytes[i], 16)
		# Services in each byte are in order MSB to LSB
		# MSB - Service (8i+8)
		# LSB - Service (8i+1)
		for j in range(1, 9):
			if byte&0x01 == 0x01 and ((8*i) + j in lookup_map):
				# Byte X contains info about Services num (8X-7) to num (8X)
				# bit = 1: service available
				# bit = 0: service not available
				avail_st += '\tService %d - %s\n' % ((8*i) + j, lookup_map[(8*i) + j])
			byte = byte >> 1
	return avail_st

def first_TLV_parser(bytelist):
	'''
	first_TLV_parser([0xAA, 0x02, 0xAB, 0xCD, 0xFF, 0x00]) -> (170, 2, [171, 205])

	parses first TLV format record in a list of bytelist
	returns a 3-Tuple: Tag, Length, Value
	Value is a list of bytes
	parsing of length is ETSI'style 101.220
	'''
	Tag = bytelist[0]
	if bytelist[1] == 0xFF:
		Len = bytelist[2]*256 + bytelist[3]
		Val = bytelist[4:4+Len]
	else:
		Len = bytelist[1]
		Val = bytelist[2:2+Len]
	return (Tag, Len, Val)

def TLV_parser(bytelist):
	'''
	TLV_parser([0xAA, ..., 0xFF]) -> [(T, L, [V]), (T, L, [V]), ...]

	loops on the input list of bytes with the "first_TLV_parser()" function
	returns a list of 3-Tuples
	'''
	ret = []
	while len(bytelist) > 0:
		T, L, V = first_TLV_parser(bytelist)
		if T == 0xFF:
			# padding bytes
			break
		ret.append( (T, L, V) )
		# need to manage length of L
		if L > 0xFE:
			bytelist = bytelist[ L+4 : ]
		else:
			bytelist = bytelist[ L+2 : ]
	return ret

def enc_st(st, service, state=1):
	"""
	Encodes the EF S/U/IST/EST and returns the updated Service Table

	Parameters:
		st - Current value of SIM/USIM/ISIM Service Table
		service - Service Number to encode as activated/de-activated
		state - 1 mean activate, 0 means de-activate

	Returns:
		s - Modified value of SIM/USIM/ISIM Service Table

	Default values:
		- state: 1 - Sets the particular Service bit to 1
	"""
	st_bytes = [st[i:i+2] for i in range(0, len(st), 2) ]

	s = ""
	# Check whether the requested service is present in each byte
	for i in range(0, len(st_bytes)):
		# Byte i contains info about Services num (8i+1) to num (8i+8)
		if service in range((8*i) + 1, (8*i) + 9):
			byte = int(st_bytes[i], 16)
			# Services in each byte are in order MSB to LSB
			# MSB - Service (8i+8)
			# LSB - Service (8i+1)
			mod_byte = 0x00
			# Copy bit by bit contents of byte to mod_byte with modified bit
			# for requested service
			for j in range(1, 9):
				mod_byte = mod_byte >> 1
				if service == (8*i) + j:
					mod_byte = state == 1 and mod_byte|0x80 or mod_byte&0x7f
				else:
					mod_byte = byte&0x01 == 0x01 and mod_byte|0x80 or mod_byte&0x7f
				byte = byte >> 1

			s += ('%02x' % (mod_byte))
		else:
			s += st_bytes[i]

	return s

def dec_addr_tlv(hexstr):
	"""
	Decode hex string to get EF.P-CSCF Address or EF.ePDGId or EF.ePDGIdEm.
	See 3GPP TS 31.102 version 13.4.0 Release 13, section 4.2.8, 4.2.102 and 4.2.104.
	"""

	# Convert from hex str to int bytes list
	addr_tlv_bytes = h2i(hexstr)

	# Get list of tuples containing parsed TLVs
	tlvs = TLV_parser(addr_tlv_bytes)

	for tlv in tlvs:
		# tlv = (T, L, [V])
		# T = Tag
		# L = Length
		# [V] = List of value

		# Invalid Tag value scenario
		if tlv[0] != 0x80:
			continue

		# Empty field - Zero length
		if tlv[1] == 0:
			continue

		# First byte in the value has the address type
		addr_type = tlv[2][0]
		# TODO: Support parsing of IPv6
		# Address Type: 0x00 (FQDN), 0x01 (IPv4), 0x02 (IPv6), other (Reserved)
		if addr_type == 0x00: #FQDN
			# Skip address tye byte i.e. first byte in value list
			content = tlv[2][1:]
			return (i2s(content), '00')

		elif addr_type == 0x01: #IPv4
			# Skip address tye byte i.e. first byte in value list
			# Skip the unused byte in Octect 4 after address type byte as per 3GPP TS 31.102
			ipv4 = tlv[2][2:]
			content = '.'.join(str(x) for x in ipv4)
			return (content, '01')
		else:
			raise ValueError("Invalid address type")

	return (None, None)

def enc_addr_tlv(addr, addr_type='00'):
	"""
	Encode address TLV object used in EF.P-CSCF Address, EF.ePDGId and EF.ePDGIdEm.
	See 3GPP TS 31.102 version 13.4.0 Release 13, section 4.2.8, 4.2.102 and 4.2.104.

	Default values:
	  - addr_type: 00 - FQDN format of Address
	"""

	s = ""

	# TODO: Encoding of IPv6 address
	if addr_type == '00': #FQDN
		hex_str = s2h(addr)
		s += '80' + ('%02x' % ((len(hex_str)//2)+1)) + '00' + hex_str
	elif addr_type == '01': #IPv4
		ipv4_list = addr.split('.')
		ipv4_str = ""
		for i in ipv4_list:
			ipv4_str += ('%02x' % (int(i)))

		# Unused bytes shall be set to 'ff'. i.e 4th Octet after Address Type is not used
		# IPv4 Address is in octet 5 to octet 8 of the TLV data object
		s += '80' + ('%02x' % ((len(ipv4_str)//2)+2)) + '01' + 'ff' + ipv4_str

	return s

def is_hex(string:str, minlen:int=2, maxlen:Optional[int]=None) -> bool:
	"""
	Check if a string is a valid hexstring
	"""

	# Filter obviously bad strings
	if not string:
		return False
	if len(string) < minlen or minlen < 2:
		return False
	if len(string) % 2:
		return False
	if maxlen and len(string) > maxlen:
		return False

	# Try actual encoding to be sure
	try:
		try_encode = h2b(string)
		return True
	except:
		return False

def sanitize_pin_adm(pin_adm, pin_adm_hex = None) -> Hexstr:
	"""
	The ADM pin can be supplied either in its hexadecimal form or as
	ascii string. This function checks the supplied opts parameter and
	returns the pin_adm as hex encoded string, regardless in which form
	it was originally supplied by the user
	"""

	if pin_adm is not None:
		if len(pin_adm) <= 8:
			pin_adm = ''.join(['%02x'%(ord(x)) for x in pin_adm])
			pin_adm = rpad(pin_adm, 16)

		else:
			raise ValueError("PIN-ADM needs to be <=8 digits (ascii)")

	if pin_adm_hex is not None:
		if len(pin_adm_hex) == 16:
			pin_adm = pin_adm_hex
			# Ensure that it's hex-encoded
			try:
				try_encode = h2b(pin_adm)
			except ValueError:
				raise ValueError("PIN-ADM needs to be hex encoded using this option")
		else:
			raise ValueError("PIN-ADM needs to be exactly 16 digits (hex encoded)")

	return pin_adm

def enc_ePDGSelection(hexstr, mcc, mnc, epdg_priority='0001', epdg_fqdn_format='00'):
	"""
	Encode ePDGSelection so it can be stored at EF.ePDGSelection or EF.ePDGSelectionEm.
	See 3GPP TS 31.102 version 15.2.0 Release 15, section 4.2.104 and 4.2.106.

	Default values:
		- epdg_priority: '0001' - 1st Priority
		- epdg_fqdn_format: '00' - Operator Identifier FQDN
	"""

	plmn1 = enc_plmn(mcc, mnc) + epdg_priority + epdg_fqdn_format
	# TODO: Handle encoding of Length field for length more than 127 Bytes
	content = '80' + ('%02x' % (len(plmn1)//2)) + plmn1
	content = rpad(content, len(hexstr))
	return content

def dec_ePDGSelection(sixhexbytes):
	"""
	Decode ePDGSelection to get EF.ePDGSelection or EF.ePDGSelectionEm.
	See 3GPP TS 31.102 version 15.2.0 Release 15, section 4.2.104 and 4.2.106.
	"""

	res = {'mcc': 0, 'mnc': 0, 'epdg_priority': 0, 'epdg_fqdn_format': ''}
	plmn_chars = 6
	epdg_priority_chars = 4
	epdg_fqdn_format_chars = 2
	# first three bytes (six ascii hex chars)
	plmn_str = sixhexbytes[:plmn_chars]
	# two bytes after first three bytes
	epdg_priority_str = sixhexbytes[plmn_chars:plmn_chars + epdg_priority_chars]
	# one byte after first five bytes
	epdg_fqdn_format_str = sixhexbytes[plmn_chars + epdg_priority_chars:plmn_chars + epdg_priority_chars + epdg_fqdn_format_chars]
	res['mcc'] = dec_mcc_from_plmn(plmn_str)
	res['mnc'] = dec_mnc_from_plmn(plmn_str)
	res['epdg_priority'] = epdg_priority_str
	res['epdg_fqdn_format'] = epdg_fqdn_format_str == '00' and 'Operator Identifier FQDN' or 'Location based FQDN'
	return res

def format_ePDGSelection(hexstr):
	ePDGSelection_info_tag_chars = 2
	ePDGSelection_info_tag_str = hexstr[:2]
	s = ""
	# Minimum length
	len_chars = 2
	# TODO: Need to determine length properly - definite length support only
	# Inconsistency in spec: 3GPP TS 31.102 version 15.2.0 Release 15, 4.2.104
	# As per spec, length is 5n, n - number of PLMNs
	# But, each PLMN entry is made of PLMN (3 Bytes) + ePDG Priority (2 Bytes) + ePDG FQDN format (1 Byte)
	# Totalling to 6 Bytes, maybe length should be 6n
	len_str = hexstr[ePDGSelection_info_tag_chars:ePDGSelection_info_tag_chars+len_chars]

	# Not programmed scenario
	if int(len_str, 16) == 255 or int(ePDGSelection_info_tag_str, 16) == 255:
		len_chars = 0
		ePDGSelection_info_tag_chars = 0
	if len_str[0] == '8':
		# The bits 7 to 1 denotes the number of length octets if length > 127
		if int(len_str[1]) > 0:
			# Update number of length octets
			len_chars = len_chars * int(len_str[1])
			len_str = hexstr[ePDGSelection_info_tag_chars:len_chars]

	content_str = hexstr[ePDGSelection_info_tag_chars+len_chars:]
	# Right pad to prevent index out of range - multiple of 6 bytes
	content_str = rpad(content_str, len(content_str) + (12 - (len(content_str) % 12)))
	for rec_data in hexstr_to_Nbytearr(content_str, 6):
		rec_info = dec_ePDGSelection(rec_data)
		if rec_info['mcc'] == 0xFFF and rec_info['mnc'] == 0xFFF:
			rec_str = "unused"
		else:
			rec_str = "MCC: %03d MNC: %03d ePDG Priority: %s ePDG FQDN format: %s" % \
					(rec_info['mcc'], rec_info['mnc'], rec_info['epdg_priority'], rec_info['epdg_fqdn_format'])
		s += "\t%s # %s\n" % (rec_data, rec_str)
	return s

def get_addr_type(addr):
	"""
	Validates the given address and returns it's type (FQDN or IPv4 or IPv6)
	Return: 0x00 (FQDN), 0x01 (IPv4), 0x02 (IPv6), None (Bad address argument given)

	TODO: Handle IPv6
	"""

	# Empty address string
	if not len(addr):
		return None

	addr_list = addr.split('.')

	# Check for IPv4/IPv6
	try:
		import ipaddress
		# Throws ValueError if addr is not correct
		ipa = ipaddress.ip_address(addr)

		if ipa.version == 4:
			return 0x01
		elif ipa.version == 6:
			return 0x02
	except Exception as e:
		invalid_ipv4 = True
		for i in addr_list:
			# Invalid IPv4 may qualify for a valid FQDN, so make check here
			# e.g. 172.24.15.300
			import re
			if not re.match('^[0-9_]+$', i):
				invalid_ipv4 = False
				break

		if invalid_ipv4:
			return None

	fqdn_flag = True
	for i in addr_list:
		# Only Alpha-numeric characters and hyphen - RFC 1035
		import re
		if not re.match("^[a-zA-Z0-9]+(?:-[a-zA-Z0-9]+)?$", i):
			fqdn_flag = False
			break

	# FQDN
	if fqdn_flag:
		return 0x00

	return None

def sw_match(sw:str, pattern:str) -> bool:
	"""Match given SW against given pattern."""
	# Create a masked version of the returned status word
	sw_lower = sw.lower()
	sw_masked = ""
	for i in range(0, 4):
		if pattern[i] == '?':
			sw_masked = sw_masked + '?'
		elif pattern[i] == 'x':
			sw_masked = sw_masked + 'x'
		else:
			sw_masked = sw_masked + sw_lower[i]
	# Compare the masked version against the pattern
	return sw_masked == pattern

def tabulate_str_list(str_list, width:int = 79, hspace:int = 2, lspace:int = 1,
					  align_left:bool = True) -> str:
	"""Pretty print a list of strings into a tabulated form.

	Args:
		width : total width in characters per line
		space : horizontal space between cells
		lspace : number of spaces before row
		align_lef : Align text to the left side
	Returns:
		multi-line string containing formatted table
	"""
	if str_list == None:
		return ""
	if len(str_list) <= 0:
		return ""
	longest_str = max(str_list, key=len)
	cellwith = len(longest_str) + hspace
	cols = width // cellwith
	rows = (len(str_list) - 1) // cols + 1
	table = []
	for i in iter(range(rows)):
		str_list_row = str_list[i::rows]
		if (align_left):
			format_str_cell = '%%-%ds'
		else:
			format_str_cell = '%%%ds'
		format_str_row = (format_str_cell % cellwith) * len(str_list_row)
		format_str_row = (" " * lspace) + format_str_row
		table.append(format_str_row % tuple(str_list_row))
	return '\n'.join(table)

def auto_int(x):
    """Helper function for argparse to accept hexadecimal integers."""
    return int(x, 0)

class JsonEncoder(json.JSONEncoder):
    """Extend the standard library JSONEncoder with support for more types."""
    def default(self, o):
        if isinstance(o, BytesIO) or isinstance(o, bytes) or isinstance(o, bytearray):
            return b2h(o)
        return json.JSONEncoder.default(self, o)

def boxed_heading_str(heading, width=80):
	"""Generate a string that contains a boxed heading."""
	# Auto-enlarge box if heading exceeds length
	if len(heading) > width - 4:
		width = len(heading) + 4

	res = "#" * width
	fstr = "\n# %-" + str(width - 4) + "s #\n"
	res += fstr % (heading)
	res += "#" * width
	return res



class DataObject(abc.ABC):
    """A DataObject (DO) in the sense of ISO 7816-4.  Contrary to 'normal' TLVs where one
    simply has any number of different TLVs that may occur in any order at any point, ISO 7816
    has the habit of specifying TLV data but with very spcific ordering, or specific choices of
    tags at specific points in a stream.  This class tries to represent this."""
    def __init__(self, name, desc = None, tag = None):
        """
        Args:
            name: A brief, all-lowercase, underscore separated string identifier
            desc: A human-readable description of what this DO represents
            tag : The tag associated with this DO
        """
        self.name = name
        self.desc = desc
        self.tag = tag
        self.decoded = None
        self.encoded = None

    def __str__(self):
        return self.name

    def __repr__(self):
        return '%s(%s)' % (self.__class__, self.name)

    def __or__(self, other):
        """OR-ing DataObjects together renders a DataObjectChoice."""
        if isinstance(other, DataObject):
            # DataObject | DataObject = DataObjectChoice
            return DataObjectChoice(None, members=[self, other])
        else:
            raise TypeError

    def __add__(self, other):
        """ADD-ing DataObjects together renders a DataObjectCollection."""
        if isinstance(other, DataObject):
            # DataObject + DataObject = DataObjectCollectin
            return DataObjectCollection(None, members=[self, other])

    def _compute_tag(self):
        """Compute the tag (sometimes the tag encodes part of the value)."""
        return self.tag

    def to_dict(self):
        """Return a dict in form "name: decoded_value" """
        return {self.name: self.decoded}

    @abc.abstractmethod
    def from_bytes(self, do:bytes):
        """Parse the value part of the DO into the internal state of this instance.
        Args:
            do : binary encoded bytes
        """

    @abc.abstractmethod
    def to_bytes(self):
        """Encode the internal state of this instance into the TLV value part.
        Returns:
            binary bytes encoding the internal state
        """

    def from_tlv(self, do:bytes):
        """Parse binary TLV representation into internal state.  The resulting decoded
        representation is _not_ returned, but just internalized in the object instance!
        Args:
            do : input bytes containing TLV-encoded representation
        Returns:
            bytes remaining at end of 'do' after parsing one TLV/DO.
        """
        if do[0] != self.tag:
            raise ValueError('%s: Can only decode tag 0x%02x' % (self, self.tag))
        length = do[1]
        val = do[2:2+length]
        self.from_bytes(val)
        # return remaining bytes
        return do[2+length:]

    def to_tlv(self):
        """Encode internal representation to binary TLV.
        Returns:
            bytes encoded in TLV format.
        """
        val = self.to_bytes()
        return bytes(self._compute_tag()) + bytes(len(val)) + val

    # 'codec' interface
    def decode(self, binary:bytes):
        """Decode a single DOs from the input data.
        Args:
            binary : binary bytes of encoded data
        Returns:
            tuple of (decoded_result, binary_remainder)
        """
        tag = binary[0]
        if tag != self.tag:
            raise ValueError('%s: Unknown Tag 0x%02x in %s; expected 0x%02x' %
                             (self, tag, binary, self.tag))
        remainder = self.from_tlv(binary)
        return (self.to_dict(), remainder)

    # 'codec' interface
    def encode(self):
        return self.to_tlv()

class TL0_DataObject(DataObject):
    """Data Object that has Tag, Len=0 and no Value part."""
    def __init__(self, name, desc, tag, val=None):
        super().__init__(name, desc, tag)
        self.val = val

    def from_bytes(self, binary:bytes):
        if len(binary) != 0:
            raise ValueError
        self.decoded = self.val

    def to_bytes(self):
        return b''


class DataObjectCollection:
    """A DataObjectCollection consits of multiple Data Objects identified by their tags.
    A given encoded DO may contain any of them in any order, and may contain multiple instances
    of each DO."""
    def __init__(self, name, desc = None, members=None):
        self.name = name
        self.desc = desc
        self.members = members or []
        self.members_by_tag = {}
        self.members_by_name = {}
        self.members_by_tag = { m.tag:m for m in members }
        self.members_by_name = { m.name:m for m in members }

    def __str__(self):
        member_strs = [str(x) for x in self.members]
        return '%s(%s)' % (self.name, ','.join(member_strs))

    def __repr__(self):
        member_strs = [repr(x) for x in self.members]
        return '%s(%s)' % (self.__class__, ','.join(member_strs))

    def __add__(self, other):
        """Extending DataCollections with other DataCollections or DataObjects."""
        if isinstance(other, DataObjectCollection):
            # adding one collection to another
            members = self.members + other.members
            return DataObjectCollection(self.name, self.desc, members)
        elif isinstance(other, DataObject):
            # adding a member to a collection
            return DataObjectCollection(self.name, self.desc, self.members + [other])
        else:
            raise TypeError

    # 'codec' interface
    def decode(self, binary:bytes):
        """Decode any number of DOs from the collection until the end of the input data,
        or uninitialized memory (0xFF) is found.
        Args:
            binary : binary bytes of encoded data
        Returns:
            tuple of (decoded_result, binary_remainder)
        """
        res = []
        remainder = binary
        # iterate until no binary trailer is left
        while len(remainder):
            tag = remainder[0]
            if tag == 0xff: # uninitialized memory at the end?
                return (res, remainder)
            if not tag in self.members_by_tag:
                raise ValueError('%s: Unknown Tag 0x%02x in %s; expected %s' %
                                 (self, tag, remainder, self.members_by_tag.keys()))
            obj = self.members_by_tag[tag]
            # DO from_tlv returns remainder of binary
            remainder = obj.from_tlv(remainder)
            # collect our results
            res.append(obj.to_dict())
        return (res, remainder)

    # 'codec' interface
    def encode(self, decoded):
        res = bytearray()
        for i in decoded:
            obj = self.members_by_name(i[0])
            res.append(obj.to_tlv())
        return res

class DataObjectChoice(DataObjectCollection):
    """One Data Object from within a choice, identified by its tag.
    This means that exactly one member of the choice must occur, and which one occurs depends
    on the tag."""
    def __add__(self, other):
        """We overload the add operator here to avoid inheriting it from DataObjecCollection."""
        raise TypeError

    def __or__(self, other):
        """OR-ing a Choice to another choice extends the choice, as does OR-ing a DataObject."""
        if isinstance(other, DataObjectChoice):
            # adding one collection to another
            members = self.members + other.members
            return DataObjectChoice(self.name, self.desc, members)
        elif isinstance(other, DataObject):
            # adding a member to a collection
            return DataObjectChoice(self.name, self.desc, self.members + [other])
        else:
            raise TypeError

    # 'codec' interface
    def decode(self, binary:bytes):
        """Decode a single DOs from the choice based on the tag.
        Args:
            binary : binary bytes of encoded data
        Returns:
            tuple of (decoded_result, binary_remainder)
        """
        tag = binary[0]
        if tag == 0xff:
            return (None, binary)
        if not tag in self.members_by_tag:
            raise ValueError('%s: Unknown Tag 0x%02x in %s; expected %s' %
                             (self, tag, binary, self.members_by_tag.keys()))
        obj = self.members_by_tag[tag]
        remainder = obj.from_tlv(binary)
        return (obj.to_dict(), remainder)

    # 'codec' interface
    def encode(self, decoded):
        obj = self.members_by_name(decoded[0])
        return obj.to_tlv()

class DataObjectSequence:
    """A sequence of DataObjects or DataObjectChoices. This allows us to express a certain
       ordered sequence of DOs or choices of DOs that have to appear as per the specification.
       By wrapping them into this formal DataObjectSequence, we can offer convenience methods
       for encoding or decoding an entire sequence."""
    def __init__(self, name, desc=None, sequence=None):
        self.sequence = sequence or []
        self.name = name
        self.desc = desc

    def __str__(self):
        member_strs = [str(x) for x in self.sequence]
        return '%s(%s)' % (self.name, ','.join(member_strs))

    def __repr__(self):
        member_strs = [repr(x) for x in self.sequence]
        return '%s(%s)' % (self.__class__, ','.join(member_strs))

    def __add__(self, other):
        """Add (append) a DataObject or DataObjectChoice to the sequence."""
        if isinstance(other, 'DataObject'):
                return DataObjectSequence(self.name, self.desc, self.sequence + [other])
        elif isinstance(other, 'DataObjectChoice'):
                return DataObjectSequence(self.name, self.desc, self.sequence + [other])
        elif isinstance(other, 'DataObjectSequence'):
                return DataObjectSequence(self.name, self.desc, self.sequence + other.sequence)

    # 'codec' interface
    def decode(self, binary:bytes):
        """Decode a sequence by calling the decoder of each element in the sequence.
        Args:
            binary : binary bytes of encoded data
        Returns:
            tuple of (decoded_result, binary_remainder)
        """
        remainder = binary
        res = []
        for e in self.sequence:
            (r, remainder) = e.decode(remainder)
            if r:
                res.append(r)
        return (res, remainder)

    # 'codec' interface
    def decode_multi(self, do:bytes):
        """Decode multiple occurrences of the sequence from the binary input data.
        Args:
            do : binary input data to be decoded
        Returns:
            list of results of the decoder of this sequences
        """
        remainder = do
        res = []
        while len(remainder):
            (r, remainder2) = self.decode(remainder)
            if r:
                res.append(r)
            if len(remainder2) < len(remainder):
                remainder = remainder2
            else:
                remainder = remainder2
                break
        return (res, remainder)

    # 'codec' interface
    def encode(self, decoded):
        """Encode a sequence by calling the encoder of each element in the sequence."""
        encoded = bytearray()
        i = 0
        for e in self.sequence:
            encoded += e.encode(decoded[i])
            i += 1
        return encoded

class CardCommand:
    """A single card command / instruction."""
    def __init__(self, name, ins, cla_list=None, desc=None):
        self.name = name
        self.ins = ins
        self.cla_list = cla_list or []
        self.cla_list = [x.lower() for x in self.cla_list]
        self.desc = desc

    def __str__(self):
        return self.name

    def __repr__(self):
        return '%s(INS=%02x,CLA=%s)' % (self.name, self.ins, self.cla_list)

    def match_cla(self, cla):
        """Does the given CLA match the CLA list of the command?."""
        if not isinstance(cla, str):
            cla = '%02u' % cla
        cla = cla.lower()
        for cla_match in self.cla_list:
            cla_masked = ""
            for i in range(0, 2):
                if cla_match[i] == 'x':
                    cla_masked += 'x'
                else:
                    cla_masked += cla[i]
            if cla_masked == cla_match:
                return True
        return False


class CardCommandSet:
    """A set of card instructions, typically specified within one spec."""
    def __init__(self, name, cmds=[]):
        self.name = name
        self.cmds = { c.ins : c for c in cmds }

    def __str__(self):
        return self.name

    def __getitem__(self, idx):
        return self.cmds[idx]

    def __add__(self, other):
        if isinstance(other, CardCommand):
            if other.ins in self.cmds:
                raise ValueError('%s: INS 0x%02x already defined: %s' %
                                 (self, other.ins, self.cmds[other.ins]))
            self.cmds[other.ins] = other
        elif isinstance(other, CardCommandSet):
            for c in other.cmds.keys():
                self.cmds[c] = other.cmds[c]
        else:
            raise ValueError('%s: Unsupported type to add operator: %s' % (self, other))

    def lookup(self, ins, cla=None):
        """look-up the command within the CommandSet."""
        ins = int(ins)
        if not ins in self.cmds:
            return None
        cmd = self.cmds[ins]
        if cla and not cmd.match_cla(cla):
            return None
        return cmd

def all_subclasses(cls) -> set:
	"""Recursively get all subclasses of a specified class"""
	return set(cls.__subclasses__()).union([s for c in cls.__subclasses__() for s in all_subclasses(c)])