aboutsummaryrefslogtreecommitdiffstats
path: root/mme/snow-3g.c
blob: 60bdffdbfee74f53c4edb06e95fe3fbfc0dc4034 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*------------------------------------------------------------------------
* SNOW_3G.c
*------------------------------------------------------------------------*/

#include "snow-3g.h"

/* LFSR */

static u32 LFSR_S0 = 0x00;
static u32 LFSR_S1 = 0x00;
static u32 LFSR_S2 = 0x00;
static u32 LFSR_S3 = 0x00;
static u32 LFSR_S4 = 0x00;
static u32 LFSR_S5 = 0x00;
static u32 LFSR_S6 = 0x00;
static u32 LFSR_S7 = 0x00;
static u32 LFSR_S8 = 0x00;
static u32 LFSR_S9 = 0x00;
static u32 LFSR_S10 = 0x00;
static u32 LFSR_S11 = 0x00;
static u32 LFSR_S12 = 0x00;
static u32 LFSR_S13 = 0x00;
static u32 LFSR_S14 = 0x00;
static u32 LFSR_S15 = 0x00;

/* FSM */

static u32 FSM_R1 = 0x00;
static u32 FSM_R2 = 0x00;
static u32 FSM_R3 = 0x00;

/* Rijndael S-box SR */

static const u8 SR[256] = {
0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
};

/* S-box SQ */

static const u8 SQ[256] = {
0x25,0x24,0x73,0x67,0xD7,0xAE,0x5C,0x30,0xA4,0xEE,0x6E,0xCB,0x7D,0xB5,0x82,0xDB,
0xE4,0x8E,0x48,0x49,0x4F,0x5D,0x6A,0x78,0x70,0x88,0xE8,0x5F,0x5E,0x84,0x65,0xE2,
0xD8,0xE9,0xCC,0xED,0x40,0x2F,0x11,0x28,0x57,0xD2,0xAC,0xE3,0x4A,0x15,0x1B,0xB9,
0xB2,0x80,0x85,0xA6,0x2E,0x02,0x47,0x29,0x07,0x4B,0x0E,0xC1,0x51,0xAA,0x89,0xD4,
0xCA,0x01,0x46,0xB3,0xEF,0xDD,0x44,0x7B,0xC2,0x7F,0xBE,0xC3,0x9F,0x20,0x4C,0x64,
0x83,0xA2,0x68,0x42,0x13,0xB4,0x41,0xCD,0xBA,0xC6,0xBB,0x6D,0x4D,0x71,0x21,0xF4,
0x8D,0xB0,0xE5,0x93,0xFE,0x8F,0xE6,0xCF,0x43,0x45,0x31,0x22,0x37,0x36,0x96,0xFA,
0xBC,0x0F,0x08,0x52,0x1D,0x55,0x1A,0xC5,0x4E,0x23,0x69,0x7A,0x92,0xFF,0x5B,0x5A,
0xEB,0x9A,0x1C,0xA9,0xD1,0x7E,0x0D,0xFC,0x50,0x8A,0xB6,0x62,0xF5,0x0A,0xF8,0xDC,
0x03,0x3C,0x0C,0x39,0xF1,0xB8,0xF3,0x3D,0xF2,0xD5,0x97,0x66,0x81,0x32,0xA0,0x00,
0x06,0xCE,0xF6,0xEA,0xB7,0x17,0xF7,0x8C,0x79,0xD6,0xA7,0xBF,0x8B,0x3F,0x1F,0x53,
0x63,0x75,0x35,0x2C,0x60,0xFD,0x27,0xD3,0x94,0xA5,0x7C,0xA1,0x05,0x58,0x2D,0xBD,
0xD9,0xC7,0xAF,0x6B,0x54,0x0B,0xE0,0x38,0x04,0xC8,0x9D,0xE7,0x14,0xB1,0x87,0x9C,
0xDF,0x6F,0xF9,0xDA,0x2A,0xC4,0x59,0x16,0x74,0x91,0xAB,0x26,0x61,0x76,0x34,0x2B,
0xAD,0x99,0xFB,0x72,0xEC,0x33,0x12,0xDE,0x98,0x3B,0xC0,0x9B,0x3E,0x18,0x10,0x3A,
0x56,0xE1,0x77,0xC9,0x1E,0x9E,0x95,0xA3,0x90,0x19,0xA8,0x6C,0x09,0xD0,0xF0,0x86
};

/* MULx.
* Input V: an 8-bit input.
* Input c: an 8-bit input.
* Output : an 8-bit output.
* See section 3.1.1 for details.
*/

static u8 MULx(u8 V, u8 c)
{
	if ( V & 0x80 )
		return ( (V << 1) ^ c);
	else
		return ( V << 1);
}

/* MULxPOW.
* Input V: an 8-bit input.
* Input i: a positive integer.
* Input c: an 8-bit input.
* Output : an 8-bit output.
* See section 3.1.2 for details.
*/

static u8 MULxPOW(u8 V, u8 i, u8 c)
{
	if ( i == 0)
		return V;
	else
		return MULx( MULxPOW( V, i-1, c ), c);
}

/* The function MUL alpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* See section 3.4.2 for details.
*/

static u32 MULalpha(u8 c)
{
	return ( ( ((u32)MULxPOW(c, 23, 0xa9)) << 24 ) |
		( ((u32)MULxPOW(c, 245, 0xa9)) << 16 ) |
		( ((u32)MULxPOW(c, 48, 0xa9)) << 8 ) |
		( ((u32)MULxPOW(c, 239, 0xa9)) ) ) ;
}

/* The function DIV alpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* See section 3.4.3 for details.
*/

static u32 DIValpha(u8 c)
{
	return ( ( ((u32)MULxPOW(c, 16, 0xa9)) << 24 ) |
		( ((u32)MULxPOW(c, 39, 0xa9)) << 16 ) |
		( ((u32)MULxPOW(c, 6, 0xa9)) << 8 ) |
		( ((u32)MULxPOW(c, 64, 0xa9)) ) ) ;
}

/* The 32x32-bit S-Box S1
* Input: a 32-bit input.
* Output: a 32-bit output of S1 box.
* See section 3.3.1.
*/

static u32 S1(u32 w)
{
	u8 r0=0, r1=0, r2=0, r3=0;
	u8 srw0 = SR[ (u8)((w >> 24) & 0xff) ];
	u8 srw1 = SR[ (u8)((w >> 16) & 0xff) ];
	u8 srw2 = SR[ (u8)((w >> 8) & 0xff) ];
	u8 srw3 = SR[ (u8)((w) & 0xff) ];
	r0 = ( ( MULx( srw0 , 0x1b) ) ^
		( srw1 ) ^
		( srw2 ) ^
		( (MULx( srw3, 0x1b)) ^ srw3 )
	);
	r1 = ( ( ( MULx( srw0 , 0x1b) ) ^ srw0 ) ^
		( MULx(srw1, 0x1b) ) ^
		( srw2 ) ^
		( srw3 )
	);
	r2 = ( ( srw0 ) ^
		( ( MULx( srw1 , 0x1b) ) ^ srw1 ) ^
		( MULx(srw2, 0x1b) ) ^
		( srw3 )
	);
	r3 = ( ( srw0 ) ^
		( srw1 ) ^
		( ( MULx( srw2 , 0x1b) ) ^ srw2 ) ^
		( MULx( srw3, 0x1b) )
	);

	return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
		( ((u32)r3) ) );
}

/* The 32x32-bit S-Box S2
* Input: a 32-bit input.
* Output: a 32-bit output of S2 box.
* See section 3.3.2.
*/

static u32 S2(u32 w)
{
	u8 r0=0, r1=0, r2=0, r3=0;
	u8 sqw0 = SQ[ (u8)((w >> 24) & 0xff) ];
	u8 sqw1 = SQ[ (u8)((w >> 16) & 0xff) ];
	u8 sqw2 = SQ[ (u8)((w >> 8) & 0xff) ];
	u8 sqw3 = SQ[ (u8)((w) & 0xff) ];
	r0 = ( ( MULx( sqw0 , 0x69) ) ^
		( sqw1 ) ^
		( sqw2 ) ^
		( (MULx( sqw3, 0x69)) ^ sqw3 )
	);
	r1 = ( ( ( MULx( sqw0 , 0x69) ) ^ sqw0 ) ^
		( MULx(sqw1, 0x69) ) ^
		( sqw2 ) ^
		( sqw3 )
	);
	r2 = ( ( sqw0 ) ^
		( ( MULx( sqw1 , 0x69) ) ^ sqw1 ) ^
		( MULx(sqw2, 0x69) ) ^
		( sqw3 )
	);
	r3 = ( ( sqw0 ) ^
		( sqw1 ) ^
		( ( MULx( sqw2 , 0x69) ) ^ sqw2 ) ^
		( MULx( sqw3, 0x69) )
	);
	return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
		( ((u32)r3) ) );
}

/* Clocking LFSR in initialization mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* Input F: a 32-bit word comes from output of FSM.
* See section 3.4.4.
*/

static void ClockLFSRInitializationMode(u32 F)
{
	u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
		( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
		( LFSR_S2 ) ^
		( (LFSR_S11 >> 8) & 0x00ffffff ) ^
		( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) ) ^
		( F )
	);
	LFSR_S0 = LFSR_S1;
	LFSR_S1 = LFSR_S2;
	LFSR_S2 = LFSR_S3;
	LFSR_S3 = LFSR_S4;
	LFSR_S4 = LFSR_S5;
	LFSR_S5 = LFSR_S6;
	LFSR_S6 = LFSR_S7;
	LFSR_S7 = LFSR_S8;
	LFSR_S8 = LFSR_S9;
	LFSR_S9 = LFSR_S10;
	LFSR_S10 = LFSR_S11;
	LFSR_S11 = LFSR_S12;
	LFSR_S12 = LFSR_S13;
	LFSR_S13 = LFSR_S14;
	LFSR_S14 = LFSR_S15;
	LFSR_S15 = v;
}

/* Clocking LFSR in keystream mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* See section 3.4.5.
*/

static void ClockLFSRKeyStreamMode()
{
	u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
		( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
		( LFSR_S2 ) ^
		( (LFSR_S11 >> 8) & 0x00ffffff ) ^
		( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) )
	);
	LFSR_S0 = LFSR_S1;
	LFSR_S1 = LFSR_S2;
	LFSR_S2 = LFSR_S3;
	LFSR_S3 = LFSR_S4;
	LFSR_S4 = LFSR_S5;
	LFSR_S5 = LFSR_S6;
	LFSR_S6 = LFSR_S7;
	LFSR_S7 = LFSR_S8;
	LFSR_S8 = LFSR_S9;
	LFSR_S9 = LFSR_S10;
	LFSR_S10 = LFSR_S11;
	LFSR_S11 = LFSR_S12;
	LFSR_S12 = LFSR_S13;
	LFSR_S13 = LFSR_S14;
	LFSR_S14 = LFSR_S15;
	LFSR_S15 = v;
}

/* Clocking FSM.
* Produces a 32-bit word F.
* Updates FSM registers R1, R2, R3.
* See Section 3.4.6.
*/

static u32 ClockFSM()
{
	u32 F = ( ( LFSR_S15 + FSM_R1 ) & 0xffffffff ) ^ FSM_R2 ;
	u32 r = ( FSM_R2 + ( FSM_R3 ^ LFSR_S5 ) ) & 0xffffffff ;
	FSM_R3 = S2(FSM_R2);
	FSM_R2 = S1(FSM_R1);
	FSM_R1 = r;
	return F;
}

/* Initialization.
* Input k[4]: Four 32-bit words making up 128-bit key.
* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
* Output: All the LFSRs and FSM are initialized for key generation.
* See Section 4.1.
*/

void snow_3g_initialize(u32 k[4], u32 IV[4])
{
	u8 i=0;
	u32 F = 0x0;
	LFSR_S15 = k[3] ^ IV[0];
	LFSR_S14 = k[2];
	LFSR_S13 = k[1];
	LFSR_S12 = k[0] ^ IV[1];
	LFSR_S11 = k[3] ^ 0xffffffff;
	LFSR_S10 = k[2] ^ 0xffffffff ^ IV[2];
	LFSR_S9 = k[1] ^ 0xffffffff ^ IV[3];
	LFSR_S8 = k[0] ^ 0xffffffff;
	LFSR_S7 = k[3];
	LFSR_S6 = k[2];
	LFSR_S5 = k[1];
	LFSR_S4 = k[0];
	LFSR_S3 = k[3] ^ 0xffffffff;
	LFSR_S2 = k[2] ^ 0xffffffff;
	LFSR_S1 = k[1] ^ 0xffffffff;
	LFSR_S0 = k[0] ^ 0xffffffff;
	FSM_R1 = 0x0;
	FSM_R2 = 0x0;
	FSM_R3 = 0x0;
	for(i=0;i<32;i++)
	{
		F = ClockFSM();
		ClockLFSRInitializationMode(F);
	}
}

/* Generation of Keystream.
* input n: number of 32-bit words of keystream.
* input z: space for the generated keystream, assumes
* memory is allocated already.
* output: generated keystream which is filled in z
* See section 4.2.
*/

void snow_3g_generate_key_stream(u32 n, u32 *ks)
{
	u32 t = 0;
	u32 F = 0x0;
	ClockFSM(); /* Clock FSM once. Discard the output. */
	ClockLFSRKeyStreamMode(); /* Clock LFSR in keystream mode once. */
	for ( t=0; t<n; t++)
	{
		F = ClockFSM(); /* STEP 1 */
		ks[t] = F ^ LFSR_S0; /* STEP 2 */
		/* Note that ks[t] corresponds to z_{t+1} in section 4.2
		*/
		ClockLFSRKeyStreamMode(); /* STEP 3 */
	}
}

/*-----------------------------------------------------------------------
* end of SNOW_3G.c
*-----------------------------------------------------------------------*/

/*---------------------------------------------------------
* f8.c
*---------------------------------------------------------*/

/*
#include "f8.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
*/

/* f8.
* Input key: 128 bit Confidentiality Key.
* Input count:32-bit Count, Frame dependent input.
* Input bearer: 5-bit Bearer identity (in the LSB side).
* Input dir:1 bit, direction of transmission.
* Input data: length number of bits, input bit stream.
* Input length: 32 bit Length, i.e., the number of bits to be encrypted or
* decrypted.
* Output data: Output bit stream. Assumes data is suitably memory
* allocated.
* Encrypts/decrypts blocks of data between 1 and 2^32 bits in length as
* defined in Section 3.
*/

void snow_3g_f8(u8 *key, u32 count, u32 bearer, u32 dir, u8 *data, u32 length)
{
	u32 K[4],IV[4];
	int n = ( length + 31 ) / 32;
	int i=0;
	int lastbits = (8-(length%8)) % 8;
	u32 KS[n];
	
	/*Initialisation*/
	/* Load the confidentiality key for SNOW 3G initialization as in section
	3.4. */
	for (i=0; i<4; i++)
		K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) 
			   ^ (key[4*i+2] << 8) ^ (key[4*i+3]);
	
	/* Prepare the initialization vector (IV) for SNOW 3G initialization as in
	section 3.4. */
	IV[3] = count;
	IV[2] = (bearer << 27) | ((dir & 0x1) << 26);
	IV[1] = IV[3];
	IV[0] = IV[2];
	
	/* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/
	snow_3g_initialize(K,IV);
	snow_3g_generate_key_stream(n,(u32*)KS);
	
	/* Exclusive-OR the input data with keystream to generate the output bit
	stream */
	for (i=0; i<n; i++)
	{
		data[4*i+0] ^= (u8) (KS[i] >> 24) & 0xff;
		data[4*i+1] ^= (u8) (KS[i] >> 16) & 0xff;
		data[4*i+2] ^= (u8) (KS[i] >> 8) & 0xff;
		data[4*i+3] ^= (u8) (KS[i] ) & 0xff;
	}
	
	/* zero last bits of data in case its length is not byte-aligned 
	   this is an addition to the C reference code, which did not handle it */
	if (lastbits)
		data[length/8] &= 256 - (1<<lastbits);
}
/* End of f8.c */

/*---------------------------------------------------------
 *					f9.c
 *---------------------------------------------------------*/

/* MUL64x.
 * Input V: a 64-bit input.
 * Input c: a 64-bit input.
 * Output : a 64-bit output.
 * A 64-bit memory is allocated which is to be freed by the calling 
 * function.
 * See section 4.3.2 for details.
 */
static u64 MUL64x(u64 V, u64 c)
{
	if ( V & 0x8000000000000000 )
		return (V << 1) ^ c;
	else
		return V << 1;
}

/* MUL64xPOW.
 * Input V: a 64-bit input.
 * Input i: a positive integer.
 * Input c: a 64-bit input.
 * Output : a 64-bit output.
 * A 64-bit memory is allocated which is to be freed by the calling function.
 * See section 4.3.3 for details.
 */
static u64 MUL64xPOW(u64 V, u8 i, u64 c)
{
	if ( i == 0)
		return V; 
	else
		return MUL64x( MUL64xPOW(V,i-1,c) , c);
}

/* MUL64.
 * Input V: a 64-bit input.
 * Input P: a 64-bit input.
 * Input c: a 64-bit input.
 * Output : a 64-bit output.
 * A 64-bit memory is allocated which is to be freed by the calling 
 * function.
 * See section 4.3.4 for details.
 */
static u64 MUL64(u64 V, u64 P, u64 c)
{
	u64 result = 0;
	int i = 0;

	for ( i=0; i<64; i++)
	{
		if( ( P>>i ) & 0x1 )
			result ^= MUL64xPOW(V,i,c);
	}
	return result;
}

/* mask8bit.
 * Input n: an integer in 1-7.
 * Output : an 8 bit mask.
 * Prepares an 8 bit mask with required number of 1 bits on the MSB side.
 */
static u8 mask8bit(int n)
{
	return 0xFF ^ ((1<<(8-n)) - 1);
}

/* f9.
 * Input key: 128 bit Integrity Key.
 * Input count:32-bit Count, Frame dependent input.
 * Input fresh: 32-bit Random number.
 * Input dir:1 bit, direction of transmission (in the LSB).
 * Input data: length number of bits, input bit stream.
 * Input length: 64 bit Length, i.e., the number of bits to be MAC'd.
 * Output  : 32 bit block used as MAC 
 * Generates 32-bit MAC using UIA2 algorithm as defined in Section 4.
 */
void snow_3g_f9(u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length, 
        u8 *out)
{
	u32 K[4],IV[4], z[5];
	u32 i=0, D;
	u64 EVAL;
	u64 V;
	u64 P;
	u64 Q;
	u64 c;
	
	u64 M_D_2;
	int rem_bits = 0;
	
	/* Load the Integrity Key for SNOW3G initialization as in section 4.4. */
	for (i=0; i<4; i++)
    {
		K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^
				 (key[4*i+2] << 8) ^ (key[4*i+3]);
    }
	
	/* Prepare the Initialization Vector (IV) for SNOW3G initialization as 
	   in section 4.4. */
	IV[3] = count;
	IV[2] = fresh;
	IV[1] = count ^ ( dir << 31 ) ;
	IV[0] = fresh ^ (dir << 15);
	
	z[0] = z[1] = z[2] = z[3] = z[4] = 0;
	
	/* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */
	snow_3g_initialize(K, IV);
	snow_3g_generate_key_stream(5, z);
	
	P = (u64)z[0] << 32 | (u64)z[1];
	Q = (u64)z[2] << 32 | (u64)z[3];
	
	/* Calculation */
	if ((length % 64) == 0)
		D = (length>>6) + 1;
	else
		D = (length>>6) + 2;
	EVAL = 0;
	c = 0x1b;
	
	/* for 0 <= i <= D-3 */
	for (i=0; i<D-2; i++)
	{
		V = EVAL ^ ( (u64)data[8*i  ]<<56 | (u64)data[8*i+1]<<48 | 
				     (u64)data[8*i+2]<<40 | (u64)data[8*i+3]<<32 | 
                     (u64)data[8*i+4]<<24 | (u64)data[8*i+5]<<16 | 
				     (u64)data[8*i+6]<< 8 | (u64)data[8*i+7] )   ;
		EVAL = MUL64(V,P,c);
	}
	
	/* for D-2 */
	rem_bits = length % 64;
	if (rem_bits == 0)
		rem_bits = 64;
	
	M_D_2 = 0;
	i = 0;
	while (rem_bits > 7)
	{
		M_D_2 |= (u64)data[8*(D-2)+i] << (8*(7-i));
		rem_bits -= 8;
		i++;
	}
	if (rem_bits > 0)
		M_D_2 |= (u64)(data[8*(D-2)+i] & mask8bit(rem_bits)) << (8*(7-i));
	
	V = EVAL ^ M_D_2;
	EVAL = MUL64(V,P,c);
	
	/* for D-1 */
	EVAL ^= length;
	
	/* Multiply by Q */
	EVAL = MUL64(EVAL,Q,c);
	
	/* XOR with z_5: this is a modification to the reference C code, 
	   which forgot to XOR z[5] */
	for (i=0; i<4; i++)
		/*
		MAC_I[i] = (mac32 >> (8*(3-i))) & 0xff;
		*/
		out[i] = ((EVAL >> (56-(i*8))) ^ (z[4] >> (24-(i*8)))) & 0xff;
}

/* End of f9.c */
/*------------------------------------------------------------------------*/