aboutsummaryrefslogtreecommitdiffstats
path: root/Transceiver52M/sigProcLib.h
blob: 3aaa62bf73336d5aafc7f28f738174bc3a1ca0d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under multiple licenses; see the COPYING file in the main directory for licensing information for this specific distribuion.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

*/

#ifndef SIGPROCLIB_H
#define SIGPROCLIB_H

#include "Vector.h"
#include "Complex.h"
#include "GSMTransfer.h"


using namespace GSM;

/** Indicated signalVector symmetry */
enum Symmetry {
  NONE = 0,
  ABSSYM = 1
};

/** Convolution type indicator */
enum ConvType {
  FULL_SPAN = 0,
  OVERLAP_ONLY = 1,
  START_ONLY = 2,
  WITH_TAIL = 3,
  NO_DELAY = 4,
  CUSTOM = 5,
  UNDEFINED = 255
};

/** the core data structure of the Transceiver */
class signalVector: public Vector<complex> 
{

 private:
  
  Symmetry symmetry;   ///< the symmetry of the vector
  bool realOnly;       ///< true if vector is real-valued, not complex-valued
  
 public:
  
  /** Constructors */
  signalVector(int dSize=0, Symmetry wSymmetry = NONE):
    Vector<complex>(dSize),
    realOnly(false)
    { 
      symmetry = wSymmetry; 
    };
    
  signalVector(complex* wData, size_t start, 
	       size_t span, Symmetry wSymmetry = NONE):
    Vector<complex>(NULL,wData+start,wData+start+span),
    realOnly(false)
    { 
      symmetry = wSymmetry; 
    };
      
  signalVector(const signalVector &vec1, const signalVector &vec2):
    Vector<complex>(vec1,vec2),
    realOnly(false)
    { 
      symmetry = vec1.symmetry; 
    };
	
  signalVector(const signalVector &wVector):
    Vector<complex>(wVector.size()),
    realOnly(false)
    {
      wVector.copyTo(*this); 
      symmetry = wVector.getSymmetry();
    };

  /** symmetry operators */
  Symmetry getSymmetry() const { return symmetry;};
  void setSymmetry(Symmetry wSymmetry) { symmetry = wSymmetry;}; 

  /** real-valued operators */
  bool isRealOnly() const { return realOnly;};
  void isRealOnly(bool wOnly) { realOnly = wOnly;};
};

/** Convert a linear number to a dB value */
float dB(float x);

/** Convert a dB value into a linear value */
float dBinv(float x);

/** Compute the energy of a vector */
float vectorNorm2(const signalVector &x);

/** Compute the average power of a vector */
float vectorPower(const signalVector &x);

/** Setup the signal processing library */
void sigProcLibSetup(int samplesPerSymbol);

/** Destroy the signal processing library */
void sigProcLibDestroy(void);

/** 
 	Convolve two vectors. 
	@param a,b The vectors to be convolved.
	@param c, A preallocated vector to hold the convolution result.
	@param spanType The type/span of the convolution.
	@return The convolution result.
*/
signalVector* convolve(const signalVector *a,
		       const signalVector *b,
		       signalVector *c,
		       ConvType spanType,
		       unsigned startIx = 0,
		       unsigned len = 0);

/** 
	Generate the GSM pulse. 
	@param samplesPerSymbol The number of samples per GSM symbol.
	@param symbolLength The size of the pulse.
	@return The GSM pulse.
*/
signalVector* generateGSMPulse(int samplesPerSymbol,
			       int symbolLength);

/** 
        Frequency shift a vector.
	@param y The frequency shifted vector.
	@param x The vector to-be-shifted.
	@param freq The digital frequency shift
	@param startPhase The starting phase of the oscillator 
	@param finalPhase The final phase of the oscillator
	@return The frequency shifted vector.
*/
signalVector* frequencyShift(signalVector *y,
			     signalVector *x,
			     float freq = 0.0,
			     float startPhase = 0.0,
			     float *finalPhase=NULL);

/** 
        Correlate two vectors. 
        @param a,b The vectors to be correlated.
        @param c, A preallocated vector to hold the correlation result.
        @param spanType The type/span of the correlation.
        @return The correlation result.
*/
signalVector* correlate(signalVector *a,
			signalVector *b,
			signalVector *c,
			ConvType spanType,
                        bool bReversedConjugated = false,
			unsigned startIx = 0,
			unsigned len = 0);

/** Operate soft slicer on real-valued portion of vector */ 
bool vectorSlicer(signalVector *x);

/** GMSK modulate a GSM burst of bits */
signalVector *modulateBurst(const BitVector &wBurst,
			    const signalVector &gsmPulse,
			    int guardPeriodLength,
			    int samplesPerSymbol);

/** Sinc function */
float sinc(float x);

/** Delay a vector */
void delayVector(signalVector &wBurst,
		 float delay);

/** Add two vectors in-place */
bool addVector(signalVector &x,
	       signalVector &y);

/** Multiply two vectors in-place*/
bool multVector(signalVector &x,
                signalVector &y);

/** Generate a vector of gaussian noise */
signalVector *gaussianNoise(int length,
                            float variance = 1.0,
                            complex mean = complex(0.0));

/**
	Given a non-integer index, interpolate a sample.
	@param inSig The signal from which to interpolate.
	@param ix The index.
	@return The interpolated signal value.
*/
complex interpolatePoint(const signalVector &inSig,
			 float ix);

/**
	Given a correlator output, locate the correlation peak.
	@param rxBurst The correlator result.
	@param peakIndex Pointer to value to receive interpolated peak index.
	@param avgPower Power to value to receive mean power.
	@return Peak value.
*/
complex peakDetect(const signalVector &rxBurst,
		   float *peakIndex,
		   float *avgPwr);

/**
        Apply a scalar to a vector.
        @param x The vector of interest.
        @param scale The scalar.
*/
void scaleVector(signalVector &x,
		 complex scale);

/**      
        Add a constant offset to a vecotr.
        @param x The vector of interest.
        @param offset The offset.
*/
void offsetVector(signalVector &x,
		  complex offset);

/**
        Generate a modulated GSM midamble, stored within the library.
        @param gsmPulse The GSM pulse used for modulation.
        @param samplesPerSymbol The number of samples per GSM symbol.
        @param TSC The training sequence [0..7]
        @return Success.
*/
bool generateMidamble(signalVector &gsmPulse,
		      int samplesPerSymbol,
		      int TSC);
/**
        Generate a modulated RACH sequence, stored within the library.
        @param gsmPulse The GSM pulse used for modulation.
        @param samplesPerSymbol The number of samples per GSM symbol.
        @return Success.
*/
bool generateRACHSequence(signalVector &gsmPulse,
			  int samplesPerSymbol);

/**
        Energy detector, checks to see if received burst energy is above a threshold.
        @param rxBurst The received GSM burst of interest.
        @param windowLength The number of burst samples used to compute burst energy
        @param detectThreshold The detection threshold, a linear value.
        @param avgPwr The average power of the received burst.
        @return True if burst energy is above threshold.
*/
bool energyDetect(signalVector &rxBurst,
		  unsigned windowLength,
                  float detectThreshold,
                  float *avgPwr = NULL);

/**
        RACH correlator/detector.
        @param rxBurst The received GSM burst of interest.
        @param detectThreshold The threshold that the received burst's post-correlator SNR is compared against to determine validity.
        @param samplesPerSymbol The number of samples per GSM symbol.
        @param amplitude The estimated amplitude of received RACH burst.
        @param TOA The estimate time-of-arrival of received RACH burst.
        @return True if burst SNR is larger that the detectThreshold value.
*/
bool detectRACHBurst(signalVector &rxBurst,
		     float detectThreshold,
		     int samplesPerSymbol,
		     complex *amplitude,
		     float* TOA);

/**
        Normal burst correlator, detector, channel estimator.
        @param rxBurst The received GSM burst of interest.
 
        @param detectThreshold The threshold that the received burst's post-correlator SNR is compared against to determine validity.
        @param samplesPerSymbol The number of samples per GSM symbol.
        @param amplitude The estimated amplitude of received TSC burst.
        @param TOA The estimate time-of-arrival of received TSC burst.
        @param maxTOA The maximum expected time-of-arrival
        @param requestChannel Set to true if channel estimation is desired.
        @param channelResponse The estimated channel.
        @param channelResponseOffset The time offset b/w the first sample of the channel response and the reported TOA.
        @return True if burst SNR is larger that the detectThreshold value.
*/
bool analyzeTrafficBurst(signalVector &rxBurst,
			 unsigned TSC,
			 float detectThreshold,
			 int samplesPerSymbol,
			 complex *amplitude,
			 float *TOA,
                         unsigned maxTOA,
                         bool requestChannel = false,
			 signalVector** channelResponse = NULL,
			 float *channelResponseOffset = NULL);

/**
	Decimate a vector.
        @param wVector The vector of interest.
        @param decimationFactor The amount of decimation, i.e. the decimation factor.
        @return The decimated signal vector.
*/
signalVector *decimateVector(signalVector &wVector,
			     int decimationFactor);

/**
        Demodulates a received burst using a soft-slicer.
	@param rxBurst The burst to be demodulated.
        @param gsmPulse The GSM pulse.
        @param samplesPerSymbol The number of samples per GSM symbol.
        @param channel The amplitude estimate of the received burst.
        @param TOA The time-of-arrival of the received burst.
        @return The demodulated bit sequence.
*/
SoftVector *demodulateBurst(signalVector &rxBurst,
			 const signalVector &gsmPulse,
			 int samplesPerSymbol,
			 complex channel,
			 float TOA);

/**
        Creates a simple Kaiser-windowed low-pass FIR filter.
        @param cutoffFreq The digital 3dB bandwidth of the filter.
        @param filterLen The number of taps in the filter.
        @param gainDC The DC gain of the filter.
        @return The desired LPF
*/
signalVector *createLPF(float cutoffFreq,
			int filterLen,
                        float gainDC = 1.0);

/**
	Change sampling rate of a vector via polyphase resampling.
        @param wVector The vector to be resampled.
        @param P The numerator, i.e. the amount of upsampling.
        @param Q The denominator, i.e. the amount of downsampling.
	@param LPF An optional low-pass filter used in the resampling process.
	@return A vector resampled at P/Q of the original sampling rate.
*/    
signalVector *polyphaseResampleVector(signalVector &wVector,
				      int P, int Q,
				      signalVector *LPF);

/**
	Change the sampling rate of a vector via linear interpolation.
	@param wVector The vector to be resampled.
	@param expFactor Ratio of new sampling rate/original sampling rate.
	@param endPoint ???
	@return A vector resampled a expFactor*original sampling rate.
*/
signalVector *resampleVector(signalVector &wVector,
			     float expFactor,
			     complex endPoint);

/**
	Design the necessary filters for a decision-feedback equalizer.
	@param channelResponse The multipath channel that we're mitigating.
	@param SNRestimate The signal-to-noise estimate of the channel, a linear value
	@param Nf The number of taps in the feedforward filter.
	@param feedForwardFilter The designed feed forward filter.
	@param feedbackFilter The designed feedback filter.
	@return True if DFE can be designed.
*/
bool designDFE(signalVector &channelResponse,
	       float SNRestimate,
	       int Nf,
	       signalVector **feedForwardFilter,
	       signalVector **feedbackFilter);

/**
	Equalize/demodulate a received burst via a decision-feedback equalizer.
	@param rxBurst The received burst to be demodulated.
	@param TOA The time-of-arrival of the received burst.
	@param samplesPerSymbol The number of samples per GSM symbol.
	@param w The feed forward filter of the DFE.
	@param b The feedback filter of the DFE.
	@return The demodulated bit sequence.
*/
SoftVector *equalizeBurst(signalVector &rxBurst,
		       float TOA,
		       int samplesPerSymbol,
		       signalVector &w, 
		       signalVector &b);

#endif /* SIGPROCLIB_H */