aboutsummaryrefslogtreecommitdiffstats
path: root/Transceiver52M/arch/arm/convolve.c
blob: 912d0c2917116320b04f4cff199d9c69fd5c9707 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
 * NEON Convolution
 * Copyright (C) 2012, 2013 Thomas Tsou <tom@tsou.cc>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <malloc.h>
#include <string.h>
#include <stdio.h>

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

/* Forward declarations from base implementation */
int _base_convolve_real(float *x, int x_len,
			float *h, int h_len,
			float *y, int y_len,
			int start, int len,
			int step, int offset);

int _base_convolve_complex(float *x, int x_len,
			   float *h, int h_len,
			   float *y, int y_len,
			   int start, int len,
			   int step, int offset);

int bounds_check(int x_len, int h_len, int y_len,
		 int start, int len, int step);

#ifdef HAVE_NEON
/* Calls into NEON assembler */
void neon_conv_real4(float *x, float *h, float *y, int len);
void neon_conv_real8(float *x, float *h, float *y, int len);
void neon_conv_real12(float *x, float *h, float *y, int len);
void neon_conv_real16(float *x, float *h, float *y, int len);
void neon_conv_real20(float *x, float *h, float *y, int len);
void mac_cx_neon4(float *x, float *h, float *y, int len);

/* Complex-complex convolution */
static void neon_conv_cmplx_4n(float *x, float *h, float *y, int h_len, int len)
{
	for (int i = 0; i < len; i++)
		mac_cx_neon4(&x[2 * i], h, &y[2 * i], h_len >> 2);
}
#endif

/* API: Initalize convolve module */
void convolve_init(void)
{
	/* Stub */
	return;
}

/* API: Aligned complex-real */
int convolve_real(float *x, int x_len,
		  float *h, int h_len,
		  float *y, int y_len,
		  int start, int len,
		  int step, int offset)
{
	void (*conv_func)(float *, float *, float *, int) = NULL;

	if (bounds_check(x_len, h_len, y_len, start, len, step) < 0)
		return -1;

	memset(y, 0, len * 2 * sizeof(float));

#ifdef HAVE_NEON
	if (step <= 4) {
		switch (h_len) {
		case 4:
			conv_func = neon_conv_real4;
			break;
		case 8:
			conv_func = neon_conv_real8;
			break;
		case 12:
			conv_func = neon_conv_real12;
			break;
		case 16:
			conv_func = neon_conv_real16;
			break;
		case 20:
			conv_func = neon_conv_real20;
			break;
		}
	}
#endif
	if (conv_func) {
		conv_func(&x[2 * (-(h_len - 1) + start)],
			  h, y, len);
	} else {
		_base_convolve_real(x, x_len,
				    h, h_len,
				    y, y_len,
				    start, len, step, offset);
	}

	return len;
}


/* API: Aligned complex-complex */
int convolve_complex(float *x, int x_len,
		     float *h, int h_len,
		     float *y, int y_len,
		     int start, int len,
		     int step, int offset)
{
	void (*conv_func)(float *, float *, float *, int, int) = NULL;

	if (bounds_check(x_len, h_len, y_len, start, len, step) < 0)
		return -1;

	memset(y, 0, len * 2 * sizeof(float));

#ifdef HAVE_NEON
	if (step <= 4 && !(h_len % 4))
		conv_func = neon_conv_cmplx_4n;
#endif
	if (conv_func) {
		conv_func(&x[2 * (-(h_len - 1) + start)],
			  h, y, h_len, len);
	} else {
		_base_convolve_complex(x, x_len,
				       h, h_len,
				       y, y_len,
				       start, len, step, offset);
	}

	return len;
}